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ABSTRACT OF THE DISSERTATION 

 

 

Variation in forest richness, density and size is explained by  

environmental gradients from the plot to landscape scale 

 

 

by 

 

 

Geoffrey Andrew Fricker 

 

Doctor of Philosophy in Geography 

University of California, Los Angeles, 2015 

Professor Thomas Welch Gillespie, Chair 

 

 

A spatial gap exists between fine scale forest census plot dynamics and coarse scale 

landscape processes. Patterns observed at the plot scale do not necessarily continue outside plot 

boundaries and how such patterns scale across the landscape remains poorly understood. The 

sparse geographic extent of census plot data and the prohibitive cost of high resolution remote 

sensing remain the largest obstacles to extending the study of plot scale dynamics across the 

landscape, however this situation is changing rapidly and methods must be developed to 

integrate new data and close this spatial gap. The research presented in this dissertation utilizes 
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plot level census data to study how plant richness, density and size vary across environmental 

gradients and presents a methodological framework for 1) predicting species richness where no 

plot data currently exists, 2) investigating guild level differences between plant growth forms in 

relation to resource gradients and 3) studying how forests vary across environmental gradients at 

the continental scale. The methodology utilizes spatial and non-spatial modeling to identify 

associations between plant richness, density and size at the plot scale. These associations are 

used to predict forest dynamics at the landscape scale and study forest structure at the continental 

scale.  

First, the findings provide evidence that increased tree species richness is associated with 

environmental heterogeneity in both the canopy and hydrologic environment.  These associations 

explain nearly half of the variation in tree species richness and are used to make hectare scale 

predictions of tree species richness on Barro Colorado Island, Panama. Secondly, there is strong 

evidence of habitat filtering along resource gradients of light and water caused by guild level 

differences between plants.  In particular, free-standing plant guilds are non-randomly arranged 

along the hydrologic gradient with short understory trees and shrubs clustered in wetter 

environments and midstory and canopy level trees clustered in drier environments. Finally, when 

compared to climatic predictors, topography and terrain slope in particular appear to be exerting 

strong controls on forest structure across Mesoamerica.  Taller forests occur on steep slopes, high 

elevation, on well drained soils and these effects are insensitive to land cover, biome and spatial 

scale. 
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CHAPTER 1 

[Chapter 1 is formatted as a paper in Ecological Applications] 

[A preprint of Chapter 1 is available at: http://www.esajournals.org/doi/abs/10.1890/14-1593.1] 

 

Section 1.1: Predicting spatial variations of tree species richness in tropical forests 

from high resolution remote sensing 

 

ABSTRACT 

There is an increasing interest in identifying theories, empirical datasets, and remote 

sensing metrics that can quantify tropical forest alpha diversity at a landscape scale. Quantifying 

patterns of tree species richness in the field is time consuming, especially in regions with over 

100 tree species per ha. This study examines species richness in a 50 ha forest dynamics plot 

(FDP) on Barro Colorado Island (BCI), Panama and tests if biophysical measurements of canopy 

reflectance from high resolution satellite imagery combined with detailed vertical forest structure 

and topography from light detection and ranging (LiDAR) are associated with species richness 

across four tree size classes (> 1, 1-10, > 10, > 20 cm dbh) and three spatial scales (1, 0.25, 0.04 

ha). This study uses the 2010 tree inventory, including 204,757 individuals belonging to 301 

species of freestanding woody plants or 166 ± 1.5 species per ha (mean ± SE), to compare with 

remote sensing data. All remote sensing metrics become less correlated with species richness as 

spatial resolution decreased from 1.0 ha to 0.04 ha and tree size increased from 1 cm to 20 cm 

dbh. When all stems > 1 cm in 1 ha plots were compared to remote sensing metrics, standard 

deviation in canopy reflectance can explain 13% of the variance in species richness. The 

http://www.esajournals.org/doi/abs/10.1890/14-1593.1
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standard deviations of canopy height and the topographic wetness index (TWI) derived from 

LiDAR were the best metrics to explain the spatial variance in species richness (15% and 24% 

respectively). Using multiple regression models, this study makes predictions of species richness 

across Barro Colorado Island (BCI) at the 1-ha spatial scale for different tree size classes. 

Models can predict variation in tree species richness amongst all plants (adjusted r
2
 = 0.35) and 

trees > 10 cm dbh (adjusted r
2
 = 0.25). However, the best model results were for understory trees 

and shrubs (1-10 cm dbh) (adjusted r
2
= 0.52), that comprise the majority of species richness in 

tropical forests. The results indicate that high resolution remote sensing can predict a large 

proportion of variance in species richness and potentially provide a framework to map and 

predict alpha diversity amongst trees in diverse tropical forests. 

 

Key words: Barro Colorado Island, high-resolution satellite imagery, LiDAR, remote sensing, 

spatial scale, tree species richness 
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INTRODUCTION 

Tropical forests are experiencing high rates of deforestation and degradation causing a 

significant contribution to increasing atmospheric CO2 and a large adverse impact on biodiversity 

and other ecosystem services (Clark et al. 2011, Bellard et al. 2012, Harris et al. 2012, Hansen et 

al. 2013). Yet there is a lack of spatial information on the distribution of biodiversity at the 

landscape to regional scales that can be used for achieving specific Aichi Biodiversity Targets by 

2020, outlined in the Global Biodiversity Outlook from the Intergovernmental Science-Policy 

Platform on Biodiversity and Ecosystem Services (IPBES). In particular, a recent mid-term 

analysis of progress toward international biodiversity targets found that a global analysis will not 

reflect finer scale spatial variation at local to regional scales and that taxonomic coverage is a 

key limiting factor. The analysis could not locate any indicators meeting the criteria to measure 

progress toward measuring ecosystem resilience and contribution of biodiversity to carbon 

stocks (Aichi Target 15) (Tittensor et al. 2014). It is therefore a pressing issue to develop 

baseline targets against which to assess future progress and test assessments with additional 

taxonomic and landscape scale assessments of alpha diversity. With accelerated declines in 

tropical forests across the world, there is an urgent need to identify patterns and processes 

associated with the distribution and maintenance of species richness (alpha diversity), turn over 

(beta diversity), and traits (functional diversity). An analysis of 100 time series from biomes 

across the planet did not find a systematic loss of alpha diversity, however community 

composition changed systematically through time (Dornelas et al. 2014). The results suggested 

that the extent to which biodiversity change in local assemblages contributes to global 
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biodiversity loss is poorly understood. Furthermore, the authors emphasized that monitoring and 

understanding change in species composition should be a conservation priority.  

Most remote sensing studies of tree species richness in the tropics use 1 ha plots and 

examine tree species >10 cm in diameter at breast height (dbh), but there has been an increase in 

the number of large plots (i.e. 50 ha) that quantify species richness of stem >1 cm dbh (Condit et 

al. 1996, Saatchi et al. 2008, Keith et al. 2009). However, quantifying patterns of species 

richness in regions with over 100 tree species per ha is expensive, time consuming, requires 

skilled individuals to identify trees to species, and currently field plots cover a small geographic 

extent of the tropical landscape. Thus there is an increasing need to develop methods for 

mapping predictions of alpha diversity across tropical forest landscapes at a high spatial 

resolution (Nagendra and Rocchini 2008). 

There are a number of physical and environmental conditions that have been 

hypothesized to be associated with tree species richness in tropical forest landscapes. Primary 

productivity has been hypothesized to be associated with alpha diversity based on the species-

energy or diversity-productivity theory (Lo Seen Chong et al. 1993, Evans et al. 2005). There 

have been an increasing number of studies that have found significant associations between 

spectral indices of productivity and diversity (Nagendra 2001, Kerr and Ostrovsky 2003, 

Chambers et al. 2007, Leyequien et al. 2007, Saatchi et al. 2008), and many studies have 

reported significant positive correlations between plant species richness and diversity from plot 

data and productivity indices in tropical ecosystems (Bawa et al. 2002, Feeley et al. 2005, 

Gillespie 2005, Cayuela et al. 2006).The most commonly used and most intensively studied 

vegetation index is the normalized difference vegetation index (NDVI), capturing the greenness 

or chlorophyll content of vegetation and photosynthesis processes relating to productivity. 
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However a host of other vegetation indices are also available. Some may be better adapted for 

tree diversity applications such as the simple ratio vegetation index (RVI) which more directly 

measures leaf area index (LAI) (Chen et al. 2002) or the enhanced vegetation index (EVI) which 

can resolve differences in LAI without being impacted by background soil reflectance (Rocha 

and Shaver 2009).  

Amongst canopy trees, there is often high interspecific variation in the chemical and 

physical properties that influence light absorption and reflectance. New airborne imaging 

technologies such as the Carnegie Airborne Observatory (CAO) offer higher spectral resolution 

and analytical methods which provide a way to detect and map canopy species richness based on 

biochemical variation across landscapes (Asner et al. 2007). A range of airborne and space-based 

remote sensing technologies hold real promise for overcoming the challenges posed by the 

biogeochemical complexity of the tropical biome (Townsend et al. 2008, Schimel et al. 2014). 

Spectral heterogeneity may be positively associated with species richness due to chemical and 

structural variability. Measurements of spectral heterogeneity derived from satellite imagery 

have been proven to be correlated with species richness in temperate environments (Gould 2000, 

Rocchini et al. 2004a) as well as from airborne remote sensing platforms in the tropics (Asner 

and Martin 2008a, Asner et al. 2011). This relationship with species richness is based on the 

hypothesis that heterogeneity in spectral indices or spectral variability within a landscape is an 

indicator of either habitat heterogeneity, or in the case of canopy trees a diversity of foliar 

chemistry (Palmer et al. 2002, Carlson et al. 2007, Rocchini et al. 2007). Variation in spectral 

indices has been shown to be positively associated with species richness and diversity for a 

number of taxa in different regions, but there are few studies in tropical forest landscapes (Gould 

2000, Fairbanks and McGwire 2004, Levin et al. 2007). Since differences in vertical canopy 
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structure create a heterogeneous light environment with shadows, gaps and volumetric scattering 

in tree canopies, there is a powerful signal from canopy structure in remote sensing 

measurements of spectral heterogeneity. Canopy texture measurements from digital aerial 

photographs showed highly significant correlations with tree density (r
2

 = 0.80), mean basal area 

(r
2

 = -0.71), distribution of dbh size classes (r
2
= 0.64) and mean canopy height (r

2
= 0.57) in 12 1-

ha control plots in a tropical rainforest in French Guiana for trees greater than 10 cm dbh 

(Couteron et al. 2005). High-resolution Quickbird satellite imagery (200 km
2
) has also been 

employed to demonstrate the feasibility of large scale assessment of rain forest canopy structure 

across the Amazon (Barbier et al. 2010).  

The complexity of tropical forest structure has long been identified as associated with 

high diversity in tropical forests (MacArthur and MacArthur 1961). Studies in temperate forests 

have shown that the development of structurally complex canopies comprising various tree 

species enhances stand productivity by promoting complementary resource utilization among 

species through spatial, physiological, and temporal differentiation (Ishii et al. 2004). Recent 

studies have shown that upper canopy variability is correlated with increased species richness 

among trees (>1 cm dbh) possibly due to partitioning of light resources (Wolf et al. 2012). 

Highly complex vertical canopy structure also enhances biodiversity of canopy-dwelling 

organisms by creating a resource-rich habitat (Terborgh 1985, Ishii et al. 2004).  

It has been hypothesized that topography has a large influence on the distribution of both 

alpha diversity and community composition in tropical forests (Denslow 1995, Baldeck et al. 

2013b). Slope has been found to be positively correlated with species richness of seedlings (1.0-

3.9 cm dbh) (Hubbell et al. 1999) and this may also be the case for larger stems. It has been 

shown that slope specialists have significantly higher survival rate on the slope vs. plateau 
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habitat during the dry season, but plateau specialists show no difference in performance between 

habitats. This suggest that associations with plateau habitats result from a numerical advantage of 

drought-tolerant species in dry habitats where drought-sensitive species are unable to persist 

(Comita and Engelbrecht 2009). It is believed that topographic variation will create more 

physical space and different hydrologic conditions for species to co-exist. For instance, of the 

171 commonly occurring species in the forest plots in Panama, 64% were associated with at least 

one topographically defined habitat (Harms et al. 2001). This suggests that niche differentiation 

with respect to micro-topography and soil water availability is a direct determinant of both local 

and regional scale distributions of tropical trees (Engelbrecht et al. 2007). Simple measurements 

of the heterogeneity of growth limiting factors in the light and hydrologic environments are 

expected to be associated with increased tree richness due to resource partitioning.  

Advances in spaceborne and airborne sensors may allow for quantifying metrics of 

productivity, forest structure, and topography associated with alpha diversity in tropical forest 

landscapes. Spaceborne sensors such as Landsat, SPOT, and MODIS, with pixels sizes of 20 m 

to 250 m have been useful for quantifying species richness in tropical forest regions using 

spectral metrics (i.e. NDVI, EVI) associated with photosynthetic activity and primary 

productivity (Gillespie 2005). More recently airborne and spaceborne LiDAR and radar remote 

sensing systems have been used to characterize three-dimensional canopy structure for the 

purposes of modeling biodiversity (Goetz et al. 2007, Bergen et al. 2009, Gillespie et al. 2009, 

Müller and Brandl 2009, Goetz et al. 2010). Spatially explicit, high-precision LiDAR 

measurements of forest structure from airborne platforms allow for a more detailed 

characterization of the forest canopy across larger areas than previously possible using field 

based methods.  
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This research is focused on examining the relationship between tree species richness and 

canopy light reflectance, vertical forest structure, and surface topographical variations derived 

from fine scale (<1-m) remote sensing. This study is based on more than 200,000 tree inventory 

data on a single 50-ha plot at Barro Colorado Island (BCI) CTFS plot, but extends to cover the 

entire island (> 1500 ha) with forests along landscape and successional gradients (Condit et al. 

1996). First, we examine relationships between species richness and remote sensing data across 

different tree size classes and spatial scales. In particular the analysis seeks to identify which 

environmental conditions have the strongest associations with tree richness and aim to test the 

hypotheses that tree species richness will be insensitive to different tree size classes and spatial 

scales. Second, the results identify which combinations of remote sensing derived metrics can 

explain the largest proportions of variance in tree species richness across a tropical forest 

landscape. Finally, the statistical relationships between multiple remote sensing metrics are used 

to predict tree species richness across Barro Colorado Island outside the boundaries of the 50 ha 

plot. 

 

MATERIALS AND METHODS 

Site area 

The study was conducted on the 15.6 km
2
 Barro Colorado Island (BCI) centered in Barro 

Colorado Nature Monument in the Republic of Panama (9°10’N, 79°51’W). The climate of BCI 

is seasonal, with an average four-month dry season from late December through late April 

(Engelbrecht et al. 2007). The vegetation is mainly tropical evergreen and semi-deciduous forest 

with high diversity (Croat 1978). The flora and vegetation of BCI have been investigated within 

the Forest Dynamics Plot (FDP) on the central plateau of BCI (Hubbell and Foster 1983). The 
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FDP was established in 1982, and all free standing trees > 1 cm dbh have been mapped and 

measured every 5 years since 1985. The study is focused on the 50 ha FDP on the central 

plateau, however maps of predicted species are projected across BCI (Figure 1.1) 

 

Forest census plot data  

Data on tree species richness across four different tree size classes and three spatial scales 

was analyzed. First, all freestanding woody plants (lianas and herbaceous plants excluded) in the 

50 ha BCI FDP were categorized from the 2010 census for all tree size classes (Condit 1998, 

Hubbell et al. 1999). To study the effects of tree size, the plant stem data is sorted into four 

categories based on dbh size thresholds commonly used in the literature: 1) all stems (>1 cm 

dbh), 2) small trees and shrubs (<10 cm dbh), 3) medium and large trees (>10 cm dbh) and 4) 

large trees (>20 cm dbh). To calculate species richness across difference spatial scales, three 

different grid systems (0.04 ha, 0.25 ha or 1.0 ha) were defined across the 50 ha FDP. Iteratively, 

all individuals in the census are recorded as belonging to their respective subplot cell. Then the 

number of unique species per cell, the stem density, and the cumulative basal area of each 

subplot is counted or summed in the case of basal area. Basal area was calculated based on the 

largest stem for multi-stemmed plants.  

 

Remote sensing  

Airborne LiDAR and high spatial resolution Quickbird satellite imagery were used to 

quantify canopy reflectance, canopy structure, and sub-canopy micro-topography across each 

vegetation subplot (Figure. 1.2). The average and the standard deviation of each variable were 

computed across the subplot area, at each spatial scale for each remote sensing derived predictor 
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variable. A full description of remote sensing pre-processing is available in Appendix 1.1 and all 

remote sensing data can be downloaded at: http://www.esajournals.org/doi/abs/10.1890/14-

1593.1.  

 

Canopy reflectance  

Multispectral Quickbird satellite imagery (2.4 m spatial resolution) was utilized to 

quantify the reflectance of the forest canopy.  The image was collected on March 4
th

 2004 and 

available through the Smithsonian Tropical Research Institute GIS web portal. The Quickbird 

imagery contains four bands, blue (450 - 520 nm), green (530 - 600 nm), red (630 - 690 nm) and 

near-infrared (760 - 900 nm). Reflectance was corrected using the Fast-Line-of-sight 

Atmospheric correction tool (FLAASH) in ENVI 5.0 (Exelis Visual Information Solutions, Inc., 

Boulder, CO, USA). Three common vegetation indices were used, including the Ratio 

Vegetation Index (RVI), the Normalized Difference Vegetation Index (NDVI) and the Enhanced 

Vegetation Index (EVI). The variance in panchromatic image texture was also calculated as a 

predictor variable due to its sensitivity to vertical structure, shadows and light gaps. Image 

texture is categorized as a structural variable in the results, despite being derived from satellite 

imagery. Finally, spectral heterogeneity is quantified by performing a principle components 

analysis (PCA) and using the standard deviation in the first principle component band for each 

vegetation subplot. Most of the variance in the Quickbird image is in the infrared band and the 

majority of total variance captured by the PCA was in the first axis (>96%) (Appendix 1.1). We 

also calculated spectral distance between the 1
st
, 2

nd
 and 3

rd
 PC bands; however the results were 

not qualitatively different and were excluded from the reported results. This intermediate result 

indicates that a large proportion of the spectral variability in the satellite imagery derived 

http://www.esajournals.org/doi/abs/10.1890/14-1593.1
http://www.esajournals.org/doi/abs/10.1890/14-1593.1


11 

 

variables is due to forest stand structure and volumetric light scattering in the canopy (Couteron 

et al. 2005, Barbier et al. 2010). Therefore when interpreting the results variability in satellite 

derived metrics should be considered as being more indicative of complex canopy structure and 

not necessarily differences in canopy chemistry. There is a temporal gap between satellite 

imagery collection (2004), LiDAR collection (2009) and plot census (2010) wherein changes in 

forest composition have occurred, particularly in the understory. Since the Quickbird imagery 

primarily measures upper canopy reflectance I am making the assumption it will be less sensitive 

to understory demographic changes. The majority (89%) of large/emergent canopy trees in the 

2005 census (>20 cm dbh) survived the 5+ years from photo acquisition to 2010 plot census and 

it is acknowledged some upper canopy changes may be present due to temporal misalignment.  

 

Canopy structure  

Airborne LiDAR was used to measure the vertical canopy structure and sub-canopy 

micro-topography (Figure 1.3). The airborne LiDAR data were acquired with an Optech ALTM 

Gemini system by BLOM Sistemas Geoespaciales in 2009 (Meyer et al. 2013). The number of 

returns ranged between 4 and 27 points per m
2
 and field measured vertical errors were an 

average in height of -0.069 m, an RMS value of 0.076 m and standard deviation of 0.032 m from 

36 control points in open un-vegetated areas (BLOM 2009, unpublished quality-assurance 

report). The geo-positioning of the 50 ha plot was based on the known location of coordinates of 

the corners published on the STRI GIS portal. The plot location was projected in the Universal 

Transverse Mercator (UTM) projection 17N, (meters) to match the native projection and units of 

the LiDAR. Classified LiDAR point cloud data was manually edited in LP360 (QCoherent) in 

ArcGIS 10.2 (ESRI, Redlands, CA, USA) to remove canopy towers or other high points from the 
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canopy point class. To measure vertical canopy structure the canopy surface model was 

rasterized at 1 m using first-return points defined by the highest LiDAR return (ground or canopy 

class) within each 1 m pixel. By subtracting the 1 m digital surface model (DSM) from the 

canopy surface model (CSM), a 1 m canopy height model (CHM) with terrain removed is 

generated. The CHM is how canopy structure is defined within each subplot, by computing both 

the mean and standard deviation of the CHM at each spatial scale.  

 

Topography  

The sub-canopy micro-topography variables were calculated from an unsmoothed 1 m 

LiDAR derived topographic DSM. The topography model was created by triangulating last-

return LiDAR points to form a continuous surface from which all micro-topography variables 

were derived. Sub-canopy micro-topography is defined as topographic variables which are 

derived from the 1 m last-return LiDAR DSM and which vary at or below the smallest spatial 

scale (0.04 ha). I calculated terrain aspect, curvature, slope, and the TWI. To convert aspect 

measurements (0-360 degrees) into meaningful values, the cosine of aspect is calculated to 

transform it to a measure of ‘northness’. Terrain slope is the first derivative of elevation and is 

calculated in degrees, and curvature is the unitless second derivative of elevation which describes 

whether the ground is upwardly concave or convex (positive curvature indicates upward 

convexity). The TWI includes terrain slope (in radians) and upslope contributing area to 

calculate a weighted estimation of water availability (Sørensen 2006, Sørensen and Seibert 

2007). The TWI is modified by adding a small constant (C = 0.01) to the denominator to ensure 

no data voids in the TWI, when the slope is zero (Figure 1.4). For the final analysis, a fine scale 

(1 m) unsmoothed DSM was tested to provide the highest level of detail in the underlying 
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topography, however it is likely that there is some topographic ‘noise’ introduced by the fine 

scale and lack of smoothing. By testing DSMs with varying spatial resolutions the results 

indicate that while qualitatively similar, the finer DSM produced higher correlation coefficients 

between species richness and all micro-topography variables and was therefore of greater utility 

for the purposes of prediction. All remote sensing variables were calculated in ENVI 5.0 and 

ArcGIS 10.2 and extracted for each vegetation subplot using arcpython scripts in ArcGIS. The 

revised TWI arcpython script is available online: (https://github.com/africker/Topographic-

Wetness-Index).  

 

Statistical analysis  

Species richness data is summarized for three tree sizes classes and three spatial scales 

and compared results to stem density and basal area from the 50 ha plot. The analysis is 

primarily focused on tree species richness amongst all stems (> 1 cm dbh), however discrete size 

classes were created by sub-setting the tree census data based on dbh size thresholds. The 

primary motivation for setting these discrete size thresholds was to analyze how different sized 

stems respond to the environmental variables, in particular the understory vegetation and the 

largest canopy trees. To study pairwise associations, Pearson correlation coefficients (r) and 

simple linear regression models were used to quantify the relationships between observed species 

richness and each remote sensing derived variable using ordinary least-squares (OLS) and 

Generalized Least Squares (GLS) regression in the R programming language (Team 2013).  

 

Ordinary Least Squares and Generalized Least Squares  

Relative to the island as a whole, the large cluster of samples in the 50 ha plot requires 

that spatial modeling be considered. OLS regression assumes independence of individual 
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observations (i.e. a non-spatial model). GLS regression on the other hand provides an 

opportunity to measure spatial autocorrelation by fitting a variogram to model results. Since the 

purpose of the predictive models is to use general associations trained in the 50 ha plot and 

expand them across the landscape and in different forest plots we opt to use non-spatial models 

(OLS) using variables informed by spatial models (GLS). Therefore testing a simple linear 

relationship in other locations is highly repeatable, easy to interpret and does not require the 

optimization of a spatial GLS model. OLS regression is the starting framework which can be 

expanded to include spatial effects as well modeling non-linear processes in future studies. The 

method to select remote sensing variables for the prediction models requires three separate steps. 

First, the pairwise OLS regression must account for a minimum 10% (r
2
>0.10) of observed 

species richness to capture only the strongest associations amongst all remote sensing predictor 

variables. Second, the AIC score for three variograms (Exponential, Spherical, and Gaussian) is 

computed for each variable using GLS regression using the ‘Linear and Nonlinear Mixed Effects 

Models’ package (nlme). The model with the lowest AIC score is considered to be the ‘optimal’ 

GLS model. Lastly, the correlation coefficients for OLS and optimal GLS models for each 

predictor variable are compared. If the correlation coefficient changes sign, I consider that the 

variable has considerable differences between OLS and optimal GLS model outputs.  This 

indicates that the residuals are highly spatially auto-correlated and therefore unfit for a non-

spatial OLS prediction. In this way, models account for spatial autocorrelation in the non-spatial 

regression and increase repeatability of the methods.  

 

Prediction Models of Species Richness  
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Based on the results of the OLS regression and optimized GLS regression models, 

variables are selected for the predictive models which characterized environmental heterogeneity 

in the imagery reflectance, the LiDAR derived canopy CHM and sub-canopy topography DSM. 

The variables selected were chosen because they characterized the hydrologic, topographic and 

light environments and could explain a minimum portion of the variance in tree richness in the 

FDP (r
2
> 0.10). At least one variable from the canopy reflectance, structure and topography 

variables were included in each predictive model. The threshold of r
2
> 0.10 was chosen to 

include only the strongest associations amongst all available variables. Multiple regression 

models with a maximum of four predictor variables were used to predict patterns of species 

richness across BCI. Depending on tree size class, different predictor variables were used for 

each model depending on model fit (Appendix 1.2). Terrain curvature was included in the 

predictive model due to known associations with the hydrologic network, forest structure and 

previously published correlations with species richness on BCI (Wolf et al. 2012, Detto et al. 

2013). Using the ‘predict’ function in R, remote sensing variables are used to make predictive 

maps across the landscape at 1 ha spatial scale for each tree size class. The specific variables 

used for each tree size prediction change depending on their relative importance in each tree size 

class. Predictions for BCI were made across the island by creating a grid of 1 ha cells that align 

with the 50 ha plot but extend to the margins of the island. Cells which cross the margin of the 

island boundary are excluded so that only 1 ha cells which fall completely inside the island 

boundary are included in predictions. Both Quickbird and LiDAR derived variables were 

extracted to the common 1 ha grid where no ground census data were available. Using the 

remote sensing predictor values the multivariate OLS regression equations were applied to 

estimate how many tree species were present in each 1 ha cell across BCI. There is a small gap 
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(15 ha) in coverage where a cloud and shadow are present in the satellite image on the western 

edge of BCI, which is subsequently omitted from the predictive maps. Each environmental 

variable is computed for each hectare of forest on BCI using ArcGIS 10.2 and the OLS models 

are applied in R to predict the number of tree species in each hectare. Model predictions from 

OLS and GLS model predictions are generally very similar and the difference between spatial 

and non-spatial model predictions never exceed 2 species/ha. The results of the models are a 1 ha 

scale prediction of tree species richness for the whole island at every tree size class. 

 

RESULTS 

The 2010 census included 204,757 individuals in the 50 ha plot (4,095 ± 46 individuals 

per ha, mean ± S.E.) belonging to 301 species (166 ± 1.5 species per ha, mean ± SE) of 

freestanding woody plants. Species richness varied based on tree size in the 50 ha plot (Table 

1.1). Small stems < 10 cm dbh composed the largest proportion of variation in tree species 

richness. In the largest subplot size (1 ha), stem density (stems/ha) alone can explain minimal 

variation in species richness per subplot (r
2

 = 0.08, P< 0.042) (Table 1.2), but as plot size 

decreases stem density can explain increasingly more variance in tree richness (0.25 ha r
2

 = 0.21, 

P < 0.001, 0.04 ha r
2
= 0.34, P < 0.001). Basal area was inversely correlated with species richness 

amongst all stems at 1 ha in the 50 ha plot (r
2
= 0.25, P < 0.001).  

 

Species richness and remote sensing metrics  

Remote sensing measurements of variability in canopy reflectance, forest structure, and 

micro-topography were positively associated with species richness but the relationships were 

highly scale dependent (Table 1.2). OLS regression correlation coefficients for remote sensing 

predictor variables were the highest at the 1 ha spatial scale and decreased as subplot size 
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decreased in nearly all cases. In relation to all stem sizes, the correlation coefficients between 

species richness and remote sensing predictor variables were higher for stems <10 cm dbh and 

lower for stems >10 and >20 cm (Table 1.2 and Appendix 1.3). The strongest associations of the 

remote sensing predictor variables were the standard deviation of variables such as EVI, TWI, 

mean canopy height and terrain concavity. Generally, the mean values of the same metrics were 

less correlated with tree species richness across spatial scales (Table 1.2, Appendix 1.3).  

 

Predictive models of tree species richness  

The strongest statistical associations were used for the predictive models at the 1 ha 

spatial scale (Figure 1.5). Although the study included three spatial scales in the analysis to test 

the effects of subplot size, model fits were lower (r
2
< 0.13, P < 0.001) at the 0.25 ha scale and 

nearly uncorrelated at the 0.04 ha scale (r
2
< 0.04, P < 0.001). The variables used to model 

species richness amongst all tree size classes were the standard deviation of mean canopy height, 

standard deviation of EVI, standard deviation of TWI, and mean terrain curvature (Appendix 

1.4). The different characterizations of environmental heterogeneity and terrain curvature were 

used to make three OLS prediction models of species richness across BCI for three tree size 

classes based on the 50 ha plot (Figure 1.6). The models could predict variation in tree species 

richness amongst all stems (adjusted r
2
= 0.35) and trees >10 cm dbh (adjusted r

2
 = 0.25). 

However, the best model results were for understory trees and shrubs (1 to 10 cm dbh) (adjusted 

r
2
= 0.52). The results of the predictive models indicate that high spatial resolution remote sensing 

can explain the up to half of variation in tree species richness amongst smaller and medium tree 

sizes classes across a tropical landscape.  
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DISCUSSION 

Tree size and spatial scale  

The results indicate that tree size and spatial scale of analysis provides significantly 

different results that should be considered when mapping species richness across tropical forest 

landscapes. Explanations of variation in species richness were much lower amongst large canopy 

trees and at fine spatial scales, meaning similar predictions should not be made for large trees 

(>20 cm dbh) or at subplot sizes smaller than 1 ha. The analysis highlights two important 

findings and two limitations regarding tree size and spatial scale. The first finding is that such 

models are not reliable or informative at the finest spatial scale (0.04 ha) due to small stem 

counts per plot, the models are possibly informative at the mid-scale (0.25 ha), and potentially 

useful at the coarsest spatial scale (1.0 ha). The second finding is that including all tree size 

classes (>1 cm dbh) at the coarsest spatial scale is optimal for prediction and models are not 

informative for only larger tree size classes (>10-20+ cm dbh). The first limitation is that 

Quickbird imagery cannot resolve differences in spectral/structural characteristics and that 

airborne LiDAR may be more appropriate for such predictive modeling. Higher spectral and 

spatial resolution imagery may be necessary to characterize large tree canopy chemistry, because 

the canopy structural signal using this sensor is strong. The second limitation is that the 1 ha 

spatial scale may be useful when all stems are analyzed, however to expand the study to analyze 

only the largest canopy trees (>10 cm dbh), a larger geographic area and a coarser plot scale is 

necessary (Appendix 1.3).  

 

Species richness and canopy reflectance  
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It was expected that Quickbird derived spectral variables associated with mean 

productivity would be correlated with tree species richness, however the standard deviations had 

stronger statistical associations than mean values at the 1 ha spatial scale. Currently, individual 

crown level analysis is difficult for all but the largest trees (> 1 m dbh) from spaceborne 

platforms (Clark et al. 2004). The strength of simple vegetation indices to predict species 

richness from high spatial resolution (2.4 m) satellite imagery as compared to high spectral 

resolution has interesting implications for modeling biodiversity across remote landscapes in the 

tropics. Simple indices derived from high-resolution satellite imagery may provide some utility 

for making predictions of species richness at coarse spatial scales across the landscape. In 4-band 

imagery, differences in canopy reflectance and upper canopy structure are virtually 

indistinguishable and the spectral resolution of this sensor is too coarse to decouple the structural 

signal (i.e. gaps and shadows) from variation in spectral signal. Quickbird is therefore is not 

appropriate for analyzing variance in canopy chemistry. Higher spatial and spectral resolution 

sensors such as the Carnegie Airborne Observatory (Asner et al. 2007) are necessary for such 

chemical characterizations at the tree or subplot scale. However, in the absence of airborne 

LiDAR/imagery, satellite imagery may help characterize the structural heterogeneity and gap 

fraction across landscape scales. Although simple Quickbird derived vegetation indices 

(EVI/NDVI/RVI) may provide some utility to predict species richness, the standard deviation in 

these indices or the image texture was more strongly associated with increased tree richness. 

This result confirms that the structural signal cannot be de-coupled from the spectral signal at 

this resolution (spatial and spectral).  

Currently, high spatial resolution LiDAR measurements of forest structure do not exist 

across the pan-tropics, therefore readily available high-spatial resolution imagery must be used to 
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help set baseline assessments of alpha diversity to achieve international Aichi biodiversity 

targets. As new spaceborne LiDAR sensors become operational and airborne LiDAR coverage in 

tropical forest expands in the next decade, widespread prediction of alpha diversity leveraging 

structural information from LiDAR will become a reality. Such predictions which can explain 

50% in the variance in forest richness may be valuable to conservation planners looking to 

maximize biodiversity value per unit area and may offer useful predictions of alpha diversity 

trained using forest census plot data. Models utilizing only canopy reflectance from satellite 

imagery rarely explain over 20% of the variance in species richness, highlighting the need for 

additional three-dimensional LiDAR measurements. These results do confirm suggestions that 

spectral indices will improve estimates of species richness as the spatial scale of the study 

increases from a 1 ha plot to 50 ha plot and across the landscape (Bawa et al. 2002, Feeley et al. 

2005, Gillespie 2005, Cayuela et al. 2006). 

 

Species richness and canopy structure  

Airborne LiDAR was an effective tool for measuring the characteristics of forest 

structure and biophysical properties of tropical forest environments at high spatial resolutions 

(Lefsky et al. 2002, Tang et al. 2012). Environmental heterogeneity in the canopy was positively 

correlated with species richness amongst the small and medium size trees but becomes de-

correlated with progressively larger tree size classes. Species richness was generally highest in 

open canopy and medium stature forest where trees can exist in higher densities. Large trees (> 

20 cm dbh) appear to reduce diversity under their large canopies and trunks. However, variability 

in the height of the upper canopy had the strongest correlation with species richness. Increased 

variability in upper canopy height was associated with increased species richness across spatial 
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scales and was the strongest predictive canopy structure variable (r
2
=0.15, P = 0.0048), 

suggesting that a heterogeneous light environment (greater light availability in the understory) is 

capable of supporting a greater variety of tree species. These metrics can easily be calculated and 

applied to LiDAR datasets for tropical forest landscape to estimate species richness for different 

tree size classes. Careful consideration should be given to LiDAR point density as measurements 

of gap fraction and understory vegetation is highly dependent on average LiDAR point density 

and sufficient penetration through the canopy profile. Generally, higher average point densities 

will yield a more complete characterization of the mid/understory layers of vegetation as well as 

a more accurate sub-canopy DSM.  

 

Species richness and micro-topography  

The variability in the TWI had the highest correlation with increased species richness 

amongst all stems in the 50 ha FDP (1 ha scale). This result suggests that sub-plots including 

heterogeneous hydrologic environment can support a higher variety of tree species due to 

partitioning of water resources. Concave up curvature (i.e. valleys), average slope, and 

variability in slope were all positively correlated with species richness across spatial scales. 

These results confirm previous research which report slope and curvature both have statistical 

associations to species richness amongst all stems at the 1 ha scale. (Wolf et al. 2012) found 

these micro-topography effects on species richness to be highly dependent on spatial scale and 

this study shows that topography may be more important for the small tree sizes as the statistical 

associations weaken or disappear when considering only medium and large (>10 cm dbh) canopy 

trees. A potential explanation for increase seedling diversity on sloped terrain is that steep slopes 

may be too unstable for large trees which would mean those areas are subject to a more rapidly 
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cycling disturbance regime and a higher proportion of tree fall gaps (Lobo and Dalling 2013). 

Upward concave terrain curvature is positively correlated to species richness indicating the 

hydrologic controls may be important to structuring the forest environment. (Detto et al. 2013) 

found that mean canopy height was correlated with terrain curvature and Laplacian convexity, 

pointing to topographic and hydrologic controls over forest structure. Habitat suitability models 

using LiDAR derived DSM in Hawaii found that topographic depressions protected species from 

prevailing winds and improve the survival of planted individuals. Plant height and nutrient 

content were greater in high suitability areas indicating topographic control over plant 

physiology (Questad et al. 2014).  

It should be noted that these effects of micro-topography may be influenced by forest age 

more than some underlying topographic control. The landscape across BCI is more 

topographically variable compared to the 50 ha plot which is located on a plateau composed 

primarily of old growth forest. These results should be tested over across BCI (i.e. in younger 

and more topographically variable locations) and other 50 ha plots to test whether the 

associations found in this study hold across the landscape and in different forest types. Also, 

since the TWI takes the contributing upslope area into consideration it may be a better estimate 

of water availability compared to lower order elevation derivatives like slope and curvature. 

Further exploration into the relationship between the hydrologic network and species richness 

and forest structure is necessary as many of the wetness indices are highly influenced by the 

algorithms used to derive overland flow accumulation (Sørensen 2006).  

 

Ecological applications and limitations  
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Combining spectral and LiDAR remote sensing metrics can predict between 25% and 

50% of the total variance in tree species richness across a Panamanian tropical moist forest 

landscape. In particular, spectral and LiDAR remote sensing identifies species diversity of shrubs 

and small trees in the understory and the next generation of canopy trees that make up a majority 

of tree diversity on Barro Colorado Island (Croat 1978). Chance, land use history, disturbance, 

soil nutrient properties, and micro-fungal communities may explain the remaining proportions of 

the variance in tree species richness for all stems and different tree size classes (Hubbell et al. 

1999, Keith et al. 2009). However, these variables are difficult to quantity with space and 

airborne remote sensors. This study focused on a relatively undisturbed and well-protected 

tropical forest with high diversity and low variation in species richness. We would expect 

spectral and LiDAR metrics to explain higher proportions of variation in tree species richness 

across gradients of anthropogenic disturbance, such as logging, fire, grazing, which can be 

common in tropical forests and generally results in reduced stem diversity in the understory. 

These results should be interpreted with cautious optimism. This study has shown that 

using airborne LiDAR and satellite imagery, approximately 50% of tree alpha diversity can be 

mapped across the landscape. Using associations observed in forest plots, remote sensing is used 

to extend predictions over the local landscape to predict local patterns of alpha diversity. In order 

to achieve international goals of conserving and studying biodiversity, baseline estimates need to 

be set for tropical forest diversity from the plot to the landscape scale. Large forest census plots 

are the logical points to start for such modeling and the associations found in the 50 ha plot on 

BCI should be tested at other large plots across forest types (Condit et al. 1996). These results 

suggest that while airborne LiDAR remote sensing may be more effective when studying the plot 
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scale (< 50 ha), satellite imagery still may provide some utility in mapping tree alpha diversity 

and should be explored in future studies.  

The importance of large trees is well known in biomass studies (Keith et al. 2009), but 

associations between remote sensing variables and tree species richness in stems larger than 20 

cm dbh were unclear. The main reason associations remain unidentified at the largest tree sizes 

(>20 cm) is because of the low stems numbers at the scale being analyzed (1.0 ha). This is a 

numerical and scale dependent limitation of the tree plot data, not necessarily the scale of the 

remote sensing data being used. To repeat the methods and model species richness amongst only 

the largest canopy trees, a larger geographic would need to be censused in the field with the same 

taxonomic accuracy as the 50 ha plot. In order of importance, the most challenging issues with 

the spatial extrapolation of such a framework to be the lack of precise taxonomic plot data, lack 

of high-resolution LiDAR to measure canopy structure and topography at fine scales and 

difficulties in mosaicking high-resolution satellite imagery in the moist tropics. If such  

methods were scaled up to include large mosaics of satellite images, substantial satellite 

geometry reflectance corrections would be necessary when interpreting the canopy conditions 

from space (Morton et al. 2014).  

 

Future research  

The results of the study lead to recommendations for future work analyzing tree species 

richness using high resolution remote sensing. Using airborne hyperspectral remote sensing, 

individual large canopy trees can be characterized in terms of their species-specific foliar 

chemistry at spectral and spatial resolutions that are currently unattainable from space (Asner 

and Martin 2008b, Asner et al. 2011). The four-band Quickbird imagery provides a coarse 



25 

 

spectral resolution characterization of the forest, however this framework could be applied using 

higher spatial/spectral remote sensing and improve the predictions for large canopy trees through 

a more comprehensive view of canopy chemistry and structure. More sophisticated methods to 

quantify the fluvial environment should be tested to explore whether patterns of species richness 

are spatially structured around the hydrologic network. The tropical rainforest exists under a 

dynamic hydrologic regime and field tests of wetness indices like the TWI should be 

implemented in dynamic studies of both the wet and dry seasons to examine the validity of such 

derived indices. Soil water availability will vary throughout the year in forests with a distinct dry 

season and models should be developed which help capture this variance. Exploring the details 

of the micro-topography variables such as directional curvature (parallel and perpendicular to 

slope) may be an interesting direction for future research as well as investigating the topographic 

depressions which may provide high suitability for a greater range of tree species.  

Plants richness should also be analyzed by guild (growth form) to determine whether 

smaller understory shrubs, trees and lianas partition resources (light, water) differently than mid-

story or upper canopy trees. Finally, LiDAR and imagery over plot data is needed to study alpha 

diversity in different common anthropogenic disturbance regimes. Such an analysis would 

require the methods be extended to dynamic data sets to monitor change over time to model 

niche, dispersal and disturbance through space and time. Implementing a verified stakeholder 

requirement to test predictions is the first step in creating a monitoring and verification system 

comprising a baseline estimate of alpha diversity at high spatial resolution. A spatially explicit 

map of alpha tree diversity in the tropics is critical to understanding how species shift their 

ranges spatially and temporally (beta diversity). Achieving international biodiversity targets by 

2020 is predicated upon having reliable baseline estimates of forest diversity across the forest 
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landscape. Such a baseline will not be possible unless there is a collective implementation of 

ground based landscape scale stem mapping which should be collected in concert with high 

resolution remote sensing. Using future plot data and high-resolution remote sensing, similar 

methods could be used to study regional patterns of beta diversity, particularly in a changing 

climate.  

 

CONCLUSION 

This study has shown that high resolution satellite imagery and airborne LiDAR data can 

explain nearly half of the variation in tree species richness at 1 ha spatial scales in the moist 

forests of central Panama. Associations between tree species richness and remotely sensed 

characterizations of environmental heterogeneity, three-dimensional vertical forest structure and 

topography can be used to predict species richness across the landscape. High resolution remote 

sensing can explain variance in tree richness at the census plot spatial scale, particularly amongst 

shrubs, small and medium sized trees, however the results were in conclusive for the largest 

canopy trees. This study presents a multi-scale framework that can be applied to existing and 

new forest vegetation plots. This framework utilizing census plot data, high resolution satellite 

imagery and airborne LiDAR data can explain about half of the variation in tree species richness 

at 1 ha spatial scales in the moist forests of central Panama, however little is known about how 

these predictions might perform outside the island, the isthmus or across the region. For such 

predictions of tree species richness to be useful, extensive field plots must be added to cross-

validate and improve current estimates. This study has shown high resolution remote sensing can 

be used to make predictions at the landscape scale and may provide a methodological framework 

for studying tropical tree ecology beyond existing forest plot boundaries.   
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Section 1.2: FIGURES 

FIGURE LEGENDS 

Figure 1.1.  The 50-hectare forest dynamics plot over the LiDAR derived 1 m canopy height 

image (a), Barro Colorado Island including forest plot data over the LiDAR derived digital 

elevation hillshade model (b), the study area in the Panama Canal Zone over a 90 m digital 

elevation hillshade model (c).  

Figure 1.2.  Quickbird true color high spatial resolution satellite image for two different spatial 

scales: full plot (top) and the south-eastern section zoomed in on 1 ha plots (outlined in yellow) 

boundaries (bottom).  

Figure 1.3.  Four vertical cross sections (10 m depth) of the forest inside the 50 ha plot showing 

Coefficient of Variation (CV) in forest structure. The CV is the ratio of the standard deviation 

over the mean and defined as CV= (σ/µ). Low CV scores indicate a low variation in upper 

canopy height and a high average canopy height (upper-left, -2 sigma) while a high CV score 

indicate a higher variation in upper canopy height and low average canopy height (lower-right, 

+2 sigma). 

Figure 1.4.  Topographic Wetness Index at two spatial scales, full plot (left) and zoomed view of 

the swamp area (right). Darker shades of blue indicate higher wetness index values. 

Figure 1.5.  Pairwise ordinary least squares (grey line) and generalized least squares (black line) 

regression results for important spectral and LiDAR metrics. R-squared and P-values are the 

results of the ordinary least squares regression. Plots are colored by forest age: darker green = 

older forest, light green = old forest and secondary, yellow green = secondary). 

Figure 1.6.  OLS linear model predictions of tree diversity across BCI for different tree size 

classes. Plots are colored in 5 equal intervals varying based on tree size class:  
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Figure 1.1.   
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Figure 1.2. 
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Figure 1.3.   
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Figure 1.4. 
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Figure 1.5. 
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Figure 1.6. 
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Section 1.3: TABLES 

Table 1.1. The number of species, stems, stem density and average dbh in each tree size class. 

Table includes pre-processing results of stems and species present as well as average size in 

diameter in each class.  

Description 

Size 

min 

(cm) 

Size 

max 

(cm) 

Tree 

species Stems Stems/ha 

Mean 

dbh 

(cm)  

All stems 1 + 301 204,759 4,095 4.7 

Understory trees and shrubs 1 10 290 186,202 3,724 2.8 

Medium to large canopy trees 10 + 217 18,914 378 22.8 

Large canopy trees 20 +  174  7,216 144   37.9 
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Table 1.2. Ordinary least squares Pearson’s product moment correlation coefficient (r) and 

corresponding r
2
 value between species richness (all stems) per subplot and the remote sensing 

predictor variables at each spatial scale.  

 

Pearson's r 

 

r
2
 

 

1-ha 0.25 ha 0.04 ha 

 

1 ha 0.25 ha 0.04 ha 

 

Plot variables 

Stems 0.29 0.46 0.59 

 
0.08 0.21 0.34 

Basal area -0.50 -0.29 -0.07 

 
0.25 0.08 0.01 

 

Remote sensing variables 

 

Canopy Structure 

Canopy height -0.30 -0.30 -0.19 

 
0.09 0.09 0.04 

Canopy height sd* 0.39 0.28 0.19 

 
0.15 0.08 0.04 

Image texture 0.08 0.16 0.09 

 

0.01 0.02 0.01 

 

Canopy Reflectance 

EVI 0.03 0.01 -0.06 

 

0.00 0.00 0.00 

EVI sd* 0.35 0.23 0.08 

 
0.12 0.05 0.01 

NDVI 0.11 0.03 -0.04 

 

0.01 0.00 0.00 

NDVI sd -0.11 -0.03 0.04 

 

0.01 0.00 0.00 

RVI 0.30 0.16 0.01 

 
0.09 0.03 0.00 

RVI sd 0.36 0.22 0.07 

 
0.13 0.05 0.00 

PC 1 sd 0.34 0.24 0.08 

 
0.12 0.06 0.01 

 

Micro-Topography 

Aspect 0.23 -0.03 0.03 

 

0.05 0.00 0.00 

Aspect sd 0.06 0.03 -0.02 

 

0.00 0.00 0.00 

Curvature* -0.43 -0.05 0.05 

 
0.18 0.00 0.00 

Curvature sd 0.38 0.36 0.27 

 
0.14 0.13 0.07 

TWI -0.10 -0.26 -0.29 

 

0.01 0.07 0.08 

TWI sd* 0.49 0.10 -0.05 

 
0.24 0.01 0.00 

Slope 0.18 0.28 0.27 

 

0.03 0.08 0.07 

Slope sd 0.26 0.25 0.25 

 

0.07 0.06 0.06 

 

* included in the predictive model (1-ha) 

Bold = p-value < 0.05 

sd=standard deviation 
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Section 1.4: APPENDICES 

Appendix 1.1. A full description of remote sensing pre-processing  

 

Imagery preprocessing 

All imagery pre-processing was performed in ArcGIS 10.2 and ENVI 4.8/5. A single 

Quickbird (QB) satellite image scene was used to calculate canopy reflectance indices for all 

vegetation plots on BCI. Atmospheric correction was applied using the FLAASH correction tool 

in ENVI-5.0. The QB satellite imagery was used to calculate the Ratio Vegetation Index (RVI), 

the Normalized Difference Vegetation Index (NDVI), and Enhanced Vegetation Index (EVI) in 

ENVI and spectral heterogeneity was calculated using a principle components analysis in 

ArcGIS. To calculate spectral heterogeneity we clipped the image to the vegetation plots so no 

water or clouds were included in the imagery. Using the clipped imagery, we applied a principal 

components analysis (PCA) to the satellite imagery to compute a 4-band principle component 

image. We found that >96 % of the spectral variation was composed in the first principle 

component, and focused the spectral heterogeneity calculation on only that first principle 

component. We also used ‘two-dimensional’ spectral variability using the second principal 

component; however the results were qualitatively similar and were not reported in the final 

results. The standard deviation of the pixels in the first band of the principle component, 

compose the spectral heterogeneity for each vegetation sub-plot and were highly correlated to the 

standard deviation of the EVI (r=0.91). The Quickbird variance in imagery texture was 

calculated from the panchromatic (0.6 m resolution) using a 3 x 3 window in ENVI. We 

investigated additional spectral indices which were not included in the final analysis. For 
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instance we calculated mean values of pairwise Euclidean distance (MED) and distances from 

the mass centroid (MCD) as indicators of spectral heterogeneity (in two spectral dimensions) 

(Rocchini et al. 2004b). 

 

LiDAR preprocessing  

The remote sensing data with the highest spatial accuracy and precision is the LiDAR 

data collected by Blom Corporation and Northrup Grumman over BCNM. These data were 

collected during the wet season between August 15
th

 2009 and September 10
th

 2009 during 

eleven flights by a fixed-wing aircraft equipped with an Optech 3100 (Optech, Vaughan, ON, 

Canada) system capable of four returns per pulse. The mean flying height was 457.2 m and mean 

flight speed was 66.9 m/second. The system operated at a scan angle of 17°, using a scanning 

frequency of 48 Hz and laser frequency of 70 KHz. All flights produced a total of > 233 million 

laser shots and > 528 million individual data points, resulting in a point density of 5.6 points per 

square meter (ppm
2
) and 8.1 returns per square meter (rpm

2
). We used a 1 m digital surface 

model (DSM) and 1 m digital canopy surface model (DCSM) (Figure 1.1). The DSM and DCSM 

were created by Blom Corp. who calibrated and filtered unprocessed LiDAR data using 

Bentley’s Microstation (Bently, Exton, PA) and then manually edited the product to make a bare-

earth DSM. Blom Corp. verified vertical accuracy of the DSM using 36 Differential GPS survey 

points in flat open areas around the island. The average error in height between the ground 

survey points and the DSM was 6.9 cm with RMSE value of 7.6 cm. Blom Corp. produced the 

DCSM from the point of highest return above each cell on a 1-m grid. We compared the DCSM 

to ground-based canopy height measurements from 2009 that were collected every 5 m across 

the entire 50-ha plot (Hubbell et al. 1999), which were in general agreement with the 1 m 



39 

 

DCSM. No additional efforts were made to minimize artifacts where understory vegetation may 

present commission errors in the ground point classification. In addition to a classified point 

cloud, the LiDAR data also provides an un-calibrated intensity value as well as the return type. 

Possible return types include only return, first of many, intermediate of many or last of many 

returns. The return type and intensity information is used in the calculation of the canopy/gap 

fraction statistics.  

In addition to the mean canopy height and the standard deviation of canopy height we 

also tried additional methods to quantify vertical forest structure. Relative height metrics 

(rh25/rh50/rh75) were calculated which measured relative canopy distribution throughout the 

vertical canopy profile. Additionally, canopy closure/canopy fraction with four different methods 

were computed approximating light penetration using LiDAR return ratios 

(first/last/intermediate), LiDAR classification (canopy/ground/all) and LiDAR intensity 

following a study by (Hopkinson and Chasmer 2009). We found these measurements of forest 

structure did not yield stronger associations with the response variables and were slightly more 

difficult to interpret from an ecological point of view. The mean canopy height and standard 

deviation of canopy height within a singular forest plot are much easier to interpret and likely to 

be repeated. Three dimensional LiDAR point cloud profiles from four 10 x 100 m horizontal 

transects to illustrate the coefficient of variation (CV) in the standard deviation of maximum 

canopy height (main text Figure 1.3). Transects were selected based on the CV for the LiDAR 

derived maximum canopy height variable. CV = Standard deviation of max canopy 

height/average canopy height. CV values were selected to represent the statistical distribution of 

values (1 sigma and 2 sigma+) on both sides of the distribution. Each grid cell represents 10 m of 

vertical and horizontal change.  
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Appendix 1.2. Statistical Analysis  

 

Ordinary Least Squares, Generalized Least Squares and cross-validation 

Non-spatial Ordinary Least Squares (OLS) regression was used for modelling tree 

species richness across the landscape, however we also performed Generalized Least Squares 

(GLS) spatial regression models to account for spatial autocorrelation. Predictive models were 

calculated in R using both OLS and GLS regression to observe the effects of non-spatial and 

spatial models. OLS modelled residual errors may be spatially autocorrelated and as such, a 

spatial (GLS) model is necessary to determine the effect of spatial autocorrelation in the 

predictions across the landscape. The purpose of the GLS modelling is to test spatial predictions 

against the OLS non-spatial predictions to determine whether an OLS model is inappropriate (i.e. 

no change in coefficient sign). If a predictor variable has a significantly different spatial and non-

spatial prediction, it is not considered to be a good predictor. For the GLS models, three methods 

of fitting a parametric correlation function (Gaussian, Spherical, and Exponential) were tested for 

the residual co-variance matrix. The model with the lowest Akaike information criterion (AIC) 

score was selected for each remote sensing predictor variable. Variograms for each variable were 

created and ‘Moran’s I’ was calculated to measure the spatial auto-correlation using an inverse 

distance weighted residual error matrix. Then multi-modeled inference was used to determine the 

optimal model using different combinations of the four remote sensing variables. Finally the 

models were cross-validated using 5-fold cross validation to train and test the data. The ‘dredge’ 

function was used in the multi-model inference library to judge the general importance of 

predictor variables and cross validate the results. The following list contains the statistical 
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package in R associated with each stage of analysis: GLS (nlme), Variogram (gstat), Moran’s I 

(ape), Multi-model Inference (MuMIn).  
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Appendix 1.3. Pearsons’s r, adjusted r-squared and p-values for the Ordinary Least Squares 

regression models for tree species richness 1 – 10 cm, > 10 cm, > 20 cm dbh. 

 

DBH 1-10 cm 

 

DBH >10 cm 

 

DBH > 20 cm  

 

R r-squared p 

 

r r-squared p 

 

r r-squared p 

Stems 0.423 0.162 0.0022 

 

-0.137 -0.002 0.3427 

 

-0.048 -0.018 0.7407 

Basal area 0.303 0.073 0.0322 

 

-0.566 0.306 0.0000 

 

-0.154 0.003 0.2863 

            Canopy height -0.367 0.117 0.0087 

 

-0.439 0.176 0.0014 

 

-0.075 -0.015 0.6058 

Canopy height sd* 0.455 0.191 0.0009 

 

0.022 -0.020 0.8805 

 

0.168 0.008 0.2436 

Image texture 0.165 0.007 0.2516 

 

0.220 0.029 0.1244 

 

0.021 -0.020 0.8828 

            EVI 0.150 0.002 0.2990 

 

0.094 -0.012 0.5167 

 

0.041 -0.019 0.7749 

EVI sd* 0.316 0.081 0.0254 

 

0.275 0.056 0.0536 

 

0.160 0.005 0.2683 

NDVI 0.159 0.005 0.2699 

 

0.201 0.020 0.1626 

 

0.145 0.001 0.3134 

NDVI sd -0.155 0.004 0.2824 

 

-0.230 0.033 0.1075 

 

-0.160 0.005 0.2676 

RVI 0.337 0.095 0.0167 

 

0.306 0.075 0.0305 

 

0.073 -0.015 0.6126 

RVI sd 0.279 0.059 0.0494 

 

0.149 0.002 0.3013 

 

0.099 -0.011 0.4937 

PC 1 sd 0.371 0.120 0.0080 

 

0.325 0.087 0.0214 

 

0.161 0.006 0.2648 

            Aspect 0.140 -0.001 0.3333 

 

0.163 0.006 0.2578 

 

-0.148 0.002 0.3039 

Aspect sd 0.107 -0.009 0.4607 

 

-0.023 -0.020 0.8754 

 

-0.077 -0.015 0.5962 

Curvature* -0.325 0.087 0.0212 

 

-0.112 -0.008 0.4405 

 

-0.077 -0.015 0.5953 

Curvature sd 0.405 0.147 0.0035 

 

0.162 0.006 0.2608 

 

0.219 0.028 0.1263 

TWI -0.140 -0.001 0.3322 

 

-0.120 -0.006 0.4080 

 

-0.163 0.006 0.2594 

TWI sd* 0.417 0.157 0.0026 

 

0.117 -0.007 0.4166 

 

0.120 -0.006 0.4078 

Slope 0.192 0.017 0.1822 

 

0.118 -0.007 0.4148 

 

0.157 0.004 0.2777 

Slope sd 0.289 0.065 0.0416 

 

0.095 -0.012 0.5100 

 

0.196 0.018 0.1735 

            Bold = p-values less than 0.05  
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Appendix 1.4. Ordinary Least Squares regression models for tree species richness predictions 

across BCI. Each OLS model is particular to the prediction map for each tree size class in 

Figure.1.6.   

 

Linear model equations for each tree size 

The following regression equations are the basis for the tree species richness prediction maps  

Small Trees (1-10 cm dbh) 

Species/ha = 17.0827 (twi sd) + 3.6476 (mch sd) + -1.5906 (mch) + 1.0862 (curv sd)  

All Stems (> 1 cm dbh) 

Species/ha = 13.1195 (twi sd) + 3.1779 (mch sd) + 0.2843 (evi sd) + -16.2735 (curv)  

Medium and Large Trees (>10 cm dbh) 

Species/ha = -1.14969 (mch) + 0.07570 (evi sd) + 0.85846 (slope)   
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CHAPTER 2 

Section 2.1: Predicting spatial patterns of plant guild richness, density and basal 

area across gradients of water and light in a tropical forest  

ABSTRACT 

Local scale habitat heterogeneity in the form of topographic and edaphic variations 

impacts availability of resources in terms of water, light, and nutrients that shapes tropical tree 

communities. This study broadens its scope to include additional plant communities in the 50-ha 

forest dynamics plot on the Barro Colorado Island, Panama to capture the guild level patterns of 

richness, stem density, and basal area along the local scale gradients of light and moisture 

derived from airborne LiDAR (Light Detection and Ranging). The analysis first investigates 

whether variations of forest structure defining the light condition and topography relating to 

moisture gradients can predict community level diversity, density, and basal area. Then, the 

analysis investigates whether patterns of diversity, density and size within guilds coincided with 

community-level patterns or whether strong evidence for alternative responses to resource 

gradients occurs at the guild level. Lianas and trees > 1 cm in diameter and three-dimensional 

LiDAR structure at sub meter scales were used to perform the statistical and spatial analysis. 

Results show there is strong evidence of habitat filtering and that the plant guilds do respond 

differently to light and water resource gradients. When considering all plant species, richness and 

stem density were uncorrelated (r = -0.115, r = -0.128) with water availability at the 1.0 ha plot 

scale. When considering individual plant guilds, the density of shrubs and small understory trees 

were positively associated (r = 0.258, r = 0.661) with water availability while midstory and tall 

canopy tree species were negatively associated (r = -0.608, r = -0.622), suggesting a partitioning 
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of water resources by plant species of different freestanding guilds. For liana species, richness, 

density and basal area were negatively correlated (r = -0.671, r = -0.686, r = -0.758) with 

average canopy height, but not strongly associated with topographic metrics. Canopy trees and 

lianas predominately occur on opposite ends of the canopy height gradient with canopy trees 

occupying the tallest, densest plots in the forest while lianas have a strong spatial tendency 

towards large canopy gaps. This research takes a novel approach to analyzing plant species 

richness and density at the guild level. Observations indicate that plant guilds respond differently 

to water and light availability and that remote sensing has the ability to detect fine scale 

environmental gradients which can be used to predict the guild composition of plant 

communities across the landscape.  

 

Keywords: plant guilds, alpha diversity, Barro Colorado Island, Forest Dynamics Plot, remote 

sensing, LiDAR  
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INTRODUCTION 

Plants are subject to filtering along resource gradients of light and water in tropical forest 

environments (Kobe 1999, Kembel and Hubbell 2006). Habitat filtering refers to the non-random 

germination, establishment and survival of individuals with respect to variation in habitat 

characteristics (Baldeck et al. 2013a). Numerous studies have supported the importance of 

habitat filtering via variation in resource availability in tropical forests by documenting non-

random patterns in tropical plant distributions and variation in community composition with 

respect to topographic, edaphic and light variation over local to landscape scales (Clark et al. 

1998, Harms et al. 2001, Schnitzer and Bongers 2002, John et al. 2007, Dalling et al. 2012, 

Baldeck et al. 2013b). Research into the relationships between species richness, stem density, 

basal area and ecosystem function is motivated by interest in understanding ecological 

communities as well as a practical interest in managing and conserving ecosystem services 

(Schwartz et al. 2000, Srivastava and Vellend 2005). Among ecosystem services, carbon storage 

and biodiversity are particularly important in tropical forests as they contain more than 70% of 

carbon in global live forests, and over 50% of total terrestrial biodiversity (Wilson 1988, Pan et 

al. 2011). Carbon dense, species rich tropical forests largely occur in developing countries in 

tropical regions of Latin America, sub-Saharan Africa and Southeast Asia where ecologists have 

used remote sensing to produce maps of carbon (Saatchi et al. 2011) and taxonomic diversity 

(Asner and Martin 2008a). Particularly in the humid tropics, estimates of forest carbon storage at 

the individual tree or stand scale can vary widely depending on species specific differences in 

wood density , life-stage and plant type (Chave et al. 2004). Key parameters controlling 

ecosystem carbon responses, such as plant traits, are also sparsely observed in the tropics, with 

the most diverse biome on the planet treated as a single type in models (Schimel et al. 2014). 
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Differences in plant traits, guilds, species allometry and nutrient availability are all difficult to 

quantify remotely and field plots are necessary to train models. For these reasons, this study 

focuses on a forest with rich ground observations and remote sensing data to develop new 

techniques to be used to monitor ecosystem structure, diversity, and function in the future as 

additional plot data becomes available.    

This analysis focuses on gaining a better understanding of how understory and overstory 

plants compete for light and water, both at the community and guild level. The inclusion of 

lianas, understory shrubs and seedlings to the tree census, allows the partitioning of the canopy 

into vertical strata based on species-specific maximum possible height. By combining plant guild 

classification with high resolution three-dimensional characterizations of the canopy and sub-

canopy topography this study investigates how different plant guilds are spatially arranged along 

resource gradients. Observations from the Barro Colorado Island (BCI) 50 ha FDP report that 

63% of liana species were associated with low canopy height (i.e. tree fall gaps) but significantly 

less strongly associated with soil chemical or topographic habitat variables (Dalling et al. 2012). 

These findings support the contention that increases in forest disturbance, fragmentation and 

degradation has driven a global increase in liana/tree competition for light resources and the 

subsequent increase in liana size, abundance and biomass (Phillips et al. 2002, Schnitzer and 

Bongers 2011, Dalling et al. 2012, Schnitzer et al. 2012).  

A plot scale analysis of an understory ‘species swarm’ (Gentry 1982), the hyperdiverse 

genus Psychotria on BCI, found that the evolutionary conservation of hydraulic traits related to 

drought tolerance largely explains phylogenetic clustering in the local assembly. It is suggested 

that close relatives are unlikely to exclude one another from shared habitats because resource 

availability is determined largely by asymmetric competition with the overstory, rather than 
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competition with the neighboring understory plants (Sedio et al. 2012). Recent studies have 

highlighted the importance of seedling abundance and liana community associations in tropical 

forests (Comita et al. 2007, Dalling et al. 2012). Seedling and tree abundance is higher in canopy 

gaps, but tree species composition was unpredictable in tree fall gaps, even for pioneer species 

(Hubbell et al. 1999). Topographic and edaphic habitat heterogeneity were found to have small 

and inconsistent effects on the structuring of tropical tree community composition among life 

stages, indicating tropical tree community composition may be established by the time trees are 

large enough to be included in the forest census (Baldeck et al. 2013a). Seasonal and spatial 

variation in water availability, particularly in dry years, determine spatial patterns of species-

specific seedling growth and mortality, which in turn shape local species distributions (Comita 

and Engelbrecht 2009). On a macro spatial scale, climate and soil (i.e. dry season intensity and 

soil phosphorus) were shown to limit tropical tree distributions across Central Panama 

(Engelbrecht et al. 2007, Condit et al. 2013). Tree species richness, forest biomass and 

productivity are dominated by sampling effects and niche complementarity at fine spatial scales 

(0.04 ha), while environmental gradients drive patters at slightly larger scales (0.25-1 ha) 

(Chisholm et al. 2013).  

In this study, three separate plant surveys (trees, seedlings and lianas) are combined to 

measure plant species richness, density and basal area at the community and guild level in 

relation to LiDAR derived remote sensing estimates of water and light availability. The research 

question is, how does species richness, stem density and basal area vary at the community-level 

compared to the guild-level, and to what extent do plant guilds vary along gradients of water and 

light? A previous analysis of tree species richness in the 50-ha plot found that tree species 

richness was positively associated with the variability in water and light availability within the 
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plot at the community level (Fricker et al. 2015). Therefore, I hypothesized this species richness 

effect may be caused by differences in habitat filtering among plants at the guild level. To 

address these questions, statistical models between the LiDAR derived light condition and water 

index and guild and community level parameters were developed in the 50ha FDP.   

 

MATERIALS AND METHODS 

Study Area & Census Data 

The 50 ha Forest Dynamics Plot (FDP) on Barro Colorado Island (BCI), Republic of 

Panama is the study site (Figure 2.1). The forest on BCI is a classified as a seasonal moist forest 

and receives a mean of 2600 mm of rain per year, most of which falls during the 8 month wet 

season from May to December (Windsor 1990). Further details about BCI’s climate, geology and 

flora can be found in Croat (1978). The BCI FDP was established in 1980, and all trees and 

shrubs > 1 cm dbh in the plot were mapped, identified to species and measured between 1982 

and 1983, and re-censused at 5-year intervals since 1985 (Hubbell and Foster 1983, Condit 

1998). The BCI FDP represents a unique site due to the long research history spanning over three 

decades and the wealth of biological census data available including liana and seedling censuses 

(Hubbell and Foster 1983, Comita et al. 2007, Schnitzer et al. 2012). The BCI FDP was the first 

large forest dynamics plot of its kind and similar 50-ha plots have been censused around the 

world in different forest types (Condit et al. 1996, Anderson-Teixeira et al. 2015). This research 

is novel because it is the first to combine a tree, liana and seedling census including all censused 

plants into an analysis of habitat filtering at the community and individual guild level.  

The study includes data on all free-standing plants > 1 cm dbh (Condit 1998, Hubbell et 

al. 1999), all lianas (Schnitzer and Carson 2001), and seedlings (Comita et al. 2007). Census data 
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on lianas was collected by identifying, tagging, mapping and measuring all rooted lianas. Liana 

stem diameter was measured at 1.3 m from the rooting point and each liana was mapped in 

relation of the existing 20,000 5x5 m grid markers to aid in mapping the precise location of each 

stem (within 0.5 m) (Schnitzer et al. 2012). Seedling data were collected for all woody seedlings 

> 20 cm tall and < 1 cm BDH in 20,000 1 m
2
 quadrats within the BCI FDP (Comita et al. 2007). 

The census which was as close to the remote sensing data acquisition were preferred, so the 2010 

main census data was used, both the 2009-2011 seedling censuses and the liana census from 

2007. All census data available for the BCI 50 ha FDP were compiled into a single PostGIS 

spatial database. For the main census, individual plants were included which were alive during 

the 2010 census and with available dbh information. For the liana census, all rooted stems were 

included. For the seedling census, plants not recorded in either the main or liana censuses were 

included.  

 

LiDAR Data 

 To estimate gradients of light and water, airborne LiDAR was used to measure the 

vertical canopy profile and sub-canopy topography within the 50-ha FDP on BCI. High 

resolution airborne LiDAR was collected in August 2009 using an Optech ALTM Gemini 

LiDAR instrument (Optech, Vaughan, ON, Canada) with a first return density of 6.5 per m
2
 

(BLOM Sistemas Geospaciales SLU) (Lobo and Dalling 2013). In the field, plot locations were 

surveyed by taking differential GPS coordinates for the plot corners in April 2014. An ‘affine’ 

spatial transformation was parameterized with differential GPS coordinates for plot corners to 

georeference all stems from the censuses. Multiple static GPS measurements were recorded at 

each plot corner (minimum 15 minute observation) and post-processed using nearby 
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Continuously Operating Reference Stations (CORS) to obtain a differential solution. The post-

processed solution for each point with the lowest residual error was used as the final position and 

it should be noted that the positions used are different than used in Chapter 1 (published by 

SRTI). A full description and list of positions is available in Appendix 2.3. To study the patterns 

of the guild diversity and structure, we considered three spatial scales by dividing the LiDAR 

and census data into subplots of 20 x 20 m (0.04 ha), 50 x 50 m (0.25 ha) and 100 x 100 m (1.0 

ha). The LiDAR data at these three scales to were used to derive water and light availability 

indices.  

 

Water Index 

The Topographic Wetness Index (TWI) was developed to provide a physically based, 

variable contributing area model of basin hydrology (Beven and Kirkby 1979). The TWI is 

commonly used to quantify topographic control on hydrological processes and has been used in 

previous studies to assess ground water contamination risk in China at large spatial scales 

(Rodríguez-Lado et al. 2013) and in a boreal forest in Sweden, the TWI was used to explain 30% 

of the variation in vascular plant number and correlated quite well (r
2
 = 0.50) with groundwater 

level (Zinko et al. 2005). A study of topographic position on BCI concluded that large variation 

in water regime over small spatial scales may play a role in maintaining high species richness 

through providing opportunities for niche specialization (Daws et al. 2002). Topographically 

defined environments such as the average elevation, terrain slope, curvature or water flow 

accumulation can approximate hydrologic conditions at the plot to landscape scale (1- 50+ ha) 

(Moore et al. 1991, Detto et al. 2013). Upward concave terrain (i.e. valleys) was found to be 

associated with increased species richness across spatial scales in the BCI FDP (Wolf et al. 2012) 
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and with higher mean canopy height at the landscape scale (Detto et al. 2013). To approximate 

the availability of water in the BCI FDP, the derived TWI metric was computed from the 

topographic DSM. The TWI is defined as ln(α/tanβ) where α is the local upslope area draining 

through a certain point per unit contour length and tanβ is the local slope measured in radians 

(Sørensen 2006).  

𝑇𝑊𝐼 =  
𝛼 

𝑡𝑎𝑛𝑔𝑒𝑛𝑡 (𝛽) 
 

The revised TWI arcpython script used in this study is available online 

(https://github.com/africker/Topographic-Wetness-Index). The mean and standard deviation of 

TWI were computed for each sub-plot at each spatial scale. These metrics are referred to as the 

TWI and TWIsd. Visualizations of the TWI are provided in Figure 2.1 A, B, C and Appendix 2.1.  

 

Light Index 

Tropical forests are highly light-limited first by extensive cloud cover in the wet season, 

but also by large upper canopy trees which extinguish photosynthetic flux densities exponentially 

with distance beneath forest canopies (Wright and Schaik 1994). Light availability in the lower 

canopy is particularly important for shrubs, treelets, and understory trees and is the primary 

driver of regenerative competition in tree-fall gaps (Wright et al. 2004). Similarly, physiological 

and life-history trade off in pioneers versus shade-tolerant mature forest trees vary in their degree 

of dependence on light and light gaps for germination, growth and survival (Hubbell et al. 1999). 

Airborne LiDAR has proven effective in detecting fine scale changes in vertical forest structure 

as non-native trees displace the native forests in Hawaii at the tree and stand scale (Asner et al. 

2008). The three-dimensional nature of LiDAR data allows a spatially-explicit characterization 

of the vertical light environment as well as the sub-canopy vegetation structure. Combining 

https://github.com/africker/Topographic-Wetness-Index
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spectral and LiDAR sensors can quantify a number of biophysical characteristics associated with 

forests in different stages of succession that may be used to predict the distribution of species 

richness (Gillespie et al. 2004) and baseline estimates of species richness have been made using 

LiDAR and high resolution spaceborne optical imagery on BCI (Fricker et al. 2015).  

To measure light availability from three-dimensional vertical forest structure data across 

the BCI FDP, the first-return LiDAR canopy surface model (CSM) is generated by computing 

the highest recorded LiDAR return within each 1 x 1 m pixel. The digital surface model (DSM) 

is subtracted from the CSM to compute a canopy height model (CHM). The two canopy structure 

variables include the mean of the maximum canopy height (MCH) and the standard deviation of 

the maximum canopy height (MCHsd) in each census subplot.   Both MCH and MCHsd are the 

light indices used and visualizations of the MCH are provided in Figure 2.1 D, E, F and 

Appendix 2.1. 

 

Guilds 

 Available information on plant growth form (Schnitzer and Carson 2001, Comita et al. 

2007) was used for species-level classification of plants into growth form ‘guilds’ (Croat 1978, 

Putz 1984, Hubbell and Foster 1986, Comita et al. 2007). Plant guilds are defined by each 

species maximum adult stature for freestanding stems or as lianas (climbing woody vines) which 

use freestanding stems as structural support and therefore are categorized into their own guild. 

The five plant guilds include: lianas, shrubs (0-4 m), understory trees (4-10 m), midstory trees 

(10-20 m) and canopy level trees (20 m+). Nineteen individuals were excluded from four tree 

species in the genus Ficus (Moraceae) that first establish as hemi-epiphytes as well as all stems 

which were only identified to family or genus level (i.e. species is not known, 975 plants total, 
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<0.01% of total plants). For the spatial analysis, the 50 ha FDP ground census data was divided 

into subplots of 20 x 20 m (0.04 ha), 50 x 50 m (0.25 ha) and 100 x 100 m (1.0 ha). For each 

spatial scale, the number of species, stems, and total basal area is computed within each subplot 

for all plant species. This process was repeated for each plant guild yielding the total number of 

species, stems per subplot and total basal area at the individual plant guild level. Based on adult 

architecture and maximum plant height, species are assigned one of five guilds shown in Table 

2.1 and diversity, density and total basal area is reported in Table 2.2 for each guild and the 

whole community.  

 

Statistical Approach 

To address the questions of the study, a statistical approach was developed to analyze the 

data at two levels. First, the diversity, density and the basal area is analyzed in relation to both 

water and light availability at the community and secondly examined at the guild level. The 

statistical approach is based on the spatial and non-spatial regression models to identify 

statistical associations between plant and guild level diversity, density and size. Pearson’s ‘r’ 

correlation coefficient is computed for plant richness, density and basal area per subplot in 

relation to the mean and standard deviations for both TWI and MCH. Remote sensing predictor 

variables were analyzed using pairwise linear regression models to the response variables: 

species richness, stem density and basal area. All statistics were calculated in R software (Team 

2013). 

To determine the effects of spatial autocorrelation amongst variables, both non-spatial 

ordinary least squares (OLS) regression and spatial generalized least squares (GLS) regression 

models were tested. Generalized least squares regression is applied when the variances of the 
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observations are unequal or when there is spatial autocorrelation between observations. To 

account for spatial autocorrelation in model residuals, the ‘gls’ function in R was used to fit a 

model where residual errors are allowed to be correlated and/or have unequal variances. Three 

variograms are fit to the OLS models (Exponential, Spherical, Gaussian) and the GLS model is 

optimized by choosing the model with the lowest Akaike information criterion (AIC) score. The 

OLS and optimized GLS models are compared to determine whether model fits remain similar 

after accounting for spatial autocorrelation. If the sign of the OLS and GLS models are not the 

same (generally seen in weak statistical correlations), I consider spatial autocorrelation to be a 

strong factor and the OLS model assumptions may not be valid. Since GLS models do not have 

an R-squared statistic, only R-squared and p-value statistics are reported for OLS regression 

models. Identical modelling methods are used in Chapter 1 (see Appendix 1.4). 

Species richness, stem density and basal area calculated from all three plant surveys (tree, 

seedling and liana) are reported both at the community and the guild level in Table 2.2. For the 

basal area analysis, seedling diameters were not recorded and were not included in the 

calculations of basal area. The diversity, density and basal area are summarized in Table 2.2. 

Lianas are the most species rich and numerous guild followed by canopy trees and midstory 

trees. Shrub and understory guilds have the lowest number of species with 67 each, but both have 

more individuals than the midstory guild. All plants are classified within guilds based on species 

maximum possible height, regardless of actual size in the field (Table 2.1). Pearson product-

moment correlation coefficients (r) for all OLS regressions between species richness, stem 

density and basal area with each of the 4 remote sensing predictor variables in Table 2.3. All 

results are reported for the 1-ha spatial scale (n = 50). 
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RESULTS 

Effects of subplot size 

Since stem density has a measurable effect on species richness, this effect was tested 

based on the spatial scale (size) of the subplots. Stem density explains varying proportions of the 

species richness for each subplot and predictably this effect increases with decreasing subplot 

sizes. At the 1.0 ha subplot size, stem density can explain approximately 18% of the variation in 

species richness (r = 0.420), 26 % at the 0.25 ha (r = 0.509), and 38% at the 0.04 ha (r = 0.614) 

subplot scale. This indicates that at the coarsest subplot size (1.0 ha) over 80% of the total 

variance in species richness cannot be explained by the density of plants alone and may be 

explained by other environmental factors, chance or history. All subsequent results are reported 

at the 1.0 ha spatial scale.    

 

Community Level 

 

Species Richness 

At the community level (considering all plant guilds), heterogeneity in both the 

hydrologic and light environments (TWIsd and MCHsd) are positively associated with species 

richness (r
2
 = 0.197 and r

2
 = 0.168 respectively (Figure 2.2, Table 2.3). Mean canopy height was 

negatively associated with species richness (r
2
 = 0.206) presumably due to higher plant 

abundance in tree fall gaps. TWI was weakly negatively associated with species richness (r
2
 = 

0.013). 
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Stem Density 

Heterogeneity in the light environment (MCHsd) and low MCH were positively 

associated with community stem density (r
2 

= 0.103 and r
2
 = 0.093) respectively. There were 

only weak associations between the stem density of all plants and the TWI or TWIsd (r
2 

= 0.013 

and r
2
 = 0.012) which indicates that if plant stems are non-randomly arranged along the water 

gradient, these differences must occur at the guild level.    

 

Basal Area 

Average basal area is tightly correlated with MCH amongst all plants (r
2 
= 0.671), it 

should be considered that majority (72.6%) of total basal area within the plot is comprised of 

canopy tree species, with midstory (14.1%), understory (8.4%), lianas (3.1%) and shrub (1.8%) 

guilds all contributing decreasing relative percentages to total basal area. Mean canopy height 

and the total canopy tree guild basal area was the strongest statistical relationship found in the 

analysis (r
2 

= 0.774) which confirms that the largest plot measured trees are in the same subplots 

as the highest measured MCH.      

 

Guild Level 

 

Species Richness 

Liana species richness is positively associated (r
2
 = 0.450) with low MCH, but not 

strongly associated with any other predictors. Canopy tree species richness is slightly positively 

associated (r
2
 = 0.101) with the MCHsd, but was more strongly associated (r

2
 = 0.217) with 

TWIsd. Midstory tree species richness was not strongly associated with TWI, TWIsd or MCH, but 
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there is a positive association (r
2
 = 0.262) with MCHsd. While there were no strong associations 

between the species richness of all plants and the TWI, understory tree species richness is 

positively association with TWIsd (r
2
 = 0.375), but shows no strong association with the other 

three predictor metrics. Shrub and treelet species richness is positively associated with both 

TWIsd (r
2
 = 0.295) and MCHsd (r

2
 = 0.144) predictors, but not strongly associated with the mean 

values of either. Complete species richness results are reported for all plants and for each guild in 

Appendix 2.1.1.        

 

Stem Density 

At the guild level differences in resource acquisition become apparent. At the individual 

guild level, liana density is strongly associated with low MCH (r
2 

= 0.471), but generally 

uncorrelated with MCHsd or any topographic variable. When only considering tree guilds 

(shrubs, understory, midstory or canopy), the strongest association is the midstory species have a 

higher density in plots with a higher MCHsd (r
2 

= 0.120), otherwise stem density among tree 

guilds does not show strong associations with canopy height metrics. The results of stem density 

between tree guilds in relation to the TWI reveal a stark trends indicating habitat filtering 

between guilds. Canopy (r
2 

= 0.387) and midstory (r
2 

= 0.370) tree density is negatively 

associated with high water availability (i.e. high TWI). Conversely, understory tree density (r
2  

= 

0.437) and to a lesser degree shrub and treelet density (r
2 

= 0.066) are positively associated with 

high TWI plots (Figure 2.3, Table 2.3). Generally, plants which reach a taller maximum height 

occur at higher densities in drier subplots while shorter understory plants occur in higher 

densities in wetter subplots. Complete stem density results are reported for all plants and for each 

guild in Appendix 2.1.2.        
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Basal Area 

Liana basal area, while only around 3% of total plot basal area is inversely correlated 

with MCH (r
 2

= 0.575) showing that canopy trees and lianas occupy different ends of the light 

availability gradient (Figure 2.4). With regard to water availability, filtering patterns are similar 

(but of lesser statistical significance) to those of stem density. Lianas and shrubs show weak 

statistical associations with TWI (r
 
< 0.05). However, amongst trees, canopy (r

 2
= 0.098) and 

midstory tree (r
2 

= 0.167) basal area are negatively associated with high TWI, while understory 

trees show a strong filtering effect (r
2 

= 0.564) being positively associated with wetter subplots. 

Complete basal area results are reported for all plants and for each guild in Appendix 2.1.3.        

 

DISCUSSION 

The results reveal patterns of spatial partitioning of water and light resource gradients, 

particularly between different plant guilds. Patterns of plant diversity, density and size are non-

randomly spatially structured across water and light availability gradients in the 50-ha plot. At 

the community level, heterogeneity in both the water and light environments are associated with 

increased species richness. I assert that these patterns are due to the specific ways in which 

different plant guilds preferentially occupy gradients of water and light. Environmental filtering 

of lianas and canopy trees along the light resource gradient have confirmed previous 

observations (Dalling et al. 2012), however the apparent habitat filtering of freestanding plant 

species along the water resource gradient is a novel finding.  

 

Water 
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There appears to be a distinct break in how freestanding plants are spatially arranged in 

relation to the water gradient at the guild level. Mean water availability is weakly positively 

associated with diversity and density in small shrubs, and more strongly positively associated 

with understory trees, while water availability is negatively associated with midstory and canopy 

tree guilds. Previous research found hydrologic heterogeneity is associated with increased tree 

species richness on BCI (Wolf et al. 2012) and these results provide evidence to indicate this 

may be due to differences in resource acquisition traits between plant guilds. When considering 

all plant guilds, species richness is positively associated with hydrologic heterogeneity (Figure 

2.2). However when the contribution of each guild to overall richness is analyzed, there are 

striking contrasts which highlight the importance of considering plant growth form when 

analyzing alpha diversity (Figures 2.3, Table 2.3). Shallow root depth serves as the most 

plausible explanation for an increase in smaller tree species density in wetter areas whereas 

larger trees likely possess deeper and more horizontally expansive root networks which can 

survive in drier soil conditions. This explanation is contrary to observational data on BCI which 

suggests that smaller trees appear to preferentially tap deeper sources of soil water than larger 

trees, however this study analyzed tree size and did not subset the community into individual 

plant guilds (Meinzer et al. 1999). Meinzer et al. (1999) suggested that the extensive horizontal 

area explored by root systems of large trees may partially compensate for the reduced water 

content in the upper portion of the soil profile and also that large tree stem water storage capacity 

increases exponentially with tree size. This would explain why shrub and understory plants are 

clustered in wet areas due to smaller root networks which need direct access to surface water, 

compounded by the fact that understory guilds have reduced stem water storage capacity 

compared with their overstory counterparts. This apparent contradiction in results can reasonably 
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be explained by the fact that smaller diameter trees must tap deeper sources of water to survive 

long and intense dry seasons, however relative to plant size, larger canopy trees will still have 

sufficiently deep roots to tap deep soil water, as well as horizontally extensive root systems 

which untether those individuals from local, topographically induced water stress. While there 

was a clear signal of hydrologic partitioning amongst tree species richness, density and size, 

lianas had weak associations with topographically derived predictors (Appendix 2.2.1-Appendix 

2.2.3). Since the life history of a liana is much shorter and characterized by rapid growth it stands 

to reason that lianas are more sensitive to gradients of light rather than water.   

    

 

Light 

The results indicate there is a clear partitioning of light resources amongst different plant 

guilds, particularly amongst lianas and canopy level trees which confirm previous observations 

by Dalling et al (2012) (Figure 2.4). Lianas display a strong spatial clustering pattern in subplots 

with low mean canopy height (i.e. higher proportion of gaps) and can explain 45%, 47% and 

57% of the total variance in liana species richness, density and basal area respectively. It has 

been well documented that lianas are associated with suppressed gap regeneration, and lateral 

movement into canopy gaps (Schnitzer and Bongers 2002). The results confirm previous 

findings of a strong guild-level association between lianas and low canopy height (i.e. gaps), and 

the lack of partitioning of any hydrologically defined habitat is a new finding. Liana species 

richness, stem density and basal area were weakly correlated with both topographic variables (r
 
< 

0.26).  
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Considering all plant species richness and species richness at the guild level, the standard 

deviation of canopy height was positively associated with species richness, but differences 

between guilds becomes evident (Appendix 2.2.1 and Appendix 2.2.2). Less than 10% of the 

total variation in species richness among canopy trees, understory trees and lianas could be 

explained by variability in upper canopy height (MCHsd). The same variable could explain 14% 

and 26% of shrubs and midstory tree species richness respectively. Although the diversity for all 

plants is associated with low canopy subplots, these increases in diversity can be attributed to 

increases in liana diversity and increased stem density. Although lianas represent a relatively 

small fraction of total plot basal area (3.1%), this guild represents a substantially larger 

proportion (36%) of the total species richness and has a very different life cycle than 

freestanding plants. Lianas represent a forest carbon pool which is highly light sensitive, uses 

more energy in the production of photosynthetically active biomass and less energy on the 

generation of woody biomass for structural support (Schnitzer and Bongers 2002). Therefore, in 

a spatially heterogeneous manner, lianas cycle carbon at a much faster rate than their 

freestanding woody counterparts. Since liana censuses have not yet achieved widespread 

adoption in traditional forest demographics plots, there is a missing component of species 

richness and biomass estimates using only tree census data. In areas which normally might have 

a low estimation of biomass (i.e. large canopy gaps), there is a rapidly cycling carbon pool with 

high species richness which is currently ignored and should be considered in future estimates. As 

forest fragmentation, disturbance and degradation increase, this ‘missing’ carbon pool will 

become increasingly important to global terrestrial biomass budgets and must be analyzed 

further.        
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CONCLUSION 

 This study is the first of its kind to analyze plant richness, density and basal area at the 

guild level in relation to resource gradients and provide explanations for the spatial partitioning 

of plant species at this scale. By separating plant species richness, stem density and basal area by 

individual plant guilds, this study addresses ways in which a plant’s growth form and life history 

influences how it partitions light and water resources in space. The study of plant guild dynamics 

using airborne LiDAR across the FDP on BCI proves to be a novel way to explain variation in 

how plants partition light and water resources. Simple metrics which can approximate light and 

water availability in an existing 50 ha forest census plot demonstrate that plant species have non-

random affinities for particular spatially variable environments. Light conditions in the canopy 

are strongly associated with tree species richness and liana richness in particular. Low average 

canopy height can explain nearly half of the total variation in liana diversity, however lianas 

were weakly or not associated with topographic predictors. When considering water availability, 

there appears to be a pronounced difference between smaller understory and larger over-story 

tree species guilds and how they are spatially arranged along the hydrologic gradient. Tree 

species within mid or upper canopy level tree species guilds (>10 m max. height) can be found in 

higher densities in drier subplots, whereas the smaller (< 10 m max. height) treelets, shrubs and 

understory guild species are found at higher densities in wetter subplots regardless of growth 

stage. This study provides some of the first observational evidence of habitat filtering along the 

water resource gradient between plant guilds with different resource acquisition strategies.     
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Section 2.2: FIGURES 

FIGURE LEGENDS 

 

Figure 2.1. Study Site: The 50 ha Forest Dynamics Plot on Barro Colorado Island, Republic of 

Panama (bottom). Resource gradients of water and light are measured using the Topographic 

Wetness Index (A-C) and Mean Canopy Height (D-F). A. Topographic Wetness Index draped 

over a DEM hillshade model, blue to white is wet to dry. B. Three-dimensional view of the plot 

(exaggerated 2.5x) viewed from the South-West corner (A, red arrow) superimposed over 

hillshade model. C. One-hectare scale view of the subplot with the highest standard deviation in 

wetness index (A, yellow box). D. Canopy surface model, green to white is high to low 

maximum canopy height. E. Vertical cross section (200 m long x 20 m wide) of hectares with the 

highest average canopy height (red lines) and the lowest average canopy height (blue lines). F. 

One-hectare scale view of the subplot with the highest standard deviation in canopy height (D, 

yellow box).  

 

Figure 2.2. Scatterplots of species richness of the whole plot community (all plant guilds) in 

relation to both the mean and standard deviation of the Topographic Wetness Index and Mean 

Canopy Height.  

 

Figure 2.3. Scatterplots of stem density in relation to the Topographic Wetness Index by tree 

guild (shrubs, understory, midstory and canopy species).   
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Figure 2.4. Scatterplots of basal area in relation to the Topographic Wetness Index (top-left) and 

Mean Canopy Height (top-right). The inverse relationship between liana (bottom left) and 

canopy (bottom-right) tree guilds are plotted against Mean Canopy Height.  

 

Figure 2.5. Maps of species richness, stem density and basal area for all plants and for each 

individual guild.  
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Figure. 2.1. 
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Figure 2.2.  
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Figure 2.3.  

 

 

  



69 

 

Figure 2.4.  
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Figure 2.5. 
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Section 2.3: TABLES 

Table 2.1. The growth form/guild classification systems based on maximum canopy architecture. 

Lianas are dependent on trees for structure and thus have no maximum height. Guild 

classification based on the system used by Comita et al. (2007).  

 

Growth Form/Guild Classification Maximum Height 

Shrubs and treelets S (< 4 m tall) 

Understory trees U (4 - 10 m tall) 

Midstory trees M (10 - 20 m tall) 

Canopy trees T (≥ 20 m tall) 

Lianas L (no maximum height) 

 

Table 2.2. The diversity, density and basal area for the 50-ha plot, classified based on the 

maximum adult height of each plant species in Table 2.1.  

  

Guild Species Richness  Stem Density Basal Area (m
2
) 

Shrubs and treelets 67 83,467 26.8 

Understory trees 67 82,006 127.1 

Midstory trees 73 55,740 214.8 

Canopy trees 112 91,066 1,104.0 

Lianas 182 99,256 47.6 

Total 501 411,535 1,520.2 

*not including 975 unidentified individuals and 19 hemi-epiphytes  
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Table 2.3. Pearson’s r values for species richness (top), stem density (middle) and basal area 

(bottom) in relation to both the mean and standard deviation of Topographic Wetness Index 

(TWI) and Mean Canopy Height (MCH). All r values are reported at the community level (all) 

and at the individual guild level.  

  

 

Species Richness (species/ha) 

 

All shrubs understory midstory canopy lianas 

TWI  -0.115 -0.015 0.204 -0.259 -0.126 -0.109 

TWI sd 0.444 0.543 0.612 0.207 0.466 0.058 

MCH  -0.454 -0.219 -0.129 -0.187 -0.077 -0.671 

MCH sd 0.410 0.380 0.187 0.512 0.318 0.179 

 
      

 

Stem Density (stems/ha) 

 

All shrubs understory midstory canopy lianas 

TWI  -0.128 0.258 0.661 -0.608 -0.622 0.128 

TWI sd 0.111 0.135 0.172 0.174 -0.048 -0.054 

MCH  -0.305 -0.247 -0.147 0.159 0.355 -0.686 

MCH sd 0.322 -0.080 0.026 0.347 0.306 0.090 

 
      

 

Basal Area (m
2
/ha) 

 

All shrubs understory midstory canopy lianas 

TWI  -0.328 -0.011 0.751 -0.409 -0.313 0.044 

TWI sd -0.151 0.011 0.089 -0.106 -0.103 -0.259 
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MCH  0.819 -0.232 -0.293 -0.270 0.880 -0.758 

MCH sd 0.006 -0.057 0.045 -0.095 0.030 -0.117 
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Section 2.4: APPENDICES 

Appendix 2.1. LiDAR remote sensing variables: Topographic Wetness Index and Mean Canopy 

Height in the 50 ha Forest Dynamics Plot  
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Appendix 2.2. Scatterplots of OLS and GLS regression models at the community and guild level 

for three response variables: species richness, stem density and basal area and four remote 

sensing predictor variables (MCH, MCHsd, TWI, TWIsd). R-squared and p-value statistics are 

reported for OLS regression only. The OLS regression fit line is in grey and the optimized GLS 

regression fit is shown as a black line. OLS vs. GLS scatterplots are presented for all plants and 

additionally by individual guild. 
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Appendix 2.2.1. Species Richness
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Appendix 2.2.2. Stem Density 
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Appendix 2.2.3. Basal Area 
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Appendix 2.3. List of Differential GPS points for the plot corners. 

These coordinates are slightly different than the published STRI plot corners and have 

uncertainty values associated with them (se, sn, sup). GIS shapefiles were transformed to match 

these coordinates using the ‘Affine’ spatial adjustment method and GIS shapefiles are included 

in the supplementary materials. Affine spatial adjustment was written by Jeffrey Wolf and is 

freely available online at: https://github.com/jeffreywolf/afproj    

 

dd_lat dd_long ell_ht se sn sup 

9.15124 -79.855 140.661 0.9159 0.4417 1.4076 

9.15543 -79.846 152.347 0.0916 0.0267 0.1607 

9.15578 -79.855 227.677 4.1791 2.5247 36.0178 

9.15093 -79.846 132.957 0.6249 0.1511 0.349 
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CHAPTER 3 

Section 3.1: Topographic and climatic influences on forest structure in Mesoamerica 

ABSTRACT 

Three-dimensional forest structure has been shown to vary in relation to topography at 

the local and forest census plot scale, however little research has been devoted to testing whether 

these patterns occur at regional to continental scales. In this study, I analyze vegetation height 

measured in 194,376 spaceborne laser footprints from the Geoscience Laser Altimeter System 

(GLAS) to study how forest structure varies in relation to topography, climate, biome, and 

spatial scale across Mesoamerica. Multivariate prediction models including topographic 

variables such as mean elevation, slope and the topographic wetness index explain the largest 

percentage of the variance (>20%) in average forest stand height across the region. Topography 

derived variables consistently were able to explain larger percentages of the variance (20-50%) 

in forest structure compared to climatic variables (<15%). Specifically, terrain slope dominates 

all of the models and is consistently the strongest predictor in multiple random forest regression 

(RFR) models which sample forest structure at varying spatial scales and control for outside 

factors like biome and forest type. The primary analysis treats each GLAS laser footprint as an 

independent sample, however to test the effects of aggregation and spatial scale, three additional 

sets of models were run which aggregate and average GLAS measurements into grid cells of 

varying resolution (1, 5, 10 km). By aggregating and averaging GLAS points within a grid cell, 

there is a reduction in random noise, the effects of outliers are lessened and model performance 

is assessed using multi-scale sampling strategies. Qualitatively, the relative importance of the 

strongest predictor variables remained insensitive to spatial scale with slope, elevation and 

topographic wetness index consistently the top three most important variables across all models, 
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generally followed by latitude and longitude. Climate variables generally had poor model 

performance, with annual precipitation and temperature of the warmest/wettest quarters the 

notable exceptions. Collectively, topography and climate variables could explain between 41-

59% of the total variance in forest structure across spatial scales in random forest regression 

models. The findings suggest that compared to estimations of climate, local topography and 

terrain slope in particular may influence the spatial distribution of vegetation at the continental or 

global scale and these trends are directly measurable from spaceborne platforms.   

 

Keywords: Forest structure, Topography, Central America, random forest regression, 

topographic wetness index, Geoscience Laser Altimeter System, ICESat, Shuttle Radar 

Topography Mission  
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INTRODUCTION 

Three-dimensional vegetation spatial structure must be known to adequately monitor and 

model the terrestrial carbon cycle and forest ecosystem dynamics. Precise measurements of 

vertical forest structure have proven difficult from space. While radar remote sensing has 

improved in both vertical and horizontal resolution, issues with backscatter, topography, layover, 

band limitations and random noise prevent these sensors from reliably providing precise 

measurements of vegetation height at the tree to stand level. The Geoscience Laser Altimeter 

System (GLAS) has been shown to provide accurate approximations of vegetation height when 

compared to the medium altitude airborne Laser Vegetation Imaging Sensor and the Shuttle 

Radar Topography Mission (SRTM) digital surface model (DSM) (Sun et al. 2008). Others have 

used vegetation structure from GLAS waveforms in conjunction with passive optical imagery 

were used to create benchmark global biomass estimates and global forest canopy height maps 

(Lefsky 2010, Pan et al. 2011, Saatchi et al. 2011). Similarly, vertical forest structure from 

GLAS was incorporated into a multi-sensor satellite estimation of aboveground live woody 

vegetation carbon density for pan-tropical ecosystems with improved accuracy and spatial 

resolution (Baccini et al. 2012). A large-scale integrated airborne and satellite mapping effort 

using both imagery and LiDAR is necessary to support the United Nations Framework 

Convention on Climate Change (UNFCC) program to reduce deforestation and forest 

degradation (Asner 2009). 

The majority of research which measure vegetation using GLAS waveforms is either 

focused on specific geographic regions where field validation data are available or at broader 

scales to sample forests which have little to no field validation measurements. At regional scales, 

GLAS LiDAR footprints have been used to measure peat topography and to collect large 
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numbers of forest biomass samples in the remote and highly inaccessible peatland forests of 

Kalimantan, Indonesia (Ballhorn et al. 2011). In Africa, estimates of aboveground biomass 

derived from satellite imagery were verified using GLAS estimates of biomass using the vertical 

height information contained in the vertical waveforms (Baccini et al. 2008), however it was 

later shown that such estimates must be carefully constrained using field inventory plots 

(Mitchard et al. 2009, Baccini et al. 2011). Field inventory plots, SRTM elevation data and 

GLAS footprints were used to estimate aboveground biomass in the mangrove systems in 

Ciénaga Grande de Santa Marta in Colombia (Simard et al. 2008). The results from a recent 

analysis of GLAS footprints over the Amazon basin demonstrate the potential of spaceborne 

LiDAR for sampling the vertical structure of tropical forests and measuring aboveground 

biomass at the regional scale (Lefsky et al. 2005b).   

At local scales in a tropical moist forest in Panama, airborne LiDAR derived three-

dimensional forest structure has been shown to vary in relation to hydrology networks and terrain 

curvature across the landscape (Detto et al. 2013). Vegetation structure derived from GLAS 

waveforms were found to generally confirm field measured canopy height in a diverse range of 

forest types from a coniferous forest in Oregon, to mixed hardwood/pine forest in Tennessee to 

old growth tropical rainforest in Tapajos, Brazil (Lefsky et al. 2005a). The GLAS laser pulses 

produce a waveform that represents the vertical extent of the forest profile which increases as a 

function of terrain slope and footprint size (x-y area on the ground illuminated by the laser). 

Over sloped terrain, the height of the waveform is insufficient to make estimates of tree height 

and algorithms are needed that are capable of retrieving information about terrain slope from the 

waveform itself. A recent study of this effect revealed that GLAS height estimates were accurate 

for areas with a slope up to 10° whereas waveforms of areas with terrain slope exceeding 15° 
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were problematic. Slopes between 10–15° have been found to be a critical crossover. Further, 

different waveform shape types and landscape structure classes were developed as a new 

possibility to explore the waveform in its whole structure. Based on the detailed analysis of some 

waveform examples, it could be demonstrated that the waveform shape can be regarded as a 

product of the complex interaction between surface and canopy structure (Hilbert and Schmullius 

2012). Consequently, there is a great variety of waveform shapes which in turn considerably 

hampers GLAS tree height extraction in areas with steep slopes and complex forest conditions. 

The best method developed removes this slope effect using a second generation algorithm 

developed using datasets from diverse forests in which forest canopy height has been estimated 

in the field or via airborne LiDAR. This algorithm eliminates the need for an independent DEM 

by correcting for ‘within footprint’ topography and can explain 83% of the variance in forest 

canopy height with an RMSE of 5 m (Lefsky et al. 2007).  

Numerous factors have been shown to influence forest structure across different forest 

types and spatial scales. Climate, topography and soil variables have proven important to forest 

structure across biomes. An East-West soil fertility and geology gradient coincide with forest 

structure and dynamics across the Amazon basin potentially impacting variations in forest 

biomass, growth and stem turnover rates (Quesada et al. 2009). A local/plot scale study of 

tropical rain forest structure in La Selva, Costa Rica analyzed soil type, slope angle and 

topographic position and found that although the plots on flat inceptisols had significantly larger 

and fewer trees than those on ultisols, above ground biomass did not vary over the relatively 

small edaphic gradient in upland areas. On residual soils, the largest trees were on the flattest 

topographic positions. Slope angle per se was not correlated with basal area or AGBM within the 

residual soils (Clark and Clark 2000). Compared to smaller shrubs and understory trees, canopy 
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tree species were found to be non-randomly spatially associated with dry forest subplots (1 ha) at 

the plot scale in Panama (Fricker in prep).  

A latitudinal gradient in forest height has been documented with average heights 

increasing toward the equator and GLAS has been documented to have difficulty in mapping tall 

(>40 m) closed canopy forests (Simard et al. 2011). In addition to maximum plant height, wood 

density is another important functional trait in trees and a recent study found geographic and 

community variation in wood density, was significantly lower in temperate and high elevation 

communities, dominated by gymnosperms, than in tropical lowland communities, dominated by 

angiosperms, suggesting an increase in trait and, to some extent, clade filtering with latitude and 

elevation (Swenson and Enquist 2007).  

Mesoamerica is distinct because of its “Biological Corridor” conservation strategy 

aligned along the long and narrow form of the landmass, divided by a central mountain range 

which has served as both a bridge and barrier for plants and animals between two continents and 

two oceans. Furthermore, humans have inhabited and impacted its biodiversity for at least 10,000 

years and have heavily shaped the forests in Mesoamerica (DeClerck et al. 2010). Fragmentation 

alters forest-climate interactions in diverse ways, at a local scale elevated desiccation and wind 

disturbance near fragmented margins leads to sharply increased tree mortality. At landscape to 

regional scales (10-1000 km) habitat fragmentation may have complex effects on forest-climate 

interactions with important consequences for atmospheric circulation, water cycling and 

precipitation, which may be compounded by deforestation, regional climate change and fire. 

These interactions remain poorly understood (Laurance 2004).  

 

Research questions 
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1. Using random forest regression modelling, how much of the total variance in vegetation 

height can be explained using predictor variables derived from topography and climate?  

2. When explaining variation in vegetation height across Mesoamerica, do the topographic 

variables have stronger predictor associations relative to climate variables? 

3. Are the relative trends between predictor variables constant across forest types or biomes 

and how are the results impacted by changing the spatial scale of analysis? 

 

MATERIALS AND METHODS 

Study Area 

The biogeographical designation of Mesoamerica is distinct from the geopolitical 

designation of Central America. Mesoamerica stretches from the Darien in Panama north to the 5 

southernmost states of Mexico, while Central America generally excludes Mexico entirely and 

sometimes Belize and Panama (DeClerck et al. 2010). For the purpose of this study, the formal 

definition of ‘Mesoamerica’ is extended to include all states including and between Mexico to 

Panama. 

 

Forest Structure across Mesoamerica 

Forest structure is measured by NASA’s Geoscience Laser Altimeter System (GLAS), 

the sole instrument on the Ice, Cloud, and land Elevation Satellite (ICESat), launched in 2003 

and collected data until 2009. The GLAS waveforms were processed following Lefsky et al. 

(2007) to correct vegetation height for ‘within footprint’ topographic slope. Clouds, non-

terrestrial, and samples in urban areas were all removed from the GLAS sample. We tested 

GLAS footprints in the countries of Belize, Costa Rica, El Salvador, Guatemala, Honduras, 
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Mexico, Nicaragua and Panama. The two response variable metrics used to measure forest 

structure are maximum canopy height and basal area weighted height (e.g. Lorey’s Height). 

Basal area weighting of trees heights increase the importance of the largest trees in a stand an in 

general represents the height of the stand’s tallest trees (Lefsky 2010). All figures and maps in 

this study focus on Lorey’s height as the primary response variable, however models were 

computed and are reported for maximum height as well. I present a comprehensive map of 

Lorey’s height across Mesoamerica in Figure 3.1.  This map shows Lorey’s height plotted 

against latitude and longitude and overlaid on the land cover type. Although many different land 

cover types are represented in the GLAS sample, nearly half (46.86%) of the GLAS footprints 

are located in Evergreen Broadleaf Forests (dark green). The list describing the distribution of 

the GLAS points across land cover types can be found in Table 3.1.    

 

Topographic Variables 

Topographic variables are computed using the Version 3, void-filled 90 m resolution 

digital surface model (DSM) generated from the Shuttle Radar Topography Mission which 

collected a near-global elevation model in the year 2000 (SRTM) (Farr et al. 2000, Kobrick 

2006, Farr et al. 2007). At each GLAS footprint location, the SRTM DSM is used to measure 

mean elevation, aspect, slope, curvature, flow accumulation and the Topographic Wetness Index 

(TWI) as predictor variables. Mean elevation is measured directly from the SRTM DSM, surface 

slope and curvature are the first and second derivatives of the DSM surface. Terrain slope is 

measured in degrees and curvature is unitless. A negative curvature value represents an upwardly 

concave surface (i.e. river valleys) while a positive curvature value represents an upwardly 

convex surface (i.e. ridges). Terrain aspect was measured as the cosine of aspect which is a 
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measure of ‘north-ness’ with 1 representing a due north-facing and -1 representing a due south-

facing slope. Flow accumulation is an estimate of the number of upslope contributing cells which 

drain through each DSM cell based on the local flow direction. The TWI is a physically based 

model which considers upslope area contribution and weights the factor by the slope. TWI was 

first introduced by (Beven and Kirkby 1979) and is defined as ln(α/tanβ) where α is the local 

upslope area draining through a certain point per unit contour length (i.e. flow accumulation) and 

tanβ is the tangent of the local slope in radians. The TWI was an effective predictor of 

groundwater contamination in China (Rodríguez-Lado et al. 2013), approximates groundwater 

flow (Zinko et al. 2005) and is an effective metric to estimate species richness, soil pH, 

groundwater level, and soil moisture from digital elevation models (Sørensen 2006). The TWI 

equation is modified slightly to add a small constant to avoid slopes of zero and fill depressions 

(sinks) in the DEM. The arcpython script to calculate the TWI is available online at: 

(https://github.com/africker/Topographic-Wetness-Index). 

 

Climate Variables 

Climate is approximated using the current set of 19 WorldClim global data layers 

(http://www.worldclim.org). Bioclimatic variables are derived from the monthly temperature and 

rainfall values in order to generate more biologically meaningful variables which are commonly 

used in ecological niche modelling and are derived from national and international weather 

databases (Hijmans et al. 2005). Recently, patterns of maximum field measured vegetation 

height were examined globally using BioClim climatic variables and have shown significantly 

taller vegetation in the tropics (Moles et al. 2009). BioClim variables include annual 

https://github.com/africker/Topographic-Wetness-Index
http://www.worldclim.org/
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precipitation, temperature of the warmest quarter, temperature seasonality and precipitation of 

the wettest quarter. A full list of the BioClim variables can be found in Table 3.2. 

 

Controlling for land cover/forest type, biome and spatial scale 

Biome and land cover type are included as categorical variables in the RFR models in 

addition to the continuous topography and climatic variables. The overall trends in forest 

structure are first analyzed as only topographic and climatic variables, then again using the land 

cover and biome categories. The prediction accuracy of these categorical variables is tested 

relative to topography and climate to measure marked differences in prediction accuracy. The 

RFR models are also generated for each of the four different spatial scales to determine whether 

aggregating GLAS measurements over increasing larger window sizes changes model outputs. 

To test whether forest structure relates to predictors differently in different biomes or forest/land 

cover types, both the USGS Global Land Cover Characterization (GLCC) (Table 3.1) and 

biomes was obtained from the World Wildlife Federation (WWF) (Olson et al. 2001) are 

included as categorical variables.  

The primary analysis focused on the GLAS shots themselves (~70 m diameter 

footprints), to reduce outlier noise and study the effects of spatial scale, GLAS shots were 

aggregated into 1 km, 5 km and 10 km grid cells. If a grid cell contained more than one GLAS 

shot, the vegetation heights were averaged to represent that grid cell. If only one GLAS shot was 

present in a single cell, the forest structure for that one shot represented the grid cell.  Variables 

are ranked in each RFR models at each scale to determine whether size of the ‘window of 

analysis’ significantly changes the results and the relative importance of the predictor variables.     
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Statistical Analysis 

1. Total variance explained in RFR models 

Random Forest Regression (RFR) models were computed in R to determine the total 

proportion of variance which could be described using geographic position, topography and 

climatic predictor variables. The statistical analysis was performed in three separate steps for two 

response variables (Lorey’s height and maximum height) and 27 predictor variables (latitude, 

longitude, 6 topographic and 19 climatic variables). The first step involved using RFR to 

determine how much of the total variance can be explained using all 27 predictors and the 

relative importance of each topography and climate variable.  

 

2. Relative variable importance in RFR models  

The second step was to assess relative variable importance between all variables. 

Random forest has a robust system of cross-validation (out-of-bag) utilizing training and testing 

datasets as well as the ability to account of variable co-linearity and complex interaction factors 

which cannot be easily accounted for in simple multiple-regression models (Breiman 2001). 

Variable importance is apparently a difficult concept to define in general because of the 

importance of a variable may be due to its (potentially complex) interactions with other 

variables. The random forest algorithm estimates the importance of a variable by looking at how 

much prediction error increases when “out-of-bag” cross-validation data for that variable are 

permuted while all others are left unchanged. The necessary calculations are carried out tree by 

tree as the random forest is constructed (Liaw and Wiener 2002). The RFR model for individual 

GLAS points is ranked by variable importance for all topographic, climatic and geographic 

position in Figure 3.2. Based on the results of the relative variable importance generated in the 
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RFR, the geographic distribution of all points is plotted (Figure 3.1) as well as the four most 

important topography/climate variables in a pairwise fashion using local regression (loess fit). 

 

3. Effects of forest type/land cover, biome and spatial scale on model output 

To control for the effects of land cover type and biome, we include land cover and biome 

as categorical variables in the RFR models to assess relative variable importance when compared 

to all available predictors. All topographic and climate variables are derived and computed using 

arcpython scripts in ArcGIS 10.2.2 (Environmental Systems Research Institute, Redlands, CA). 

Spatial sub-setting is performed in ArcGIS, and all regression analysis is performed in R 

statistical computing software (Team 2013).  

 

RESULTS 

Forest structure (Lorey’s and Maximum height) is related to both latitude and longitude 

in Mesoamerica. Generally, forest height increases from northwestern Mexico to southeastern 

Panama. This trend is visible in Figure 3.1 showing Lorey’s height mapped across Mesoamerica, 

overlaid on land cover type. Although there is a general trend, a visual inspection of Figure 3.1 

suggests there is considerable variation in forest structure which cannot be explained by 

geographic position alone. The remainder of the results focuses primarily on the topographic and 

climatic variables in relation to forest structure.  

 

1. Total variance explained in RFR models 

The total variance in forest structure (Lorey’s and maximum height) which could be 

explained in RFR models using topographic and climatic variables ranged from 56% (Lorey’s 
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height) to 58% (maximum height) of the total variance when compared for all points and 

between 41-59% across all spatial scales (Table 3.4). When including all available predictor 

variables, terrain slope followed by mean elevation were the top two variables across all models, 

and the topographic wetness index was ranked 3
rd

 in all but one model. Prediction accuracies 

were higher for all RFR models for maximum height compared to Lorey’s height. Overall 

prediction accuracy was greater than 50% and only four out of 14 models could explain less than 

half the variance in any vegetation height metric at any scale  due to poor model performance 

(Table 3.4).   

 

2. Relative variable importance in RFR models 

The results indicate that topographic variables are correlated with forest structure more 

than climatic variables at the continental scale. Topography predictor variables dominate climatic 

predictor variables in all the RFR models. Secondly, within the topographic predictor variables, 

slope is the dominant predictor even when controlling for confounding factors such as forest type 

and biome. Third, Mesoamerica’s latitude and longitude are correlated due to the diagonal 

alignment of Mesoamerica relative to the geographic coordinate system, and longitude is 

generally ranked as a more important RFR variable relative to latitude. Geographic location on 

the x or y axis was not as important as terrain slope or elevation in any RFR model for either 

Lorey’s height or maximum height.  

The results of the variable importance in the random forest model using all topographic 

and climatic variables for the primary analysis (using the GLAS shots themselves not 

aggregative into cells) is illustrated in Figure 3.2. Of the top ten most important variables, six 

were either geographic position or a topographic variable and these were generally more 
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important than the top four climatic variables. The top ten variables in order of relative 

importance are: terrain slope, mean elevation, longitude, topographic wetness index, mean 

temperature of warmest quarter, latitude, terrain curvature, annual precipitation, mean 

temperature of the wettest quarter and temperature seasonality. The relationship between the top 

four topographic variables and the top four climatic variables are found in Figures 3.3 and 3.4 

respectively.   

 

3. Effects of forest type/land cover, biome and spatial scale on model output 

Qualitatively, model results remain relatively insensitive to changes in the land 

cover/biome or spatial scale used in the analysis. Small changes in relative variable importance 

do occur when controlling for outside factors (particularly amongst climatic variables), the 

strongest predictors (topography) were consistent across all models. Biome or forest type 

accounted for <5% of the variance compared with the topographic and climatic variables. I tested 

the effects of spatial scale by computing the relative variable importance for the model analyzing 

individual GLAS shots, as well as the three models where GLAS shots were aggregated and 

averaged inside grid cells (1, 5 ,10 km cell size). The effects of spatial scale are present for the 

worst predictor variables (generally climate based), however the top predictors remained 

relatively constant and are ranked based on spatial scale. To simplify the results of the multi-

scale analysis, I ranked four separate models (for each spatial scale and all points) and I summed 

across all models to report the relative variable importance while controlling for spatial scale. In 

order of importance, the top three ranked variables in the RFR models were consistently slope, 

average elevation and the topographic wetness index. Longitude, latitude and annual 

precipitation are the next strongest predictors followed by the remainder of the topographic and 
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climatic variables. A full list of ranked predictor variables across spatial scales is available in 

Table 3.3. Linear regression models for terrain slope for all GLAS points and the three most 

common land cover classes are available in Appendix 3.1.  

 

DISCUSSION 

The results provide evidence that steeper terrain slope may support taller stature forests at 

the continental scale. The effect of topography dominates climate variables across the region and 

these effects are generally insensitive to forest type, biome or spatial scale.  I acknowledge that 

effects of waveform elongation in GLAS laser profiles can be heavily impacted by steep slopes 

and cannot provide definitive proof that this effect has been completely removed. However, the 

overall strength in the relationship between forest height and slope is robust and should not be 

discarded. Even at slopes of less than 15 degrees where terrain-vegetation contamination would 

be minimal, the overall trend is taller stature forest on steeper slopes (Figure 3.3A). The best 

available efforts were made to de-contaminate the effects of slope from the laser profiles 

following Lefsky et al. (2007). Elevation has a positive relationship with forest structure until 

about 500 m where most height measurements appear to plateau just below 20 m (Lorey’s 

height) (Figure 3.3B). The TWI had a negative association with average forest height decreasing 

as the wetness index increased. The dominance of the terrain slope, elevation and wetness index 

predictor variables above all over predictors in all RFR models for vegetation height suggest 

strong topographic controls over forest structure at the continental scale.  

The evidence that taller stature forest are occurring at steeper, higher elevation, and well 

drained regions, may have implications for land management and conservation efforts. It should 

be noted, that Mesoamerica is a highly fragmented ecosystem with a long history and high rates 
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of deforestation and human settlement. Human settlements generally occur on the drier (Pacific) 

side of the landmass and in flatter lowland areas with coastal access and as a result, most of the 

intact forest occurs at higher elevation and on steep slopes where deforestation is difficult. In 

addition to the contamination of slope in the GLAS waveform signal, this is an alternative 

explanation for why taller forests are observed on steeper slopes.  

It is difficult to say with certainty whether hydrology is influencing forest structure or 

whether these are the effects of elevation and terrain slope.  When viewed in a pairwise 

regression, there is an obvious trend towards taller forests occupying drier topographic positions 

(Figure 3.3C). The TWI is a proxy for water availability and is unbounded by field 

measurements, additionally it is a derivative product of both the elevation and terrain slope and 

therefore correlated with each. However, like terrain slope, the interpretation of the topographic 

wetness index results should be approached with these limitations in mind but not be discarded 

completely. This observation may be confirmed by the curvature results which indicate there is a 

slight, but significant preference towards taller trees in concave up areas (valleys) with slightly 

lower average height on ridges (Figure 3.3D). This would seem logical in the context of 

protection from high wind provided by valleys on the flanks of mountains and volcanoes as well 

as greater nutrient and water available in valleys, however the associations between forest 

structure and curvature are generally weak compared to elevation slope and TWI. There is local 

evidence to suggest that canopy and midstory tree species are non-randomly distributed in well 

drained soils (Fricker, in prep) and that terrain curvature was a significant predictor of tree 

species richness (Wolf et al. 2012) at the plot level in Panama. It was also found that the 

calculation of curvature is highly scale dependent, and these metrics could be expanded to follow 
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a multi-scale approach to curvature which has shown that valleys are more likely to have taller 

forests compared to plateaus and ridgetops (Detto et al. 2013). 

This study is a proof-of-concept effort to study vertical forest structure in relation to 

topographic and climatic variables at the regional scale. Similar studies should be performed in 

other tropical forest regions, temperate and boreal forests and ultimately at the global scale. A 

better understanding of the environmental factors which impact forest structure can better 

parameterize estimates of biomass and terrestrial carbon storage. Lessons learned in this study 

should help inform studies of forest structure at a regional scale but can also be used to refine 

estimates of forest structure across Mesoamerica and thereby improving estimates of biomass at 

the landscape scale.  

Individual GLAS footprints are sparsely spread across the landscape giving a sparse 

sampling of the vertical distribution of individual stands of trees. New spaceborne laser 

altimeters such as the ICESat-2 (Ice, Cloud, and land Elevation Satellite 2) planned for a 2017 

launch will include a wider sampling design and will allow scientists to gain a more complete 

view of global vertical forest structure in the coming decade. ICESat-2’s smaller footprints and 

wider sampling will help determine if the effects of slope have been fully removed from the 

GLAS laser footprints and how much of the observed terrain slope signal is actually present. In 

the near term, future research should be focused on whether associations between topographic 

variables such as slope and the topographic wetness index are consistent outside of Mesoamerica 

in tropical regions in South America, Africa, and Southeast Asia. A similar analysis should be 

extended to temperature and boreal forests as well to determine whether these associations are 

specific to the tropics or are perhaps universal.   
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CONCLUSION 

 The analysis of nearly 200,000 individual GLAS points across Mesoamerica provides 

evidence that terrain slope and topographically derived variables may have a controlling 

influence on the variation in forest canopy height at the continental scale. Topography dominates 

climatic predictor variables across land cover and biome which suggests that vertical forest 

structure may be driven by patterns in local topography more than climatic variables. Steeper 

terrain slope in particular was the strongest predictor of increased vegetation height across all 

forest types, land cover classes and biomes, and we suspect effects of slope contamination could 

not be completely eliminated in extreme terrain. Taller forest was generally located in upland 

areas on well-drained soils which suggest elevation and hydrology may influence forest structure 

at a regional scale. Climate variables such as the mean temperature of the warmest and wettest 

quarters, annual precipitation and temperature seasonality all had mixed effects on vegetation 

height, with taller forests generally occurring in wetter condition and in areas with higher 

temperature stability (less extreme high and low temperatures). This analysis across 

Mesoamerica provides a conceptual framework which can be extended to larger geographic areas 

to study forest structure globally.     

Section 3.2: FIGURES 

FIGURE LEGENDS 

Figure 3.1. Map of Mesoamerica with land cover overlaid, USGS Land Use/Land Cover System 

Legend (Modified Level 2). Overlaid by all GLAS footprints used in analysis (red dots). 

Scatterplots indicate basal area weighted height (Lorey’s Height) by latitude and longitude, with 

a Loess fitted curve (green). 
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Figure 3.2. Random Forest variable importance plot for all GLAS shots (without gridding). This 

graph shows the relative importance of each variable relative to all variables.  

Figure 3.3. Four most important topography variables for all GLAS shots 

Figure 3.4. Four most important climate variables for all GLAS shots 

Figure 3.5. Scatterplots of Terrain slope and Lorey’s Height for all GLAS points (top left), and 

the next three most numerous land cover classes, in order of GLAS shot abundance in each land 

cover class. 
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Figure 3.1. 
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Figure 3.2. 
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Figure 3.3. 
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Figure 3.4. 
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Section 3.3: TABLES 

Table 3.1. Count of GLAS points and percentage of total by the USGS Land Use/Land Cover 

System (Modified Level 2).  

LCD Value Land Cover Description GLAS Points in each class % of total 

1 Urban and Built-Up Land 20 0.01 

2 Dryland Cropland and Pasture 23,745 12.22 

3 Irrigated Cropland and Pasture 609 0.31 

5 Cropland/Grassland Mosaic 906 0.47 

6 Cropland/Woodland Mosaic 9,657 4.97 

7 Grassland 5,912 3.04 

8 Shrubland 7,933 4.08 

10 Savanna 3,623 1.86 

11 Deciduous Broadleaf Forest 7,586 3.90 

13 Evergreen Broadleaf Forest 91,080 46.86 

14 Evergreen Needleleaf Forest 16,273 8.37 

15 Mixed Forest 24,911 12.82 

16 Water Bodies 1,823 0.94 

18 Wooded Wetland 296 0.15 

21 Wooded Tundra 2 0.00 

    

 
Total 194,376 
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Table 3.2. BioClim variables.  

CODE BioClim variable 

BIO1  Annual Mean Temperature 

BIO2 

Mean Diurnal Range (Mean of monthly (max temp - min 

temp)) 

BIO3 Isothermality (BIO2/BIO7) (* 100) 

BIO4 Temperature Seasonality (standard deviation *100) 

BIO5 Max Temperature of Warmest Month 

BIO6 Min Temperature of Coldest Month 

BIO7 Temperature Annual Range (BIO5-BIO6) 

BIO8 Mean Temperature of Wettest Quarter 

BIO9 Mean Temperature of Driest Quarter 

BIO10 Mean Temperature of Warmest Quarter 

BIO11 Mean Temperature of Coldest Quarter 

BIO12 Annual Precipitation 

BIO13 Precipitation of Wettest Month 

BIO14 Precipitation of Driest Month 

BIO15 Precipitation Seasonality (Coefficient of Variation) 

BIO16 Precipitation of Wettest Quarter 

BIO17 Precipitation of Driest Quarter 

BIO18 Precipitation of Warmest Quarter 

BIO19 Precipitation of Coldest Quarter 

  Data available for download at: http://www.worldclim.org/current 
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Table 3.3. Random forest regression models ranking for each spatial scale. Each predictor 

variable is ranked for four spatial scales and the table is sorted based on the average ranking 

from highest relative variable importance (1) to lowest (27). 

Variable  Code 
10 

km 

5 

km 

1 

km 
points average 

Terrain Slope slp 1 1 1 1 1 

Mean Elevation dem 2 2 2 2 2 

Topographic Wetness Index twi 3 3 3 4 3.3 

Longitude long 10 6 4 3 5.8 

Annual Precipitation BIO12 6 5 8 8 6.8 

Latitude lat 8 7 7 6 7 

Precipitation of Coldest Quarter BIO19 4 4 9 12 7.3 

Curvature  curv 7 9 6 7 7.3 

Mean Temperature of Warmest Quarter BIO10 12 11 5 5 8.3 

Mean Temperature of Wettest Quarter BIO8  5 10 13 9 9.3 

Precipitation of Warmest Quarter BIO18 9 8 12 13 10.5 

Temperature Seasonality (standard deviation *100) BIO4  13 15 10 10 12 

Precipitation of Wettest Quarter BIO16 15 12 11 11 12.3 

Precipitation of Driest Quarter BIO17 11 13 15 16 13.8 

Precipitation of Wettest Month BIO13 14 14 14 15 14.3 

Mean Diurnal Range (Mean of monthly (max temp - min temp)) BIO2  17 16 18 17 17 

Precipitation Seasonality (Coefficient of Variation) BIO15 16 17 19 19 17.8 

Aspect (Cosine) casp 21 22 16 14 18.3 

Temperature Annual Range (BIO5-BIO6) BIO7  19 20 17 18 18.5 

Max Temperature of Warmest Month BIO5  20 18 20 20 19.5 

Precipitation of Driest Month BIO14 18 19 21 21 19.8 

Annual Mean Temperature BIO1  23 21 22 24 22.5 

Min Temperature of Coldest Month BIO6  25 23 23 23 23.5 

Isothermality (BIO2/BIO7) (* 100) BIO3  22 24 25 27 24.5 

Mean Temperature of Driest Quarter BIO9  24 25 24 25 24.5 

Flow Accumulation fa 27 27 27 22 25.8 

Mean Temperature of Coldest Quarter BIO11 26 26 26 26 26 
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Table 3.4. Percentage of variance (%) explained by each Random Forest Regression model for 

both vegetation height metrics (Lorey’s and Maximum), three sampling cell grid sizes (10,5,1 

km
2
) and the GLAS ‘points’ themselves (which cannot be averaged since they are singular 

measurements).   

 

Vegetation Height Metric 10 km 5 km 1 km points 

Average Lorey's  54.52 56.61 55.20 - 

Maximum Lorey's  41.33 44.89 49.22 56.09 

Average Maximum  56.94 58.89 58.25 - 

Maximum  48.54 52.11 54.36 58.41 
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Section 3.4: APPENDICES 

Appendix 3.1. Linear regression models for Lorey’s height and terrain slope between all points 

and the 3 most common land cover types (72% of total GLAS points). 
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SYNTHESIS  

            The research presented is this dissertation examines metrics associated with biodiversity 

from the local plot (<50 ha) scale to the continental scale and narrows the spatial gap between 

broad scale remote sensing measurements and plot level measurements for forest richness and 

structure. As high resolution, three-dimensional remote sensing improves in resolution, 

geographic extent and cost, coupled with an even increasing forest plot network, the spatial gap 

will narrow further in the next decade. Research efforts should be focused on incorporating new 

and existing forest census data with LiDAR and optical remote sensing data to model diversity 

and dynamics at the landscape scale. Using ground-level plot data to make predictions outside of 

plot boundaries is critical for conservation prioritization, mapping and monitoring change in the 

world’s tropical forests. Very few predictions of alpha-diversity exist in the tropical forests 

outside of forest census plots. This dissertation tests presents new predictions of species richness 

across Barro Colorado Island and a methodological framework for developing similar models 

wherever plot data and high resolution remote sensing data exists. Additionally, this research 

explores guild level patterns of diversity, density and size between lianas, shrubs, understory, 

midstory and canopy trees in relation to resource gradients of water and light. Finally, 

continental patterns of forest structure were found to be largely impacted by terrain slope and 

other topographic variables compared to climate variables such as temperature and precipitation.  

            The primary findings of the research indicate that increased alpha diversity is associated 

with environmental heterogeneity, particularly in the water and light environment and this 

environmental variation can be effectively detected from airborne remote sensing platforms. 

Diversity in heterogeneous environments is due to differences in resource acquisition strategies 

between plant guilds. The apparent filtering of freestanding trees along the hydrologic gradient is 
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manifested by smaller shrubs and understory trees occurring in higher densities in wet areas 

while midstory and canopy trees occur in higher densities in drier subplots. Similarly, woody 

climbing vines (lianas) and tall canopy trees occupy opposite ends of the light availability 

spectrum, with canopy trees occupying the upper reaches of the forest while lianas are strongly 

clustered in canopy gaps. At the continental scale, forest structure appears to be strongly 

influenced by terrain slope, elevation and water availability. These results indicate that 

environmental gradients influence tree richness, density and size from the fine plot scale to the 

coarse continental scale. 

            The accurate location of forest census plots in the field is an often overlooked aspect of 

forest ecology and remote sensing studies. The correct location (and associated positional errors) 

of forest census plots is critical to incorporating high-resolution remote sensing measurements 

since these coordinates are how local forest plot coordinates are translated into geographic space. 

Traditionally, field ecologists use handheld GPS receivers which only collect one GPS frequency 

(L1) and can report positional errors of over 10 m under tropical forest canopy cover. These 

residual errors are not reported from such consumer grade GPS equipment and are unfit for the 

task of accurately locating forest census plots under dense canopy. Residual GPS errors are 

almost never reported for geographic coordinates collected under dense forest canopy where 

errors are likely to be the highest. There should be a fundamental shift in how scientists report 

such coordinates, particularly when collected in difficult GPS environments (i.e. under dense 

tropical forest canopy). Each coordinate collected should also report the associated residual 

errors so locational accuracy can be assessed when converting plot level measurements to 

geographic space and this dissertation publishes the corner coordinates for the BCI FDP and 

associated measurement errors. This practice will facilitate the accurate alignment of forest 
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census plots by ensuring that high-resolution remote sensing is associated with the appropriate 

forest space and reduce measurement error.       

            As scientists adopt the practice of reporting accurate locational measurements and 

associated residual errors of forest plots, a more rigorous analysis using high-resolution remote 

sensing will be possible. Planned spaceborne LiDAR sensors and the plummeting cost of 

unmanned aerial platforms will eventually allow a high resolution estimate of the world’s forests 

and a comprehensive view of the distribution of terrestrial biodiversity and forest structure. 

Finally, the ground based forest census plot network is constantly expanding in geographic 

extent and is starting to include non-tree life forms such as herbs, forbs and lianas. These ground 

level measurements are critical to training and testing remote sensing estimates and will provide 

the biological basis which informs estimates of biodiversity and biomass dynamics across the 

globe. 

In the future, as climate changes and species distributions continue to shift their current 

geographic extents, these plots and remote sensing measurements will be critical to mapping and 

monitoring change. This dissertation provides a methodological framework for predicting alpha-

diversity outside the extent of current plot boundaries, an approach for analyzing tree richness, 

density and size at the community and guild level, and uses machine learning Random Forest 

regression to study forest structure at the continental scale. Finally, I present recommendations 

for future research directed at testing the results in other forest census plots in a variety of forest 

types, analyzing forest census plot data at the guild level and using new statistical techniques to 

analyze large continental scale datasets. The research presented in this dissertation makes steps 

towards closing the spatial gap between the forest census plot and the landscape, in addition to 

presenting a clear path forward to better understanding forest richness, structure and dynamics.  
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