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Highlights

•

New surrogate modeling approach to reduce the computational cost is proposed.

•

The mathematical basis of the modeling approach is discussed.

•

Models to predict the impact of CO2 and brine leakage on groundwater are 

developed.

•

The application of the modeling approach on CCS risk assessment is 

demonstrated.

Abstract

Numerical modeling is essential to support natural resource management and 

environmental policy-making. In the context of CO2 geological sequestration, these 

models are indispensible parts of risk assessment tools. However, because of 

increasing complexity, modern numerical models require a great computational effort, 

which in some cases may be infeasible. An increasingly popular approach to overcome 

computational limitations is the use of surrogate models. This paper presents a new 

surrogate modeling approach to reduce the computational cost of running a complex, 

high-fidelity model. The approach is based on the simplification the high-fidelity model 

into computationally efficient, lower-fidelity models and on linking them with a 

mathematical function (linking function) that addresses the discrepancies between 

outputs from models with different levels of fidelity. The resulting linking function model, 

which can be developed with small computational effort, can be efficiently used in 

numerical applications where multiple runs of the original high-fidelity model are 

required, such as for uncertainty quantification or sensitivity analysis. The proposed 
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approach was then applied to the development of a reduced order model for the 

prediction of groundwater quality impacts from CO2 and brine leakage for the National 

Risk Assessment Partnership (NRAP) project.
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1. Introduction and background

Despite the outstanding and consistent progress in computational efficiency, a 

systematic application of computer simulations to support natural resource management

and environmental policy-making is still limited because of the great computational effort

required to run modern environmental models. Advances in computational power, 

together with progresses in scientific knowledge, have in fact pushed for the 

development of more and more complex models with an increasingly larger number of 

processes and input parameters. The toll for the improved realism of these modern 

complex models is paid in terms of execution time, which can easily become practically 

infeasible when the spatial and/or temporal scale of the natural system is large, or when

a large number of model responses needs to be calculated. The latter is typical of 

important numerical applications such as automatic model calibration, multi-objective 

optimization, sensitivity analysis, and uncertainty quantification.

CO2 geologic storage is being considered as a possible measure to curb the 

anthropogenic emissions of greenhouse gases. A careful assessment of the risks 

associated with CO2 geologic storage is critical to deployment of large scale 

CO2geological storage. One of the potential risks is the impact of CO2 leakage from 

deep subsurface reservoirs into overlying groundwater aquifers. Therefore, 

contamination of groundwater due to leakage in shallow aquifers is considered one of 

the major risks considered in risk profiles developed by the National Risk Assessment 

Partnership (NRAP) project, a program that quantifies the behavior of engineered-

natural system for CO2 storage and uses science-based predictions to inform decisions 

tied to CO2 geological sequestration. Numerical models for evaluating the impact of 

CO2 leakage on groundwater, a process involving multiphase flow and reactive transport



with complex chemical reactions, are very complex and also involve large uncertainties. 

Therefore, more computationally efficient models are needed for the development of risk

profiles.

An increasingly popular approach to overcome computational limitations is the use of 

surrogate models (i.e., reduced order models, metamodels, emulators, and lower-fidelity

models), which represent simplified and faster-to-run models that mimic (emulate) the 

output of the original model for a specified set of input parameters. Surrogate modeling 

has been applied in several scientific and engineering disciplines mainly in support of 

engineering design optimization and calibration (Simpson et al., 2001, Simpson et al., 

2008, Jones, 2001, Queipo et al., 2005, Wang and Shan, 2007, Forrester and Keane, 

2009, Forrester, 2010). In the context of environmental sciences, surrogate models 

have been used for performing sensitivity analysis and calibration of complex models 

(Liong et al., 2001, Mugunthan et al., 2005, Bliznyuk et al., 2008, Matott and Rabideau, 

2008, Ratto et al., 2012, Sun et al., 2012), design of groundwater wells and pumping 

management (Hemker et al., 2008, Kourakos and Mantoglou, 2009, Kourakos and 

Mantoglou, 2013), and optimization of groundwater and soil remediation systems (Baú 

and Mayer, 2006, Regis and Shoemaker, 2007, Regis and Shoemaker, 2009, Fen et al.,

2009). In NRAP, reduced order models (ROMs) simulating CO2transport in reservoir, 

wellbore leakage (e.g. Jordan et al., 2015) and groundwater contamination (Dai et al., 

2014) were included in a system tool for estimating the long-term risks of 

CO2 sequestration projects (Pawar et al., 2014).

Surrogate models can be classified into two broad categories (Razavi et al., 2012a). 

The first is represented by response surface models based on data-driven functions that

empirically emulate the output of the original model (e.g., Dyn et al., 1986, Sacks et al., 

1989, Mckay et al., 1979, Myers and Montgomery, 1995). These functions are 

developed by fitting a set of original model runs at specific points or design sites in the 

input parameter space. For instance, the ROMs developed in NRAP belong to this 

category. The second category of surrogate models includes simplified, physically-

based lower-fidelity models that are used in place of a computationally demanding 

model. In this context, the original model is usually designated as the “high-fidelity” 

model and the term “fidelity” is intended as the ability to represent the system of 

interest. In comparison with response surface surrogates, lower-fidelity surrogates 

provide more accurate results in those regions of the input parameter space that do not 

include a large number of design sites (Razavi et al., 2012a). Moreover, this type of 

surrogate models are not afflicted by the problem of dimensionality, which limits the 
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application of response surface surrogates to problems with a large number of input 

parameters (e.g., Koch et al., 1999, Simpson et al., 2008).

Lower-fidelity surrogate modeling has been mostly applied to reduce the computational 

load of optimization problems (Alexandrov et al., 2001, Vitali et al., 2002, Eldred et al., 

2004, Gano et al., 2006, Robinson et al., 2006, Forrester et al., 2007, Forrester and 

Keane, 2009, Sun et al., 2010, Berci et al., 2011, Koziel and Leifsson, 2012). With this 

approach, known as “multi-fidelity” or “variable-fidelity” optimization in the literature, the 

difference or the ratio between outputs from high-fidelity and lower-fidelity models is 

simulated with a correction function usually represented by a polynomial (Madsen and 

Langthjem, 2001, Viana et al., 2009, Sun et al., 2010), but also modeled with other 

approaches such as kriging (Huang et al., 2006, Gano et al., 2006, Forrester et al., 

2007, Kleijnen, 2009) and neural networks (Leary et al., 2003, Kim et al., 2007, Sun et 

al., 2010).

Despite the considerable amount of literature about surrogate models and the 

development of several different approaches for coupling lower-fidelity and high-fidelity 

models, very few studies have considered systems that can be simulated with more 

than two levels of fidelity. Correction functions used in multi-fidelity optimization are in 

fact typically designed to model the discrepancies between the high-fidelity model and a

single lower-fidelity model. The only exceptions include the co-kriging approach 

presented by Forrester et al. (2007), and the Bayesian Gaussian process model 

introduced by Kennedy and O’Hagan (2000), and subsequently extended by Qian et al. 

(2006) and Qian and Wu (2008) and by Goh et al. (2012). However, these approaches 

can be extended to multiple lower-fidelity models by assuming a hierarchical 

combination of models. In other words, outputs from the model with the highest fidelity 

can be written as a combination of the functions describing the discrepancies between 

each pair of lower-fidelity models. Moreover, the majority of surrogate modeling 

approaches is applicable when the number of input parameters (known as the input 

parameter space) in the high-fidelity model is the same as in the lower-fidelity model. 

The development of methods for handling multi-fidelity models with different input 

parameter spaces has received very little attention in the surrogate modeling literature 

(Simpson et al., 2008).

In this work we propose a surrogate modeling approach to emulate the output of a high-

fidelity model from the outputs of a number of independent (i.e., not hierarchical), lower-

fidelity models or ROMs. This approach, which we refer to as Linking Function 

Surrogate Modeling (LFSM), can be particularly effective to emulate the response of 

large-scale environmental models considering several physical and chemical 
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processes. These models are commonly used in risk assessment in Carbon Capture 

and Storage applications. It is in fact common, especially in the simulation of natural 

systems, that each of these processes can be simulated separately (provided these 

processes are not tightly coupled), even if the highest level of realism is achieved with a

high-fidelity model that couples all the relevant processes in its mathematical 

formulation. Unfortunately, the use of such a high-fidelity model in computationally 

expensive numerical analysis (e.g., global sensitivity analysis, uncertainty quantification,

optimization, and risk assessment) is often computationally infeasible. The proposed 

approach can be a valid support to significantly reduce execution time without 

compromising the realism and the accuracy of the simulation. Even though our focus is 

on simulations of multiphase flow and solute transport in geological media, the method 

is general and it can be applied in other scientific and engineering disciplines.

1.1. Role of surrogate modeling in NRAP

NRAP is adapting and building system platforms for performing integrated assessment 

modeling of CO2 storage sites. Surrogate models (i.e., ROMs) that provide reliable 

results in a small fraction of the time required to run complex process-based numerical 

simulations are required to assess the risk of CO2leakage in shallow groundwater. To 

overcome the difficulty of deriving such surrogate models from multiple runs of high-

fidelity numerical models considering 3-D heterogeneous multiphase flow and reactive 

transport processes, two separate ROMs are used to represent the complex 

hydrogeological and geochemical conditions in a heterogeneous aquifer. The first ROM 

was developed from a numerical model that accounts for the heterogeneous flow and 

transport conditions in the presence of multiple leakage wells. The second ROM was 

obtained from numerical models that feature greatly simplified flow and transport 

conditions, but allow for a more complex representation of all relevant geochemical 

reactions. Clearly, neither ROM can separately provide an accurate prediction of the risk

profile, because of the simplifications inherent in these models. The proposed LFSM 

provides an alternative approach that allows linking the outputs from two separate 

ROMs to calculate reliable predictions of the volume of aquifer impacted by leakage of 

CO2/brine from CO2 geological storage formations. This paper intends to describe the 

mathematical basis of the linking function approach and test its application to a 

relatively simple hypothetical case study. The application of LFSM, with chemical 

scaling function being a particular case, for the evaluation of risk of CO2 site on shallow 

groundwater is given in Carroll et al. (2014).
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2. Method

2.1. Assumptions and formulations

We consider a deterministic high-fidelity model (HFM) calculating a scalar 

output YHFM = f(xHFM) for a set of input parameters xHFM = (x1, …, xn). We assume that the 

physical system considered by the HFM can also be simulated with lower-fidelity 

models (LFMs), each of which representing a simplification of the HFM. Differently from 

previous works (Kennedy and O’Hagan, 2000, Qian et al., 2006, Qian and Wu, 

2008, Huang et al., 2006, Goh et al., 2012), we do not require a priori ranking of the 

lower-fidelity models in terms of fidelity, nor do we assume a hierarchical framework. We

only assume that the HFM is more computationally demanding than the LFMs because 

it takes into account a larger number of parameters and processes describing the 

physical system. On the other hand, the lower-fidelity models provide only a partial 

representation of the complexity of the system, but their execution times are shorter 

than the HFM. Different approaches can be taken for simplifying the HFM. For example,

the lower-fidelity models may have a coarser spatial discretization of the model domain 

with respect to the HFM, or a lower dimensional representation (i.e., two-dimensional 

instead of three-dimensional). In other cases, the lower-fidelity models may be less 

accurate because they do not consider heterogeneity, or because some of the physical 

or chemical processes that are simulated by the HFM are not taken into account. 

Furthermore, simplifying assumptions about the conceptual model of the physical 

system may be made, allowing the use of analytical solutions in the lower-fidelity 

models rather than complex numerical solutions provided by the HFM.

By defining the lower-fidelity as simplifications of the HFM, we made the fundamental 

assumption that the HFM and the lower-fidelity models share some basic features and 

therefore are correlated in some way (Kennedy and O’Hagan, 2000). With this 

assumption, we can identify the input parameters of the lower-fidelity models as subsets

of the set of input parameters of the HFM (xHFM). For the case with two lower-fidelity 

models, we can then write the output from the first lower-fidelity model (LFM-1) as YLFM-

1 = f(xLFM-1), where xLFM-1 is a subset of xHFM, and the output from the second lower-fidelity 

model (LFM-2) as YLFM-2 = f(xLFM-2), where xLFM-2 is another subset. We propose that the 

relationship between the outputs from the HFM and from the two lower-fidelity models 

can be represented by a mathematical function, and therefore the output from the HFM 

can then be written as:

(1)YHFM=g(YLFM-1,YLFM-2,β)+ε
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where g is a mathematical function, hereafter referred to as the “linking function”, β is a 

vector of unknown parameters of the linking function, and ɛ is a regression error term. 

Eq. (1) is the core of the LFSM approach. The linking function represents a surrogate 

model that “links” outputs from models with different levels of fidelity, and formally 

addresses their discrepancies.

So far, we considered a case with only three levels of fidelity (HFM, LFM-1 and LFM-2). 

However, we can easily extend our approach to multiple levels of fidelity. Suppose the 

HFM can be simplified with a number k of lower-fidelity models YLFM-i(i = 1, …, k), each 

sharing some of the input parameters and simulated processes of the high-fidelity 

model. Extending Eq. (1) to such a case, the output from the HFM can then be defined 

as follows:

(2)YHFM=g(YLFM-i,β)+ε(i=1,…,k)

A special case is when only two levels of fidelity are considered (i.e., HFM and LFM-1). 

In this case, the proposed methodology can be seen as similar to another surrogate 

modeling approach, known as Space Mapping (Bandler et al., 1994, Robinson et al., 

2006).

2.2. Shape of the linking function

The linking function can assume different forms, which must be defined on a case-by-

case basis. In very simple cases, the shape of the linking function might be obvious and

be defined on the basis of the physics of the problem. However, for more complex 

problems where there is no obvious relationship, an empirical relationship must be 

adopted. In these situations, the implementation of the linking function is analogous to 

the development of a response surface representing the relationship between lower-

fidelity models outputs and the correspondent outputs from the high-fidelity model. In 

the field of response surface surrogate modeling, different mathematical approaches 

have been applied to approximate the relationships between input parameters, also 

known as explanatory variables, and the original model output. The most popular 

approaches include polynomials, kriging, artificial neural networks, radial basis 

functions, and multivariate adaptive regression splines. The same mathematical 

functions can be used as linking functions, and we refer to several comparative studies 

(e.g., Giunta et al., 1998, Simpson et al., 2001; Fang et al., 2005, Forsberg and Nilsson,

2005, Wang and Shan, 2007, Zhao and Xue, 2010, Razavi et al., 2012b) for the details 

of each method and discussions on their advantages and disadvantages.
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In this work we focus on polynomials, which can be very flexible and take a wide variety 

of functional forms. Assuming the linking function g in Eq. (2) is a polynomial of 

degree n, then it can be written as:

(3)g(YLFM-i,β)=β0+∑iβiYLMF-i+∑i∑j>iβijYLFM-iYLFM-j+∑iβiiYLFM-i2+∑i∑j>i∑k>jβijkYLFM-

iYLFM-jYLFM-k+⋯+∑iβii…iYLFM-in

The coefficients β of the polynomial are determined through the least-squares solution 

of the equation Gβ = YHFM, where G is a matrix operator, and YHFM is a vector of outputs 

determined from a number m of runs of the HFM (see Section 2.3). The maximum 

likelihood estimates of the coefficients are then defined as β=(GTG)−1GTYHFM. If we 

consider for simplicity three levels of fidelity – one high-fidelity model and two lower-

fidelity models (LFM-1 and LFM-2) – and we assume that the linking function can be 

written in the form of a 2nd order polynomial (n = 2), the matrix operator G is defined as:

(4)G=1YLFM-11YLFM-21YLFM-11YLFM-21YLFM-112YLFM-2121YLFM-12YLFM-22YLFM-

12YLFM-22YLFM-122YLFM-222⋯⋯⋯⋯⋯⋯1YLFM-1mYLFM-2mYLFM-1mYLFM-2mYLFM-

1m2YLFM-2m2

where YLFM-1t and YLFM-2t, with t = (1, …, m), are the outputs from the tth-run of the 

first and second lower-fidelity model, respectively. Since the nth-order polynomial 

approximation of a certain function can be seen as a Taylor Series expansion of the 

function truncated after n + 1 terms (Box and Draper, 1987), higher-order polynomials 

(more expansion terms) can provide a more accurate approximation. However, since 

the number of input parameters is usually large in most of the engineering and 

environmental applications, the use of higher-order polynomials (n > 2) as response 

surface surrogates is often infeasible (Forrester et al., 2007, Razavi et al., 2012a). This 

is because the minimum number of runs (mmin) required for the estimation of the 

coefficients β, which is a function of both the number of parameters and the order n, 

may become prohibitively large for high-dimensional problems. For a D-dimensional 

parameter input space, mmin is given by:

(5)mmin=(n+D)!n!D!

For instance, at least 1001 runs of the original model are required to estimate the 

coefficients of a 4th-order polynomial for a system with ten explanatory variables 

(D = 10). The issue of dimensionality is not expected to be a factor in the application of 

polynomials as linking functions. This is because the number of possible lower-fidelity 

models, which in the proposed LFSM framework represents the variable D in Eq. (5), is 

expected to be much lower than the number of input parameters of the original HFM. 

For this reason, with respect to the application of polynomials, the LFSM approach has 

two immediate advantages over traditional response surface modeling approach. The 
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first is that fewer HFM runs are required for estimating the coefficients of the polynomial.

The second advantage is that polynomial linking functions of higher order, which may 

provide a better representation of the relationship between the models outputs, can be 

adopted with a relatively small number of additional runs of the HFM. In the case of a 

system with three levels of fidelity, for example, only 9 additional runs are necessary to 

develop a 4th order polynomial linking function instead of a 2nd order polynomial. 

Nevertheless, we emphasize the use of standard model selection criteria used in 

regression analysis (e.g., Akaike, 1973, Schwarz, 1978), to avoid the problem of over 

fitting or the risk of developing an excessively complex model that may yield a poor 

generalization.

2.3. Overview of the procedure

The following steps represent a guide through the implementation of the proposed 

LFSM approach for a general case study. A schematization of the procedure for three 

models with different levels of fidelity is shown in Fig. 1.

1. Download high-res image     (310KB)

2. Download full-size image

Fig. 1. Linking function surrogate modeling (LFSM) framework.

Step 1. Implement the high-fidelity model (HFM) that provides the most realistic 

representation of the system of interest by taking into account the highest number of 

processes and parameters controlling the system.

Step 2. Identify strategies to simplify the HFM, and apply them to the implementation of 

the lower-fidelity models (LFM-i). Different approaches may be taken for the 

simplification of the HFM such as simplification of the conceptual model, coarsening of 

the spatial or temporal discretization, parameter upscaling, and exclusion of certain 

physical or chemical processes. However, it is important that the HFM and the LFM-
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i are somehow correlated, meaning that input parameters of the lower-fidelity models 

correspond to subsets of the input parameters of the HFM. If, for instance, xi (i = 1, 

…, n) is the set of n-input parameters of the HFM, then the subset xj (j = r, …, p), 

where r ≥ 1 and p < n, may represent the input parameters of the lower-fidelity model 

LFM-1. If a second lower-fidelity model LFM-2 is implemented, which may take into 

account the processes and parameters omitted in LFM-1, then its input parameters are 

defined in another subset xk (k = s, …, n). If s < p, as shown in Fig. 1, then the LFM-2 

model shares some of the input parameters with both the HFM and the LFM-1. 

However, the LFSM approach can also be applied when s ≥ p.

Step 3. Generate a sample m of input parameters for the HFM. From the generated 

input parameters sets, extract the subsets corresponding to each LFM-i. Sample 

generation should be made according to one of the design of experiments (DoE) 

methods to minimize the number of HFM model evaluations, while maximizing our 

understanding of the model behavior. There is a large variety of space-filling DoE 

strategies in the literature, including fractional factorial sampling, Latin hypercube 

sampling, and different strategies based on sequences of quasi-random numbers. 

Details on DoE methods can be found, for example, in Saltelli et al. (2008).

Step 4. Perform m runs of the HFM and the LFM-i models with the generated samples 

of input parameters to calculate the vectors of outputs YHFM = (YHFM,1, …, YHFM,m) 

and YLFM−i = (YLFM-i,1, …, YLFM-i,m), for each of the implemented models.

Step 5. Use the generated numerical data YHFM and YLFM-i to identify a mathematical 

function (i.e., the linking function), representing the best match between outputs from 

the different models. In practice, this step consists of a regression analysis in 

which YHFM is the dependent variable and the outputs from the lower-fidelity models YLFM-

i are the independent variables. The shape and the coefficients of the linking function 

can be estimated with the least-square-regression method or other methods (see 

Section 2.2). Once the linking function has been identified, the linking function surrogate

model can be used to emulate the output from the HFM by: (1) running the lower-fidelity

models with a set of parameters of interest; (2) use lower-fidelity responses as inputs in 

the linking function and approximate the response of the HFM.

Before illustrating the proposed method with a numerical example, we provide a few 

more comments on the proposed approach. The application of a linking function model 

can be very advantageous especially for certain types of numerical investigations, such 

as engineering design optimization or global sensitivity analysis, which require multiple 

runs of a potentially slow and numerically unstable HFM. By addressing the 

discrepancies between the HFM and the lower-fidelity models, the linking function can 
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retain the level of realism and detailed information associated with the HFM, while at the

same time avoiding the long computational times usually associated with running such 

models. However, an important factor to consider is the numerical efficiency of the 

lower-fidelity models. It is obvious that the LFSM approach is attractive only if the sum 

of execution times of the lower-fidelity models is appreciably lower than the time 

required for running the HFM. In this regard, it is noteworthy that with our approach the 

lower-fidelity models can be substituted by other types of surrogate models such as 

previously developed response surface models or ROMs. With more computational 

effort, response surface surrogates of the physically-based lower-fidelity models can 

even be developed at the same time as the linking function. This will translate to an 

even faster emulation of the HFM response.

The LFSM approach is based on the assumption that there is a correlation, represented

by the linking function, between the outputs from the lower-fidelity models and those 

from the HFM. Clearly, if the goodness-of-fit of the linking function is poor, or is 

acceptable only in selected sectors of the input parameter space, the emulated outputs 

will not be accurate. Finding an accurate linking function may become an issue when 

model outputs for a given set of input parameters are very different from the outputs for 

a slightly different set. To some extent, this issue can be solved by changing the 

strategy used for simplifying the HFM because it may be the result of the 

oversimplification of the HFM, which causes the development of lower-fidelity models 

that are not sufficiently representative of the system of interest. However, increasing the 

level of fidelity of the lower-fidelity models may have the effect of increasing their 

execution times, which inevitably reduces the computational efficiency of the approach.

Although the development of the linking function requires some computational cost, 

given by the time to collect the necessary data from the model runs, this cost is 

expected to be less than that required for the development of a response surface 

surrogate for the same system of interest. This is because the number of HFM runs 

required for the development of a robust response surface is a function of the number of

input parameters. Conversely, the number of HFM runs required for developing a robust

linking function depends on the number of lower-fidelity models considered, which will 

always be less than the number of input parameters in the HFM. The limitation of the 

number of HFM runs provides another advantage. It allows the HFM to consider a 

higher level of complexity than would be feasible in the development of a response 

surface model.



3. Example of application to CO2 storage risk assessment
The LFSM approach was employed to build the reduced order models (ROM) that 

predict the impact of a hypothetical CO2 and brine leakage on groundwater quality in an 

hypothetical aquifer with hydrological and hydrochemical properties similar to those of 

the High Plains aquifer (USA). To define the impact of leakage on groundwater quality, 

we performed numerical simulation of multiphase flow and reactive transport to estimate

concentrations of certain chemical species. The impact of leakage was then measured 

by calculating the following metrics:

-

Volume of aquifer reaching pH < 6.5;

-

Volume of aquifer reaching TDS > 500 mg/L;

-

Volume of aquifer reaching concentrations of As > 1.33 × 10−7 mol/kg;

-

Volume of aquifer reaching concentrations of Cd > 4.05 × 10−8 mol/kg;

-

Volume of aquifer reaching concentrations of Pb > 7.24 × 10−8 mol/kg.

Statistical analyses were conducted on the groundwater concentration data collected in 

a 2010 U.S. Geological Survey (USGS) groundwater survey of 30 wells within the High 

Plains aquifer and thresholds for estimating the volume of impacted aquifer (e.g. 

1.33 × 10−7 mol/kg for As) were calculated as the 95%-confidence, 95%-coverage 

tolerance from the data.

3.1. Problem statement and hydrogeological setting

We consider a two-dimensional cross-section of a hypothetical aquifer of length equal to

10,000 m and thickness equal to 240 m. The lithological characterization of the aquifer 

is based on the lithological descriptions of 48 wells located in Haskell County, in South 

West Kansas. The source of these data is the Water Well Completion Records (WWC5) 

Database (Kansas Geological Survey, 2012). Lithological descriptions of the well logs 

include different types of unconsolidated sediments with a highly heterogeneous 

granulometric distribution, typical of a fluvial depositional environment. For simplicity, the

original lithological descriptions were classified into two hydrostratigraphic units on the 

basis of grain size (coarse/fine) and permeability (high/low). The lithologies included in 
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each of these units are provided in Table 1. The aquifer is assumed to be confined, and 

the mean groundwater flow is from east to west with a hydraulic gradient of 0.003. 

Aquifer thickness is uniform and equal to 240 m, which corresponds to the average 

thickness of the High Plain Aquifer in Heskell County.

Table 1. Lithologies associated with the hydrostratigraphic units of the test case.

Hydrostratigraphic 
unit

Lithologies
Mean length 
(horizontal 
direction)

Mean length 
(vertical 
direction)

Volumetric 
proportion

Unit 1

Sand, coarse sand, medium 
sand, sand with gravel, gravel 
with sand, medium gravel, 
gravel, coarse gravel

717.7 m 8.3 m 0.60

Unit 2

Fine sand, very fine sand, silty 
sand, silt, silty clay, shale, 
sandstone, caliche, gypsum 
rock, clay, limestone.

478.5 m 5.6 m 0.40

The distribution of the two hydrostratigraphic units was simulated with the T-PROGS 

approach (Carle and Fogg, 1996, Carle and Fogg, 1997, Carle et al., 1998; Carle, 1999)

based on the transition probabilities between different categories and on a single 

Markov Chain equation in each direction. Transition probabilities are defined as the 

probability that a certain category j occurs at the location u + h conditioned to the 

occurrence of another category i at the location u. Here u and h are a location and a 

movement vector, respectively. One advantage of this methodology is the increased 

realism of the simulations, making it thereby possible to account for observable 

geological features such as mean lengths and juxtapositional tendencies. T-PROGS 

simulations of the aquifer heterogeneity were conducted with mean lengths and 

volumetric proportions for the two different hydrostratigraphic estimated from the 

analysis of their spatial distributions in the 48 wells. Values for these two parameters are

given in Table 1. The spatial distribution of the two hydrostratigraphic units corresponds 

to one unconditional realization of the T-PROGS geostatistical model. The interpolation 

grid is composed of rectangular cells with constant dimensions equal to 100 m and 5 m 

in the X-direction and Z-direction, respectively (Fig. 2). In the implementation of the 

multiphase and transport models described in the next sections, different hydrological 

parameters (i.e., permeability, porosity, etc.) were assigned to each unit.
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Fig. 2. Heterogeneous distribution of two hydrostratigraphic units generated with T-
PROGS (a). Numerical model mesh used for the TOUGHREACT simulations (b). The 
black circle indicates the location of the CO2 and brine leakage point.

Leakage of CO2 and brine from a wellbore is simulated by assuming a point source at 

the point of coordinates (2200 m, −190 m) and a duration of 200 years with variable 

leakage rates. The maximum values of these leakage rates are plotted as a function of 

simulation time in Fig. 3. These rates represent a hypothetical leakage pathway related 

to a deep leaky well connecting a deep geologic reservoir for CO2 storage with a shallow

groundwater resource. We assumed that leakage is driven by reservoir over pressure 

and CO2 and brine saturations. These parameters were used as input in a wellbore 

leakage model based on multiphase and non-isothermal flow simulations (Jordan et al., 

2013) to calculate the flux into the aquifer and the leakage rate over time. The CO2 rates

sharply increase during the initial 5 years and then oscillate, with variations ranging from

0.039 kg/s to 0.046 kg/s. The brine leakage rates are more stable, with very little 

variation around an average of 0.012 kg/s.

https://www.sciencedirect.com/science/article/pii/S1750583616300093?via%3Dihub#bib0160
https://www.sciencedirect.com/science/article/pii/S1750583616300093?via%3Dihub#bib0160
https://www.sciencedirect.com/science/article/pii/S1750583616300093?via%3Dihub#fig0015
https://ars.els-cdn.com/content/image/1-s2.0-S1750583616300093-gr2.jpg
https://ars.els-cdn.com/content/image/1-s2.0-S1750583616300093-gr2_lrg.jpg


1. Download high-res image     (149KB)

2. Download full-size image

Fig. 3. CO2 and brine leakage rates over time.

3.2. High and lower fidelity models

Leakage of CO2 and brine in the hypothetical aquifer was modeled with a 2-D high 

fidelity model (HFM) considering a comprehensive set physical and chemical factors, as

well as with two lower-fidelity models (LFM-1 and LFM2), which take into account only 

some of the parameters and processes considered by the HFM. For all models, 

multiphase flow and reactive transport were simulated with the finite-volume code 

TOUGHREACT 2.0 (Xu et al., 2011).

The first lower fidelity model (LFM-1) is a simple model considering 1-D flow parallel to 

the average flow direction in the hypothetical aquifer. The simulation domain is 

10,000 m in X direction which is discretized into 1000 grid blocks and 1 m 

in Y and Z direction without discretization. The aquifer is considered homogenous, and 

a hydraulic gradient equal to 0.003 is applied by fixing the pressure at grid blocks on the

left and right boundaries. Chemical reactions are considered in the model including 

aqueous complexation, mineral dissolution/precipitation, cation exchange and 

adsorption/desorption via surface complexation. Details of these reactions are given 

in Bianchi et al. (2013). In this model, the dissolution of calcite and surface protonation 

reactions are the main pH buffering processes. Surface complexation reactions on 

goethite, illite, kaolinite and smectite are the dominant reactions that control the release 

of As, Pb and Cd.
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The second lower fidelity (LFM-2) model simulates 2-D flow and solute transport and 

assumes a heterogeneous distribution of permeability in the hypothetical aquifer (Fig. 

2). The simulation domain is 10,000 m in X direction, 240 m in Zdirection and 1000 m 

in Y direction. However, the domain is discretized only in the X and Z directions Unlike 

LFM-1, LFM-2 does not consider chemical processes i.e. the chemical species are 

treated as conservative species. Specified hydraulic head boundary conditions were 

imposed at the left and right boundaries, while no-flow boundary conditions were 

applied at the top and bottom of the domain. A preliminary gravity equilibration run, 

without CO2 and brine injection, was run long enough to establish quasi-steady-state 

initial conditions, for the CO2 and brine leakage simulations. These were conducted at 

constant temperature (17 °C). Simulated plumes for the considered chemical species 

are shown in Fig. 4. These results are representative of a base-case run used to 

understand the system behavior and to manually test the sensitivity of the model to the 

different input parameters. Input parameters for this base-case scenario are presented 

in Table 2. After 200 years of continuous release of brine and CO2 from the leakage 

point, the area with lowered pH values and the plumes of three considered metals (As, 

Pb, and Cd) moved about 7 km downgradient. As expected, the major role in 

determining the shape of these plumes is played by the heterogeneous distribution of 

the two hydrostratigraphic units, with the plume following preferential flow paths 

according to the distribution of the highest permeable unit.
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Fig. 4. Results of the LFM-2 base-case simulation after 200 years of continuous leakage
(unreactive transport). pH distribution (a), AsO3 concentration (b), Pb2+ concentration (c), 
Cd2+ concentration (d).

Table 2. Input parameters for the LFM-2 base case run.

Parameter Base case value

Porosity (unit 1) 0.250

Porosity (unit 2) 0.330

Rock density (unit 1) 2400 kg/m3

Rock density (unit 2) 2400 kg/m3

Permeability (unit 1) 3.162 × 10−11 m2

Permeability (unit 2) 3.162 × 10−17 m2

Van Genuchten parameter m (unit 1) 0.655

Van Genuchten parameter m (unit 2) 0.190

Van Genuchten parameter alpha (unit 1) 5.62 × 10−5 m−1

Van Genuchten parameter alpha (unit 2) 1.51 × 10−5 m−1

The high fidelity model (HFM) considers multi-phase flow and transport in a 

heterogeneous system and geochemical reactions. The model setup, hydrogeological 

parameterization, and leakage functions of CO2 and brine are the same as in the lower-

fidelity model LFM-2. The HFM also incorporates all the chemical reactions considered 

by LFM-1. Because of its complexity, this HFM is expected to provide the most accurate

representation of the natural system, taking into account uncertainties in flow, transport, 

and chemical processes. Fig. 5 shows the plumes of pH, As, Pb, and Cd for a base-

case simulation similar to that considered for LFM-1 and LFM-2.
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Fig. 5. Results of the HFM base-case simulation after 200 years of continuous leakage 
(reactive transport). pH distribution (a), AsO3 concentration (b), Pb2+ concentration (c), 
Cd2+concentration (d).

3.3. Development of the linking function surrogate model and results

Multiple runs of the HFM and of the two lower-fidelity models LFM-1 and LFM-2 were 

performed to collect the data required for developing the linking function. Initially, 450 

sample points in the HFM parameter space were generated using a quasi-random 

sequence algorithm (LPτ, Sobol et al., 1992). Correspondent input parameters for the 

lower-fidelity models were then extracted from the generated sets, according to the 

previously described procedure. Details on the considered input parameters and on 

their ranges are presented in Table 3.

Table 3. Input parameters ranges for the development of the linking functions for the test case.

Parameter Range (min–max) Model

Porosity (unit 1) 0.25–0.50 HFM, LFM-2

Porosity (unit 2) 0.33–0.60 HFM, LFM-2

Rock density (unit 1) 2400–2800 kg/m3 HFM, LFM-2

Rock density (unit 2) 2400–2800 kg/m3 HFM, LFM-2

Permeability (unit 1) −13.5 to −10.5* log(m2) HFM, LFM-2

Permeability (unit 2) −15.0 to −18.0* log(m2) HFM, LFM-2

Van Genuchten parameter m (unit 1) 0.52–0.79 HFM, LFM-2

Van Genuchten parameter m (unit 2) 0.06–0.32 HFM, LFM-2

Van Genuchten parameter alpha (unit 1) −4.69 to −3.81* log(m−1) HFM, LFM-2

Van Genuchten parameter alpha (unit 2) −5.50 to −4.14* log(m−1) HFM, LFM-2

CO2 leakage rate scaling parametera 0.1–1.0 HFM, LFM-2

Brine leakage rate scaling parameterb 0.1–1.0 HFM, LFM-2

Chloride concentration in brine −2.0 to 1.0* log(mol/L) HFM, LFM-1

Arsenic concentration in brine −9.0 to −5.0* log(mol/L) HFM, LFM-1

Calcite initial volume fraction 0–0.2 HFM, LFM-1

Sorption scaling parameterc −2.0 to 2.0* HFM, LFM-1

*

Indicates log10 values.

a

This factor was applied to the maximum CO2 leakage rate.
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b

This factor was applied to the maximum brine leakage rate.

c

This factor was applied to the adsorption capacity of different mineral phases.

For each set of input parameters, we ran the HFM and the two lower-fidelity models to 

estimate three different predictions (i.e., one from each model) of the impact of CO2 and 

brine leakage for 20 simulated time periods (one every 10 years up to 200 years). At the

end of these numerical simulations, three vectors of output values were estimated and 

used in the least-squares regression analysis to estimate the coefficients of the 

polynomial representing the linking function between the HFM and LFM-1 and LFM-2 

(Eq. (3)). For all the output variables and for all the simulation times, a second order 

polynomial was found to provide a sufficiently accurate match between the simple and 

complex model outputs. An example of the shape of this polynomial function is shown 

in Fig. 6. The goodness of fit for the developed linking functions was analyzed by 

calculating the coefficient of determination (R2). Taking into account all the linking 

functions, the calculated R2 values are between 0.635 and 0.998, with the majority of 

values higher than 0.800. A better accuracy in terms of R2 values can be obviously 

obtained by augmenting the order of the polynomial linking functions, but this can also 

increase the risk of overfitting and, consequentially, compromise the predictability power

of the developed LFSM. In general the highest R2 values, indicating higher accuracy, are

calculated for the linking functions that predict the volume of TDS > 500 mg/L 

(R2 between 0.970 and 0.987). For the linking functions considering pH, the R2 values 

ranges between 0.822 and 0.944. Relatively less accuracy is associated with the linking

functions for estimating the volume of aquifer contaminated with As (R2 between 0.911 

and 0.723), Pb (0.725–0.638) and Cd (0.753–0.635). We also built scatter plots of the 

responses estimated with the linking function and those of the complex model (Fig. 7). 

In general, the cloud of points is distributed along a y = x line, showing the accuracy of 

the fitting. The highest accuracy is for smaller simulations times.
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Fig. 6. Second order polynomial linking function for estimating the volume of pH < 6.5 
(m3) after 180 days of leakage. Points represent the calculated responses from the two 
lower fidelity models (LFM-1 and LFM-2) and those from the high fidelity model (HFM).
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Fig. 7. Comparison between HFM model outputs (volumes in m3) and linking functions 
responses. Simulation time is 200 years. (a) pH (R2 = 0.822); (b) TDS(R2 = 0.987); (c) As
(R2 = 0.723); Pb (R2 = 0. 638); Cd (R2 = 0. 635).

3.4. Application of the linking function surrogate models in NRAP

The development of ROMs generally relies on conducting a number of high-fidelity 

numerical simulations that consider all relevant flow, transport, and chemical processes 

that could potentially have an impact on CO2 and brine leakage into groundwater. These

high-fidelity simulations are then used to “train” simpler ROMs (e.g., look-up tables, 

functional relationships) that sufficiently represent their outputs for a wide range of 

uncertain input parameters. To overcome the problem of running a very complex and 

extremely computationally demanding model considering all the parameters and 

processes that are relevant to brine and CO2 leakage in shallow aquifers, within NRAP 

we make an attempt to represent the complex hydrogeological and geochemical 

conditions in a heterogeneous aquifer by using two separate lower-fidelity models. The 

outputs from these lower-fidelity models are then used as input for the linking functions 

developed in this work. In particular, one lower-fidelity model is represented by a ROM 

that estimates the volume impacted by CO2 and brine leakage by taking into account 

heterogeneous flow and transport conditions in the presence of multiple leakage wells. 

This ROM, developed by Lawrence Livermore National Laboratory (Carroll et al., 2013) 

and referred to as hydrological ROM, considers uncertainties related to flow, transport, 

and leakage parameters, but it has a simplified representation of the chemical reactions 

induced by leakage. Complex chemical reactions are instead considered in detail by a 

second ROM, which, on the other hand, does not include parameters for a more 

accurate representation of the hydrological complexity. In particular, the input 

parameters of this ROM do not include properties defining aquifer heterogeneity. This 

ROM which was developed by Lawrence Berkeley National Laboratory, and is here 

referred to as geochemical ROM, allows to define uncertainties related to chemical 

parameters and reactions. In the context of the previously described linking function 

development, the geochemical ROM is comparable to the lower-fidelity model LFM-1, 

while the hydrological ROM is comparable to the lower- fidelity model LFM-2. Moreover,

the similarity between the two previously described lower fidelity models and the two 

ROMs is also determined by the fact that all models were developed on the basis of 
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physical and chemical parameters values that are consistent with the characteristics of 

the High Plains Aquifer (Becker et al., 2002).

Clearly, neither the hydrological ROM nor the geochemical ROM can separately provide

an accurate prediction of the risk profile, because of the simplifications inherent in these

models. Therefore, we used the developed LFSM to link the outputs from the two ROMs

as described in the workflow shown in Fig. 8. In practice, once the outputs from the 

hydrological and geochemical ROMs for a particular objective variable (e.g., TDS, pH, 

As, Cd, or Pb) and simulation time are obtained, these are directly used as input in the 

corresponding linking functions to estimate the final volume of aquifer impacted by 

CO2 and brine leakage. This final volume is expected to represent a reasonable 

approximation of the output from a time consuming and computationally expensive 

computer model. In theory, a complex 3-D model should be ideally implemented and run

multiple times to estimate the HFM outputs for the development of the linking functions 

to link the outputs from the two ROMs (Fig. 1). However, due to the complexity of the 

systems considered in NRAP, the development of such high-fidelity numerical model 

that incorporates 3-D heterogeneous flow and reactive transport is very challenging and

too computationally demanding with the currently available numerical codes. Therefore, 

for now, we have made the assumption that the linking functions developed to emulate 

the outputs from a complex 2-D model can be extrapolated in 3-D and provide reliable 

estimates of impacted aquifer volumes. However, once computational power will be 

available, future research should dedicate to test the reliability of the 2-D assumption by

comparing the outputs from the developed LFSMs with the corresponding outputs from 

a complex 3-D model.
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2. Download full-size image

Fig. 8. Flow chart for applying the linking function approach.

4. Conclusions
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We present a new surrogate modeling approach, named Linking Function Surrogate 

Modeling (LFSM), which is based on the simplification of a computationally expensive 

high-fidelity model into computationally less expensive and simpler models, followed by 

the development of a mathematical function that links their outputs to emulate the 

output from the high-fidelity model. When the sum of execution times of the lower-

fidelity models is less than the execution time of the high-fidelity model, this approach 

can significantly reduce the computational cost without jeopardizing the accuracy of the 

results. In comparison with other surrogate modeling methods, the main advantage of 

the proposed approach is that it can manage problems where the number of input 

parameters of lower-fidelity models is different from that in the high-fidelity model.

The proposed approach was applied to the development of reduced order models that 

estimate the impact of CO2 and brine leakage on groundwater quality in a 

heterogeneous shallow aquifer. A computationally expensive high-fidelity multiphase 

flow and reactive transport model (HFM) was simplified into two lower-fidelity models, 

LFM-1 and LFM-2, each taking into account a subset of the processes simulated in the 

HFM. In particular, LFM-1 is a simple 1-D model with homogenous flow field, but it takes

into account several chemical reactions. On the other hand LFM-2 is 2-D model 

considering aquifer heterogeneity but no reactions. We showed that outputs from the 

HFM can be emulated with satisfactory accuracy with the proposed linking function 

surrogate modeling approach. For all the model responses considered, the linking 

functions are represented by 2nd order polynomials. These functions were developed 

with a limited computational cost through a least-squares regression analysis in which 

the outputs from the LFM-1 and LFM-2 are used as independent variables to fit the 

outputs from HFM.

Within NRAP, the developed linking functions are applied to link the output from two 

ROMs. These two ROMs are in fact similar in terms of input parameters and considered

processes to the lower-fidelity models LFM-1 and LFM-2 used for the testing the 

proposed linking function approach. The first ROM (hydrological ROM) was in fact 

derived from a low-fidelity model that accounts for the heterogeneous flow and transport

conditions in the presence of multiple leakage wells, which considered uncertainties 

related to flow, transport, and leakage parameters, but has a simplified representation of

chemical reactions. The second ROM (geochemical ROM) was obtained from models 

that feature greatly simplified flow and transport conditions, but allow for a more 

complex representation of relevant geochemical reactions. This ROM deals with 

uncertainties related to chemical parameters and reactions. The proposed linking 



function approach allows to combine the outputs from these two ROMs to provide 

estimations of volume of aquifer impacted by CO2 and brine leakage without the need of

performing multiple evaluations of a complex and computationally infeasible high-fidelity

model.
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