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Abstract

Abduction is the process of constructing a plausible explana-
tion for a set of observations. It is the fundamental type of rea-
soning in many complex tasks such as scientific discovery and
diagnosis. This paper presents a mental-model theory of
human abductive skill and its acquisition in which abduction is
viewed as the sequential comprehension and integration of
data into a single situation model. Comprehension and integra-
tion are accomplished using satisficing search of multiple
problem spaces. The model bas been implemented in Soar and
has been tested by comparing its predictions to those of human
subjects. The experimental results show that the model can
account for several important behavioral regularities, includ-
ing power-law speed-up, how the order of data presentation
affects a response, deviation of responses from probability the-
ory, and how the task and domain characteristics affect a per-
son's response.

Introduction

Abduction is the process of determining the best explanation
for a set of observations (Josephson & Josephson, 1994). It is
the fundamental type of reasoning in many complex tasks
such as scientific discovery and diagnosis as well as every-
day tasks like story comprehension and natural language
understanding. The focus of this paper is on how people
solve multicausal abduction tasks and how their skill
changes with experience. A multicausal abduction task is
one in which the explanation consists of a conjunction of
causal factors. For example, the best explanation of a
patient’s symptoms and test results might be a set of simulta-
neously occurring diseases.

Research in several areas related to abduction suggest that
people employ a number of nonnormative heuristics when
solving problems involving explanations. For example,
when evaluating explanations people tend to ignore base
rates and overvalue confirming evidence or evidence that is
similar in form to the hypothesis being evaluated (Tversky
and Kahneman, 1982; Schustack & Sternberg, 1981). Down-
ing, Stermberg and Ross (1985) found that subjects rated
multicausal explanations based on the strongest unicausal
factor in the explanation, modified according to the represen-
tativeness of the explanation to the evidence. Research on
belief updating from many domains reveals that the order in
which data is processed can affect a person’s belief in a
hypothesis (for a review see Hogarth and Einhorn, 1992).
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Hogarth and Einhomn (1992) have shown that order effects
depend on task characteristics such as the complexity and
number of items being processed.

Several cognitive models of various subtasks of abduc-
tive reasoning have been proposed; however, these models
either do not offer the details needed to build process mod-
els for multicausal abduction, or fail to consider the
sequential nature of the task. Researchers studying scien-
tific discovery have proposed that people reason using
coordinated search through experiment and hypothesis
spaces. This view is exemplified by Klahr and Dunbar'’s
(1988) model of Scientific Discovery as Dual Search
(SDDS) (see also Dunbar & Klahr, 1989). Their theory
provides a general explanation for how search in the
hypothesis and experiment spaces interacts. SDDS defines
three roles for experiments—exploring, hypothesis testing,
and hypothesis refinement—and indicates how these roles
affect the developing hypothesis. SDDS, however, does
not provide detailed models of the subtasks of abduction,
such as how hypotheses are generated or how evidence is
integrated to select a hypothesis. Thus, while SDDS
appears to describe human abductive reasoning at an
abstract level, it does not make detailed predictions of
buman behavior. To more adequately account for human
behavior, SDDS must be extended to include details of the
problem spaces and the search processes for all of the sub-
tasks of abduction.

As another example, Thagard’s (1989) theory of explan-
atory coherence (TEC) captures our intuitive concept of
why one theory is preferred over another; however, the
theory largely ignores the sequential nature of abduction.
Thagard proposed that people prefer theories that best
cohere. TEC and the corresponding process model imple-
mentation (ECHO) define coherence (and incoberence) in
terms of principles that relate hypotheses to other proposi-
tions. For example, a hypothesis coberes with the data that
it explains and also with analogous explanations. How-
ever, ECHO ignores the sequential nature of abduction
because it assumes that people can determine the coher-
ence between all propositions (data and explanatory fac-
tors) in parallel. Although this might be possible for
problems involving a small number of propositions, it
seems unlikely for complex problems like those found in
diagnosis or scientific discovery. In addition, since ECHO
determines coherence in parallel, it cannot account for
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Figure 1: The Black Box with 4 atoms and the paths of several
light rays visible.

order etfects.

In our research on abductive reasoning, we have taken an
approach that is similar to the dual space approach of Klahr
and Dunbar and to the mental model approach of Johnson-
Laird and Byme (1991). Johnson-Laird and Byme have
shown that many regularities of human deductive reasoning
can be explained by a mental model-based theory. Their the-
ory assumes that people solve deductive tasks by construct-
ing and modifying concrete mental models of a situation,
and by searching for alternative models. We have taken a
similar view of abductive reasoning. In this paper, we
describe a mental model-based theory of human abductive
skill and its acquisition that has been implemented in Soar
(Laird, et al., 1987). We then show how this theory can
account for several regularities seen in human abductive rea-
soning.

The Experimental Task: Black Box

To further explore human abductive problem solving we
have begun to focus on abductive tasks in which the function
and structure (F/S) of a device are known and the goal is to
determine some hidden state of the device given indirect evi-
dence of that state. As a testbed for our studies we are using a
simple game called Black Box (BBX) in which players must
locate four atoms hidden in a box by shooting light rays into
the box and observing where the rays exit the box. The task
was selected because it is easy to understand and yet
involves complex abductive problem solving similar to that
done in many real-world tasks.

The BBX device is shown in Figure 1. Each atom (labeled
1-4) has a field of influence (shown as a larger circle around
the atom). These fields deflect or absorb light rays (accord-
ing to certain laws) as illustrated in the figure. If a ray
directly hits an atom, it is absorbed, and the ray's input cell is
marked with a circle (Rays B, C, D and E); if a ray enters
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and exits at the same location (Rays I, J and H), that loca-
tion is marked with double arrows (this is called a reflec-
tion); otherwise, the locations at which the ray enters and
exits the box are marked with a unique symbol (Rays A, F
and G, marked with letters).

The Abductive Process Model

The model we describe here is based on Abd-Soar
(Johnson and Smith, 1991), a satisficing Artificial Intelli-
gence framework for building abductive systems. Abd-
Soar is one of a series of abductive models stemming from
the original satisficing technique of Josephson and his col-
leagues (1987). Although Abd-Soar is designed to capture
a wide range of human expert knowledge and to exhibit
flexible bebavior similar to that exhibited by human
experts, the theory's behavior has never been compared, in
detail, to human behavior. In addition, many details of the
abductive problem-solving process were left unspecified
in Abd-Soar. The theory presented here extensively modi-
fies and extends Abd-Soar to account for human abductive
behavior.

The basis of our abductive model is a mental model the-
ory that views abduction as the sequential comprehension
and integration of data into a single situation model that
represents the current best explanation of the data
Although only a single situation model is used, it can con-
tain disjunctive elements. For example, a situation model
can contain several possible explanations for a datum,
When a new datum is collected the situation model is
updated to include the new datum. Next, the new datum
must be comprehended to determine what it implies about
the situation. The result of comprehension is one or more
explanations for the datum. An explanation can be uni-
causal (a single component cause) or multicausal (a con-
junction of component causes). Comprehension can also
produce abstract explanations that specify a related class
of concrete explanations. If comprehension results in a
single explanation that is consistent with the rest of the sit-
vation model, then that explanation is assumed to be true.
When an explanation is inconsistent with the model an
anomaly has occurred and the model must be updated by
either finding an alternative explanation for the new datum
or by altering an explanation for the old data. When mult-
ple explanations are known to be likely for a datum, one
must be selected by considering other data (and possibly
collecting new data). This leads to the process of evidence
integration.

The remainder of the abductive model is stated in four
hypotheses: 1) The satisficing hypothesis, that the search
for an explanation (or experiment) ends as soon as a single
satisfactory explanation (or experiment) is found; 2) The
compilation hypothesis, that explanations (or experiments)
found through search are immediately available to the
problem solver when future similar situations arise. In



other words, the results of search are compiled such that the
search can be avoided in similar future situations; 3) The
availability hypothesis, that if only one explanation is
directly available and is consistent with the data, it is
accepted and used, but if more than one is directly available,
the agent must attempt to discriminate. If none are directly
available, then the agent must search for an explanation; and
4) The bounded search hypothesis, that the search for experi-
ments and explanations is bounded by memory and time
constraints.

The abductive model is based on a problem space with 7
operators: comprehend, refine, discriminate, check, test,
resolve-anomaly and hypothesize. The states in this space
contain the situation model along with other state informa-
tion needed to solve the problem. There is no fixed order in
which operators are sequenced, rather their sequence is
determined at run-time based on the status of each operator’s
preconditions and on search-control knowledge that prefers
one or more operators over others.

Comprehend determines the implications of one or more
parts of the situation model. For example, comprehending
new data will produce an explanation for that data. Compre-
hending all of the implications of a single object in a situa-
tion model can be a multi-step process, requiring multiple
comprehend operators. For example, in the BBX model,
Comprehend is applied to a ray to produce a path that the ray
could have taken through the box. Comprehend is then
applied to this path to determine the location of atoms that
could cause the path. Comprehend can also make use of
expectations that have been placed in working memory by
other operators. For example, Comprehend can compare the
outcome of an experiment to expectations, thus bypassing
the standard comprehension process. The implementation of
Comprehend depends on the object being comprehended and
on the available task knowledge. Hence the number of com-
prehension steps and the process or processes underlying
each step must be derived from an analysis of the task as
well as empirical observations of human subjects.

A similar multi-step comprehension process is used in
NL-Soar, a system for comprehending natural language
(Lewis, 1993). The NL-Soar designers found that this
approach increased the generality of acquired comprehen-
sion knowledge and also contributed to the explanation of
several behavioral regularities in natural language process-
ing.

Refine attempts to refine abstract hypotheses by taking into
account explanations in the current situation model. It is the
primary mechanism for integrating evidence. This is done by
considering hypotheses that have been accepted (such as
atoms that have already been placed) as well as hypotheses
that are being considered. For example, given an abstract
hypothesis that an atom is in a column, refine would first
check the column to determine whether an atom has already
been placed in that column, If so, then it will attempt to use
that atom to explain the datum. If not, then refine would
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check to see if any hypothesized atoms are in the column.
If only one is present then this would be used to explain
the datum.

Discriminate takes a disjunctive set of explanations and
attlempts to select one by evaluating each alternative with
respect to the situation model, If there is insufficient evi-
dence to select a single explanation, then discriminate will
attempt to break the tie by collecting data (i.e., by design-
ing and conducting an experiment),

Check determines whether new results (such as new
explanations) are consistent with the other parts of the sit-
uation model. Check annotates the situation model with
this information and can also add a certainty annotation to
the item being checked.

Test designs and conducts an experiment to either con-
firm or disconfirm an uncertain item.

Resolve-anomaly takes anomalous parts of the situation
model, such as two contradictory explanations, and makes
appropriate changes to the situation model. A theory of
anomalous data interpretation is given in Krems and
Johnson (1994).

Hypothesize adds a disjunctive set of hypotheses to the
situation model as explicit hypothesized components. This
operator, in conjunction with refine, provides the primary
evidence integration mechanism in the model. An evi-
dence integration example is given below, following the
next section.

Implementation and Example: Applying the
Model to Black Box

The model described above has been applied to BBX and
implemented in Soar. In BBX there are two comprehend
operators. Comprehend ray-shot produces a path, possibly
abstract, that explains how a ray travels from the input to
the output cell. This is done using satisficing search
through a space with operators that trace a path from one
cell to another. Comprehend path then determines the
atoms that are needed to support the path. It does this by
reasoning backward over the rules of ray travel.

Figure 2 illustrates how the model works. The model
begins by requesting the first datum. Upon seeing the
result (a) the model applies comprehend to the data which
produces an abstract path indicating that the ray went into
the box, then tmmed 180 degrees and exited at the same
point (also shown in 3a). Comprehend is then applied to
this path (b) resulting in 3 hypotheses: 2 single atom
hypotheses, A and B, and 1 two-atom hypothesis, C. The
lanter hypothesis is abstract, in that it specifies that a pair
of atoms can be located at any position along the column.
Abstract hypotheses are initially represented proposition-
ally in the model. For example, C is represented as an
atom pair that can occur anywhere along the third column,
A nonpropositional model-based representation would add
explicit concrete elements for each atom pair to the model.
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Figure 2: The use of evidence integration. Atom B (3d) is placed after the second reflection is seen in 3c.

Since more than one explanation has been generated,
refine is applied to the hypotheses. Refine is unable to select
an explanation, so hypothesize is applied, which adds the
hypothesized atoms to the situation model as explicit
objects.

Next discriminate is applied. This simply updates the state
context to indicate that discrimination is being done. This
allows the model to collect more data (c), another reflection.
This second ray is comprehended just as the first, resulting in
a similar set of three hypotheses: D, E and F, also shown in
3c. Following this, refine is applied to the new ray's hypothe-
ses. Since no atoms have been placed, the model checks to
see if an existing hypothesized atom will explain the new
ray. It finds that B is the only hypothesized atom that can
explain the new ray, so it updates the explanation for the ray
to indicate that B explains the ray. It then places an atom at
location B (d) and checks (using check) to see if the second
ray is actually explained by simulating the ray shot and com-
paring the outcome of the simulation to the actual outcome.
Since the second ray is explained, the model shifts attention
back to the first ray. Because the situation model has
changed, refine is reapplied to the first ray. This time, refine
sees that the newly placed atom is consistent with the
hypothesis for the first ray, so it updates the situation model
to indicate that the first ray is explained by the atom. It then
checks, by simulating, to ensure that the first ray has been
explained. Since it is, the model is then free to collect addi-
tional data.

The above example illustrates several important features
of the model-based theory. First, because of the satisficing
nature of hypothesis generation, the model doesn't need to
consider all possible explanations for a given datum. Second,
although the system uses satisficing search, the example
shows that the multi-stage comprehension process can make
use of abstract hypotheses to generate a class of possible
explanations for a datum.

Third, it illustrates how a complex abductive problem can
be solved by the sequential application of relatively simple
local reasoning processes that bring to bear different bodies
of knowledge. The results of some of these processes feed
into other processes, while some processes, such as check,
independently check the results of others. Smith, et al
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(1991) found that expert technologists use a similar tech-
nique to cope with the complexities of blood typing, an
abductive task requiring the interpretation of a large set of
test data. This is in sharp contrast to theories that assume
that the entire set of data must be reevaluated each time a
new datum is received or that assume that evidence can be
brought to bear in parallel. Finally, evidence integration is
done not by counting the data explained and not explained
nor by combining probabilities, but simply by checking
the model for previously hypothesized atoms that overlap
with those hypothesized for the current datum.

Evaluation of the Model: Regularities Met

The plausibility of the model can be evaluated by compar-
ing it to the behavior of subjects in abductive reasoning
tasks. Here, we briefly review some phenomena discov-
ered in previous studies as well as in our own studies
based on the BBX task (see Johnson et al., 1993).

Order Effects

As noted earlier, the order of data presentation sometimes
affects a person’s belief in an explanation (Hogarth & Ein-
horn, 1992). In BBX, we found that order of data presenta-
tion can affect what components are used in the
multicausal explanation (Bogenberger, In preparation).
Figure 3 illustrates this effect. When ray A is presented
first, subjects normally place Atom 1. If Ray B (entering at
B1 and exiting at B2) is then presented, an atom is placed
at cell 2. When C is shown next, atom 3 is placed. How-
ever, at this point an atom at either cell 4 or 2 could
explain B with equal likelihood (p=.49), given all of the
data currently available. If the data is reversed, C, B, A,
then an atom is placed at cell 4 instead of 2.

According to our model, order effects occur because the
simplest consistent explanation for a new datum is imme-
diately added to the situation model and then used to con-
strain the explanation for succeeding data (through refine).
By changing the order of data, the context in which expla-
nations are refined is changed, leading to the selection of
different explanations. In cases where refine is not used,
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Figure 3: Order of data presentation affects outcome. A, B, C

results in placement of atoms at locations 1, 2, and 3 whereas

C, B, Aresults in a placement at locations 1, 3 and 4. Loca-
tions 2 and 4 are equally likely (p =.49).

no order effects will be seen.

The mental-model theory produces the same behavior as
the subjects. When A is shown, Atom 1 is placed to explain
it. If B is shown next, comprehend constructs an abstract
“zig-zag” path from B1 to B2, then comprehension of this
path results in knowledge that there must be atoms in the
fourth and sixth columns. Refine is then applied to the path
where it detects Atom 1, modifies the abstract “zig-zag,” so
that it uses Atom 1 and specifies that there must be an atom
at Cell 2. Since there is now only one explanation for B, an
atom is placed at location 2, then B is checked and Datum C
is requested. The explanation for C (Atom 3) does not con-
tradict any other explanation so the model requests addi-
tional data to locate the fourth atom. An alternative
explanation for Ray B is not considered. When the data is
presented in reverse order, the model places an atom at loca-
tion 4.

Deviation from Normative Abduction

The example in Figure 3 illustrates how the mental-model
theory predicts deviations from normative abduction. Given
the data shown in Figure 3, locations 2 and 4 are equally
likely locations for atoms; however, both locations are not
considered because the order of data presentation together
with the satisficing approach to explanation generation and
selection resulted in a model in which all of the data is
explained. In general, we expect that explanations produced
by the model will sometimes differ from the answer dictated
by probability theory because the model selects a best expla-
nation based on ease of search, availability of alternatives,
and model-based evidence integration. The model currently
does not use, or even know, probabilities.
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Task and Domain Effects

The application of the model to BBX illustrates how the
task and domain influence the outcome (as contrasted to
the outcome that would be produced by a purely syntactic
theory). The comprehension of data (to produce an
explanation) is a multi-stage process, where the number
and nature of the stages depend on the domain and task.
Furthermore, the implementation of each stage is deter-
mined by domain and task characteristics. For example,
we observed that subjects tend to trace rays from input cell
to output cell, despite the fact that all rays are bi-direc-
tional. This can affect the answer given. If the data in Fig-
ure 3 is presented in the order A, C, B, and B is shot in at
B1, then subjects tend to place an atom at location 2,
because they trace a path from B1 to B2 and notice Atom
1, but not Atom 3. However, if ray B is shot in from B2,
then subjects tend to place an atom at location 4, because
Ray B is traced from B2 to B1 and Atom 3 is noticed, but
not Atom 1. Thus, task-specific processing has a major
effect on the abductive conclusions. In the application of
the mental-model theory to BBX, we implemented Refine
so that it would trace from input cell to output, thus our
model is able to replicate this behavior. Any model of
abductive reasoning that completely abstracts away the
properties of a domain would be unable to explain this
behavior.

Power-law Speed-up

To test for power-law speed-up we ran the model 5 times
on 52 games (each run used a different random ordering of
the same games). We then compared the speed-up to §
human subjects playing the same 52 games. For the simu-
lation, we found that a  power-function
(y = x %" 4 607.89 ) explains 74% of variance. The lin-
ear fitis: y = —4.305x + 404.74, explaining 57% (substan-
tially less). The mean number of Soar decision cycles
(DCs) (over all model runs and games) is 290.66 per
game. This drops from 593 DCs to 250 after 52 games.
The minimum value was 174,

For the 5 subjects on the same 52 games, we found that
a power law (y = B, 192529ms ) explained 50% of
variance while a linear fit (y = — 1799x + 104066ms ) only
explained 28%. The subjects improved from 263 sec’s to
48 sec’s per game. They averaged 56.4 sec’s per game (for
all games). The minimum time was 17.8 sec, the maxi-
mum, 332.9 sec.

The Soar architecture specifies that a decision cycle
(DC) corresponds to a value in the range of 30 ms to 300
ms (Newell, 1990). With 290 DCs for the model and 56.4
sec for the subjects the simulation is operating at 195ms/
DC, which is well within the theoretical range. But the
speed-up of the model is much smaller than that of the
subjects: 58% compared to 83%. The learning rate (power
law coefficient) of the model is approximately half of the



subjects (0.25 compared to 0.48). In general, this means that
the model reaches the asymptote more quickly (ie., the
model stops improving earlier), but that after leaming the
task is approximately of the same complexity for both the
model and the subjects. The difference in learning rate likely
occurs because the trial time for subjects includes the time to
visually scan the screen, move the mouse and click the
mouse button. The model does not attempt to simulate these
actions whereas with the subjects these actions are getting
automated and appear in the speed-up effect. With the model
we only see cognitive speed-up, the commands that interact
with the BBX display never get faster.

Conclusion

The theory of abduction described above shows how the
interaction of relatively simple symbolic processes can
account for complex behavioral regularities. The model
views human abductive behavior not as the imperfect appli-
cation of formal syntactic laws or probability estimation, but
as the process of building and modifying an explicit situation
model using satisficing search. This is similar to the mental
model theory of human deductive reasoning. Because the
model is based on satisficing search, it makes reasonable
assumptions about the human cognitive architecture. This is
in contrast to models of abductive reasoning that assume
massively parallel computation or the ability to remember
and accurately combine probabilities. Our model is similar
to many search based theories of scientific discovery, such as
Klahr and Dunbar’s dual space search model, but it offers
more details of the problem solving processes as well as pro-
cess models for evidence integration and skill acquisition.
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