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Selection of diagnostic features on breast MRI
to differentiate between malignant and benign
lesions using computer-aided diagnosis:
differences in lesions presenting as mass
and non-mass-like enhancement

Abstract Purpose: To investigate
methods developed for the character-
isation of the morphology and en-
hancement kinetic features of both
mass and non-mass lesions, and to
determine their diagnostic perfor-
mance to differentiate between ma-
lignant and benign lesions that present
as mass versus non-mass types.
Methods: Quantitative analysis of
morphological features and enhance-
ment kinetic parameters of breast
lesions were used to differentiate
among four groups of lesions: 88
malignant (43 mass, 45 non-mass)
and 28 benign (19 mass, 9 non-mass).
The enhancement kinetics was mea-
sured and analysed to obtain transfer
constant (Ktrans) and rate constant
(kep). For each mass eight shape/
margin parameters and 10 enhance-
ment texture features were obtained.
For the lesions presenting as non-
mass-like enhancement, only the tex-
ture parameters were obtained. An
artificial neural network (ANN) was
used to build the diagnostic model.
Results: For lesions presenting as
mass, the four selected morphological
features could reach an area under the
ROC curve (AUC) of 0.87 in differ-

entiating between malignant and be-
nign lesions. The kinetic parameter
(kep) analysed from the hot spot of the
tumour reached a comparable AUC of
0.88. The combined morphological
and kinetic features improved the
AUC to 0.93, with a sensitivity of
0.97 and a specificity of 0.80. For
lesions presenting as non-mass-like
enhancement, four texture features
were selected by the ANN and
achieved an AUC of 0.76. The kinetic
parameter kep from the hot spot only
achieved an AUC of 0.59, with a low
added diagnostic value.
Conclusion: The results suggest that
the quantitative diagnostic features
can be used for developing automated
breast CAD (computer-aided diagno-
sis) for mass lesions to achieve a high
diagnostic performance, but more
advanced algorithms are needed for
diagnosis of lesions presenting as
non-mass-like enhancement.

Keywords Diagnostic performance .
Mass and non-mass breast lesions .
Pharmacokinetic enhancement
parameters . Quantitative morphology
and texture features . Computer-aided
diagnosis . Artificial neural network

Introduction

MR technology has advanced tremendously in the 30 years
since the first breast MR imaging was performed. Dynamic
contrast-enhanced MRI (DCE-MRI) is now a well-
established clinical imaging technique. It is recommended

for the screening of women with an aggregate lifetime
breast cancer risk of more than 20% [1]. Breast MRI is also
employed throughout all stages of management, from
detection, diagnosis, pre-operative staging, therapy re-
sponse monitoring and surveillance [2–5]. This trend is
demonstrated by the nearly 40% per year increase in breast
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MR studies performed in the USA over the past 10 years
[6].

Currently, breast MR demonstrates a high sensitivity in
the range of 93–100%. As many benign lesions also show
enhancement or other atypical features on MRI, the
primary weakness of DCE-MRI remains its low specificity,
reported to be in the range of 37–97% [1–9]. The cost of
MRI itself in addition to the cost of invasive follow-up
procedures associated with such mediocre specificity has
limited its broader implementation as a screening tool for
the general population [1].

For evaluation, traditionally, diagnostic impressions are
generated by visual examination of morphology features
and contrast enhancement kinetics using descriptors
established in the BI-RADS (Breast Imaging-Reporting
and Data System) lexicon [10–12]. The commercially
available computer-aided diagnosis (CAD) systems pre-
sently in use display the suspicious lesions based on
enhancement above a threshold level, and the enhancement
kinetics from the lesion is also shown [13–16]. Analyses of
morphological features are left to the radiologist, and then
all information needs to be integrated by the radiologist to
make a final diagnostic impression. The interpretation of
morphological features is subject to high inter-observer
variability, resulting in differential diagnostic performance
being highly dependent on the level of experience of the
radiologist [17, 18]. Therefore, these commercial systems
are in fact “computer-aided display systems”, not a true
CAD that gives an intellectual impression about the
suspicion level of the lesion. However, they did provide
a very efficient way to extract the most essential
information. Further efforts to add capabilities for quanti-
tative characterisation of morphological features into the
CAD systems will be very helpful, particularly to
mammographers who are not experienced in interpreting
breast MRI [19, 20].

Typically, the first step in evaluating lesion morphology
on breast MRI is to classify the lesion as a mass, a focal
lesion, or a non-mass-like enhancement. The BI-RADS
breast MRI lexicon [11] gives the following clear
definitions for mass and non-mass-like enhancement:
“Mass—A mass is a three-dimensional space-occupying
lesion that comprises one process, usually round, oval,
lobular, or irregular in shape”; “Non-mass-like enhance-
ment—Enhancement of an area that is not a mass. This
includes enhancement patterns that may extend over small
or larger regions, and whose internal enhancement
characteristics can be described as a pattern discrete from
normal surrounding breast parenchyma.” In the case of
mass-type lesions there are several parameters that can be
used for constructing the differential diagnosis. For
example, spiculation (morphology), rim enhancement
(texture) and the wash-out kinetic pattern are typical
features of malignant lesions; whereas smooth margin
(morphology), low and homogeneous enhancement (tex-
ture) and a persistent kinetic pattern typically indicate a

benign mass. The diagnostic features to differentiate
between mass-type malignant and benign lesions are
readily available. On the other hand, diagnosis of non-
mass-like enhancement lesions is much more challenging.
Malignant lesions such as ductal carcinoma in situ (DCIS)
and invasive lobular cancer (ILC) are likely to present as
non-mass-like enhancement [11, 12, 21, 22]. Benign
fibrocystic changes, which also appear as non-mass-like
enhancement, are a frequent finding on DCE-MRI [23].
Unlike mass lesions, non-mass-like enhancement lesions
exhibit poorly defined boundaries, leading to difficulty in
the analysis of morphology [13, 24]. Furthermore, the
malignant non-mass lesions often do not show the typical
wash-out pattern in enhancement kinetics, so this very
useful diagnosis criterion for mass lesions has a limited
diagnostic value for non-mass lesions [25, 26].

Extensive research has been undertaken to build quan-
titative diagnostic models for breast MRI, similar to the
mammography CAD system that gives a diagnostic
impression. Typically the analysis system will character-
ise the morphological features as well as the enhance-
ment kinetics of the lesion (either using automated or
manual lesion segmentation), then build a classifier based
on those features that yield the highest diagnostic
performance [27–29]. However, most studies in the past
have only focused on analysing mass lesions. Although the
efficacy of kinetic analysis in the diagnosis of non-mass
lesions has been investigated, little was done to investigate
the morphological features. In a previous work, we devel-
oped a quantitative morphology and texture analysis method
to select features for the diagnosis ofmass lesions [29]. In this
study we apply the developed methods to characterise the
morphology and enhancement kinetic features of both mass
and non-mass lesions, and to investigate the diagnostic
performance to differentiate between malignant and benign
lesions that present as mass versus non-mass types. The
diagnostic features analysed using the presentedmethodmay
be potentially used to build a true breast MRI CAD that can
give intellectual impression, such as BI-RADS score, for
each lesion.

Materials and methods

Patients

A total of 116 histology-proven lesions, 88 malignant (43
mass, 45 non-mass) and 28 benign (19 mass, 9 non-mass)
lesions, were analysed in this study. These cases were
selected from a research study database collected from
2004 to 2006. Patients with suspicious findings or with
biopsy-proven cancer were invited to participate in a breast
MRI research study. Only cases with a clearly visible lesion
in a clean background were selected. Cases with multiple
poorly differentiable lesions, locally advanced diseases
receiving neoadjuvant chemotherapy, or with severe
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motion artefact, were excluded. The age of patients with
malignant cancer ranged from 31 to 80 years (53±11,
median 50), and the patients with benign diseases were
younger, range 30–74 years old (49±11, median 47). Mass-
type lesions were determined based on the clear boundaries
and strong enhancements. Lesions presenting as non-mass-
like enhancement (or lesions without mass effect) were
identified as those presenting diffuse enhancement with ill-
defined tumour margins. An experienced radiologist
evaluated each lesion and determined whether it should
be designated a mass or a non-mass. Table 1 summarises
the histological types of these four groups of lesions. This
research was approved by the institutional review board
and in compliance with Health Insurance Portability and
Accountability Act (HIPAA) regulations. Written informed
consent was obtained from all subjects.

MRI acquisition and lesion ROI drawing

All MR studies were conducted at 1.5 T (Eclipse, Philips
Medical Systems, Cleveland, OH). Patients were posi-
tioned prone into the dedicated breast coil. Dynamic
imaging was performed utilising a T1-weighted 3D
gradient echo (RF-FAST) pulse sequence, with TR=
8.1 ms, TE=4.0 ms, flip angle=20°, matrix size=256×
128, field of view (FOV) between 32 and 38 cm for
bilateral axial view imaging. The slice thickness was
4 mm, and a total of 32 slices were used to cover the
entire breast. Temporal resolution was 42 s for each
dynamic acquisition. After acquiring four sets of
unenhanced baseline images, the contrast medium

(Omniscan®, GE Healthcare, New Jersey, USA,
0.1 mmol/kg) was administered as a bolus injection at
the beginning of the fifth acquisition. Twelve sets of
post-contrast enhanced images were obtained.

For quantitative evaluation, the lesion ROI (region of
interest) was manually outlined based on the subtraction
images at 1-min post-injection (sixth frame–third frame),
by a well-trained operator (DN) using an in-house program
written in MATLAB. The ROI for each case was confirmed
by an experienced radiologist (JHC). The resulting ROIs
from all slices of one lesion were combined in order to
analyse 3D information for the entire lesion.

Quantitative analysis of lesion shape features
and enhancement texture

Shape features

Eight features were used to describe the shape of a lesion:
volume, surface area, compactness, NRL (normalised
radial length) mean, sphericity, NRL entropy, NRL ratio
and roughness. Compactness is defined as the ratio of the
square of the surface area to the volume of the lesion—with
a sphere having the lowest compactness index and an
irregular undulating shape, such as a spiculated lesion,
having a higher compactness index. The features based on
the normalised radial length (NRL) describe contours and
the finer shape of the lesion. NRL is defined as the
Euclidean distance from the object’s centre (centre of mass)
to each of its contour pixels and normalised relative to the
maximum radial length of the lesion [27, 29]. For non-mass

Table 1 Histological types of lesions in the four groups: malignant mass, benign mass, malignant non-mass and benign non-mass

Tumour group Number Percentage

Malignant mass 43 37

IDC (invasive ductal carcinoma) 27 23

DCIS (ductal carcinoma in situ) 4 3.5

ILC (invasive lobular carcinoma) 8 7

Mixed 4 3.5

Benign mass 19 16

Fibroadenoma 15 13

Mixed 4 3

Malignant non-mass 45 39

IDC (invasive ductal carcinoma) 9 8

DCIS (ductal carcinoma in situ) 12 10

ILC (invasive lobular carcinoma) 16 14

Mixed 8 7

Benign non-mass 9 8

Fibrocystic changes 8 7

Mixed 1 1
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lesions, as there were no clearly defined boundaries, these
shape parameters could not be reliably analysed.

Texture features

Radiographically, texture is defined as a repeating pattern
of local variations in image intensity, and is characterised
by the spatial distribution of intensity levels in a particular
area. Haralick et al. defined 10 grey-level co-occurrence
matrix (GLCM) enhancement features (energy, maximum
probability, contrast, homogeneity, entropy, correlation,
sum average, sum variance, difference average and
difference variance) to describe texture [30], and these
features were used to characterise lesions with and without
mass effect.

Kinetic features

The contrast enhancement kinetics was measured from
the whole tumour ROI, as well as from the hot spot
within the ROI. The hot spot was automatically searched
within the whole tumour ROI as the area of 3×3 pixels
showing the strongest enhancement on the subtraction
image at 1-min after contrast injection. A mean signal
intensity was calculated by averaging over the nine pixels
of the hot spot ROI, or all pixels within the whole
tumour ROI. The percentage enhancement was calculated
as the increased signal intensity at each post-contrast frame
normalised by the pre-contrast signal intensity (the averaged
signal from all four time frames before the injection of
contrast agent). The percentage enhancement time course
was fitted to a two-compartmental pharmacokinetic Tofts
model to characterise the uptake of contrast material in the
lesion. The transfer constant (Ktrans) represents contrast
uptake in percentage/minute, and the rate constant (kep)
captures the washout rate in units of 1/min.

Statistical analysis

An artificial neural network (ANN) was used to select the
optimal feature set to differentiate between malignant and
benign tumours. The structure contains one input layer
with the number of nodes corresponding to the number of
input variables, one hidden layer and one output node from
0 to 1 indicating level of malignancy, where 0 means
absolutely benign and 1 means absolutely malignant.
Different neural network architectures with hidden nodes
from 2 to the number of input nodes were tested. A
stochastic gradient descent with the mean squared error
function was used as the learning algorithm. The optimal
architecture was chosen as the one for which the validation
error was lowest.

After the topology was chosen, the diagnostic features in
each category (shape, texture, kinetic parameters) were
selected to identify those yielding the highest discrimina-
tion thus achieving the optimal diagnostic performance.
Every analysed parameter had different values and ranges;
and to avoid bias, the values of each parameter from all
lesions were normalised to have zero mean and unit
variance before training. Forward search strategy was
applied to find the optimal feature subset, which was
obtained when the trained classifier produced the least error
rate. To control for over-fitting, the potential feature set was
limited to no more than four in the shape and texture
category. The selected features from all categories were
then considered in a combined model.

Four-fold cross validation was used to evaluate the
generated classifier. All cases were first randomly assigned
into four sub-cohorts, with each sub-cohort containing
approximately the same proportion of benign and malig-
nant cases. Three sub-cohorts were combined as the
training set and the remaining sub-cohort was used as the
validating set. This process was repeated by randomizing
the cases assigned to the training and validation sets to find
the optimized diagnostic classifier. Then, the determined
diagnostic classifier could be used to predict a lesion being
malignant or benign based on the threshold level. The
sensitivity and specificity in the entire dataset were
calculated from a full range of thresholds (0.0–1.0 with
0.05 interval). The ROC curve was then constructed from all
data points at different thresholds by plotting sensitivity
versus 1-specificity. The ROC curves for differentiating
between (i)malignant and benignmass lesions, (ii)malignant
and benign non-mass-like enhancement lesions, and finally
(iii) all malignant and all benign lesions, were generated. The
area under the ROC curve (AUC) was calculated for
comparison. All analyses were performed using the LNKnet
package (http://www.ll.mit.edu/IST/lnknet/).

Results

Differentiation between malignant and benign lesions
presenting as mass

Figure 1 shows an example of a malignant mass (invasive
ductal cancer), and Fig. 2 shows the magnified view of the
tumour ROI drawn on three different slices of this lesion.
Figure 3 shows a benign mass (fibroadenoma and adeno-
sis). Table 2 summarises the diagnostic performance of
morphology (shape and texture) and kinetic features for
lesions with mass effect. The selected anatomical features
included two shape (compactness and NRL entropy) and
two texture (homogeneity, grey-level sum average) para-
meters. Utilisation of these four features resulted in an
AUC of 0.87. The kinetic parameter from the hot spot (kep)
could reach a comparable AUC of 0.88. When combining
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these five parameters into a unified diagnostic model, the
AUC was further improved to 0.93. Using the optimal cut-
off value selected by the used ANN software, this
combined classifier achieved a sensitivity of 0.97 and a
specificity of 0.80. The ROC curves from the morpholog-
ical and kinetic analysis, and from the combined features
are shown in Fig. 4a. Compared with the hot spot kep, the
kep analysed from the whole tumour ROI had a worse
diagnostic performance, only reaching AUC=0.75. The
results also demonstrated that the hot spot analysis should
be used for diagnosis.

Differentiation between malignant and benign lesions
presenting as non-mass-like enhancement

Figure 5 shows an example of a malignant lesion
without mass effect (ductal carcinoma in situ), and
Fig. 6 shows a benign lesion without mass effect
(fibrocystic changes). The anatomical features only
included texture, because the shape features could not
be reliably defined due to lack of clear lesion
boundaries. Four texture features were selected by
ANN, including grey-level sum average, grey-level
max probability, grey-level correlation, grey-level ener-
gy, and they achieved an AUC of 0.76 (Table 2), which
was worse than the result for the mass lesions. The
AUC was 0.59 for hot spot analysis and 0.55 for whole
tumour ROI analysis, which was only slightly better
than the random guess probability of AUC=0.5. There-
fore, neither the kinetic parameters analysed from the
hot spot nor those analysed from the whole tumour ROI
could be used to differentiate between the non-mass-
type benign and malignant lesions. Adding the kinetic
parameter (hot spot kep) to the selected texture
parameters did not improve the diagnostic performance
much, only to AUC=0.78. The ROC curves from the
texture and kinetic analysis, and from combined features
are shown in Fig. 4b.

Differentiation between all malignant and all benign
lesions

For differentiating between all malignant and benign
lesions, the following three texture features were selected:
homogeneity, grey-level max probability and grey-level
sum average, which achieved an AUC of 0.81. After a
kinetic parameter (hot spot kep) was added, the AUC was
improved to 0.86. The results are also summarised in
Table 2, and the ROC curves are shown in Fig. 4c.

Discussion

Previous investigations have reported the selection of
quantitative morphological and kinetic characteristics for
building the computer-aided diagnosis models for lesions
shown on breast MRI. Most reported works were for
masses and rarely for lesions presenting as non-mass-like
enhancement, primarily because of the challenges in
defining the lesion extent for computer-based analysis.
Nevertheless, given the very limited utility of kinetic
enhancement data for the non-mass lesions, identifying
diagnostic morphological features is even more important
[14, 22, 25, 26, 31]. In this study, we compared four breast
lesion groups: malignant mass, benign mass, malignant
non-mass and benign non-mass, and investigated how they
could be differentiated. Quantitative analysis was used to
characterise the shape (only for masses), and the texture
and kinetic features (for all lesions). An artificial neural
network was used to search features to form diagnostic
classifiers that can best differentiate between malignant and
benign lesions.

The development of automated CAD for breast MRI is
in the early stages in comparison with the well-established
CAD systems for mammography. Most research has
focused on the classification of mass-type lesions. Chen
et al. published four papers using a dataset of 77 malignant
and 44 benign lesions. One study used region growing for

Fig. 1 An example of a malignant mass (invasive ductal cancer)
from a 43-year-old patient, showing an unenhanced non-fat-
saturated T1-weighted image (a), enhanced image taken at 1 min
after injection (b), subtraction image (c), and the enhancement

kinetics normalised to the unenhanced signal intensity (d). The
lesion demonstrates lobulated rim enhancement and shows the
typical malignant enhancement kinetics pattern with rapid wash-in
followed by wash-out
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lesion segmentation for the analysis of enhancement
kinetic features [32]. The remaining three studies used
fuzzy c-means (FCM)-based lesion segmentation: one
reported methodology alone [33], one analysed kinetic
features [13], and the other analysed texture [34]. The
differentiation between the malignant and benign groups

was analysed using Student’s t test. Meinel et al. [20]
analysed the kinetic data and a limited set of morphological
features, and demonstrated that providing these features to
radiologists may enhance their diagnostic performance,
regardless of their experience level. Gibbs et al. [35]
analysed enhancement and texture features based on

Fig. 2 The magnified view of the tumour ROI drawn from three
slices of the mass lesion shown in Fig. 1. The subtraction image at 1-
min after contrast injection is shown. The in-plane resolution is 1.4×
1.4 mm, and the slice thickness is 4 mm. There is no visible

spiculation, which may be due to the relatively low spatial
resolution, as well as any slight motion between pre- and post-
contrast images

Fig. 3 An example of a benign mass (fibroadenoma and adenosis)
from a 54-year-old patient, showing an unenhanced non-fat-
saturated T1-weighted image (a), enhanced image taken at 1 min
after injection (b), subtraction image (c), and the enhancement
kinetics normalised to the unenhanced signal intensity (d). The

lesion is lobulated and shows non-enhancing internal septations on
the subtraction image. The enhancement kinetics curve shows a
slow initial enhancement and a persistent enhancement pattern
during the 8 min following injection of contrast agent
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manually drawn ROIs in 45 malignant and 34 benign
lesions, and found that ‘grey-level entropy’ and ‘homoge-
neity’ were the most important features for lesion differ-
entiation. In one study published by our group [29], we
used neural networks to select shape and texture features to
differentiate between 43 malignant and 28 benign mass
lesions, and further attempted to establish the link between
selected quantitative features and the descriptors defined in
the BI-RADS lexicon. Szabo et al. [36] reported the
selection of diagnostic features by neural network using a
database of 75 malignant and 30 benign lesions. The
morphology features were analysed visually by radiolo-
gists based on manually drawn ROIs. Leinsinger et al. [37]

used neural network clustering to characterise 92 diag-
nostically challenging breast lesions in DCE-MRI which
were categorized as BI-RADS III lesions in mammogra-
phy, and found improvement in the discrimination between
malignant and benign indeterminate lesions in comparison
with a standard evaluation method. Overall, these results
demonstrated that it is feasible to build a quantitative
diagnostic model, particularly for mass lesions. In the
present study, we used eight shape, 10 GLCM texture and
two kinetic parameters to characterise each mass. The
diagnostic performance based on two shape features
(compactness and NRL entropy) and two texture features
(homogeneity and grey-level sum average) could reach

Fig. 4 The ROC curves from the ANN analysis for the lesions
presenting as mass (a), lesions presenting as non-mass-like
enhancement (b), and all lesions (c). For mass lesions the area
under ROC curve (AUC) is 0.87 based on morphological features,
0.88 based on hot spot kep, and improves to 0.93 using combined
morphological and kinetic features. For non-mass-like lesions, the

AUC is 0.76 based on texture features, only 0.59 based on hot spot
kep, and slightly improves to 0.78 using combined texture and
kinetic features. For all lesions, the AUC is 0.81 based on texture
features, 0.79 based on hot spot kep, and 0.86 using combined
texture and kinetic features

Table 2 Diagnostic performance for differentiating between malignant and benign lesions

Differential diagnosis Sensitivity Specificity Accuracy AUC

Mass type malignant vs. benign

Morphology (shape + texture) 0.95 0.74 0.89 0.87

Kinetics (hot spot) 0.91 0.74 0.91 0.88

Kinetics (whole lesion) 0.91 0.42 0.74 0.75

Morphology + kinetics (hot spot) 0.97 0.80 0.90 0.93

Non-mass type malignant vs. benign

Morphology (texture) 0.87 0.56 0.81 0.76

Kinetics (hot spot) 0.79 0.35 0.72 0.59

Kinetics (whole lesion) 0.79 0.33 0.72 0.55

Morphology + kinetics (hot spot) 0.87 0.66 0.81 0.78

All malignant vs. all benign

Morphology (texture) 0.84 0.72 0.84 0.81

Kinetics (hot spot) 0.82 0.60 0.81 0.79

Kinetics (whole lesion) 0.82 0.50 0.74 0.61

Morphology + kinetics (hot spot) 0.86 0.72 0.87 0.86
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AUC=0.87. When using the hot spot kinetic parameter kep,
it could reach a comparable AUC=0.88, and when using
these five parameters together the AUC was further
improved to 0.93. This finding demonstrates that the
combination of the kinetic enhancement data and mor-
phology information in a systematic model is the most
effective and comprehensive approach to the diagnosis of
masses.

Masses typically represent invasive ductal cancers and
solid benign tumours (such as fibroadenoma and adenosis).
Lesions presenting as non-mass-like enhancement have
long been recognised as an important manifestation of
certain breast cancers, in particular for DCIS and ILC [14,
22]. Diagnosis of these lesions is challenging because the
enhancement of normal tissues and some benign processes,
such as fibrocystic change, might show similar appear-
ances [12, 21, 38, 39]. Radiological diagnosis of these non-
mass-like enhancement lesions relies on the common
descriptors defined in the BI-RADS lexicon [11]. The
distribution patterns are diverse and can be described as
focal, linear, ductal, segmental, regional, multiple regions
and diffuse. These lesions usually have fat or normal

glandular tissues interspersed between the enhancing
malignant tissues, making the definition of boundaries
difficult [16]. A literature review of breast MRI diagnosis
for non-mass lesions based on the BI-RADS lexicon shows
a wide variation. For example, ductal enhancement is
considered suspicious for cancer with a positive predictive
value (PPV) ranging from 26% to 58.5% [40, 41].
Segmental enhancement has a PPV ranging from 67% to
100% for carcinoma [41–43]. While these distribution
patterns may be easily assessed by visual examination, they
are difficult to assess by using quantitative evaluation
methods. Furthermore, when the boundary could not be
defined well, although some mathematical formulae could
be used to calculate the shape parameters (as used for
masses), they might not be reliable. Therefore, we chose
not to analyse the shape features.

Apart from the distribution pattern, the internal en-
hancement patterns within the enhanced area defined in the
BI-RADS lexicon may also be used for diagnosis,
including homogeneous, heterogeneous, stippled/punctu-
ate, clumped and reticular/dendritic. Stippled/punctate
enhancements are more likely to represent normal breast

Fig. 5 An example of a malignant lesion presenting as non-mass-
like enhancement (ductal carcinoma in situ) from a 47-year-old
patient, showing an unenhanced non-fat-saturated T1-weighted
image (a), enhanced image taken at 1 min after injection (b),
subtraction image (c), and the enhancement kinetics normalised to

the unenhanced signal intensity (d). The lesion demonstrates a linear
clumped enhancement pattern on the subtraction image. The
enhancement kinetics curve shows rapid wash-in and reaches a
plateau

Fig. 6 An example of a benign lesion presenting as non-mass-like
enhancement (fibrocystic changes) from a 49-year-old patient,
showing an unenhanced non-fat-saturated T1-weighted image (a),
enhanced image taken at 1 min after injection (b), subtraction image
(c), and the enhancement kinetics normalised to the unenhanced

signal intensity (d). The fibrocystic changes in the right breast show
diffuse heterogeneous enhancements on the subtraction image. The
enhancement kinetics curve is similar to the DCIS case shown in
Fig. 5, showing rapid wash-in and reaching a plateau
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tissue or fibrocystic changes, and thus a low likelihood of
malignancy, while clumped enhancement has a higher
chance of being malignant [16, 42, 43]. The internal
enhancement patterns may be quantitatively characterised
based on the texture features, as demonstrated in our
previous publication [29].

The sensitivity and specificity of DCE-MRI are, in
general, much lower for the diagnosis of non-mass-like
enhancement lesions compared with masses [26, 44].
Approximately 30% of invasive lobular cancer [14] and
DCIS [22, 45] show low enhancements with the persistent
kinetic pattern. A study published by Jansen et al. [25]
examined 34 benign and 78 malignant lesions and
investigated whether enhancement kinetics could improve
diagnosis by considering lesions with and without mass
effect separately. The enhancement kinetics was measured
from manually drawn ROI, and analysed using a three-
parameter empirical mathematical model. It was found that
for non-mass-like enhancement lesions there was no
statistical difference in the kinetic features between malig-
nant and benign lesions. Another study published by Goto
et al. [26] analysed 60 benign and 144 malignant breast
lesions, and the lesions were also separated into mass and
non-mass types. The morphology and enhancement kinetic
data were evaluated by radiologists based on BI-RADS
descriptors. It was reported that the presence of early
enhancement added no diagnostic value to the standard
morphological analysis. In fact, in the breast cancer case
review session of the 2008 annual meeting of the RSNA
(Radiological Society of North America), one speaker
suggested that there is no need to analyse the enhancement
kinetics of non-mass-like enhancement lesions, because it
does not add diagnostic value.

In the present study a quantitative analysis method was
used to extract the enhancement texture and the kinetic
features of non-mass-like enhancement lesions. The AUC
based on four selected texture features reached 0.76, which
was worse than the AUC of 0.87 for mass lesions using two
shape and two texture features. The enhancement kinetic
data could only achieve an AUC of 0.59 using the hot spot
analysis and 0.55 using the whole tumour ROI analysis.
Regardless of the analysis method, the AUC was only
slightly higher than the random guess of 0.5, suggesting a
very low diagnostic value. Overall, our results were
consistent with findings reported in the literature [24, 26,
38]. Nonetheless, there are other features that may be used
to improve the diagnosis of non-mass-like enhancement
lesions that were not considered in the present study. For
example, evaluation based on symmetry between two
breasts was commonly used by radiologists, which was
also a feature defined in the BI-RADS MRI lexicon.
Similar quantitative analysis strategies using computer
algorithms to analyse symmetry can be considered.
Schmitz et al. [46] proposed to analyse the vascularity
score, and found that when the score was added to the
standard morphologic and kinetic data analysis the

diagnostic accuracy was increased significantly. Further
improvements in imaging techniques to obtain more
information might help as well. Veltman et al. [47]
combined the high temporal resolution images during
initial enhancement (fast dynamic analysis) with the
high spatial resolution images (slow dynamic analysis)
and showed that combined analyses resulted in a
significant improvement of diagnostic performance.
MR spectroscopy has also been shown to have a
high diagnostic value for non-mass-like enhancement
lesions. If the MRS can be added into the image
acquisition protocol, the diagnostic performance may
be improved [48]. The signal to noise ratio of the
choline peak (or the concentration if using a quanti-
tative method) may be built into the diagnostic model
in the CAD system.

One limitation that should be clearly noted is the
relatively low spatial resolution of images analysed in the
present study. The cases were collected several years ago,
and the imaging protocol used at that time was not
comparable to the current recommendation of 1 mm×1 mm
in-plane resolution, and slice thickness of less than 2.5 mm
[49, 50]. The inadequate spatial resolution was clearly
demonstrated in Fig. 2 in that no spiculation was observed
in this typical malignant mass-type lesion. In our quanti-
tative analysis, the parameter “roughness” is sensitive to
the spiculated margin, but it is not selected as a diagnostic
feature. As seen in Fig. 2, when the spiculation was not
revealed in the ROI, these two parameters might not truly
capture the margin feature, and thus could not contribute to
the diagnosis. Therefore, the value of this work is more on
the presented method rather than the results. If another
diagnostic dataset collected using the currently recom-
mended imaging protocol are available, a similar analysis
can be applied, and the generated diagnostic features may
be used in the current clinical setting. They may be used to
give a likelihood of a lesion being malignant or benign, or
to further relate this likelihood to a BI-RADS score. This
approach will provide the basis for developing a true CAD
system, similar to the CAD for mammography that gives
intellectual impression.

In summary, our study demonstrated that it is possible to
build a quantitative diagnostic model for diagnosing mass-
type lesions with a high sensitivity (0.97) and a reasonable
specificity (0.80). However, further improvement is needed
for diagnosis of lesions that present as non-mass-like
enhancement. In this study we have shown that the texture
features may be used to characterise the internal enhance-
ment pattern, and to build a diagnostic model. However,
the performance was inferior compared with the diagnosis
of masses. Other shape-based analysis not relying on the
precise boundary of the lesion, for example based on
symmetrical analysis with respect to the contralateral breast
tissue enhancements, may be developed to evaluate the
distribution pattern; also MRS or other adjunct imaging
techniques may provide additional helpful information.
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