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Cascade Explains and Informs the Utility of Fading Examples to Problems

Randolph M. Jones (rjones@colby.edu)
Eric S. Fleischman (esfleisc@colby.edu)

Computer Science, Colby College
5847 Mayflower Hill Drive

Waterville, ME 04901-8858 USA

Abstract

Recent research demonstrates that people learn to solve
problems more effectively when presented with a series
of faded examples and problems, than when presented
with completely worked out examples and completely
unsolved problems alone. We propose an explanation
for this effect, based on the Cascade model. Cascade
was originally built to model the self-explanation effect,
but it also accounts for other aspects of human learning
and problem solving strategies. A relatively
straightforward application of Cascade, without
alteration, also explains why fading might be beneficial.
This explanation provides further support for Cascade as
an accurate model of human learning and problem
solving, and it also augments the results on fading with
specific insight into how, and when, example fading
should be effective.

Introduction
There are a variety of research results characterizing
factors that facilitate the human ability to learn how to
solve problems. Among recent results, Renkl,
Atkinson, and Maier (2000) report that people learn
more effectively when presented with a set of “faded”
examples and study problems than they do when
presented with study examples alone (followed by
completely unworked problems). Given this result, our
interest is in identifying the cognitive mechanisms that
explain why the effect exists. Additionally, if we
understand the underlying mechanisms, they may
provide extra insight into precisely how to create
effective sets of study examples and problems. We
have identified a potential set of explanatory
mechanisms, which are precisely the mechanisms that
define Cascade, an existing model of human learning in
problem solving (VanLehn, Jones, & Chi, 1991;
VanLehn & Jones, 1993a). The Cascade model
suggests which study and learning mechanisms
contribute to the fading effect, and provides a tool for
pinpointing precisely which types of faded examples
will be most effective.

Fading Examples
A common curriculum for teaching students to solve
problems in a particular domain involves having the

students first read some domain material, then study
some completely worked out example problems, and
finally solve problems that have not been worked out.
Various studies explore why it is beneficial for students
to study completely worked out examples (e.g., Chi et
al., 1989; Pirolli & Anderson, 1985; Renkl, 1997,
VanLehn, 1996). The technique of fading examples
constitutes a particular variation on such a course of
study. When fading, the teacher first presents a
completely worked example and then follows this with
a series of nearly completely worked examples. Each
subsequent problem removes an explanatory step,
forcing the students to solve that portion of the problem
themselves. This gives more guidance than a regular
problem, because the student still has the guidance of
the rest of the worked out example, but it gives less
guidance than a completely worked example.

Renkl et al. (2000) demonstrated that different
particular methods of presentation can yield different
levels of learning. Specifically, they showed that fading
sometimes improves learning over other orders of
presentation. In their initial study, they presented
subjects with a completely worked example, followed
by an example that omits the last step in the solution.
This was then followed by an example that omits the
second to last and last steps and finally one presentation
of a completely unworked problem. They compared this
situation to one in which students first studied a
completely worked example, and then solved a
completely unworked problem. The results of this
study confirmed that the group of subjects exposed to
faded examples learned more effectively than the other
group, even though both groups had similar pre-test
performances. A more thorough, but similar,
experiment produced comparable results.

Renkl et al.’s study provides us with valuable
information about potential ways to design study
curricula. However, the research also leaves a few
unanswered questions. Among these are why fading
works as well as it does. In addition, it would be useful
to know exactly what forms of fading will be effective.
Is it always the case that examples should be faded
from back to front? Or are there more formal methods
we can use to design faded examples? Such questions
can, and should, be answered in part by further



experimentation. However, we believe that an existing
computer model of human learning in problem solving
can also shed light on some of the answers. At worst,
the model can help guide future experimentation. At
best, the model makes specific predictions and
recommendations about how to fade examples.

The Cascade Model
Before presenting Cascade’s account of example
fading, we will first provide an overview of Cascade’s
cognitive mechanisms, and how they contribute to
explaining other experimental results on human
problem solving and learning. Cascade was originally
developed to explain the cognitive mechanisms
involved in the self-explanation effect (Chi et al., 1989;
Fergusson-Hessler & de Jong, 1990; Pirolli &
Bielaczyc, 1989). Simplifying a bit, the effect shows
that people learn more effectively by studying examples
when they are careful to explain to themselves as many
steps of the example as they can. Students who do not
carefully explain worked out example steps do not
perform as well on subsequent problems.

Cascade explains this effect as the interaction
between two basic learning mechanisms (VanLehn et
al., 1991; VanLehn & Jones, 1993b). The basic
prediction of Cascade is somewhat intuitive: A student
learns effectively when the student is able to identify
and patch a specific gap in their knowledge. In
Cascade, such knowledge acquisition can occur both
while studying worked out examples and while solving
problems. When studying an example, Cascade must
self-explain each worked step. When the system finds a
step it cannot explain, this signifies a knowledge gap.
Because the example specifies what the answer is,
Cascade can (given appropriate domain-general
background knowledge) compensate for the gap by
constructing an explanation for the answer. When
Cascade successfully creates such an explanation, it
learns a new piece of knowledge that it has some faith
will work in future problems.

When solving problems, Cascade may also learn by
exposing and patching knowledge gaps. However,
during problem solving, the process is less constrained
because the system does not know the correct answer
ahead of time. If the system is missing knowledge,
there are potentially a number of ways Cascade could
go wrong in attempting to solve a problem. Thus, it is
highly likely that the system may expose and attempt to
patch a “false” knowledge gap. However, when the
system explains examples, it also stores search-control
knowledge, essentially remembering the subgoal
structure of each example. Experiments with Cascade
show that this search-control knowledge can be enough
to guide the system into real knowledge gaps during
problem solving. It can then successfully patch those
gaps (VanLehn et al., 1991). Without the search-
control knowledge provided by self-explaining
examples, Cascade cannot distinguish between real

knowledge gaps and otherwise unproductive dead-ends
in the attempted problem solution.

Experiments with Cascade have focused mostly on
problems involving Newtonian physics, due to the fact
that the system’s creators had access to physics problem
protocol data from Chi et al. The experiments show
that Cascade’s interacting learning mechanisms account
for the basic self-explanation effect, and are able to
explain a variety of problem-solving and learning
strategies on an aggregate and an individual basis
(Jones & VanLehn, 1992; VanLehn et al., 1991;
VanLehn & Jones, 1993c).

Because it plays into Cascade’s account of example
fading, it is worth describing part of the experimental
methodology used in the previous Cascade work. The
basic method for running experiments with Cascade
involves three steps:

1. Configure the system’s initial knowledge base,
to reflect the hypothetical initial knowledge state
of a human subject.

2. Force Cascade to explain exactly those pieces of
a series of examples that correspond to observed
self-explanations in the subject’s protocol (by
running it in “explain” mode only on those
example pieces).

3. Run Cascade on a series of problems, recording
answers, errors, and learning events, to compare
with similar events in the encoded subject
protocol.

This methodology makes explicit that Cascade does
not model all the cognitive process in learning from
examples and problem solving. For example, although
Cascade can explain the results of self-explanation
episodes, it currently has no way to predict which
pieces of an example a student will choose to self-
explain. However, for the cognitive processes that
Cascade models, it does a good job of matching
detailed protocol data (Jones & VanLehn, 1992). Thus,
we will use the same basic formula to test Cascade’s
account of example fading.

A Potential Explanation for Fading
Given the background details of how Cascade studies
examples and learns to solve problems, we can now
sketch the theory behind how Cascade ought to be able
to explain the fading effect reported by Renkl et al. It
should be clear that, if the Cascade model is accurate,
fading of examples can lead to improved learning only
if it provides the students with more opportunities to
patch their knowledge successfully.

However, it is certainly a valid question whether this
is really an accurate characterization of the source of
the benefit of example fading. According to Cascade, if
a student completely self-explains an example, the
student would successfully encounter and patch every
potential knowledge gap relevant to that example.
Thus, there would be absolutely no benefit to first self-



explaining the example and then combining self-
explanation with regular problem solving on a similar
subsequent example. The only way example fading
could be effective (according to the Cascade model) is
if it leads the student to patch a knowledge gap that it
would not patch through example studying alone.

As we mentioned above, Cascade can be configured
to emulate the self-explanation behavior of any
individual subject (Jones & VanLehn, 1992), or to
emulate aggregate self-explanation effects (VanLehn et
al., 1991). However, it does not explain how or why a
subject chooses to self-explain any particular piece of
an example. Although an idealized version of Cascade
can self-explain a worked example in its entirety, there
was not a single subject in Chi et al.’s study who was so
thorough in their self-explanation behavior.

Thus, the evidence and model suggest that
completely worked examples are never (or at least
seldom) as beneficial to students as they could be,
because students never (or at least seldom) completely
self-explain the examples. This in turn may cause the
students to miss opportunities to learn from the
examples. However, when a student is given a faded
example, there should be some confidence that the
student will focus their attention at least on the part of
the example that they are requested to solve. Thus, a
faded example is similar to a completely worked-out
example with a special highlight that says “make sure
you self-explain at least this portion of the example”.

Our hypothesis is that there are no additional
mechanisms required by Cascade to account for the
example-fading effect. Rather, using Cascade’s
existing mechanisms, we hypothesize that example
fading forces the student to pay thorough attention to
particular portions of the example. Because this forcing
is highly focused, the student has a good chance of
successfully exposing and patching a knowledge gap (if
the faded piece of the example relies on such missing
knowledge).

When Cascade is forced to self-explain an individual
“faded” portion of an example, we predict that Cascade
will acquire new knowledge if that portion of the
example exposes a knowledge gap. In such a case,
Cascade will exhibit improved learning over normal
example studying if Cascade was not originally forced
to self-explain the same example portion. Due to the
fact that we do not have such protocol data from Renkl
et al., there is currently no empirical way to tell if this is
an accurate characterization of when Renkl et al.’s
subjects learned. However, it does provide a testable
prediction. Before that experiment is run, however, we
should first test the Cascade model to make sure our
predictions about its behavior during example fading
are accurate.

As an example, a first-year college physics text will
often contain an example with a block suspended from

a string and sitting on an inclined plane. The example
will include some lines that, implicitly or explicitly,
involve the inclination of the normal force exerted by
the inclined plane on the block. It is not uncommon for
a first-year college student never to have heard of
normal force, much less to know its inclination. If the
student self-explains the entire example, they will come
across these portions, reach an impasse, and be forced
to create some new understanding concerning normal
force. If the student does not bother to self-explain the
important parts of the example, they will happily go off
and solve inclined plane problems without involving
normal force at all (such episodes appear in Chi et al.’s
protocol data). Consider taking the same example, but
replacing one part of the work with the problem
statement, “What is the inclination of the normal
force?” This certainly draws the student’s attention to
normal force, and it explicitly requires the student to
understand the concept, if the student is going to be
able to finish the problem. In contrast, a student can
very easily read a completely worked example without
bothering to learn about normal force at all.

Experimental Design
We ran Cascade on Newtonian physics problems,
because we already had a thorough task analysis and
knowledge representation for the physics domain.

The basic approach involves first using Cascade as a
knowledge analysis tool. We ran the system on all the
examples and problems given to Chi et al.’s subjects,
determining which examples and problems provided the
first opportunity to learn a variety of pieces of
knowledge. In addition, we used the model to
determine which problems required the application of
particular pieces of knowledge. This exercise allowed
us to create a dependency chart for a number of
different knowledge chunks. The chart basically tells
us “if you force Cascade to learn this chunk from this
example, then it ought to be able to solve this piece of
this problem.” Or in some more interesting cases, if
you force Cascade to learn a particular chunk from an
example, it provides the scaffolding for the student to
learn another chunk in a subsequent problem.

Given this knowledge analysis, it allows us to create
experimental runs that simulate effective example
fading. The analysis tells us exactly where in each
example each knowledge chunk can be learned. Thus,
we can focus the system, telling it to explain exactly
that portion of the example that will lead to the
acquisition of the desired knowledge chunk. This
corresponds to creating a focused “faded example”,
where we allow Cascade not to self-explain most of the
example, but force it to self-explain exactly the correct
piece. We can then run Cascade on the same example,
but with an additional faded portion, so the system can
learn a second chunk from the same example. As a
control, we can force Cascade to self-explain example



pieces that do not cause any learning, and demonstrate
that this has no beneficial effect on future problem
solving. An additional control has Cascade “study” the
examples without self-explaining the lines, in which
case no useful learning occurs.

Results
As predicted, the experiments with Cascade were

able to demonstrate improved learning with simulated
fading of examples over normal processing of
examples. The knowledge analysis showed where
Cascade required, or did not require, particular pieces
of knowledge to solve a problem. In some cases, the
system could solve problems even without any example
studying. In other cases, the model was unable to solve
problems due to a particular lack of knowledge, even if
the system had “studied” an appropriate example
without actually self-explaining the key portion of the
example. With simulated fading, the system was forced
to self-explain the appropriate portions of the examples,
and then could solve more problems. Even more, the
knowledge analysis was able to tell us exactly which
pieces of certain examples should be faded in order to
allow the system to solve each particular problem.

The experiments we report here concentrated on a
thorough analysis of one particular sequence of
examples and problems in the Chi et al. study. These
examples and problems were all variations of inclined-
plane problems (see Figure 1). Given Cascade’s initial
knowledge base, complete self-explanation of two
inclined-plane examples and one “weights and pulleys”
example provides the opportunity to expose and patch
12 knowledge gaps.

These opportunities appear in specific portions of the
explanation traces for the examples. For example,
Cascade can only learn about normal force from self-
explaining the normal-force vector in the free-body
diagram of the inclined-plane example. If Cascade fails

to self-explain this portion of this example, it generates
incorrect answers on any future problems that involve
normal force. In fact, it usually generates the same
incorrect answers as students who also fail to self-
explain that portion of that example (Jones & VanLehn,
1992). A portion of the dependency table that covers
this chunk appears in Table 1.

Chunk normal-force

Learning
opportunities

Example ixa, line 2
Example ixb, line 2

Used in
problems

i1a, i1b, i2a, i2b,
i3a, i3b, q5

In one experiment, we forced Cascade to learn about
normal force by fading the normal-force portion of the
example. Even if Cascade did not self-explain any
other part of that example, it learned the normal-force
chunk because we forced its attention there.

In each of our experiments, we deleted one of the 12
target rules from Cascade initial knowledge. We then
compared Cascade’s behavior without any self-
explanation to Cascade’s behavior when it is forced to
self-explain only the portion of the examples that leads
it to learn the deleted chunk. The results show that
Cascade cannot solve all of the inclined-plane problems
without acquiring all 12 of the target pieces of
knowledge. It cannot solve any of the problems
without learning at least some of the 12 chunks
(although each of the problems only makes use of a
subset of the 12 chunks). More importantly, the results
tell us exactly which example portions will lead to
success on which problems.

In some cases, Cascade is also able to learn new
knowledge chunks during problem solving. In fact, it
cannot solve some of the problems without also
patching some knowledge gaps during the solution of
that problem. The experiments also show that this
learning is not always successful unless Cascade has
first acquired all the knowledge it needs from the
examples. Again, perhaps most informative is that the
experiments tell us which pieces of the examples are
most beneficial to fade. For example, Cascade cannot
solve any problems correctly without first being forced
to learn about normal force (as discussed above). But if
Cascade is not forced (during example studying) to
learn about the inclination of an inclined block’s
acceleration, it is able to learn that particular piece of
knowledge (or at least compensate for it and get the
right answer) during problem solving. It can only do
this, however, if it has learned about the existence of
normal force from one of the examples (or from prior
experience).

In general, the experimental results confirm our
contention that graded fading of examples can map to

Table 1: Dependency chart for the normal-
force chunk.

10 kg

�30

Figure 1: A typical inclined-plane problem.
What is the tension in the string?



improvement in Cascade, if we correspond fading with
the forced self-explanation of portions of each example.
These results demonstrate the basic dependencies we
predicted. Thus, without any alteration to the
underlying Cascade model, it is able to provide an
explanation for the benefit of faded examples. The key
assumption is that example fading serves primarily as a
focus of attention, forcing the subject to study closely
productive portions of each example. In the closing
section, we discuss some implications of this
assumption, as well as the possibility of further
experiments that would identify more complex
interactions between fading and learning.

Conclusions
We feel this work provides two basic contributions.
First, it offers additional evidence that Cascade is an
accurate model of (at least some of) the cognitive
mechanisms involved in studying examples and
learning to solve problems. In some ways, this may
only be of interest to the designers of Cascade.
However, more generally, it allows us to have more
faith in using Cascade as a tool both to study human
behavior, and perhaps as an aid for curriculum
development. In this work, we were able to use
Cascade not only as a cognitive model, but also as a
knowledge analysis tool. It allowed us to perform a
focused dependency analysis that would certainly be
beneficial to an instructor creating examples and
problems.

However, we should note that much of the hard work
that made this analysis possible was performed years
ago. We have the benefit of the detailed cognitive
analysis of college physics that went into the original
design of Cascade. To apply Cascade to any new
domains would require a similar intensive effort.
However, Cascade at least provides a framework and
set of assumptions for creating such knowledge
representations. Furthermore, it provides clear
principles for where, and how, examples and problems
will cause a student to learn target knowledge chunks,
as well as which target knowledge chunks contribute to
the solution of target test problems.

The second contribution is that we have enhanced our
knowledge of how, and why, example fading proves
beneficial in some circumstances. The Cascade model
suggests that arbitrary fading of examples is not likely
to be fruitful, in general. Rather, fading should be
focused towards the pieces of examples that will enable
learning of a teacher’s target knowledge chunks.

Again, this conclusion depends on a key assumption
that is integral to Cascade’s candidacy as an accurate
cognitive model. If Cascade is accurate, it must be the
case that faded examples cause effective learning by
forcing the student to encounter and overcome an
impasse. This is a prediction that can easily be tested.

Future experiments on fading should include detailed
protocol analysis, and should look for evidence of
impasses and learning events in the faded portions of
the examples. Such data will confirm or disprove
Cascade’s account of fading.

It would be prudent to note that the account of fading
presented here does not need to be the exclusive source
of improved learning. As we mentioned in describing
Cascade, the system relies on an interaction between a
domain knowledge acquisition learning mechanism and
a search-control knowledge learning mechanism. The
experiment and explanation reported here relies almost
exclusively on the knowledge acquisition mechanism.
However, our knowledge of Cascade suggests that it
would likely also predict at least some benefit to
example fading from the learning of search control
knowledge.

Even if a faded portion of an example does not force
an impasse and learning event, if it forces some amount
of problem solving, Cascade predicts that a student
would acquire search control knowledge for the goals
and subgoals addressed in the faded portion of the
example. As with Cascade’s model of the self-
explanation effect, such search-control knowledge
could benefit later learning, even if no knowledge
chunks are learned during the solution of the faded
example. However, we have not yet run an experiment
along those lines. For now, we will leave that form of
learning from a faded example to speculation, to be
confirmed or rejected later. It would be most
interesting to conduct such computational experiments
in concert with similar detailed protocol studies of
human subjects. The main point is that Cascade
predicts the primary benefit of a faded example is that it
forces the student to process parts of the example that
they might otherwise ignore. Once a portion of the
example is processed, all the cognitive mechanisms that
Cascade posits can be brought to bear on learning.
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