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MAHALANOBIS’ DISTANCE BEYOND NORMAL DISTRIBUTIONS

JOAKIM EKSTRÖM

Abstract. Based on the reasoning expressed by Mahalanobis in his original article, the

present article extends the Mahalanobis distance beyond the set of normal distributions.

Sufficient conditions for existence and uniqueness are studied, and some properties de-

rived. Since many statistical methods use the Mahalanobis distance as e vehicle, e.g. the

method of least squares and the chi-square hypothesis test, extending the Mahalanobis

distance beyond normal distributions yields a high ratio of output to input, because those

methods are then instantly generalized beyond the normal distributions as well. Maha-

lanobis’ idea also has a certain conceptual beauty, mapping random variables into a frame

of reference which ensures that apples are compared to apples.
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1. Introduction

Distances have been used in statistics for centuries. Carl Friedrich Gauss (1809) pro-

posed using sums of squares, a squared Euclidean distance, for the purpose of fitting Kepler

orbits to observations of heavenly bodies. Karl Pearson (1900) proposed a weighted Eu-

clidean distance, which he denoted χ, for the construction of a hypothesis test. Both

Gauss’ and Pearson’s methods presume statistically independent and normally distributed

observational errors, and therefore their distances are nowadays recognized as special cases

of the Mahalanobis distance.

Proposed by Mahalanobis (1936), the Mahalanobis distance is a distance that accounts

for probability distribution and equals the Euclidean distance under the standard normal

distribution. The rationale for the latter fact is largely historical, but both Gauss (1809)

and Pearson (1900) discussed the fact that the density function of a standard normally

distributed random variable equals (a normalizing constant times) the composition g ◦|| · ||,
where || · || is the Euclidean norm and g the Gaussian function e−x2/2.

Mahalanobis, who was trained as a physicist, explained his proposed distance by making

parallels with Galilean transformations. The Galilean transformation is a standard method

in physics that maps all coordinates into a frame of reference and thus ensures that ap-

ples are compared to apples, using the common expression. The Galilean transformation

is conceptually beautiful and has the property that exceedingly complex problems often

become trivially simple when evaluated within the frame of reference. The well-known

Mahalanobis distance does precisely this, with the standard normal distribution as frame

of reference. Indeed, the Mahalanobis distance is simply the composition of a Galilean

transformation and the Euclidean distance. Notice in particular that given a random vari-

able U ∼ N(µ,Σ), the transformation T (x) = Σ−1/2(x − µ) transforms U into a standard

normally distributed random variable and the Mahalanobis distance equals

d(x, y) = ||T (x)− T (y)||,

which is easy to verify.

Using this simple little observation, the present article aims to study Mahalanobis’ idea

beyond normal distributions. The approach (ansatz ) is to firstly allow arbitrary distribu-

tions and then, secondly, to impose conditions which imply existence and uniqueness of the

distance. A transformation which maps a random variable with distribution F to a ran-

dom variable with distribution G is conveniently denoted T : F 7→ G. Also, the calligraphy

capital N denotes the multivariate standard normal distribution, of a dimension which is

clear from the context. The ansatz-definition is the following.

Definition 1. The Mahalanobis distance under the distribution F is defined

d(x, y) = ||T (x)− T (y)||, (1)

where T : F 7→ N , and || · || denotes the Euclidean norm.
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The transformation of Definition 1 is occasionally referred to as the Mahalanobis trans-

formation. Suppose that the Mahalanobis transformations in Definition 1 are required to

be affine, then it follows that the definition is identical to Mahalanobis’ original definition

(1936). This article aims to find weaker conditions that allow for distributions beyond the

normal distributions.

Of great interest is of course existence and uniqueness of the Mahalanobis distance. The

Mahalanobis distance exists if the right hand side of Expression (1) can be computed, i.e.

if a transformation T : F 7→ N exists. The distance is unique, moreover, if for any two

transformations T1, T2 : F 7→ N the right hand sides of Expression (1) are equal. Condi-

tions implying existence are discussed in Section 2 and conditions implying uniqueness are

discussed in Section 3. Section 4 discusses some properties as well as some applications of

the distance.

2. Existence

The aim of the present section is to show sufficient conditions for existence of a Maha-

lanobis distance, i.e. conditions on the distribution F sufficient for existence of a trans-

formation T that maps a such distributed random variable into a standard normally dis-

tributed random variable, T : F 7→ N . The conditions are derived constructively by

providing such a transformation, named the conditional distribution transformation and

denoted ϕ.

First a few notes on notational conventions. If (x, y) ∈ S×T then π1 denotes projection

onto the first factor, i.e. π1 : (x, y) 7→ x. If (x1, . . . , xp) ∈ Rp, then πk denotes projection

onto the product of the first k factors, i.e. πk : (x1, . . . , xp) 7→ (x1, . . . , xk). If A ⊂ S × T
and x ∈ S, then Ax denotes the section of A at x, i.e. {y ∈ T : (x, y) ∈ A}. If f is a function

defined on a product space, f : (x, y) 7→ z, say, then fx denotes the section of f at a fixed x,

so if (x, y) ∈ A ⊂ S×T and f is defined on A then fx is defined on Ax ⊂ T, fx : y 7→ f(x, y).

If g is defined on Rk and x ∈ Rp, the notation g(x) is allowed for convenience and should

be read as g ◦ πk(x), i.e. the composition with projection is implicitly understood. The

calligraphy capitals N and U denote the standard normal distribution and the standard

uniform distribution respectively. While there are infinite-dimensional Gaussian spaces,

normal distributions are in this article presumed to be finite-dimensional, i.e. the normally

distributed random variables take values on (a space which can be identified with) Rp.

Normal distributions are further presumed to be non-degenerate.

Suppose that an arbitrary distribution F has a density function f : Rp → R. For

k = 1, . . . , p, let Fk : Rk → R be defined recursively by Fp = f and

Fk−1(x1, . . . , xk−1) =

∫
R
Fk(x1, . . . , xk−1, t)dt. (2)
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Note in particular that F0 =
∫
Rp fdλ = 1, where λ denotes the Lebesgue measure of a

dimensionality that generally is understood from the context. Furthermore, Fk is non-

negative and, by the Fubini theorem, finite at almost every point of its domain. For

k = 1, . . . , p, let the component ϕk : Rk → R be defined by

ϕk(x1, . . . , xk) =

∫ xk

−∞ Fk(x1, . . . , xk−1, t)dt

Fk−1(x1, . . . , xk−1)
, (3)

for all (x1, . . . , xk−1) such that Fk−1 is positive and finite and defined ϕk = 0 otherwise.

The conditional distribution transformation ϕ : Rp → Ip is then defined via its components,

i.e. ϕ = (ϕ1, . . . , ϕp), the blackboard bold I denotes the unit interval and Ip, consequently,
the unit cube.

While the conditional distribution transformation in the present article serves a theo-

retical purpose, it lends itself suitable also for practical purposes. Given only the density

function, a machine can easily compute values of the conditional distribution transforma-

tion through numerical integration.

Showing existence in the univariate case, i.e. p = 1, is particularly simple. Note that in

this case the conditional distribution transformation reduces to the distribution function.

This suggests the mapping F 7→ U 7→ N which is achieved through composition with the

inverse standard normal distribution function, Φ−1. Thus, if only the density function

exists the composition Φ−1 ◦ϕ can be used for the purpose of Definition 1. Consequently, a

sufficient condition for existence of a Mahalanobis distance in the univariate case is simply

that the distribution is absolutely continuous. Furthermore, if the density function f is

continuous on an open subset S of its support, denoted supp(f), the conditional distribution

transformation is continuously differentiable on S, ϕ ∈ C1(S), increasing on S, and thus

by the inverse function theorem also injective on S.

In the general multivariate case the mapping F 7→ U 7→ N is also achieved through

the composition Φ−1 ◦ ϕ, however stronger conditions are required and the mathematical

details are more technical. The following four lemmas contain properties of the conditional

distribution transformation; for enhanced readability the proofs are in an appendix.

Let (f > t) denote the set {x : f(x) > t}, and let Int(A) and Cl(A) = Ā denote

the interior and closure of A, respectively. The set A is a continuity set if its boundary,

∂A, has probability zero. If f is a density function, then (f > 0) is a continuity set if∫
∂(f>0) fdλ = 0, and if so then Int(f > 0) and Cl(f > 0) = supp(f) both have probability

one.

Lemma 1. Suppose f is a density function, then the corresponding conditional distribution

transformation is injective at almost every point of Int(f > 0).

Lemma 2. Suppose f is a density function and (f > 0) a continuity set, then the image of

Int(f > 0) under the corresponding conditional distribution transformation, ϕ(Int(f > 0)),



MAHALANOBIS’ DISTANCE BEYOND NORMAL DISTRIBUTIONS 5

has Lebesgue measure one, and consequently contains almost every point of the image of

the space, ϕ(Rp) ⊂ Ip. Furthermore, the inverse, ϕ−1, is well-defined at almost every point

of Ip.

Lemma 3. Suppose f is a density function and (f > 0) a continuity set, then the cor-

responding conditional distribution transformation maps sets of probability zero to sets of

Lebesgue measure zero.

If x ∈ Rk and fx(t) = f(x, t), the section fx is locally dominated if there is an integrable

function g such that |fy| ≤ g a.e. for all y in some ball Br(x) of x, r > 0.

Lemma 4. Suppose f is a density function that is continuous on an open subset S of

supp(f) such that λ(supp(f) \ S) = 0. If λ((∂S)x) = 0 for all x ∈ πk(S), k = 1, . . . , p− 1,

then ϕ is continuous on S. Furthermore, if f ∈ C1(S) and the sections (Df)x are locally

dominated for all x ∈ πk(S), k = 1, . . . , p− 1, then ϕ ∈ C1(S).

Remark 1. The condition λ((∂S)x) = 0 for all x ∈ πk(S), k = 1, . . . , p − 1, while looking

technical, is in practice often not very difficult to verify. For example, if S is convex

then the condition follows immediately, which is easily seen from a standard contradiction

argument.

The following theorem shows sufficient conditions for the conditional distribution trans-

formation to map random variables the way it is designed to, ϕ : F 7→ U .

Theorem 5. Suppose f ∈ C1(S) is a density function and S an open subset of supp(f) such

that λ(supp(f) \ S) = 0, and the sections (Df)x are locally dominated and λ((∂S)x) = 0

for all x ∈ πk(S), k = 1, . . . , p − 1. Then ϕ maps a such distributed random variable into

one uniformly distributed on the unit cube.

Proof. The proof uses the change-of-variables theorem (Rudin, 1987). By Lemmas 1, 3 and

4, ϕ is continuous, differentiable and almost everywhere injective on S, and ϕ maps sets of

measure zero to sets of measure zero. This completes the verification of the conditions for

the change-of-variables theorem.

Since ϕ1 is a constant function of x2, . . . , xp, the Jacobian determinant of ϕ equals∏p
k=1 ∂ϕk/∂xk. Moreover, ϕk is a quotient where the denominator is constant as a function

of xk and the partial derivative of the numerator is Fk. Thus,

Jϕ =

p∏
k=1

Fk

Fk−1
=

Fp

F0
= f.

Since f is positive, the absolute value of the Jacobian determinant of ϕ also equals f .

Let the random variable U have density function f and let V be a random variable

uniformly distributed on the unit cube, Ip. Note that by Lemmas 2 and 3 it holds that
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1ϕ(S) = 1Ip a.e., where 1 denotes the indicator function. For an arbitrary Borel set B,

P (U ∈ B) =

∫
Rp

1Bfdλ =

∫
S
(1ϕ(B) ◦ ϕ)|Jϕ|dλ =

∫
Ip
1ϕ(B)dλ = P (V ∈ ϕ(B)).

The third equality above is, of course, the change-of-variables theorem. Hence it follows

that, for any Borel set B,

P (ϕ(U) ∈ B) = P (U ∈ ϕ−1(B)) = P (V ∈ ϕ(ϕ−1(B))) = P (V ∈ B),

and thus the random variable ϕ(U) is uniformly distributed on the unit cube. �

In the multidimensional case, let Φ−1 : Ip → Rp be the function which transforms each

coordinate by the inverse standard normal distribution function. Then Φ−1 : U 7→ N ,

and consequently composition yields the transformation Φ−1 ◦ ϕ : F 7→ N , also in the

general multivariate case. This transformation can of course be used for the purpose of

Definition 1, and thus the hypothesis of Theorem 5 gives sufficient conditions for existence

of a Mahalanobis distance. The following corollary is the main result of the section.

Corollary 6. Under the hypothesis of Theorem 5 a Mahalanobis distance exists. In partic-

ular, the composition Φ−1◦ϕ can be used as a transformation which transforms the random

variable into a standard normally distributed one.

3. Uniqueness

The present section aims to show conditions under which a change of transformation F 7→
N does not change the Mahalanobis distance as given by Expression (1), i.e. conditions on

F and T under which the following diagram commutes in the sense that the Mahalanobis

distance is unaltered.

F
ϕ //

T   A
AA

AA
AA

U

Φ−1

��
N

It suffices to show that the composition T ◦ ϕ−1 ◦ Φ : N 7→ N is an isometry under the

Euclidean metric. Note that the inverse of the conditional distribution transformation ϕ

exists at almost every point of Ip by Lemma 2. The following are useful general facts about

isometries.

Lemma 7. A function that is not continuous and injective is not an isometry.

Lemma 8. A transformation G : N 7→ N is an isometry if and only if it is orthogonal.

The univariate case is a simple and important special case.

Lemma 9. If the standard uniform distribution, U , is univariate and G : U 7→ U is

monotonic, then either G(x) = x or G(x) = 1− x.
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The following lemma pre-emptively clarifies what might potentially appear as contra-

dictory, and it is also a univariate partial converse to Lemma 7.

Lemma 10. If the standard uniform distribution, U , is univariate and G : U 7→ U is

injective almost everywhere and continuous, then G is injective and satisfies either G(x) =

x or G(x) = 1− x.

The following theorem yields necessary and sufficient conditions for uniqueness of the

Mahalanobis distance in the univariate case. A property holds with probability one if the

set of points where the property does not hold has probability zero.

Theorem 11. If the univariate distribution F is absolutely continuous, then the Maha-

lanobis distance is unique if and only if transformations T : F 7→ N are injective with

probability one and continuous.

Proof. By Lemma 2, ϕ−1 is well-defined on a set, denoted M , which contains almost every

point of I. Thus ϕ−1|M : U 7→ F . Let G = Φ ◦ T ◦ ϕ−1, then G|M : U 7→ U . The

transformation ϕ−1|M is monotonic and Φ is continuous, injective and monotonic.

Under the assumptions, T is monotonic and therefore G|M is also monotonic. By Lem-

mas 9 and 7, it follows that G|M is continuous and therefore it can be naturally extended

to I by continuity. In fact, for all x, T (ϕ−1({ϕ(x)})) = {T (x)}, i.e. the function T ◦ ϕ−1 is

well defined for all y ∈ I. By Lemma 9 and symmetry of Φ−1, it holds

||Φ−1 ◦G(x)− Φ−1 ◦G(y)|| = ||Φ−1(x)− Φ−1(y)||,

and therefore the Mahalanobis distance exists and is equal for all T .

Conversely, if T is not injective with probability one, then nor is G|M . Consequently, by

Lemma 7, G|M is not an isometry, and nor its extension G. If T has a discontinuity at x

then so has ||T (·)||, but then it cannot equal ||Φ−1 ◦ϕ(·)|| because the latter is continuous,

and hence the Mahalanobis distance is not unique. This shows that the conditions are

necessary, and the proof is thus complete. �

Note that since the univariate normal distribution is absolutely continuous and Maha-

lanobis’ originally proposed transformation satisfy the hypothesis of Theorem 11, it follows

that the present definition agrees with Mahalanobis’ original definition. In particular,

substitution of T for Φ−1 ◦ ϕ in Expression (1) explicitly yields

d(x, y) = |Φ−1 ◦ ϕ(x)− Φ−1 ◦ ϕ(y)|,

and since ϕ in this univariate case reduces to the distribution function the agreement with

Mahalanobis’ original definition is obvious.

Theorem 12 (Necessary Mahalanobis uniqueness conditions). Suppose the distribution F
has a density function, then the Mahalanobis distance is unique only if transformations
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T : F 7→ N are injective with probability one and continuous. The conditions are sufficient

if F is univariate.

Proof. Let p be the dimension of N , and define G(0) = 0 and G = (h, id) : R × RPp−1 →
R× RPp−1 on Rp \ {0}, where RPp−1 is the real projective space and id the identity map.

Then G maps N 7→ N if and only if h : R → R maps a univariate standard normal random

variable to a univariate standard normal random variable.

For any T : F → N , define T̃ = G ◦ T : F 7→ N and denote d(x, y) = ||T (x) − T (y)||
and d̃(x, y) = ||T̃ (x)− T̃ (y)||. If T (x) = (rx, vx) ∈ R× RPp−1, then

|d̃(x, y)− d(x, y)| = | ||(rx, vx)− (ry, vy)|| − ||(h(rx), vx)− (h(ry), vy)|| |
= | |rx − ry| − |h(rx)− h(ry)| | ||(1, vx − vy)|| ≥ | |rx − ry| − |h(rx)− h(ry)| | ,

since αvx = vx for all non-zero scalars α. Note that the choice of binary operation and

norm on RPp−1 is immaterial since a norm, or seminorm, is non-negative by definition. By

Theorem 11, |rx−ry| = |h(rx)−h(ry)| if and only if h : N 7→ N is injective with probability

one and continuous, and thus d = d̃ only if Mahalanobis transformations are subject to

these conditions. Hence the conditions are necessary for uniqueness of the Mahalanobis

distance. That the conditions are sufficient in the univariate case is the statement of

Theorem 11. �

In the multivariate case the conditions of Theorem 12 are generally not sufficient for

uniqueness, in fact they are generally not even sufficient for existence of a Mahalanobis

distance (cf. Theorem 5). Nevertheless, the theorem is of theoretical interest and useful

in many instances. Since the conditions are sufficient for uniqueness in the univariate

case, they are the strongest conditions that are necessary for uniqueness given an arbitrary

distribution with density function.

In the general multivariate case agreement between Definition 1 with transformation

Φ−1 ◦ ϕ and Mahalanobis’ original definition is shown first. The agreement theorem uses

the following lemma.

Lemma 13. Suppose F is a normal distribution, then each component of the conditional

distribution transformation satisfies an expression of form

ϕk(x) = Φ(a′x+ b),

where a ∈ Rk and b ∈ R are some constants, and Φ is the univariate standard normal

distribution function.

Theorem 14. Suppose F is the normal distribution with mean µ and variance Σ and

T (x) = Σ−1/2(x− µ), then the composition T ◦ ϕ−1 ◦ Φ is an isometry.
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Proof. By construction the composition preserves Gaussian measure and by Lemma 13 it

follows that it is linear. Thus the composition is orthogonal, and hence by Lemma 8 an

isometry. �

Corollary 15. Suppose F is a normal distribution, then the distance

d(x, y) = ||Φ−1 ◦ ϕ(x)− Φ−1 ◦ ϕ(y)||

agrees with the conventional definition of the Mahalanobis distance.

From this point onward, the simple path is to establish, and settle with, that Definition 1

with transformation Φ−1◦ϕ is a generalization of Mahalanobis’ original definition, as follows

by Corollary 15. The more satisfactory path, though, in the sense that it is more true to

Mahalanobis’ Galilean transformation reasoning, is a multivariate result corresponding to

Theorem 11. The following theorem by Linnik & Eidlin (1968) implies that the composition

T ◦ ϕ−1 ◦ Φ is an isometry.

Theorem 16 (Linnik & Eidlin). There exists no non-linear transformation G of a standard

normal random vector into a standard normal random scalar that is complex analytic (real

on Rp) and satisfies the growth condition

log

(
max
z∈Dr

|G(z)|
)

= O((log r)2),

where Dr ⊂ Cp is the closed ball with the zero vector as centerpoint and radius r.

Thus if the distribution F has a density function which is complex analytic, it follows

that the conditional distribution transformation is complex analytic and therefore also its

inverse by the inverse mapping theorem. Thus, by restricting distributions to those which

have complex analytic density functions, and transformations T to complex analytic ones,

the composition T ◦ ϕ−1 ◦ Φ is complex analytic and preserves Gaussian measure. Note

in particular that normal distributions have complex analytic density functions. However,

in which situations the growth condition of Theorem 16 is violated is something which

remains to be investigated.

4. Properties and examples of applications

Both Gauss (1809) and Pearson (1900) consider independent normally distributed ran-

dom variables and propose sums of squares for the purpose of their respective methods.

The following property shows how the Mahalanobis distance decomposes into a sum of

squares for a joint distribution of independent random variables. The notation dF means

Mahalanobis distance under distribution F .
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Theorem 17 (The Pythagorean property). Suppose X1 ∼ F , X2 ∼ G are statistically

independent, and (X1, X2) ∼ H, then

dH(x, y)
2 = dF (x1, y1)

2 + dG(x2, y2)
2,

where x = (x1, x2), y = (y1, y2).

Proof. If T1 : F 7→ N and T2 : G 7→ N , then T = (T1, T2) : H 7→ N by statistical

independence. Hence T (x) = (T1(x1), T2(x2)), and by the Pythagorean property of the

Euclidean norm it then follows that

||T (x)− T (y)||2 = ||T1(x1)− T1(y1)||2 + ||T2(x2)− T2(y2)||2,

which proves the theorem. �

Consequently if, for example, a sample consists of n independent observations, the

squared Mahalanobis distance between the sample point and some other point decom-

poses into a sum of n squared Mahalanobis distances. Hence the Pythagorean property

simplifies this common statistical independence situation considerably.

If, furthermore, the observations are univariate and normally distributed, then it is eas-

ily verified that the squared Mahalanobis distance between the sample point and the mean

point equals Pearson’s chi-square statistic. The result is not a coincidence; Pearson’s statis-

tic was defined as the squared chi-distance between the sample point and the mean point

(Pearson, 1900), and the chi-distance is, of course, a now obsolete special case of the Maha-

lanobis distance. Conversely, Pearson’s hypothesis test readily generalizes beyond normal

distributions using the Mahalanobis distance as a vehicle, see, e.g., Ekström (2011a).

Another example of an application are loss functions for the purpose of model fitting.

If observations are independent and normally distributed with mean zero, then the loss

function proposed by Gauss (1809, §179), the now called weighted least squares loss func-

tion, is the Mahalanobis distance between the residual sample point and the zero point.

If, moreover, the observations have equal variance then the Mahalanobis distance between

the residual sample point and the zero point reduces to (a constant times) the least squares

loss function. Hence Gauss’ method readily extends to generally distributed, possibly in-

terdependent, observations using the Mahalanobis distance as a vehicle, see, e.g., Ekström

(2011b).

Mahalanobis balls under a distribution F are sets BF
r (x) = {y : dF (x, y) < r}, r

being the radius and x the center point. When the distribution is clear from the context,

the superindex F is often omitted. If T is the transformation used for the Mahalanobis

distance, then the Mahalanobis ball can be expressed as a preimage of the Euclidean ball.

The following theorem holds.
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Theorem 18. Suppose T is the transformation used for the Mahalanobis distance and let

Br(x) denote the Mahalanobis ball and Er(x) the Euclidean ball, then

Br(x) = T−1(Er(T (x))).

Proof. Simply notice,

Br(x) = {y : ||T (y)− T (x)|| < r} = {y : T (y) ∈ Er(T (x))} = T−1(Er(T (x))),

which shows the statement. �

Since the Mahalanobis distance equals the Euclidean distance under the standard normal

distribution, N , Theorem 18 can be written BF
r (x) = T−1(BN

r (T (x))). This fact is a

special case of the homogeneity property of Mahalanobis balls, that balls are preserved

under suitable transformations of random variables.

Theorem 19 (The homogeneity property). Presuming distributions and transformations

are such that Mahalanobis distances exist and are unique, suppose T : G 7→ F . Then,

BG
r (x) = T−1(BF

r (T (x))).

Proof. Let T̃ : F 7→ N be the transformation used for dF , then T̃ ◦ T : G 7→ N is a

transformation for dG . The theorem then follows by Theorem 18 and uniqueness. �

In Pearson (1900), Mahalanobis balls are instrumental in the definition of p-values and,

consequently, acceptance regions. Determination of acceptance regions is an example of

an application where the homogeneity property of Mahalanobis balls comes in handy. For

example, if T is a linear and injective transformation and Br(0) is an acceptance region

for the random variable U , then T (Br(0)) is an acceptance region for the random variable

T (U).

5. Concluding remarks

Many statistical methods use the Mahalanobis distance as a vehicle. Notable examples

are the methods of Gauss (1809) and Pearson (1900), i.e. the method of least squares and

the chi-square hypothesis test. As a consequence, extending the Mahalanobis distance

beyond normal distributions yields an extraordinarily high ratio of output to input; all

methods that use Mahalanobis’ distance are immediately generalized beyond the set of

normal distributions. For an overview of methods that use the Mahalanobis distance as a

vehicle see, e.g., Mardia et al. (1979).

The conceptual beauty of Mahalanobis’ Galilean transformation reasoning is immense.

While it at first may seem like an impenetrable problem comparing values of random vari-

ables of different distributions, the difficulties are resolved entirely by simply mapping them

into a frame of reference, which ensures that apples are compared to apples. Mahalanobis’

idea is indeed a hitherto underappreciated egg of Columbus.
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Appendix

Proof of Lemma 1. Let Int(f > 0) be denoted S. Since F1(x) is strictly positive on π1(S)

and
∫
R F1(t)dt = 1 < ∞, ϕ1 is strictly increasing and hence injective on π1(S). The

lemma is shown by induction, with induction hypothesis: if (ϕ1, . . . , ϕk) is injective almost

everywhere on πk(S) then (ϕ1, . . . , ϕk, ϕk+1) is injective almost everywhere on πk+1(S).

Assume that (ϕ1, . . . , ϕk) is injective almost everywhere on πk(S), and let x ∈ πk(S)

and (x, xk+1) ∈ πk+1(S). For a given x ∈ πk(S), Fk+1(x, xk+1) is strictly positive on

(πk+1(S))x = {xk+1 ∈ R : (x, xk+1) ∈ πk+1(S)}. Because πk(S) is open, Fk(x) > 0, and

by the Fubini theorem Fk(x) < ∞ at almost every x. Thus h(xk+1) =
∫ xk+1

−∞ Fk+1(x, t)dt

is injective on (πk+1(S))x given almost every x. At the same x’s ϕk+1 equals a constant

times h and hence ϕk+1 is injective on (πk+1(S))x given almost every x. Consequently,

(ϕ1, . . . , ϕk, ϕk+1) is injective at almost every x.

The induction argument proves the lemma. �
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Proof of Lemma 2. By the proof of Lemma 1, ϕ is injective on Int(f > 0) = S except

if Fk(x) = ∞, some k = 1, . . . , p − 1. Let N ⊂ S be the set of such points, and note

that λ(N) = 0 by Lemma 1. Note also that ϕ(S \ N) ⊂ Int(Ip), while by definition

ϕ(S ∩N) ⊂ ∂Ip, and thus ϕ|S\N : S \N → ϕ(S \N) is a bijection. By construction, if ϕ is

bijective on a set A, then (πkϕ) is bijective on πk(A).

Since (f > 0) by assumption is a continuity set, it holds by the Fubini theorem at al-

most every x ∈ Rk that
∫
Rp−k fx(t)dλ(t) =

∫
Rp−k 1Sx(t)fx(t)dλ(t). Denoting ϕk+1(x,R) =

{
∫ y
−∞ Fk+1(x, t)dt/Fk(x) : y ∈ R}, it holds for almost every x ∈ πk(S\N) that λ(ϕk+1(x, Sx)) =

λ(ϕk+1(x,R)) = λ(I) = 1. Thus, using z ∈ πk(ϕ(S \N)) and (πkϕ)
−1(z) = x, it holds

λ(πk+1(ϕ(S \N))) =

∫
πk(ϕ(S\N))

λ(ϕk+1(x, Sx))dλ(z) = λ(πk(ϕ(S \N))).

Since λ(π1(ϕ(S\N))) = λ(ϕ1(π1(S\N))) = λ(I) = 1, induction yields that λ(ϕ(S\N)) = 1.

Since, by definition of ϕ, λ(ϕ(Rp)) ≤ λ(Ip) = 1, the lemma follows. �

Proof of Lemma 3. Assume Prob(A) = 0, let S = Int(f > 0) and N ⊂ S be the set where

ϕ is not injective. By Lemma 1 λ(N) = 0 and by Lemma 2 λ(ϕ((S \ N)c)) = 0. Since

(f > 0) by assumption is a continuity set, it follows that λ(B) = 0 where B = A∩ (S \N).

By the Fubini theorem, λ(Bx) = 0 for almost every x ∈ Rp−1. Since ϕp(x, t) is absolutely

continuous in t for x ∈ πp−1(S \ N), λ(ϕp(x,Bx)) = 0 for almost every x ∈ Rp−1 by the

Luzin N property. Letting z ∈ πp−1(ϕ(S \N)) and (πp−1ϕ)
−1(z) = x,

λ(ϕ(B)) =

∫
πp−1(ϕ(S\N))

λ(ϕp(x,Bx))dλ(z) = 0.

Since ϕ(A) ⊂ ϕ(B) ∪ ϕ((S \N)c), by Lemma 2 the conclusion λ(ϕ(A)) = 0 follows. �

The proof of Lemma 4 uses the following lemma.

Lemma 20. Let S be a metric space, T a topological space, and let A be a subset of S×T
such that π2(A) ⊂ T is relatively compact. Let x ∈ π1(A) ⊂ S and let µ be a regular

measure on T. If µ((∂A)x) = 0, then limy→x µ(Ax∆Ay) = 0 for each sequence {yn} which

is included in π1(A) and converges to x.

Proof. Let {yn}∞n=1 be any sequence included in π1(A) that converges to x. If there is none

the statement holds trivially.

If z ∈ Int(A)x, then (x, z) is an interior point of A and hence there is a neighborhood

N(x,z) ⊂ Int(A). Thus, dS(x, y) < r, for some r > 0, implies that z ∈ Ay. As a result,

z ∈ Int(A)x implies z ∈ lim infy→xAy and consequently also Int(A)x ⊂ lim supy→xAy.

For every convergent sequence {(yn, zn)}, where for each n, (yn, zn) ∈ {yn} × Ayn ⊂ A,

the point limn→∞(yn, zn) is a limit point of A. Consequently, lim supy→xAy ⊂ (Ā)x.

Intersecting both sides with Ac
x yields lim supy→x(Ay \Ax) ⊂ (∂A)x.
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Note that µ(Ax∆Ay) = µ(Ax \Ay)+µ(Ay \Ax). With respect to the first term, it holds

that

lim
y→x

µ(Ax \Ay) ≤ lim
n→∞

µ(∪∞
m=nAx \Aym) = µ(lim sup

y→x
Ax \Ay)

= µ(Ax ∩ lim sup
y→x

Ac
y) = µ(Ax ∩ (lim sup

y→x
Ay)

c) ≤ µ((∂A)x).

The limit interchange equality holds because the sequence of unions is non-increasing and

relatively compact, and µ is regular. The last inequality holds because B ⊂ C =⇒ Cc ⊂
Bc. With respect to the second term,

lim
y→x

µ(Ay \Ax) ≤ lim
n→∞

µ(∪∞
m=nAym \Ax) = µ(lim sup

y→x
Ay \Ax) ≤ µ((∂A)x).

Thus, under the hypothesis µ((∂A)x) = 0 it follows that limy→x µ(Ax∆Ay) = 0. �

Proof of Lemma 4. The proof uses Scheffé’s theorem (see Billingsley, 1986). Assume πk(S)

is relatively compact. Let x ∈ πk(S), {xn} a sequence in πk(S) converging to x and

temporarily denote the sections fn(y) = f(xn, y) and f0(y) = f(x, y). Since the sections

fn are locally dominated in a neighborhood of x, the sections are integrable and thus

densities in the sense of Scheffé’s theorem. It holds that fn → f0 everywhere except on

the set Sx∆Sxn , and thus by Lemma 20 it follows that fn → f0 a.e. By Scheffé’s theorem,

then, both the numerator and the denominator of the component ϕk are continuous at x.

Since it holds for all x ∈ πk(S), k = 1, . . . , p− 1, and the all component denominators are

positive on S it follows that all components are continuous and hence ϕ is continuous. If

πk(S) is not relatively compact, the statement is shown by taking an increasing sequence

of relatively compact sets with limit πk(S) and noting that the statement holds for every

set in the sequence and consequently also for the union.

To show ϕ ∈ C1(S) under the supplementary condition, note first that since f |Sc = 0

almost everywhere it also holds that (Df)|Sc = 0 almost everywhere, and consequently

Df = 1SDf almost everywhere. Let {e1, . . . , ek} be the standard basis in Rk and consider

the directional derivative DeiFk at x ∈ πk(S). Since |Deif | ≤ |Df | the directional deriva-

tives (Deif)x are also locally dominated. By Lebesgue’s dominated convergence theorem,

it follows that

(DeiFk)(x) =

∫
Rp−k

(Deif)(x, t)dλ(t).

The right hand side exists because the section is dominated. To show that the right hand

side is continuous at x, note first that since (Deif)x is (locally) dominated there is for

every ε > 0 a compact K ⊂ Rp−k such that the integral on the right hand side above over

Kc is less than ε for each xn. On K, (Deif)(xn, t) → (Deif)(x, t) for almost every t as

xn → x by continuity and Lemma 20, and the integral difference |(DeiFk)(xn)−(DeiFk)(x)|
then goes to zero as xn → x by Vitali’s convergence theorem. Hence it follows that
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DeiFk is continuous at x. Since all partial derivatives exist and are continuous at every x,

Fk ∈ C1(S).

Let gk(x, y) =
∫ y
−∞ Fk(x, t)dt. Clearly gk(x, y) is, for fixed x, a differentiable function of

y and it follows that Dekgk = Fk by the fundamental theorem of calculus. Differentiation

along the other standard basis vectors yields

(Deigk)(x, y) =

∫ y

−∞

∫
Rp−k−1

(Deif)(x, t, s)dλ(s)dt,

by Lebesgue’s dominated convergence theorem. With the argument of the preceding para-

graph, it is easily shown that Deigk exists and is continuous at (x, y). Hence all partial

derivatives exist and are continuous, and gk ∈ C1(S).

Since ϕk = gk/Fk−1 it follows by the so-called quotient rule that ϕk ∈ C1(S) (the

denominator is positive on S). This shows that ϕ ∈ C1(S). �

Proof of Lemma 7. Suppose the function G is not injective at x, let z = G(x) and y ∈
G−1({z}), y ̸= x, then d(x, y) > 0 but d(G(x), G(y)) = 0 and therefore G is not an

isometry. Secondly, suppose G is discontinuous at x, then there is an ε > 0 such that

d(G(x), G(y)) > ε for some y for which d(x, y) < ε, hence G is not an isometry. �

Proof of Lemma 8. The support of the standard normal density function is a vector space

and its Mahalanobis distance induced by a norm. Since the transformation G by assump-

tion is measure preserving, it must be surjective. By Lemma 7 it is also injective. By the

Mazur-Ulam theorem, then, G is affine, and an affine transformation of a standard normal

random variable is standard normal if and only if it is orthogonal. �

Proof of Lemma 9. A monotonic function has only jump discontinuities, however had G a

jump discontinuity it were not measure preserving and hence G is continuous. A monotonic

function is not injective on sets only if it is constant, however since G is measure preserving

it cannot be constant on any set with positive measure, and consequently it is injective

almost everywhere.

A monotonic function is, furthermore, differentiable at almost every point. If N is the set

where G is not injective or differentiable, then λ(G(N)) = 0 since G is measure preserving.

The change-of-variables theorem then yields that |dG/dx| = 1 at almost every point.

Continuity, monotonicity and the measure preserving property yield that G is absolutely

continuous, and integration then yields the result. �

Proof of Lemma 10. Under the assumptions, G : U 7→ U is monotonic and the result follows

by Lemma 9. �

Proof of Lemma 13. By the change-of-variables theorem, it holds that∫
(−∞,xk)

Fk(x1, . . . , xk−1, t)dt =

∫
h−1(−∞,xk)

(Fk ◦ h)|Jh|dt,
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under some conditions on the transformation h.

From the property of normally distributed random variables, that conditional distribu-

tions are themselves normal, there is a linear function h such that the integrand factorizes

into

(Fk ◦ h)|Jh| = Fk−1(x1, . . . , xk−1)f̃(t),

where f̃ is the density function of a univariate normally distributed random variable with

some mean and variance (see e.g. Mardia et al., 1979, Theorem 3.2.3). Substitution into the

expression for ϕk and cancelation yields a univariate normal distribution function, which

equals Φ(a′x+ b) for some constants a ∈ Rk and b ∈ R. �
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