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Role of air pollution and socioeconomic position on cognition over six years in older adults in 

the United States 

Kristina Van Dang 

 

Abstract 

As our population ages, mounting interest lies in alleviating the illnesses of our older 

populations. Alzheimer’s Disease and related dementias affect 5.8 million Americans as of 2019, 

and this figure is set to grow to 7.1 million by 2050. This translates to current annual healthcare 

costs in excess of $1 trillion. There are 12 identified modifiable risk factors for dementia that 

could prevent up to 40% of dementia incidence, including air pollution, which was added in 

2020. This objective of this dissertation was to examine the role of air pollution and 

socioeconomic position on cognition over six years in the National Health and Aging Trends 

Study (NHATS). As air pollution is socially patterned, there is a need to evaluate its interaction 

with social factors on cognition and cognitive decline. Chapter 1 of this dissertation compares 

racial and socioeconomic measures, from 2000 to 2015, across the conterminous US in exposure 

to outdoor nitrogen dioxide (NO2) and fine particulate matter (PM2.5). Chapter 2 builds upon 

Chapter 1 by using the individual and area-level metrics at the census tract level to examine their 

interaction with air pollution exposure on cognition in NHATS. Finally, the temporal pattern of 

air pollution exposure may be relevant to risk of cognitive decline in older adulthood. In Chapter 

3, we characterized 10-year trajectories of PM2.5 and NO2 exposure at the census-tract level 

using sequence analysis and cluster analysis, and evaluated their association with cognition 

among a cohort of older adults. 
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Chapter 1: Area-level Inequities in air pollution reduction across the United States: A 15-year 

comparison of PM2.5 and NO2 air quality improvements 

 

INTRODUCTION 

Exposures to nitrogen dioxide (NO2) and fine particulate matter (PM with an 

aerodynamic diameter ≤2.5 μm ; PM2.5) are associated with numerous adverse health effects(1–

3), including cardiovascular and respiratory morbidity(4,5), excess mortality(6–9), increased 

hospital admissions(10–12), and higher odds of preterm birth(13). Several geographically 

localized, cross-sectional studies suggest that exposure to air pollutants is not uniform across all 

communities and subpopulations(14–17). Ambient air pollution levels have been decreasing 

since the passage of the 1970 Clean Air Act(18). Prior studies have documented continued 

inequities across the US in exposure to air pollution, including to federally regulated criteria 

pollutants such as NO2 and PM2.5 (14,16,17,19–24). However, prior studies often focused on 

subsets of the U.S. population, either urban areas, specific metropolitan areas, or single states. 

Additionally, there has been limited research incorporating spatiotemporal patterns of these air 

pollutants with area-level measures of structural racism, even though structural racism has 

strongly influenced where people from historically marginalized groups live, along with the 

degree of environmental hazard in those residential areas. To date, we lack longitudinal, 

nationwide evidence on how the geographic clustering of air pollution leads to social inequalities 

in exposure.  

Previous work has examined the perpetuation of environmental injustice over time 

among communities of racial and ethnic minority people(25,26). Understanding and addressing 

the structural drivers of racial/ethnic inequities in air pollution exposure requires evaluating how 
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the geography of air pollution corresponds with measures of structural racism and racially 

patterned economic and political power. For example, Clark et. al(24) found that excess exposure 

to traffic-related air pollution NO2 in non-White populations has persisted from 2000 to 2010. 

Liu et. al(22) observed differing associations by census block-level race/ethnicity and income 

strata with criteria pollutants for the U.S. Environmental Protection Agency (EPA) National 

Ambient Air Quality Standards (NAAQS). Neither study evaluated area-level measures of 

racism. Bravo et. al(17) observed air pollution disparities using measures of racial isolation of 

Black individuals in North Carolina. Structural racism manifests at the local level as systematic 

neighborhood disinvestment in infrastructure where racial and ethnic minorities reside. Industry 

practices and residential zoning decisions downstream from this disinvestment and racial 

segregation leave marginalized communities vulnerable to excess air pollution exposure.  

We advanced the inquiry into injustices in air pollution exposure with an investigation of 

differences from 2000 to 2015 in exposure to PM2.5 and NO2 as experienced by subpopulations in 

the conterminous U.S., defined by race/ethnicity, education, income, and neighborhood-level 

racial and economic segregation. We also used integrated empirical geographic regression 

models to predict ambient concentrations at a resolution of ~0.1km for each pollutant at each 

U.S. census tract, as opposed to focusing only on urban areas or near monitor exposures. Further, 

we use the Index of Concentration at the Extremes as a proxy for local level disinvestment in 

infrastructure and Dissimilarity Index as a proxy for structural racism to evaluate potential area-

level factors that account for disparities in air pollution exposure. 
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METHODS 

Our analyses included all residents of the conterminous U.S. in 2000 and 2015. This 

included 72,539 census tracts representing approximately 280 million people in 2000 and 314 

million in 2015.   

Air Pollution Data. Annual average values of PM2.5 (μg/m3) and NO2 (ppb) at the census 

tract level from 2000 to 2015 were based on previously published prediction models from the 

Center for Air, Climate and Energy Solutions (CACES), using v1 empirical models as described 

in Kim et. al(27). Briefly, these models use regulatory monitoring data and a limited number of 

geographic characteristics with universal kriging to produce predictions of concentration 

estimates for all criteria air pollutants for each census tract.   

To estimate each of the k group-specific average air pollution exposure levels in 2000 and 

2015 for US residents in a group (e.g. non-Hispanic Black individuals) we computed the 

population-weighted concentrations of PM2.5 and NO2 for each group k, averaged over all j 

census tracts, defined as:  

𝑃𝑊𝐸! =
∑ #$!%!
"
!#$
∑ %!
"
!#$

 (1) 

where 𝐴𝑃& is the concentration of PM2.5 or NO2 in census tract i, and 𝑙& is the number of people 

living in census tract i who are members of that population subgroup (e.g., if looking at those 

with less than a high school degree, the number of people in that census-tract with less than a 

high school degree) summed across all census tracts in the United States. This is the group-

specific average air pollution exposure for all US residents in each group calculated based on 

each census tract’s pollution level and the population composition of that census tract. The 

denominator for these analyses is the Census or ACS reported population size for that subgroup 

k. 
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Decennial Census and American Community Survey Data. Census tract-level variables 

related to demographics, segregation, and socioeconomic status were derived from the 2000 

Decennial Census (SF3) and 2015 American Community Survey. Race/ethnicity was categorized 

as individuals who self-identified as non-Hispanic White, non-Hispanic Black, non-Hispanic 

Asian, or Hispanic (Census variable P007001; ACS variable B03002). Annual household income 

in the past 12 months in 2010-inflation adjusted dollars was categorized as less than $20,000 or 

more than $125,000 (Census variable P05200; ACS variable B19001). Educational attainment 

was categorized as the population over 25 with: less than high school degree;  high school 

degree, General Educational Development (GED), or equivalent credential; some college or 

Associate’s degree; Bachelor’s degree; or any graduate education (e.g., Master’s Degree, 

Professional School, Doctorate)(Census variable B15002; ACS variable P037003). 

 We dichotomized urban and non-urban areas according to the USDA Rural-Urban 

Commuting Area Codes(28) updated in 2019, with “1” representing urban populations, and all 

other values (2-10) representing non-urban populations. 

Measures of Residential Segregation. Existing indicators of racial residential segregation 

and spatial social polarization have been developed to both reflect the consequences of structural 

racism due to de jure (formally legislated) and de facto (in practice) housing discrimination. This 

discrimination serves as a structural mechanism of racism by diminishing political, economic, 

and social power in predominantly Black or Latino neighborhoods. Segregation and spatial 

social polarization (29) should be evaluated at the regional and local levels as larger spatial units 

may mask true associations (30,31). At the regional level, the Dissimilarity Index(32) is defined 

as the proportion of people of a given race or ethnicity (e.g., Non-Hispanic Black) that would 

have to move from their census tract (or subarea) to match the distribution at the regional 
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(higher) level. Massey(32) offers the Dissimilarity Index as a formal measure of segregation 

which links how a socially and economically cohesive region relates to each of its subareas.  In 

this conceptualization, the larger economic region, e.g., a Metropolitan Statistical Area, is 

conceptualized as the entity that makes decisions for siting of industry, housing/zoning 

regulations, roads, etc. The Dissimilarity Index for region j measures the evenness distribution of 

individuals within that region’s constituent subareas (census tracts) compared to the region as a 

whole (Metropolitan Statistical Area).  

The Dissimilarity Index for each region j is defined as: 

𝐷𝑗 = 	 '
(
∑ +$$!

$$
− $%!

$%
+)

&*' ,  (2) 

where 𝑃' is the metropolitan-wide population of group 1, 𝑃( is the metropolitan-wide population 

of group 2, 𝑃'& is censustract 𝑖 population of group 1, 𝑃(& is census tract 𝑖 population of group 2, 

and 𝑛 is the number of census tracts in the metropolitan area j.  

At the local level, the Index of Concentration at the Extremes (ICE) (33) can be defined 

with respect to any characteristic thought to correspond with social privilege. ICE is 

hypothesized to influence health through inequitable spatial access to resources, such as schools, 

employment opportunities, environmental hazards, and violence(34).  The ICE tells us how 

spatially integrated a census tract is using the distributions of the most advantaged (non-Hispanic 

White and/or high income) and disadvantaged group (non-Hispanic Black and/or low-income). 

ICE is meant to distinguish census tracts that contain populations of well mixed demographic 

and socioeconomic characteristics from those that are isolated trending towards the extremes of -

1 and 1 which would quality of social and economic resources in the census tract likely differ. 

As these two concepts are closely related, using one index measure minimizes issues of 

correlated independent variables(35). Together, these measures capture local and regional 
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features of the composition, and, based on the correlates of these compositional features, these 

measures also imply variations in quality of local neighborhood resources that influence health, 

such as schools, safety, medical care, occupational opportunities, and retail outlets.  

Our measure of local social polarization, the Index of Concentration at the Extremes 

(ICE)(36), was calculated as:  

𝐼𝐶𝐸 =	(𝐴& − 𝑃&) 𝑇&⁄ , (3) 

where 𝐴& is the number of people in the census tract i in the most privileged extreme, 𝑃& is the 

number of people in the census tract i in the most deprived extreme, and 𝑇& is the total number of 

people living in that census tract i. The ICEi is summed across all conterminous census tracts n 

in the US for this analysis. We calculated an ICE for racialized economic segregation. This 

variable defines the privileged group as high-income non-Hispanic White people and the 

disadvantaged group as low-income non-Hispanic Black people. High income is defined as 

$100K and greater, and low income as $25K and less(37) for this study period. ICE for each 

census tract ranges from -1 (concentrated with low-income non-Hispanic Black individuals) to 1 

(concentrated with high-income non-Hispanic White individuals).  

Given the historical structural racism specifically experienced by African Americans, The 

Dissimilarity Index and ICE were calculated to contrast non-Hispanic Black and non-Hispanic 

White (i.e., the privileged race/ethnicity for ICE measures, and the reference group from relative 

measures of inequality) subpopulations.  

Statistical analysis. We calculated PWEs for race/ethnicity, education, and income and 

area-level measures of segregation (Black-White Dissimilarity Index) and racial composition 

(ICE). Census tracts with <100 people were excluded (17,38) due to the possibility of unstable 

estimates. Due to variation in air pollution components and sources, stratification by urban/rural 
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was conducted. Finally, the Dissimilarity Index was categorized by the number of people that 

would have to move out of a census tract to match of the composition of the larger regional level; 

a census tract that is the most similar (lowest Dissimilarity Index score) would imply that a 

census tract is representative at the regional level. The Dissimilarity Index was categorized at 

0.4, 0.5, and 0.6, consistent with the literature (39). We used quintiles of each ICE measure from 

2000, and set the least exposed/most advantaged quintile as the reference group. These cutoffs 

are listed in the Supplement. 

 

RESULTS 

Nationwide, the absolute levels of air pollution decreased from 2000 to 2015 (Figure 1.1). 

NO2.  Over this period, the mean (standard deviation) NO2 concentration fell from 13.2 

(SD 7.5) ppb to 7.2 (SD 4.3) ppb (Table 2), an approximately 45% drop over 15 years.  

Over the study period, Hispanic populations experienced the greatest reduction, at 49% (or 8.85 

ppb), and non-Hispanic Black populations experienced the least reduction , at 46.5% (or 7.02 

ppb). Comparing quintiles of ICE, those in the greatest quintile (most advantaged census tracts) 

experienced the largest percentage decrease in NO2 over time, at 53.4% (from 8.4 to 3.9 ppb). 

Those in the most disinvested census tracts, as indicated by being in the lowest quintile 

experienced the smallest percentage decrease over time, at 47.9% (from 17.7 to 9.2 ppb). 

Similarly, communities scoring lowest on the Dissimilarity Index (least dissimilar = referent) 

experienced a 38.9% (8.2 to 5.9 ppb) reduction, and those who scored highest were still exposed 

absolutely to the highest NO2 (16.4 to 9.3 ppb).  

In examining inequalities of exposure to NO2, on the relative (ratio) and absolute 

(difference) scale, we used the least exposed group in 2000 as the reference group (non-Hispanic 
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White populations, those in the highest ICE quintile, and those in the least dissimilar 

communities D1) and sought to determine if and to what extent these inequalities persisted over 

time. In 2000, each non-White racial/ethnic group was exposed to a higher excess percentage of 

NO2, and this excess remained in 2015 (Table 1.1). Non-Hispanic Black populations were 

exposed to 29% higher exposure (provide absolute levels) compared to non-Hispanic White 

populations in 2000, and 35% excess exposure in 2015, representing an increase in 6% excess 

exposure over the study period. Hispanic populations were exposed to 55% (6.37 ppb) more NO2 

compared to non-Hispanic White populations in 2000, and 54% (3.21 ppb) more than non-

Hispanic White populations more in 2015. During both 2000 and 2015, we also observed an 

inverse dose-response effect of decreasing NO2 exposure with increasing quintile of ICE, ranging 

from excess of 30% to 111% in 2000, and 24% to 136% in 2015; these estimates correspond with 

an absolute excess of 2.47 ppb to 9.32 ppb in 2000, and 0.95 to 5.32 ppb in 2015. Those in the 

census tracts whose racial composition varied most from their surrounding region, as 

operationalized by the Dissimilarity Index, similarly had a relative excess exposure of 100% in 

2000 and 86% in 2015, corresponding to, respectively, differences of 8.23 ppb and 4.33 ppb 

excess NO2 exposure (Figure 1.2.).  

PM2.5. Ambient mean PM2.5 was 13.0 (3.4) µg/m3 in 2000 and 8.0 (1.7) in 2015 (Table 

1.2). Average exposure to PM2.5 decreased by 4.98 𝜇g/m3 from 13.0 𝜇g/m3to 8 𝜇g/m3, a 38.3% 

reduction over the 15-year study period. Non-Hispanic Black populations were exposed to 14.4 

𝜇g/m3 in 2000 and 7.8 𝜇g/m3 in 2015, representing a 40.2% decrease. Conversely, non-Hispanic 

White populations were exposed to 12.6 𝜇g/m3 in 2000 and 7.8 𝜇g/m3 in 2015 (a 38.4% 

decrease). We observed a similar magnitude in exposure and trend across racial-ethnic ICE 

quintiles; those in the most disinvested census tracts had the greatest absolute decrease, from 
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14.5 𝜇g/m3 in 2000 to 8.7 𝜇g/m3 in 2015, a 40.1% reduction, similar to those in the most 

advantaged communities (12.1 𝜇g/m3 in 2000 to 7.4 𝜇g/m3 in 2015). Using the lowest 

Dissimilarity Index score as a reference, these census tracts were exposed to the least PM2.5 in 

2000 (11.6 𝜇g/m3) and 2015 (7.2 𝜇g/m3), representing a 37.6% reduction over the study period. 

In contrast, those in the most dissimilar census tracts had the highest exposure to PM2.5 in 2000 

(14.2 𝜇g/m3) and 2015 (8.7 𝜇g/m3), experiencing a 38.8% decrease.  

Inequalities in exposure to PM2.5 over time were examined on the relative and absolute 

scale using non-Hispanic White populations, census tracts with the most privileged extreme for 

the ICE race/ethnicity measure, and those living in the least dissimilar neighborhoods as the 

reference populations. Non-Hispanic Black populations were exposed to 14% more PM2.5 

compared to non-Hispanic White populations in 2000 and 11% more in 2015 this represents a 

4% decrease in excess exposure. In other words, there would have to be an additional 11% 

decrease in exposure to non-Hispanic Black populations to make their exposure equivalent to 

non-Hispanic White populations. ICE by race/ethnicity demonstrates a dose-response 

relationship in exposure to NO2, in which we see the highest relative and absolute exposures in 

the most disadvantaged communities. In 2000, those in the most disadvantaged census tracts 

were exposed to 23% more PM2.5 than those in the most advantaged census tracts. In 2015, the 

comparable disadvantaged versus advantaged excess PM2.5 exposure was 20%; this represents a 

differential of 2.69 𝜇g/m3 in 2000 and 1.44 𝜇g/m3 in 2015 excess PM2.5 exposure. By quintiles of 

the Dissimilarity Index, those in the most regionally dissimilar census tracts had a 23% excess 

exposure in 2000 and 20% in 2015, indicating a differential of 2.66 𝜇g/m3 in 2000 and 1.49 

𝜇g/m3 in 2015 (Figure 1.3).    
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By contrast, exposure to PM2.5 and NO2 differed much less across categories of 

educational attainment, median household income, or age.  

 
DISCUSSION 

Annual average PM2.5 and NO2 concentrations have substantially declined in the United 

States since the 1990s, which has led to improved health and well-being. We examined temporal 

trends in PM2.5 and NO2 concentrations across the conterminous U.S from 2000-2015 at the 

census-tract level related to race/ethnicity and socioeconomic status, along with community 

measures of racialized economic segregation and dissimilarity. We also evaluated differentials in 

these factors by urban and rural classification. Compared to non-Hispanic White populations, we 

observed higher relative excess exposure to PM2.5 (ranging from 8-14% excess in 2000, and 9-

11% in 2015) and NO2 (ranging from 29-61% excess in 2000 , and 35-62% in 2015) in all non-

White racial/ethnic groups . The unequal distribution of PM2.5 and NO2 exposures was elevated in 

urban compared to rural areas for most of our disparity metrics. This indicates that while there 

has been substantial progress to decrease air pollution nationally over this 15-year study period, 

inequitable distribution of exposure to air pollution persists.  

Recent studies by Bravo et al.(17) and Anenberg et al.(5) have shown that focusing on 

absolute reductions in air pollutants could obscure persistent or even increased disparities based 

on race/ethnicity, urban/rural and other socio-demographic factors. In the year 2000, census 

tracts with a majority non-Hispanic Black population had a mean excess exposure to PM2.5 of 

1.77 𝜇g/m3 compared to majority Non-Hispanic White census tracts. Census tracts with higher 

PM2.5 concentrations in 2000 had greater improvements in air quality in 2015 than lower-

exposure areas. Areas where the population was majority-Non-Hispanic Black were exposed to 
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14% more PM2.5 in 2000 and 11% more in 2015 than their majority-Non-Hispanic White 

counterparts, indicating a decrease of only 3% in excess exposure.  

We document that areas with greater segregation, as operationalized via the Black-White 

Dissimilarity Index, experienced an excess exposure to PM2.5 and NO2. Based on the legacy of 

slavery, followed by Jim Crow laws and legalized residential segregation (e.g., redlining, 

restricted covenants),White-Black dynamics represent the cumulative historical and social 

inequities that a socially dominant group have inflicted on their marginalized counterparts. 

Further, environmental justice literature documents from the 1980s the inequitable exposure of 

Black Americans to hazardous materials(40). The ICE measures also showed a dose-response 

relationship when comparing the highest to lowest quintile, although these patterns were less 

clear for the ICE with median household income. Historically, poor, minority communities have 

disproportionately shouldered the burden of excess exposure (41,42), while disparities by income 

have become less pronounced with time, possibly due to gentrification(43).  

The use of area-level measures of socioeconomic position, specifically at a local and 

regional level, highlights that air pollution exposure profiles are not merely a reflection of 

individual characteristics. Area-level composite measures tell us more about the quality of a 

neighborhood, above the individual characteristics, which is where policies should be targeted. 

The magnitude of these differences is significant, as Wei et. al(44) find changes in mortality rate 

by less than 1 𝜇g/m3 difference in PM2.5 exposure, and about 3 ppb in NO2 exposure. Finally, 

using area-level characteristics would imply that interventions should target the area-level (e.g., 

changes in the NAAQS standards), and not individuals (e.g., personal air filters). 

Strengths of this study include longitudinal assessment of air pollution exposure 

disparities over a 15-year period, which allowed us to track inequities in exposure that persisted 
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with national reduction in air pollution. Further, by using a national sample, our methods apply 

to the entire United States, while also providing context to urban, rural, and regional subsets. 

Finally, our use of socioeconomic measures at the individual, local, and regional level allow us to 

evaluate the social patterning of air pollution above individual characteristics, such as 

race/ethnicity. Accordingly, interventions and policies to combat excess air pollution exposure 

should not focus on individual characteristics, but on community-level changes.   

Our study has some limitations. The Dissimilarity Index does not cover rural areas, and 

its values are restricted to micropolitan and metropolitan areas as defined by the Census Bureau 

in 2010. Additionally, we focused only on Black-White Dissimilarity, instead of other races and 

ethnicities. Although other dimensions of the Index of Concentration at the Extremes may also 

capture area-level inequities in area pollution trends, e.g. the educational and income segregation 

that comprises gentrification, residential racial segregation remains a root cause of these 

economic disparities. Finally, due to stark racial differences in integrational wealth and earning 

potential(45), it is difficult to actualize an intervention to alter socioeconomic position as 

operationalized in this analysis. Changes in the NAAQS standards have decreased overall levels 

of air pollution, however, the relative excess exposure still persists. 

 We observe improvements in overall levels of exposure to ambient PM2.5 and NO2 over 

the 15-year study period. Even though the average concentrations of NO2 and PM2.5 have 

decreased over time, the relative percentage difference in inequitable exposures between the 

different racial/ethnic groups has remained the same, or in some cases increased. We found 

greater inequitable exposure in urban compared to rural areas. Examination of the relative 

change in addition to the absolute by traditional health disparities and segregation measures can 

identify sustained environmental justice issues as air pollution overall is decreasing. 
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Figure 1.1. Annual Average Concentration Estimates of NO2 and PM2.5 in the conterminous 
United States, 2000-2015. 
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Table 1.1. Population-weighted annual average NO2 concentration (2000 and 2015), by 
race/ethnicity, education, household income, age, and indices of residential segregation    

Group-specific 
change in NO2 from 
2000 to 2015 

Year-specific difference in 
NO2 concentration between 
group and reference group    

Absolute 
Change 

Relative 
Change 

Relative 
ratio 

Absolute 
difference 

 Year 2000 2015 
  

2000 2015 2000 2015 
Total 13.2 7.2 -5.99 -45.4% 

    

Race/ethnicity 
        

White 11.7 6.0 -5.68 -48.7% Ref. Ref. Ref. Ref. 
Black 15.1 8.1 -7.02 -46.5% 1.29 1.35 3.42 2.08 
Asian 18.8 9.7 -9.11 -48.4% 1.61 1.62 7.17 3.74 
Hispanic 18.0 9.2 -8.85 -49.0% 1.55 1.54 6.37 3.21 
Educational Attainment 

        

Less than High School 14.1 7.8 -6.25 -44.4% 1.02 1.06 0.31 0.45 
High School 12.3 6.6 -5.72 -46.5% 0.89 0.89 -1.47 -0.79 
Some college 12.8 6.7 -6.16 -48.0% 0.93 0.90 -0.95 -0.72 
Bachelors’Degree 13.4 7.2 -6.22 -46.3% 0.97 0.98 -0.36 -0.18 
Graduate Degree 13.8 7.4 -6.39 -46.4% Ref. Ref. Ref. Ref. 
Median Household 
Income 

        

Less than $20,000 13.4 7.3 -6.10 -45.6% 0.97 1.01 -0.39 0.09 
Greater/equal than 
$125,000 

13.8 7.2 -6.58 -47.8% Ref. Ref. Ref. Ref. 

Racialized economic 
ICEa 

        

Q1 15.2 8.9 -6.39 -41.9% 1.14 1.37 1.83 2.38 
Q2 13.9 8.4 -5.51 -39.7% 1.03 1.29 0.47 1.90 
Q3 11.4 6.9 -4.47 -39.2% 0.85 1.07 -2.02 0.45 
Q4 12.3 6.0 -6.27 -51.1% 0.91 0.92 -1.16 -0.49 
Q5 13.4 6.5 -6.94 -51.7% Ref. Ref. Ref. Ref. 
Black-White 
Dissimilarityb 

        

D1 8.2 5.0 -3.18 -38.9% Ref. Ref. Ref. Ref. 
D2 12.4 5.6 -6.79 -54.7% 1.52 1.13 4.24 0.63 
D3 11.1 5.8 -5.30 -47.7% 1.36 1.16 2.92 0.80 
D4 16.4 9.3 -7.08 -43.1% 2.00 1.86 8.23 4.33 
a Racialized Economic ICE cutoffs: -0.030, 0.012, 0.033, 0.085 

bBlack-White Dissimilarity (and therefore exposure to air pollution) was calculated for 
metropolitan and micropolitan areas only 
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Table 1.2. Population-weighted annual average PM2.5 concentration (2000 and 2015), by 
race/ethnicity, education, household income, age, and indices of residential segregation    

Group-specific 
change in PM2.5 
from 2000 to 2015 

Year-specific difference in 
PM2.5 concentration between 
group and reference group    

Absolute 
Change 

Relative 
Change 

Relative 
ratio  

Absolute 
difference 

 Year 2000 2015 
  

2000 2015 2000 2015 
TOTAL 13.0 8.0 -4.98 -38.3% 

    

Race/ethnicity 
        

  White 12.6 7.8 -4.85 -38.4% Ref. Ref. Ref. Ref. 
  Black 14.4 8.6 -5.79 -40.2% 1.14 1.11 1.77 0.83 
  Asian 14.3 8.6 -5.77 -40.3% 1.14 1.10 1.71 0.79 
  Hispanic 13.6 8.5 -5.18 -38.0% 1.08 1.09 1.03 0.69 
Educational Attainment 

        

  Less than High School 13.4 8.3 -5.10 -38.0% 1.04 1.04 0.46 0.35 
  High School Diploma 12.9 8.0 -4.88 -37.9% 0.99 1.00 -0.08 0.03 
 Some college 12.8 7.9 -4.86 -38.1% 0.99 0.99 -0.19 -0.06 
  Bachelors' Degree 12.9 8.0 -4.99 -38.5% 1.00 1.00 -0.01 -0.01 
  Graduate Degree 13.0 8.0 -4.99 -38.5% Ref. Ref. Ref. Ref. 
Median Household 
Income 

        

  Less than $20,000 13.0 8.1 -4.91 -37.6% 1.00 1.02 0.01 0.20 
  Greater/equal than 
$125,000 

13.0 7.9 -5.10 -39.1% Ref. Ref. Ref. Ref. 

Racialized economic 
ICEa 

        

  Q1 14.4 8.8 -5.58 -38.8% 1.14 1.16 1.81 1.20 
  Q2 13.2 8.4 -4.81 -36.4% 1.03 1.09 0.38 0.66 
  Q3 12.3 8.0 -4.27 -34.8% 0.95 1.03 -0.61 0.24 
  Q4 12.5 7.8 -4.73 -37.7% 0.98 1.00 -0.27 0.03 
  Q5 12.8 7.8 -5.05 -39.5% Ref. Ref. Ref. Ref. 
Black-White 
Dissimilarityb 

        

  D1 11.6 7.2 -4.35 -37.6% Ref. Ref. Ref. Ref. 
  D2 12.0 7.4 -4.57 -38.1% 1.04 1.03 0.44 0.23 
  D3 12.4 7.9 -4.51 -36.4% 1.07 1.09 0.83 0.67 
  D4 14.2 8.7 -5.52 -38.8% 1.23 1.21 2.66 1.49 
a Racialized Economic ICE cutoffs: -0.030, 0.012, 0.033, 0.085 
bBlack-White Dissimilarity (and therefore exposure to air pollution) was calculated for 
metropolitan and micropolitan areas only 
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Figure 1.2. Distribution of NO2 by census tracts for the United States in A) 2000 and B) 2015. 
C) Absolute difference in exposure to NO2 by race/ethnicity, ICE for race/ethnicity, and Black-
White Dissimilarity Index.  
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Figure 1.3. Distribution of PM2.5 by census tracts for the United States in A) 2000 and B) 2015. 
C) Absolute difference in exposure to PM2.5 by race/ethnicity, ICE for race/ethnicity, and Black-
White Dissimilarity Index. 
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Chapter 2: Association of exposure to air pollution, segregation, and neighborhood racial 

composition with memory and memory decline in NHATS 

 

INTRODUCTION 

As our population ages(1), mounting interest lies in alleviating the illnesses of our older 

populations. Alzheimer’s Disease and related dementias affect 5.8 million Americans as of 2019, 

and this figure is set to grow to 7.1 million by 2050(2). This translates to current annual 

healthcare costs in excess of $1 trillion. There are 12 identified modifiable risk factors for 

dementia that could prevent up to 40% of dementia incidence (3), including air pollution. As air 

pollution is socially patterned, there is a need to evaluate its interaction with social factors on 

cognition and cognitive decline.  

Emerging research over the last decade has addressed the potential impact of air pollution 

on cognition(4,5). While studies generally show an adverse effect on cognition, there is less 

information on intra-individual changes in cognition over time. From a prevention perspective, it 

is important to study cognitive change compared to a downstream outcome such as dementia 

because of the typically late diagnostic timeline would not preclude reverse causation. Cognitive 

changes are utilized prior to a dementia diagnosis, and there can be significant misclassification 

of dementia based on factors such as race/ethnicity, education, and subjective diagnostic 

judgement(6).  Furthermore, studies have shown a weighted positive predictive value of 56% in 

Medicare data when compared to clinical evaluation of dementia(7). Recent studies of exposure 

to some air pollutants (NO2) and cognitive outcomes have shown inconsistent effects, or have 

been restricted to smaller geographic areas. Finally, as air pollution is socially patterned, few 

studies have focused on the specific interaction of area-level residential segregation and racial 
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economic composition and air pollution on cognition and decline. Our understanding is that 

educational opportunities (and therefore educational attainment) is the product of neighborhood 

economic investment. Further, segregation as a policy implies that there is a political power 

dynamic between an immediate neighborhood, and a larger area, presumably the area involved in 

political decisions. We have chosen to utilize the Dissimilarity Index (D), one of the oldest and 

most popular formal measures of segregation(8,9). Dissimilarity will influence an immediate 

neighborhood’s resources, which we’ve chosen to operationalize as the Index of Concentration at 

the Extremes for race/ethnicity and income combined(10–12). Segregated areas will have high 

disinvestment in neighborhood economic resources, worse housing quality, worse infrastructure 

to promote healthy behaviors, and worse access to medical care (and less likely to receive the 

appropriate medical even after access)(13,14), which will then in turn affect the racial and 

economic composition of a neighborhood (ICE).  

This study aims to examine the relationship between the Dissimilarity Index (D), Index of 

Concentration at the Extremes (ICE) for race/ethnicity and income, and exposure to air pollution 

(PM2.5 and NO2), on memory and memory decline in the National Health and Aging Trends 

Study (NHATS). More specifically, the cross-sectional relationship between our D, ICE, air 

pollutant (PM2.5 and NO2) and episodic memory; if the association differs by D or ICE, by 

pollutant; if there is an interaction between pollutant and ICE (or D); and if this association is 

related to cognitive decline. By utilizing the entire United States, we leverage heterogeneity in 

our segregation, neighborhood composition, and air pollution measures. Our study oversamples 

African Americans, which compromise 22% of our analytic sample. We hypothesized that living 

in areas with higher segregation and high community disinvestment and worse air pollution will 
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be negatively associated with episodic memory in the National Health and Aging Trends Study 

(NHATS). 

 

METHODS 

Study Population. The National Health and Aging Trends Study (NHATS) is a 

representative sample of 8,245 Medicare beneficiaries aged 65+ at baseline in 2011(15). Persons 

at older ages and African Americans are oversampled within geographic clusters in a stratified, 

multistage sampling design. Annual, in-person interviews collected data related to aging and 

disability, independent functioning, and quality of life. Respondent data was obtained from 

NHATS (nhats.org), which is sponsored by the Division of Behavioral and Social Research, a 

division of the National Institutes on Aging; we utilized the Public Use files, Sensitive Data files, 

and the restricted Geographic files. Using data from the 2011 cohort (enrolled as of September 

30, 2010), we excluded those with dementia/AD at baseline (n=457), nursing home residents 

(n=468) or those who only completed a Facility Questionnaire (n=168), those who used proxy 

respondents (n=314), and those who refused the Cognitive Section at baseline (n=88), resulting 

in a final analytic sample size of 6,750. A study flow diagram (Figure 1) and comparison based 

on key characteristics is included. Selection into the analytic sample is discussed in more detail 

in the results and discussion section. Finally, the census tract in which each participant resided at 

baseline was used to link with air pollution exposure.  

Assessment of air pollution exposure. This article includes concentration estimates 

developed by the Center for Air, Climate and Energy Solutions using v1 empirical models as 

described in Kim et al., 2018(16). Briefly, these models were built from U.S. EPA regulatory 

monitors, land use maps, and satellite images to predict ambient concentrations at locations 
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without monitors of seven pollutants throughout the contiguous United States. Annual average 

concentrations of outdoor PM2.5 (µg/m3) and NO2 (ppb) for residential Census Block centroid 

were predicted and population weighted to the census tract in the contiguous United States were 

obtained for the baseline year of this analysis, 2011.  

Assessment of segregation. D, as a regional measure of segregation, can affect local 

compositional measures, like ICE. Together, D and ICE may influence the concentration of 

political and social power leading to changes in neighborhood resources that will affect health. 

Multiple measures of racial residential segregation and spatial social polarization have been 

developed. These indicators of segregation are thought to both reflect the consequences of 

structural racism due to de jure and de facto housing discrimination and serve as a structural 

mechanism of racism as political power is diminished in predominantly Black or Latino 

neighborhoods. Segregation and spatial social polarization (13) should be evaluated at the 

regional and local levels(17). At the regional level, the Dissimilarity Index (D)(8) is defined as 

the proportion of non-Hispanic Black people (or White) that would have to move from their 

census tract (or subarea) to match the distribution at the metropolitan (higher) level. Massey(8) 

offers D as a formal measure of segregation which links how a socially and economically 

cohesive region relates to each of its units, manifesting with policies on industrial siting and 

construction of major roadways(18). The D compares the proportion of individuals (e.g. non-

Hispanic Black) in a census tract 𝑖 compared to the proportion in metropolitan area j, defined as:  

𝐷𝑗 = 	 '
(
∑ +$$!

$$
− $%!

$%
+)

&*' ,  (2) 

where 𝑃' is the metropolitan-wide population of group 1, 𝑃( is the metropolitan-wide population 

of group 2, 𝑃'& is census-tract 𝑖 population of group 1, 𝑃(& is census tract 𝑖 population of group 2, 

and 𝑛 is the number of census tracts in the metropolitan area j. A value of 0 for D suggests that no 
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one would have to relocate to another census tract to match that census tract’s proportion of a 

population to the metropolitan area. A high value, such as 0.70, indicates that 70% of non-Hispanic 

White or non-Hispanic Black residents of a census tract would have to relocate to match that census 

tract’s proportions to that of the metropolitan area. 

The Index of Concentration at the Extremes (ICE) quantifies how much two social 

extremes are mixed within a spatial unit(10). Advantages of ICE are that it can be defined at any 

geographic level (we are using the census tract) and with respect to any social characteristic 

(income, race/ethnicity, education)(11). We use non-Hispanic Black and non-Hispanic White 

people as one dimension of our ICE calculation, reflecting the United States’ history of systemic 

racism and oppression of one race on another. And as with other residential composition 

measures, the presence of affluent may benefit all members of the community. We combine 

median household income and race/ethnicity for our measure of ICE. We computed ICE(19) for 

each census tract, calculated as:  

𝐼𝐶𝐸& =	
#!+$!
,!

, (3) 

where 𝐴& is the number of people in the census tract i in the most privileged extreme, 𝑃& is the 

number of people in the census tract i in the most deprived extreme, and 𝑇& is the total number of 

people living in that census tract i. The ICEi is summed across all census tracts n in the US for 

the estimates presented in Table 1. A distinct advantage of using ICE is the ability to combine 

multiple dimensions of social advantage, and for this analysis, we use racialized economic 

segregation(11). This variable defines the privilege group as high-income non-Hispanic White 

people and disadvantage as low-income non-Hispanic Black people. High income is defined as 

the 80th percentile, $100K and greater, and low income as $25K and less(11) for this study 

period. ICE ranges from -1 (concentrated with low-income non-Hispanic Black individuals) to 1 
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(concentrated with high-income non-Hispanic White individuals), and was computed for each 

census tract. We trichotomized continuous ICE at -0.5 and 0.5 for the marginal analysis. Data for 

this variable was obtained from American Community Survey 5-year survey for 2011, the 

baseline enrollment year for NHATS, for each census tract.  The American Community Survey 

and Census variables used for this analysis are available in the Appendix.  

Assessment of memory. NHATS collects annual memory assessments: immediate and 

delayed recall of a 10-word list(15). We standardized each measure to the baseline mean and 

standard deviation, and averaged the two for a composite measure of memory.  

Statistical analysis. The effects of exposure to each air pollutant (PM2.5, NO2), D, and 

ICE on memory and memory decline were estimated with linear mixed effects model with 

random intercepts for participant and census tract. Our models included covariates according to 

our DAG (Figure 2), and those with statistical difference between our exposed and unexposed 

groups. Thus, our final model adjusted for education, race/ethnicity, smoking status, gender, 

census region, and urbanicity. Education was a 4-category variable (less than a high school 

degree, high school graduate, some college, and Bachelor’s Degree and higher). Race/ethnicity 

was self-reported and combined into White, African American, Hispanic/Latino, and Other. 

Census regions were either Northeast, Midwest, South, or West. Urbanicity corresponded to 

USDA 2010 rural-urban commuting area (RUCA)(20) codes, with “1” corresponding to urban, 

and all else classified as rural. Smoking was defined as current, former, and never. Diabetes was 

coded as an indicator for those who reported being diabetic at baseline. Air pollution estimates 

were centered on their respective means (9.49 𝜇g/m3 PM2.5 and 8.17 ppb NO2) and scaled by 5 

for PM2.5 and 10 for NO2 for ease of interpretability. We modeled each air pollutant in a separate 

model, and considered specifications of air pollution as a linear term and as inter-quartile range 
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(IQR) categories. The ICE was multiplied by -1 for these models so that higher values would 

correspond to a more disadvantaged neighborhood. We are interested in the total effects, so we 

did not adjust for mediators that may be affected by air pollution, D, or ICE. To understand 

longitudinal effects, we included a three-way cross-product between each air pollutant (in 

separate models), ICE (or D), and time. Time was modeled/parameterized as years since 

baseline, a continuous variable. For longitudinal models, we also included a term for practice 

effects, coded as an indicator for the baseline test. In sensitivity analyses, we adjusted for body 

mass index, smoking status, and diabetes, as the values for these variables were different 

between exposure groups at baseline. We tested for nonlinear effects of air pollution and ICE (or 

D) over time. The marginal (population averaged) effect of air pollution and ICE (and their 

interaction) was estimated by predicting outcomes of cognitive function for counterfactual levels 

of exposure for each subject under low, average, or high exposure to air pollution, and low, 

average, or high ICE (or D).     

 

RESULTS 

Our analytic sample consisted of 6,750 individuals with a mean age at baseline of 77.06 

(SD = 7.66) years, 42% male, and 74% self-reporting as White for primary race (See Table 2.1). 

NHATS, by design, oversamples African Americans (22% of analytic sample). Most (27%) 

participants had a high school degree. A comparison of the full NHATS sample compared to the 

analytic sample is presented in the Appendix. At baseline, participants had lived in their current 

residence on average for 23 years, and 3,048 unique census tracts are represented in the analytic 

sample. At baseline, mean immediate word recall was 4.66 (SD = 1.65) and mean delayed word 
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recall was 3.21 (SD = 2.00). Each follow-up year, 4% of the cohort died (Appendix Table). On 

average, participants returned for 4.2 visits over the six-year study period. 

Black-White Dissimilarity was 0.60 (0.11) at baseline, which is consistent with published 

research(9). This number is interpreted as 60% of black (or white) people would have to move 

from their census tract to another census tract in their metro area in order for the overall 

black/white composition to match of the metropolitan or micropolitan area (areas that were 

metropolitan or micropolitan as defined by Office and Management and Budget(21)).  

The average ICE value defining non-Hispanic Black as the disadvantaged group and non-

Hispanic White as the privileged group ethnicity was 0.48 (sd=0.54), indicating a sample skewed 

towards the privileged (non-Hispanic White) group at the census-tract level. The average ICE for 

income (20th versus 80th percentile corresponding to 25K and 100K) was -0.06 (0.23), and the 

average ICE defined jointly based on race/ethnicity and income for our sample was 0.05 (0.19). 

The value of ICE race/ethnicity varied based on the race/ethnicity of the respondent. For 

example, non-Hispanic White participants lived in census tracts with an average ICE of 0.70; for 

non-Hispanic Black participants, the average ICE was -0.20. Further, ICE for race/ethnicity and 

census tract racial composition were highly correlated (correlation ICE with percent non-

Hispanic Black was 0.92).  

The average PM2.5 was 9.49 (SD = 1.84) 𝜇g/m3 at baseline; for NO2 this was 8.17 (4.97) 

ppb. The EPA establishes National Ambient Air Quality Standards (NAAQS) for criteria 

pollutants; 468 (6.9%) of participants exceeded the PM2.5 standards at baseline. NO2 standards 

were not exceeded. Those who were living in census tracts with NAAQS exceedances were 

disproportionately female, non-White, African American, less educated, urban residents, living 

in more disadvantaged neighborhoods (according to ICE), and exposed to more NO2. 
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Results from linear mixed models examining the relationship between our measures of 

segregation (D and ICE) and exposure to air pollution (PM2.5 and NO2) are shown in Table 2.2 

and 2.3. A 1-unit higher D (i.e., contrasting the maximum dissimilarity of 1 to the minimum 

dissimilarity of 0) was associated with .061 SD (95%CI: -0.14, 0.26; Table 3, Model 1) SD 

higher episodic memory. A 5-unit higher PM2.5 was associated with 0.046 (95%CI:-0.10, 0.013) 

SD-units lower memory, which is roughly similar to the estimated effect of a year of aging on 

episodic memory.  

In models with PM2.5 and the joint race/ethnicity-income ICE predicting baseline 

episodic memory, the estimated effect of a unit-difference in ICE (beta = -0.28 95%CI: -0.13, -

0.02) was about six times larger than the coefficient for a single year of age (beta = -0.045 

95%CI: -0.048, -0.043). Each 5-unit (𝜇g/m3) higher PM2.5 was associated with 0.027 SD-units 

(95%CI: -0.042, 0.012) worse episodic memory score.  

For NO2, the coefficient for D was 0.122 SD units (-0.08, 0.33) increase for episodic 

memory. For every 10-unit increase in NO2, episodic memory averaged 0.056 SD (-0.19, -0.002) 

lower. Each unit higher score on the joint race/ethnicity-income ICE was associated with 0.28 

SD-units (-0.41, -0.15) lower episodic memory, and a 10-unit increase in NO2was associated 

with 0.028 SD-units (-0.08, 0.023) worse episodic memory score. Generally, exposure to air 

pollution showed a small, adverse effect, with confidence intervals consistent with either small 

harms or small benefits.  

Figures 2.3-2.6 show marginal predicted cognitive changes over time for individual with 

low or high levels of exposure to each air pollutant, stratified by low, medium, or high D or ICE 

values. We find little evidence that either PM2.5 or NO2 were robustly associated with rate of 
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memory decline, regardless of D or ICE, and similarly little evidence of differences in rate of 

memory change by D or ICE. Effect estimates and CIs are provided in the Appendix.  

 

DISCUSSION 

In this longitudinal study of older US adults, higher exposure to PM2.5 and NO2 was 

weakly associated with worse episodic memory, and did not show a relationship with memory 

decline. Our two measures of neighborhood context, D and ICE, allow us to examine formal 

measures of racial residential segregation and racial and economic neighborhood composition on 

memory. We found a consistent relationship of worse racial economic polarization and memory, 

and the relationship was not modified by time. We did not find evidence of an interaction of 

either air pollutant with D or ICE when predicting memory or rate of memory decline.  

Prior studies of air pollution and cognitive decline have been mixed(5,22), consistent with our 

findings.  To our knowledge, no prior work has examined the interaction of air pollution and 

neighborhood segregation on memory and memory decline.  

The literature on segregation and ICE with cognitive aging is less consistent. Using the 

Getis-Ord G_i* statistic as a measure of neighborhood racial/ethnic segregation, Meyer et. al(23) 

showed an association between highly clustered Black and Latino neighborhoods and cognition, 

but did not observe one for cognitive change. Pohl et. al(14) found that non-Hispanic Black 

adults were more likely to experience negative effects of neighborhood segregation on cognition 

(language and memory domains only) and dementia, but their findings were less pronounced for 

other cognitive domains and incident dementia. Both studies did not examine effects nationally; 

Meyer et. al(23) was a sample of 452 participants in an Alzheimer’s Disease Research Center in 

Davis, and study participants in Pohl et. al.(14) were located in Northern Manhattan, New York. 
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Several studies have been recently published that add to the body of evidence looking at air 

pollution and dementia(24–27). However, none of these studies include a theoretical framework 

to test the social patterning of air pollutants using D and ICE. 

This study has some limitations. The baseline age for this population was 77 years. Many 

participants will have experienced memory decline prior to the study and the cognitive 

assessment may not be sensitive to further decline, given the floor. Additionally, our analytic 

sample included those who did not have dementia at baseline. This could introduce selection bias 

that would attenuate effect estimates toward the null. We only considered non-Hispanic Black 

and non-Hispanic White populations in our measures of structural racism (D) and local racial and 

economic composition (ICE). Calculating it this way adheres to the historical structural racism 

that has shaped the United States’ residential neighborhoods, but does not capture dynamics 

affecting other groups often targeted for discrimination, such as Asian and Hispanic individuals. 

Further, this study was limited to PM2.5 and NO2, the criteria air pollutants that have the strongest 

biological evidence to suggest a neurological effect. Ideally, multiple pollutants would be 

examined in the same model, and methods to deal with the high correlation between pollutants is 

a further direction in this work. Finally, we used baseline air pollutant concentrations as a proxy 

for long-term exposure. As air pollution levels have been decreasing since the passage of the 

Clean Air Act, using the baseline value is an underestimate of cumulative long-term exposure.  

Future work will include validating the use of ICE for this question in a larger sample. We 

believe that the concept of ICE as a downstream effect of racist policies would be strengthened if 

neighborhood ICE levels were adjusted for regional differences in race composition to reflect the 

relative power a neighborhood had with siting decisions (presumably source of air pollution) 

made at the regional/metropolitan statistical area. However, this study found no evidence that the 
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Dissimilarity Index was associated with cognitive aging. This could be due to only metropolitan 

and micropolitan areas being included in the sample. 

The continued significant effect of neighborhood on cognitive function and decline 

necessitates a greater understanding of the historical and social patterning of air pollution. This is 

the first study to examine the effects of exposure to PM2.5 and NO2 and their interaction with 

neighborhood quality on cognition and cognitive decline in this sample of Medicare 

beneficiaries. 
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Figure 2.1. Study Flow Diagram for Analytic Sample in NHATS. We excluded those with 
dementia/AD at baseline in order to preclude reverse causation. Nursing home residents and 
those who completed a Facility Questionnaire were excluded because they did not complete a 
Sample Person (SP) Questionnaire. Those who used Proxy Respondents were excluded because 
we concluded this sample has a higher prevalence of dementia/AD and a majority did not 
complete the Cognitive Section of the SP Questionnaire. Finally, we excluded those who refused 
the Cognitive Section of the SP Questionnaire (as they would not provide values for any 
cognitive items at baseline). 
 
 
 

NHATS Sample/Proxy Respondent 
(N=8,245)

Dementia/AD at baseline 
(n=457)

No dementia/AD at baseline 
(n=7,778)

Nursing home resident 
(n=468) or FQ only 
(n=168)

Began Cognitive Section 
(n=7,152)

Proxy respondents 
(n=314)

SP began Cognitive Section 
(n=6,838)

SP refused Cognitive Section 
(n=88)

SP administered 
Cognitive Section 
(n=6,750)
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Figure 2.2. DAG Directed Acyclic Graph of the relationship between racial residential 
segregation, Dissimilarity, Index of Concentration at the Extremes, air pollution (PM2.5 and 
NO2), and episodic memory and decline, NHATS, 2011 cohort 
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Table 2.1. Baseline characteristics of participants by racialized economic Index of Concentration 
at the Extremes (ICE) (n=6,750)  

ICE <= -0.3 -0.3< ICE <= 0.3 ICE > 0.3 
n 386 5825 538 
Age at baseline, years 77.01 (7.15) 77.05 (7.69) 77.17 (7.72) 
Male 135 (35.0%) 2447 (42.0%) 258 (48.0%) 
Race/ethnicity    
White 24 (6.2%) 4509 (77.4%) 467 (86.8%) 
African American 353 (91.5%) 1071 (18.4%) 40 (7.4%) 
Hispanic 3 (0.8%) 357 (6.1%) 10 (1.9%) 
Other race 12 (3.1%) 349 (6.0%) 35 (6.5%) 
Education    
Less than High School 194 (50.3%) 1477 (25.4%) 53 (9.9%) 
High School Diploma 91 (23.6%) 1664 (28.6%) 90 (16.7%) 
Some College 57 (14.8%) 1509 (25.9%) 129 (24.0%) 
Bachelor's Plus 44 (11.4%) 1175 (20.2%) 266 (49.4%) 
Health measures    
Heart Attack 48 (12.4%) 878 (15.1%) 64 (11.9%) 
Stroke 44 (11.4%) 589 (10.1%) 43 (8.0%) 
Diabetes 146 (37.8%) 1454 (25.0%) 91 (16.9%) 
Heart Disease 53 (13.7%) 1041 (17.9%) 91 (16.9%) 
Lung Disease 67 (17.4%) 891 (15.3%) 62 (11.5%) 
High blood pressure 297 (76.9%) 3886 (66.7%) 319 (59.3%) 
Current smoker 50 (13.0%) 466 (8.0%) 25 (4.6%) 
Former smoker 177 (45.9%) 3025 (51.9%) 279 (51.9%) 
BMI 28.68 (7.07) 27.53 (5.83) 26.59 (4.93) 
Neighborhood 
measures 

   

Black-White 
Dissimilarity 

0.60 (0.13) 0.58 (0.11) 0.66 (0.09) 

Racialized economic 
ICE 

-0.42 (0.09) 0.05 (0.11) 0.41 (0.10) 

PM2.5 (𝜇g/m3) 10.82 (1.26) 9.41 (1.87) 9.35 (1.43) 
NO2 (ppb) 10.27 (4.68) 7.96 (5.00) 8.86 (4.42) 
Urban 317 (82.1%) 3758 (64.5%) 526 (97.8%) 
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Table 2.2. Regression coefficients (b) to describe the association between fine particulate matter 
(PM2.5), Black-White Dissimilarity Index (D), racialized economic Index of Concentration at the 
Extremes (ICE), and episodic memory (standardized z-scores) from mixed linear effects models 
Covariate Estimate 2.50% 97.50% 
(Intercept) 3.585 3.358 3.811 
PM2.5 -0.306 -0.658 0.046 
ICE -0.560 -1.171 0.050 
D -0.049 -0.268 0.171 
Baseline age -0.051 -0.054 -0.049 
Female sex 0.226 0.191 0.260 
High school graduate 0.280 0.232 0.328 
Some college 0.396 0.347 0.446 
Bachelors’ degree+ 0.652 0.600 0.705 
Black -0.291 -0.342 -0.239 
Hispanic -0.239 -0.318 -0.160 
Other race -0.141 -0.215 -0.067 
Midwest 0.045 -0.013 0.104 
South -0.046 -0.105 0.013 
West -0.042 -0.105 0.022 
Urban 0.026 -0.022 0.073 
PM2.5*ICE -0.248 -2.205 1.708 
PM2.5*D 0.463 -0.128 1.052 
ICE*D 0.432 -0.526 1.392 
PM2.5*ICE*D 0.415 -2.708 3.536 
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Table 2.3. Regression coefficients (b) to describe the association between nitrogen dioxide 
(NO2), Black-White Dissimilarity Index (D), racialized economic Index of Concentration at the 
Extremes (ICE), and episodic memory (standardized z-scores) from mixed linear effects models 
Effect Estimate 2.50% 97.50% 
(Intercept) 3.563 3.331 3.792 
NO2 -0.072 -0.339 0.194 
ICE -0.391 -1.027 0.246 
D -0.027 -0.250 0.197 
Baseline age -0.051 -0.053 -0.049 
Female sex 0.226 0.192 0.260 
High school graduate 0.282 0.234 0.330 
Some college 0.397 0.348 0.446 
Bachelors’ degree+ 0.655 0.603 0.707 
Black -0.291 -0.343 -0.239 
Hispanic -0.236 -0.317 -0.155 
Other race -0.144 -0.218 -0.071 
Midwest 0.039 -0.021 0.100 
South -0.050 -0.111 0.011 
West -0.025 -0.090 0.041 
Urban 0.023 -0.029 0.075 
NO2*ICE 1.436 -0.155 3.029 
NO2*D 0.102 -0.266 0.471 
ICE*D 0.166 -0.848 1.181 
NO2*ICE*D -1.743 -3.895 0.405 
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Figure 2.3. Marginal estimates of Black-White Dissimilarity (D) and exposure to PM2.5 
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Figure 2.5. Marginal estimates of Black-White Dissimilarity (D) and exposure to NO2 
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Chapter 3: Do 10-year trajectories of ambient air pollutant (PM2.5 and NO2) exposure influence 

memory? Examining co-pollutant changes using sequence analysis 

 
 
INTRODUCTION 

As our population ages(1), mounting interest lies in alleviating the illnesses of our older 

populations. Alzheimer’s Disease and related dementias affect 5.8 million Americans as of 2019, 

and this figure is set to grow to 7.1 million by 2050(2). Currently, this translates to healthcare 

costs in excess of $1 trillion annually. There are 12 known modifiable risk factors for dementia 

that could prevent up to 40% of dementia incidence (3). Air pollution was added as a risk factor 

in 2020 and its adverse effects on cognition, and more distally, Alzheimer’s Disease and related 

dementias, has been an active area of research(3–5).  

However, the literature continues to struggle with documenting past exposure to air 

pollution over a period longer than a few years; this is a concern when evaluating with cognition, 

specifically, as AD/ADRD develops over decades(4) . With changing exposure to air pollution 

over time, it is important to consider longer time frames of air pollution exposure. Alzheimer’s 

Disease and related dementia develop over the course of decades in a process that is still largely 

unknown. Using exposure data that reflects the longest possible exposure period will more likely 

reflect the true biological process (and the estimate). In addition, the evaluation of co-occurrence 

of multiple pollutants has been constrained to reporting of correlations between them and 

dropping highly correlated ones. Air pollution is a complex mixture of particulate and gaseous 

components, and as such, it is incomplete to look at one component in isolation. Recently, more 

methods have been developed to include multiple correlated pollutants without having to 

sacrifice highly correlated ones in the model, but none of them in one model with the outcome.  
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Sequence analysis is a data-driven approach that summarizes sequences of ordered events 

or “states” that are set in time or position. Originating in evolutionary biology to deduce the 

function of DNA sequences(6), it was first adapted to the social sciences in the 1990s to examine 

musicians’ careers(7,8). More recently, it has been used to characterize exposures that unfold 

over time (e.g., educational or occupational trajectories) to identify distinct exposure groups; 

these groups are then used subgroups at higher risk of adverse health outcomes(9,10). In an 

innovation, we will apply sequence analysis and cluster analysis to characterize 10-year air 

pollution trajectories. The sequence analysis of air pollutant (PM2.5 and NO2) trajectories for the 

10 years preceding baseline in a nationally-representative cohort of Medicare beneficiaries will 

allow us to better characterize exposure histories and understand the role of air pollution on 

adverse cognitive effects.  

 

METHODS 

Study population. The National Health and Aging Trends Study (NHATS) is a 

representative sample of 8,245 Medicare beneficiaries aged 65+ at baseline in 2011. Design, 

sampling, and response rates are described elsewhere(11). We excluded those with dementia or 

Alzheimer’s disease at baseline, nursing home residents or those who only completed a Facility 

Questionnaire (this group did not complete the Cognitive Section), those who used proxy 

respondents, and those who refused the Cognitive Section at baseline, resulting in a final analytic 

sample size of 6,750. A study flow diagram is included (Supplement Figure 1). 

Assessment of air pollution exposure. Our exposure was census-tract level air pollution 

trajectories from 2000 to 2010.  Air pollution concentration estimates were developed by the 

Center for Air, Climate and Energy Solutions using v1 empirical models as described in Kim et 
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al., 2018(12). Briefly, these models were built from U.S. EPA regulatory monitors, land use 

maps, and satellite images to predict ambient concentrations at locations without monitors of 

seven pollutants throughout the contiguous United States. Annual average concentrations of 

outdoor PM2.5 (µg/m3) and NO2 (ppb) for residential Census Block centroid were predicted and 

population weighted to the census tract in the contiguous United States were obtained for the 10 

years prior to baseline, creating an exposure window from 2000 to 2010. Individual air pollution 

trajectories that incorporate 10 years of prior exposure data could yield thousands of unique 

exposure sequences. To operationalize thousands of air pollution trajectories from 2000-2010 

into an analytically tractable number of distinct trajectory clusters, we applied sequence analysis, 

an innovation in air pollution trajectory data. This was accomplished in three steps: [1] creation 

of census-tract level air pollution trajectories; [2] sequence analysis to quantitatively evaluate 

how similar each trajectory was to all other trajectories in the data; [3] cluster analysis to group 

similar trajectories.  

First, we created census-tract level air pollution trajectories, by categorizing data on two 

pollutants (PM2.5, NO2) into low (<25th percentile), medium (25 – 75th percentile), and high 

(>75th percentile) categories using 2010 data for percentile cut offs. For PM2.5, cut points were 

7.9 𝜇g/m3 and 10.8 𝜇g/m3, and for NO2 cut points were 4.8 ppb and 10.8 ppb). For each year 

between 2000 and 2010, nine mutually exclusive categories are possible (e.g. low PM2.5, low 

NO2; medium PM2.5, low N02; high PM2.5, low NO2, etc.).  

Second, we used the optimal matching algorithm to evaluate quantitatively how 

trajectories differed from each other. Optimal matching calculates dissimilarities (distances) 

between each pair of sequences as the minimum total “cost” to transform one sequence into 

another, obtained as a combination of edit operations (substitutions, insertions and deletions). For 
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our specific application, we utilized dynamic hamming, a variation of the optimal matching 

algorithm that calculates time-varying substitution costs and does not allow insertion and 

deletion operations, therefore prioritizing timing over duration and order of events (13). 

Substitution costs between pollution categories were based on observed transition rates at each 

time point such that more rare transitions were assigned higher substitution costs. A substitution 

cost matrix was generated from the transition rates at each time point in the study period. Next, 

single substitution costs were summed to calculate the dissimilarity between each sequence and 

all the other sequences in the data, resulting into a symmetric, square distance matrix. 

Finally, we applied agglomerative hierarchical clustering to group similar air pollution 

trajectories together on the basis of the distance matrix obtained from the sequence analysis. We 

used Ward’s linkage(14), which iteratively compares the error sum of squares of a cluster 

solution with the error sum of squares of a cluster solution with one less cluster. The final 

number of clusters was determined using Duda-Hart stopping rules(15). With additional 

assessments based on cluster heterogeneity, 10-year air pollution trajectories with a 9-cluster 

solution was selected.  

Outcome ascertainment. The outcome was a composite measure of episodic memory 

calculated from the immediate and delayed word list recall from the Cognitive Section assessed 

in-person annually. These measures ask participants to read a list of 10 words. For the immediate 

word recall, participants are asked to recall as many words as possible immediately after reading 

the list. After 5-minutes, the participant is asked to recall as many of the 10 words as possible for 

the delayed word list recall measure. Scores on each test were standardized to baseline mean and 

standard deviation, and then averaged.  
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Covariates. We included the following potential confounders in our final model: baseline 

age (years), sex (female, male), education (less than high school, high school diploma, some 

college, Bachelor’s degree and higher), race/ethnicity (Black, Hispanic, White, other), Census 

region (Midwest, South, West, Northeast), urban census tract (Rural-Urban Commuting Area 

Code(16) = 1 indicator), and neighborhood Index of Concentration at the Extremes (ICE). The 

Index of Concentration (ICE) at the Extremes measures the concentration of privilege (non-

Hispanic White with high incomes) and disadvantage (non-Hispanic Black with low income) in a 

census tract(17,18). We computed ICE(19) for each census tract, calculated as:  

𝐼𝐶𝐸& =	
#!+$!
,!

, 

where 𝐴&     is the number of people in the census tract i in the most privileged extreme, 𝑃&    is 

the number of people in the census tract i in the most deprived extreme, and 𝑇&    is the total 

number of people living in that census tract i. The ICEi is summed across all census tracts n in 

the US for the estimates presented in Table 1. A distinct advantage of using ICE is the ability to 

combine multiple dimensions of social advantage, and for this analysis, we use racialized 

economic segregation. This variable defines the privilege group as high-income non-Hispanic 

White people and disadvantage as low-income non-Hispanic Black people. High income is 

defined as the 80th percentile, $100K and greater, and low income as $25K and less(17,19). ICE 

ranges from -1 (concentrated with low-income non-Hispanic Black individuals) to 1 

(concentrated with high-income non-Hispanic White individuals), and was computed for each 

census tract. 

Statistical analysis. Our primary goal was to investigate the relationship between air 

pollution trajectories generated from sequence and cluster analysis and memory. We used a linear 
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mixed model to evaluate the effect of air pollution trajectories on memory, adjusted for 

confounders, with random intercepts for census tract.     

We conducted several robustness checks to compare estimates using sequence and cluster 

analysis to more traditional measures of the effect between exposure to air pollution and episodic 

memory. We compared separate models of PM2.5 and NO2 in 2010 as a continuous variable 

representing long-term exposure to air pollution. We also categorized PM2.5 and NO2 at the 25th 

and 75th percentiles in 2010 to create categories of low, medium, and high exposure, and tested 

each pollutant in separate models.  

All analyses were weighted to be nationally representative, and all standard errors were 

adjusted for the sampling design of the National Health and Aging Trends Study, 2011 cohort. 

Data cleaning and analyses were conducted using R, version 2022.12.0+353. All data cleaning 

and analysis code was reviewed by the second author, who was not involved in the initial 

programming(20).  

 

RESULTS 

Our sample included 6,750 NHATS participants living in 3,048 different census tracts. 

Using the 25th and 75th percentiles for PM2.5 (7.9 and 10.8	𝜇g/m3) and NO2 (4.8 and 10.8 ppb) for 

all US census tracts in 2010, our sample contained 1,080 unique sequences� (Figure 3.1 Index 

Plot). After implementing sequence and cluster analysis, air pollution sequences were clustered 

into 9 groups using Duda-Hart stopping rules (Supplement Table 3.3S) considering cluster 

heterogeneity. We described these groups based on the timing, duration, and order of air 

pollution states. We refer to these groups descriptively as: (1) high PM2.5 and NO2 with 

decreasing NO2, (2) those with high exposure to PM2.5 and NO2 for the duration of the study 
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period, (3) those with a mix of high/medium exposure, (4) those with a mix of medium exposure, 

(5) high PM2.5 and medium NO2 exposure, (6) low PM2.5 and NO2 exposure—designated as the 

reference group, (7) low exposure mixture with some medium at the start of the study period, (8) 

medium PM2.5 and NO2 exposure, and (9) medium exposure mixture (Figure 3.2).  

Cluster Characteristics. The number of NHATS participants’ census tracts in each cluster 

ranged from 205 (Cluster 6 to 2185 (Cluster 2) (Table 3.1). Those living in higher exposure 

pollution trajectories (Clusters 1 and 2) had a greater than 25% African American individuals. 

Unsurprisingly, Clusters 1 and 2 had the greatest percentage of NAAQS PM2.5 exceedances, 

15% and 18%, respectively. Clusters 6-8 had greater than 90% White people. Cluster 4 had the 

highest percentage (14.3%) of Hispanic populations. Clusters 1-4 had greater than 90% urban 

census tracts; conversely Cluster 6, our reference cluster, was comprised completely of rural 

census tracts. We did not observe large differences by age, gender, health conditions, or measures 

of neighborhood socioeconomic conditions.  

Ten-year Air Pollution Trajectories and Memory. Generally, higher exposure to air 

pollution and longer duration of exposure over the 10-year period predicted worse episodic 

memory (See Table 3.2). Compared to those with the lowest exposure trajectory over the 10-year 

exposure period (Cluster 6), all groups reported worse episodic memory at baseline. Those in 

Cluster 1, with high PM2.5 and NO2 and decreasing NO2 towards the latter half of 2010, had a 

0.217 (95% CI: -0.369, -0.065) SD worse cognitive score than those who experienced the least 

exposure to PM2.5 and NO2 for the study period (Cluster 6). For context, a year of aging in this 

sample was associated with an estimated effect of -0.045 (95% CI: -0.048, -0.043); therefore, 

compared to the low exposure referent group, all other air pollution trajectory clusters represent 

excess cognitive aging between 2 and 5 years.  
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Robustness Checks. Our sensitivity analyses showed consistent, albeit weaker and non-

statistically significant associations with episodic memory at baseline (Supplement Tables 3.4S-

3.7S). Using NO2 in 2010 as a continuous measure, we observed that every-unit increase in NO2 

was associated with a 0.003 SD (95% CI: -0.008, 0.002) worse memory score; for PM2.5, -0.005 

(-0.016, 0.006) SD worse score. Comparing the highest category of NO2 exposure to the lowest 

in 2010, we observed a 0.017 (-0.089, 0.056) SD worse memory score, and for the highest tertile 

of PM2.5 we observed a 0.023 (-0.041, 0.087) SD better episodic memory score.  

 

DISCUSSION 

Higher exposure to air pollutants (PM2.5 and NO2) was generally associated with worse 

episodic memory in the National Health and Aging Trends Study in participants enrolled in 2011; 

however, memory at baseline was associated more strongly with trajectory cluster of participant 

than most recent exposure serving as a proxy for long-term exposure. Our results suggest that 

sequence analysis offers a more nuanced operationalization of the exposure, simultaneously 

incorporating exposure level, duration, and timing of air pollution over ten years.  

Future research could incorporate more pollutants than the ones used here. We plan to use multi-

channel sequence analysis to allow flexibility in multiple pollutants, other neighborhood factors, 

and their interaction. The definition of costs has been a point of contention with the application 

of sequence analysis to the social sciences. Another future direction of our work is to help 

validate this work.  

There are limitations to these analyses. We were only able to examine the 10 years of 

exposure to air pollution history due to air pollution model changes and residential living 

patterns. Ideally, we would have residential and air pollution data for the entire life course; 
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however, we were able to detect meaningful differences in memory given our data, and our 

approach represents an important advance over prior work in this area. Sequence analysis is not 

able to address time-varying confounding that occur during exposure trajectories, only pre-

trajectory confounders (occurring before 2000). Residual confounding is a concern in all 

observational analyses; although our substantive research questions are clearly causal, strong, 

untestable assumptions are needed for causal inference. Contemporaneous exposures (like 

increases in area level poverty due to plant closure) were not incorporated in these analyses and 

represent an important area to address in future work. These results may not generalize to more 

recent, or younger, cohorts, as air pollution has generally decreased since its measurement in the 

United States (1970), however, detecting health effects even at these lower levels is important to 

inform national standards for air pollution (NAAQS). 

To our knowledge, this is the first analysis to rigorously examine the combined 

consequences of both PM2.5 and NO2 using sequence analysis. 
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Figure 3.1. Sequence index plot showing the individual-level air pollution trajectories (2000-
2010) represented in the National Health and Aging Trends Study 2011 cohort. Each individual’s 
air pollution trajectory is a row on the y-axis; each year of exposure to air pollution is 
represented on the x-axis. There were 6,750 individuals followed for 10 years included in the 
sequence analysis. We categorized each year of exposure into 1 of 9 mutually exclusive states 
based on the 25th and 75th percentiles of PM2.5 and NO2 in 2010. Of a total possible 910 air 
pollution trajectories, there were 1,080 unique air pollution trajectories. 
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Figure 3.2. Sequence index plots of the 9 prototypical air pollution sequences from 2000-2010 
used to predict memory in NHATS. We refer to these groups descriptively as: (1) high PM2.5 and 
NO2 with decreasing NO2, (2) high PM2.5 and NO2 throughout the study period, (3) a mix of 
high/medium exposures, (4) a mix of medium exposures, (5) high PM2.5 and medium NO2 
exposure, (6) low PM2.5 and NO2 exposure—designated as the reference group, (7) low exposure 
with some medium at the start of the study period, (8) medium PM2.5 and NO2 exposure, and (9) 
medium exposure mixture. 
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Figure 3.3. Geographic distribution of NHATS participant’s baseline census tract 10-year air 
pollution trajectory clusters. Cluster 6 served as the reference for this analysis; Cluster 1 and 2 
had the highest concentrations during the 10-year exposure window. Clusters 1-4 had a greater 
proportion of urban census tracts; Cluster 6 was comprised entirely of rural census tracts  
(urban defined according to RUCA code = 1) 
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Table 3.2. Regression coefficients (b) for the association of cluster of air pollution trajectories  
and memory score in the NHATS 2011 cohort (weighted) 
Effect Estimate 2.50% 97.50% 
(Intercept) 3.320 3.077 3.562 
Cluster 7 -0.103 -0.239 0.033 
Cluster 8 -0.109 -0.240 0.022 
Cluster 9 -0.119 -0.269 0.030 
Cluster 4 -0.208 -0.344 -0.071 
Cluster 3 -0.279 -0.419 -0.138 
Cluster 5 -0.155 -0.274 -0.036 
Cluster 2 -0.181 -0.307 -0.055 
Cluster 1 -0.200 -0.353 -0.046 
Baseline age -0.047 -0.050 -0.044 
Female sex 0.269 0.230 0.307 
High school graduate 0.306 0.249 0.363 
Some college 0.413 0.355 0.471 
Bachelors’ degree + 0.690 0.629 0.751 
Black -0.305 -0.382 -0.227 
Hispanic -0.152 -0.236 -0.068 
Other race -0.223 -0.302 -0.144 
ICE -0.300 -0.437 -0.162 
Midwest 0.079 0.017 0.140 
South -0.018 -0.076 0.041 
West -0.018 -0.085 0.049 
Urban 0.046 -0.009 0.100 
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Table 3.3S Duda-Hart Cluster Stopping Rules, Dynamic Hamming 
Number of 
Clusters 

Je(2)/Je(1) pseudo T-
squared 

1  0.7500 2249.17   
2  0.8312 916.16   
3 0.8426 478.06   
4 0.8303 314.45   
5 0.7475 344.58   
6  0.8623 207.74   
7 0.7924 585.15   
8 0.8474 351.05   
9 0.8131   199.05   
10 0.7877  382.52   
11 0.5337 1106.29   
12 0.7448 148.35   
13 0.8463  108.77   
14 0.8229 207.90   
15 0.8705 101.78   
16 0.7953 187.87   
17 0.6864 244.93   
18 0.8377 102.53   
19 0.6306 105.46   
20 0.7399 241.47   
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Table 3.4S Regression coefficients for categories (by IQR) for PM2.5 in 2010 with memory score 
in NHATS 2011 cohort 
Effect Estimate 2.50% 97.50% 
(Intercept) 3.104 2.892 3.317 
ICE -0.299 -0.425 -0.173 
PM2.5 IQR 2 -0.014 -0.070 0.042 
PM2.5 IQR 3 0.023 -0.041 0.087 
Baseline age -0.046 -0.048 -0.043 
Female sex 0.235 0.197 0.274 
High school graduate 0.312 0.259 0.365 
Some college 0.409 0.354 0.464 
Bachelor’s degree + 0.672 0.613 0.731 
Black -0.284 -0.340 -0.227 
Hispanic -0.160 -0.249 -0.072 
Other race -0.177 -0.259 -0.095 
Midwest 0.065 0.004 0.127 
South -0.049 -0.104 0.006 
West -0.026 -0.092 0.040 
Urban 0.008 -0.036 0.052 
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Table 3.5S Regression coefficients for categories (by IQR) for NO2 in 2010 with memory score 
in NHATS 2011 cohort 
Effect Estimate 2.50% 97.50% 
(Intercept) 3.104 2.895 3.312 
ICE -0.292 -0.418 -0.167 
NO2 IQR 2 -0.041 -0.093 0.011 
NO2 IQR 3 -0.017 -0.089 0.056 
Baseline age -0.045 -0.048 -0.043 
Female sex 0.236 0.198 0.275 
High school graduate 0.311 0.258 0.365 
Some college 0.408 0.353 0.463 
Bachelor’s degree + 0.671 0.612 0.730 
Black -0.284 -0.341 -0.227 
Hispanic -0.158 -0.247 -0.069 
Other race -0.180 -0.262 -0.098 
Midwest 0.083 0.023 0.144 
South -0.042 -0.100 0.015 
West -0.016 -0.079 0.046 
Urban 0.027 -0.024 0.079 
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Table 3.6S Regression coefficients for continuous (by IQR) for PM2.5 in 2010 with memory 
score in NHATS 2011 cohort 
Effect Estimate 2.50% 97.50% 
(Intercept) 3.146 2.916 3.375 
ICE -0.281 -0.408 -0.155 
PM2.5 -0.005 -0.016 0.006 
Baseline age -0.046 -0.048 -0.043 
Female sex 0.236 0.197 0.274 
High school graduate 0.310 0.257 0.363 
Some college 0.406 0.351 0.461 
Bachelor’s degree + 0.669 0.610 0.728 
Black -0.280 -0.336 -0.223 
Hispanic -0.160 -0.248 -0.071 
Other race -0.175 -0.257 -0.093 
Midwest 0.083 0.021 0.145 
South -0.044 -0.099 0.011 
West -0.029 -0.094 0.035 
Urban 0.019 -0.025 0.064 
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Table 3.7S Regression coefficients for continuous (by IQR) for NO2 in 2010 with memory score 
in NHATS 2011 cohort 
Effect Estimate 2.50% 97.50% 
(Intercept) 3.117 2.907 3.327 
ICE -0.283 -0.408 -0.157 
NO2 -0.003 -0.008 0.002 
Baseline age -0.045 -0.048 -0.043 
Female sex 0.236 0.197 0.274 
High school graduate 0.310 0.257 0.363 
Some college 0.407 0.352 0.462 
Bachelor’s degree + 0.671 0.612 0.729 
Black -0.276 -0.333 -0.218 
Hispanic -0.151 -0.240 -0.061 
Other race -0.172 -0.255 -0.090 
Midwest 0.069 0.008 0.129 
South -0.060 -0.119 -0.001 
West -0.026 -0.088 0.037 
Urban 0.028 -0.021 0.077 
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