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LAL 05{34LBNL{57484MIT{CTP 3624hep-ph/0506228Testing the dynamis of B ! �� and onstraints on �Yuval Grossman,1, 2, 3 Andreas H�oker,4 Zoltan Ligeti,5 and Dan Pirjol 61Department of Physis, Tehnion{Israel Institute of Tehnology, Tehnion City, 32000 Haifa, Israel2Physis Department, Boston University, Boston, MA 022153Je�erson Laboratory of Physis, Harvard University, Cambridge, MA 021384Laboratoire de l'A�el�erateur Lin�eaire, IN2P3-CNRS et Universit�e Paris-Sud, BP 34, F-91898 Orsay Cedex, Frane5Ernest Orlando Lawrene Berkeley National Laboratory, University of California, Berkeley, CA 947206Center for Theoretial Physis, MIT, Cambridge, MA 02139In harmless nonleptoni B deays to �� or ��, the \olor allowed" and \olor suppressed" treeamplitudes an be studied in a systemati expansion in �s(mb) and �QCD=mb. At leading order inthis expansion their relative strong phase vanishes. The impliations of this predition are obsuredby penguin ontributions. We propose to use this predition to test the relative importane ofthe various penguin amplitudes using experimental data. The present B ! �� data suggest thatthere are large orretions to the heavy quark limit, whih an be due to power orretions to thetree amplitudes, large up-penguin amplitude, or enhaned weak annihilation. Beause the penguinontributions are smaller, the heavy quark limit is more onsistent with the B ! �� data, and itsimpliations may beome important for the extration of � from this mode in the future.I. INTRODUCTIONNonleptoni B deays to light hadrons provide infor-mation about CP violation. In partiular, the deays to��, �� and �� an determine the weak phase �. The the-oretial hallenge is to disentangle the strong interationphysis from the weak phase one would like to determine.For the deay B0 ! �+�� the B fatories study the CPasymmetry,�[B0(t)! �+��℄� �[B0(t)! �+��℄�[B0(t)! �+��℄ + �[B0(t)! �+��℄= S+� sin(�mt)� C+� os(�mt) ; (1)with the present world averages [1, 2℄S+� = �0:50� 0:12; C+� = �0:37� 0:10 : (2)If the B ! �+�� amplitude were dominated by ontri-butions with a single weak phase, the observablesin(2�e�) = S+�Æq1� C2+� ; (3)would be equal to sin 2� and C+� would be zero. Thedata indiate that this is not a good approximation. Anisospin analysis [3℄ still allows a theoretially lean deter-mination of � if the B0 ! �0�0 and B0 ! �0�0 ratesare preisely measured. Sine this requires very largedata samples, several strategies have been proposed toextrat � from �e� relying on theoretial inputs.In the last few years the theory of B ! �� deayshas advaned onsiderably. Using the heavy quark limit,fatorization theorems have been proven for the deayamplitudes at leading order in �=mb. The amplitudesin Eq. (5) arise from the matrix element of the e�etiveHamiltonian,He� = �4GFp2 ��u�C1Ou1 + C2Ou2 +Xi�3 CiOi�

+ ��C1O1 + C2O2 +Xi�3 CiOi�+ �t Xi�3 Cti Oi� ; (4)where CKM-unitarity was not used, and i = 3; : : : ; 6; 8.(In the usual notation one has Ci = Ci�Cti .) Its B ! ��matrix element an be parameterized asA(B0 ! �+��) = ��u(T + Pu)� �P � �tPt= e�iT�� + ei�P�� ;p2A(B0 ! �0�0) = �u(�C + Pu) + �P + �tPt= e�iC�� � ei�P�� ;p2A(B� ! ���0) = ��u(T + C) = e�iT�0 ; (5)where �q = VqbV �qd. (We neglet isospin breaking [4℄ andthe ontributions of eletroweak penguins, the dominantpart of whih an be inluded model independently [5℄.)In Eq. (5) T + Pu and C � Pu are the B ! �+�� andB ! �0�0 matrix elements of the terms in the �rst linein Eq. (4), while P and Pt are the matrix elements ofthe seond and third lines, respetively. This implies thateah of the T+Pu, C�Pu, P and Pt terms are separatelyrenormalization group invariant.There is an ambiguity in Eq. (5) related to the free-dom in hoosing the weak phase �, in terms of whihthe amplitudes are written. There are two widely usedonventions orresponding to eliminating either �t or �using unitarity (some aspets of this were disussed inRefs. [6℄). In the t-onvention one eliminates �t fromEq. (5), while in the -onvention one eliminates �. Ta-ble I shows the expressions for the amplitudes and � inthese onventions. One a hoie is made, T��, C��, P��,and T�0 an be extrated from the data, while furthertheoretial input is needed to determine T , C and Pu;;t.The amplitudes in Eq. (5) (and their CP onjugates)



2TABLE I: The B ! �� amplitudes and the phase of thepenguin amplitude in the - and t-onventions (Pij � Pi�Pj).amplitude t-onvention -onventionT�� j�uj(�T � Put) j�uj(�T � Pu)C�� j�uj(�C + Put) j�uj(�C + Pu)P�� �j�jPt j�tjPt� � �satisfy the isospin relation1p2A(B0 ! �+��)+A(B0 ! �0�0) = A(B� ! ���0) :(6)The \tree" amplitudes also satisfy the relationT�� + C�� = T�0 ; (7)whih will play an important role in this paper, and werefer to it as the \tree triangle" (TT).Expanding the amplitudes in soft-ollinear e�etivetheory (SCET) [7℄, one an de�ne the leading (in �=mb)parts of T , C, and Pu separately in terms of matrix el-ements of distint SCET operators [8℄, whih we denotewith (0) supersripts. The relative strong phase of T (0)and C(0) is suppressed by �s [9, 10℄, and therefore�T � arg�T (0) + P (0)uT + C � = O��s(mb); �QCD=mb� : (8)The numerator inludes P (0)u so that �T is sale inde-pendent. The denominator ould be de�ned to ontainT (0) +C(0), and our hoie is for later onveniene. Nei-ther of these a�et the right-hand side of Eq. (8) [reall:P (0)u =T (0) = O(�s)℄. We de�ne T 0(0) � T (0) + P (0)u andT + Pu � T 0(0) + P 0u, and in the rest of this paper theprimes will be dropped. Thus, hereafter, Pu ontains thepower suppressed orretions to T + Pu (inluding weakannihilation).The impliations of Eq. (8) for the determination of �are obsured by the fat that T and C are not diretlyobservable. The amplitudes T�� and C�� in Eq. (5)that an be extrated from the data inlude ontribu-tions from Pu;;t. The heavy quark limit also determinesthe power ounting for the penguin amplitudes, however,the onvergene of the expansion for the penguins is lesslear than it is for the trees. At leading order in �=mbthe alulable parts of Pu;;t are suppressed by �s or thesmall Wilson oeÆients C3;4. At subleading order, theQCD fatorization (QCDF) formula for Pt ontains size-able \hirally enhaned" orretions, omparable to theleading order term [10℄. The possible size of nonpertur-bative ontributions to P has also been the subjet ofdebate [9, 11℄. A large P amplitude was found in �tsusing the leading order fatorization results in SCET [9℄,or adding a free parameter to the leading order QCDFresult [12℄. In QCDF P is laimed to be omputable
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FIG. 1: Isospin triangles for B andB deay,WZY andWZX.WVZ is the tree triangle (TT), Eq. (7), with WV = T�� andZV = C��. The dashed lines show the P�� amplitudes.at leading order without nonperturbative inputs, whilePt reeives sizable \hirally enhaned" O(�=mb) orre-tions. Equation (8) and allowing for large long distaneontribution to P was used in Ref. [13℄ to determine �without using the measurement of C00 (the diret CPasymmetry in B ! �0�0).The penguin amplitudes P and Pt introdue a di�er-ene between the TTs in the two onventions. The Puamplitude is ommon to T�� in the t- and -onventions,but P enters T�� in the -onvention and Pt enters T�� inthe t-onvention. Understanding the relative hierarhy ofthe three penguin amplitudes, Pu;;t, is important if oneis to use Eq. (8) for the determination of �. In addition,it may also shed light on the �=mb power ounting for thepenguin amplitudes. In this paper we show that by om-paring the shapes of the TT in the  and t-onventionswe an gain empirial knowledge about the relative sizesof Pu, P and Pt.II. ISOSPIN ANALYSIS AND TREE TRIANGLEThe isospin relation in Eq. (6) holds for both the B andB deay amplitudes, denoted by �A and A, respetively.It is onvenient to de�ne eAij = e2iAij , so that A0+ =eA0�. Figure 1 shows the resulting two isospin triangles,WZX and WZY , where the tree triangle, WZV , is alsodrawn. We follow the notation of Ref. [14℄, but normalizeA(B+ ! �0�+) =WZ = 1.To determine the TT from the data, reall that theWZX and WZY isospin triangles an be obtained fromthe diret CP asymmetries C+� and C00, and the ratios



3of branhing frationsR+� = B(B0 ! �+��)2B(B+ ! �+�0) �B+�B0 = 0:44+0:07�0:06 ;R00 = B(B0 ! �0�0)B(B+ ! �+�0) �B+�B0 = 0:29+0:07�0:06 ; (9)where we used the experimental inputs from [2, 15℄. Tak-ing the ratios eliminates an arbitrary overall normaliza-tion parameter. To determine the oordinates of V , how-ever, the measurement of S+� is also needed.It is onvenient to de�ne the oordinates of X and Yto be (�`; 0), with`2 = 12R+�h1�q1� C2+� os 2��i; (10)where �� � �� �e� and �e� is de�ned in Eq. (3). Thefour oordinates ofW and Z and the phase �� are givenby the solutions of the �ve equations [14℄1 = (xZ � xW )2 + (yZ � yW )2;R00 = x2Z + y2Z + `2;R+� = x2W + y2W + `2;R+�C+� = �2`xW ;R00C00 = �2`xZ : (11)The XV Y angle is 2(�+ ), so that the y oordinate ofV (0; yV ) isyV = ��` ot ; in the t-onvention ,` ot� ; in the -onvention . (12)Equations (11) an be solved for �� and the oordinatesof W and Z. Beause of the relative orientation of theamplitudes A+� and eA+� adopted in Fig. 1, the solutionmust also satisfy sgn(��) = sgn(yW ).Some important properties of the solutions are appar-ent. First, xW = 0 if and only if C+� = 0 (similarly,xZ = 0 if and only if C00 = 0). Seond, the sign of xW(xZ) is opposite of that of C+� (C00). Thus, WZ rossesthe y axis if and only if the diret CP asymmetries in theharged and neutral modes have opposite signs.In the rest of this setion, we treat the simpli�ed asewhere C00 is not known. The �rst four equations in (11)an be used to solve for the oordinates of W and Z asfuntions of ��. For any given value of ��,W and Z aredetermined up to a two-fold ambiguity, orresponding tothe reetion of Z about the WO line. These equationsalso plae bounds on ` and �� [14, 16℄`2 � R+�R00 � (1�R+� �R00)24 ;os(2��) � (1 +R+� �R00)2 � 2R+�2R+�q1� C2+� : (13)We refer to these inequalities as the isospin bound, andde�ne �bound � �e� � ��max, whih an be obtained

from Eqs. (3) and (13), and bound � � � � � �bound.(Here, and in what follows � is treated as known.) Theoordinates of W and Z at the isospin bound satisfyxZxW ����bound = yZyW ����bound = �1 +R00 �R+�1�R00 +R+� : (14)This means that at the isospin bound W , Z, and O areon one line and that at the boundC00��bound = �R+�R00 1 +R00 �R+�1�R00 +R+� C+���bound : (15)The present data gives at the isospin bound C00 =�(1:1� 0:1)C+�, whih is almost 2� from the measure-ments of C+� in Eq. (2) and C00 = �0:28+0:39�0:40 [2, 17℄.In general, and even at the isospin bound, the V vertexof the TT depends on S+� via Eq. (12). Thus, the shapeof the TT at the bound is not �xed, but depends on theexperimental results. This dependene enters through�e�+�� and implies that if one uses a onstraint on theshape of the TT to extrat �, then i) the solution is notinvariant under ��$ ���, and ii) the allowed values of�� are not the same for eah disrete ambiguity of �e� .Both of these points are di�erent from the well-knownsymmetry properties of the usual isospin analysis.The theory predition of a small strong phase in Eq. (8)implies that the TT should be nearly at, up to penguinontributions, small �s and unknown �=mb orretions.While the penguin ontamination makes the de�nitionof the TT itself onvention dependent, it is interesting toonsider under what onditions the TT an be at, andits relation to the isospin bound. Sine at the isospinbound W , Z, and O are on a line, unless yV = 0, the TTis at at the isospin bound if and only if xW = xZ = 0.This implies that if any two of the following statementshold, then the other three follow:1. The t-onvention TT is at for generi �;2. The -onvention TT is at for generi �;3. � is at the isospin bound;4. C+� = 0;5. C00 = 0. (16)Equivalently, when one of the statements in (16) holds,the other four are either all true or all false. This showsthat whether the TT is at near the isospin bound or notdepends on the value of �; i.e., the TT being at and �(or ) being lose to the isospin bound are in prinipleunrelated. III. CONSTRAINTS ON �In Ref. [13℄, the predited smallness of �T and Put wasused to imply that the TT in the t-onvention is (near)at, whih, in turn, was used to extrat  without theinsuÆiently known C00. In this setion we disuss the



4impliations of knowing an angle in the TT for the deter-mination of �, using a method whih makes transparentthe dependene of the onstraints on � on the data.For given R+�, R00, and C+�, the �rst four equationsin (11) together with (10) determine the oordinates ofW and Z as funtions of ��. If, in addition, an angle inthe TT is also known, then the position of the point V isdetermined. We �nd it simplest to disuss the onstraintsin terms of the (onvention dependent) observable phase,� (q) � arg�T (q)��T�0 � = arg�1 + PuqT (0)�+ �T ; (17)where q =  or t. The TT is near at in either onventionif j� j � 1. Note that if the penguin amplitudes vanished,then � (t) = � () = �T . We an determine the oordinatesof V as a funtion of �� in two ways: from the value of� and the oordinates of W and ZyV (��) = yW � xW yZ � yW � (xZ � xW ) tan �xZ � xW + (yZ � yW ) tan � ; (18)and from Eq. (12) if �, S+� and C+� are measuredyV (��) = � ` ot(� + �e� +��) ; t-onvention,` ot(�e� +��) ; -onvention.(19)The expression in (19) is onvention dependent, beauseso is the de�nition of � that enters in (18). These twoequations form an impliit equation for ��.Figure 2 illustrates this method for the entral val-ues of the data. The solid urves show the solution foryV (��) vs. �� from Eq. (19): the darker (blue) urveorresponds to the t-onvention and �e� ' 106Æ, whilethe lighter (red) urves orrespond to the -onvention(the upper one for �e� ' 106Æ, the lower one for its mir-ror solution �e� ' 164Æ). The dashed urve shows yVvs. �� from Eq. (18) for � = 0, and its intersetionswith the solid urves determine the value of ��, whihtogether with �e� gives �. For the purpose of illustrationthe dotted urves show � = +10Æ (lower urve) and �10Æ(up-most urve).The � = 0 urve goes to yV = 0 at the isospin bound(see Fig. 2), in aordane with our result in Se. II thatif �� is at the isospin bound and the TT is at, thenyV = 0. The right-hand side of Eq. (19) is small inthis region of ��, sine the argument of the otangentis lose to 90Æ (the entral values of the �� data give�e� ' 106Æ, so that at the smallest value of �� ' �28Æ,� + �e� +�� ' 102Æ and �e� +�� ' 79Æ). These twofats imply that there is a solution for �� near the isospinbound with a at TT; however, this is a oinidene andnot a neessity.In Ref. [13℄ it was found that for small � (t) the solu-tion for �� was lose to the isospin bound. This an beeasily seen from Fig. 2. The dashed and dotted urvesare steep near the bound for negative ��, so hanging� hardly hanges the solution for ��. However, for theother solution (orresponding to positive ��, and a value
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FIG. 2: The solid urves are yV vs. �� from Eq. (19): thedarker (blue) urve orresponds to the t-onvention and �e� '106Æ, while the lighter (red) urves to the -onvention (theupper one for �e� ' 106Æ, the lower one for �e� ' 164Æ). Thedashed urve shows the solution of Eq. (18) for � = 0, and thedotted urves are � = +10Æ (lower) and � = �10Æ (upper).of � disfavored by the global CKM �t [18℄), the error issigni�antly larger, sine the dependene of �� on � isstronger. The allowed region of �� is partiularly sen-sitive to R00; for example, for R00 = 0:2 (whih is a bitmore than 1� lower than its present entral value) thej� j < 10Æ onstraint would inlude almost all values of�� that are allowed by the isospin analysis. Note thatwith the urrent data the error of � extrated using theonstraint of a small � inreases with dereasing R00,ontrary to the isospin analysis.The on�dene level (CL) of � obtained by imposinga onstraint on � is shown in Fig. 3 using the CKM-�tter pakage [18℄. In the left plot the urves show(see the labels) the CL of � imposing � = 0 in boththe t- and -onventions without using the C00 measure-ment in the �t. For omparison, we also show the re-sult of the usual isospin analysis with and without usingC00. The plot on the right-hand side shows the CL of� imposing � = 0 in the t-onvention with and with-out using C00, and the onstraint in the t-onventionimposing j� j < 5Æ, 10Æ, and 20Æ. The restrition on �from a onstraint j� j < �0 beomes quite weak as �0 in-reases in the range 10Æ < �0 < 20Æ. We an ompareour results with those of [13℄, whih use as theory in-put an upper bound on � = jIm(C(t)��=T (t)�� )j. Assumingf; j arg(P��=T��)jg < 90Æ, we �nd sin � (t) < �pR+�,i.e., � (t) < 15:5Æ (7:8Æ) for the bounds onsidered in [13℄,� < 0:4 (0:2).Imposing � = 0 gives only two solutions with �2 = 0with the urrent data, around � � 78Æ and 132Æ. The�rst one, whih is onsistent with the Standard Model(SM) CKM �t, is disfavored by the measurement of C00.While the two solutions have omparable errors for � = 0,allowing a �nite range of � to aount for subleadinge�ets inreases the error of the � � 132Æ solution morerapidly. Imposing a bound on jIm(C=T )j [13℄ allows, inaddition to � being near 0, that � is near � (mod 2�);
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it is Pu. (We hoose, for onveniene, the pure treeamplitude T�0 to be real.) Thus, omparing the TT inthe two onventions teahes us about the relative size ofPut and Pu. (The same information an in priniple beobtained from the �t in any one onvention; this ompar-ison makes the results more transparent.) We use the SMglobal �t to the CKM matrix that determines the weakphase  = (59:0+6:4�4:9)Æ [18℄. This allows the onstrutionof the tree triangles in both onventions, as explained inSe. II. Comparing how at they are, i.e., how small theangle � of the TT is, the following outomes are possible:(i) j� (t)j � j� ()j. This would imply Im(Put) �Im(Pu), and the likely explanation would bejPj � jPuj � jPtj.(ii) j� (t)j � j� ()j. This would imply Im(Put) �Im(Pu), and the likely explanation would bejPtj � jPuj � jPj.(iii) j� (t)j � j� ()j � 1. This would imply that bothIm(Put=T (0)) and Im(Pu=T (0)) are small. In thisase the likely explanation would be that Pq=T (0)is small for eah of the penguin amplitudes.(iv) j� (t)j � j� ()j = O(1) and j� (t) � � ()j � 1. Thiswould imply that Im(Put=T (0)) and Im(Pu=T (0))are both muh larger than Im(Pt=T (0)). There ap-pears to be no single plausible explanation for suha ase. It may indiate that Pu (that inludes weakannihilation) is large, while P and Pt are small orhave small phases. Another, �ne tuned, possibilityis that both P and Pt have large but nearly equal
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FIG. 4: Con�dene level plots for � = arg(T��=T�0) in the t- and -onventions in B ! �� (left), and for B ! �� (right).phases. Last, it might be that �T = O(1), indiat-ing large orretions to the heavy quark limit.(v) j� (t)j � j� ()j = O(1) and j� (t)� � ()j = O(1). Thiswould imply that Im(Put=T (0)), Im(Pu=T (0)), andIm(Pt=T (0)) are all large. In this ase the likelyexplanation would be that all penguins are largeand omparable to T (0).Note that the � (t) � � () di�erene is related to thepenguin-to-tree ratio,� (t) � � () = � arg�1� j�ujj�j P (t)��T (t)�� �; (20)and an be determined with better preision than � (t;)separately. A. B ! ��Using the experimental data we an determine � inthe t- and -onventions. The results for the on�denelevels of � (t;) are shown in the left plot in Fig. 4. Atthe one sigma level only one solution is allowed (beauseC00 disfavors one of the solutions at a near 2� level).Inluding C00 in the �t drives j� j to larger values� = ��36+6�8�Æ; t-onvention,�30+6�8�Æ; -onvention. (21)Note that the entral values indiate rather large valuesfor � in both onventions. Their di�erene is more au-rately determined by Eq. (20), where the �t gives� (t) � � () = �5:7+2:0�1:7�Æ: (22)

Eqs. (21) and (22) favor senario (iv). While this mayhave several reasons as explained above, the least �ne-tuned one, i.e., a large Pu (inluding weak annihilation)and smaller P;t penguins (or that the �T � 1 preditionreeives large orretions), would be puzzling for any ap-proah to fatorization. At present, this is not a very�rm onlusion yet. (Note that a similar enhanementof the u-penguin amplitude is observed in B ! K� andb ! (ss)s deays, if the apparent anomalies therein areinterpreted within the SM.)B. B ! ��Sine B ! �� deays are dominantly longitudinallypolarized, the determination of � from this mode is verysimilar to that from B ! ��, exept that at the few per-ent level an I = 1 amplitude may be present [21℄. Us-ing dynamial input to redue the unertainty of � fromB ! �� has reeived little attention so far, beause theisospin bound puts tight onstraints on ���e� . However,this bound may beome worse in the future, sine thestrong present bound is a onsequene of the fat that theisospin triangles do not lose with the entral values ofthe urrent world averages. This is a onsequene of boththe branhing ratios, whose entral values in units of 10�3are pB(B ! �+�0) = 5:14, pB(B ! �+��)=2 = 3:87,and pB(B ! �0�0) < 1:05 (90% CL), and the smallnessof C�+�� = �0:03� 0:20 [2, 22℄. Therefore, although atpresent imposing j� j < 10Æ does not improve the on-straint on �� �e� in this mode, suh a dynamial inputmay beome useful in the future.In this ase, the � values in the two onventions di�erby less than a degree as shown in the right plot in Fig. 4,giving � = (0 � 12)Æ. This may tend towards the above



7senario (iii). If in the future the measured value of theB ! �+�0 branhing ratio dereases (or that of �0�0 in-reases) then the pure isospin bound will beome worse,and the �t results for � will also hange. If that �t still fa-vors j� (t)j � j� ()j or j� (t)j � j� ()j � 1 [ases (i) or (iii)℄then we would feel omfortable imposing a onstraint onthe magnitude of � (t) to improve the determination ofthe CKM angle �.V. CONCLUSIONSThe tree amplitudes in B ! �� deays an be om-puted in an expansion of �QCD=mb using fatorization.In the heavy quark limit the strong phase between thetree amplitudes is suppressed, whih may help to improvethe determination of the weak phase �. Using this theoryinput as an additional onstraint in the �t for �, requiressome understanding of the power orretions and penguinamplitudes.While the present measurement of C00 does not pro-vide a signi�ant determination of � from the B ! ��isospin analysis, it provides useful information about thehadroni amplitudes. The determination of � using theentral values of the present data with C00 replaed bythe assumption of a at TT gives a solution near theisospin bound. While a j� (t)j < 5Æ or 10Æ theoretialbound is quite powerful to onstrain �, allowing for largerdeviations from the heavy quark limit (j� (t)j < 20Æ) re-dues signi�antly the preditive power of the onstrainton �. The present C00 result, however, disfavors being atthe isospin bound at about the 2� level. This observationis exhibited by the like-sign C+� and C00 measurements,whereas the opposite signs of the P�� terms in the �+��and �0�0 amplitudes would imply opposite signs for C+�
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