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LAL 05{34LBNL{57484MIT{CTP 3624hep-ph/0506228Testing the dynami
s of B ! �� and 
onstraints on �Yuval Grossman,1, 2, 3 Andreas H�o
ker,4 Zoltan Ligeti,5 and Dan Pirjol 61Department of Physi
s, Te
hnion{Israel Institute of Te
hnology, Te
hnion City, 32000 Haifa, Israel2Physi
s Department, Boston University, Boston, MA 022153Je�erson Laboratory of Physi
s, Harvard University, Cambridge, MA 021384Laboratoire de l'A

�el�erateur Lin�eaire, IN2P3-CNRS et Universit�e Paris-Sud, BP 34, F-91898 Orsay Cedex, Fran
e5Ernest Orlando Lawren
e Berkeley National Laboratory, University of California, Berkeley, CA 947206Center for Theoreti
al Physi
s, MIT, Cambridge, MA 02139In 
harmless nonleptoni
 B de
ays to �� or ��, the \
olor allowed" and \
olor suppressed" treeamplitudes 
an be studied in a systemati
 expansion in �s(mb) and �QCD=mb. At leading order inthis expansion their relative strong phase vanishes. The impli
ations of this predi
tion are obs
uredby penguin 
ontributions. We propose to use this predi
tion to test the relative importan
e ofthe various penguin amplitudes using experimental data. The present B ! �� data suggest thatthere are large 
orre
tions to the heavy quark limit, whi
h 
an be due to power 
orre
tions to thetree amplitudes, large up-penguin amplitude, or enhan
ed weak annihilation. Be
ause the penguin
ontributions are smaller, the heavy quark limit is more 
onsistent with the B ! �� data, and itsimpli
ations may be
ome important for the extra
tion of � from this mode in the future.I. INTRODUCTIONNonleptoni
 B de
ays to light hadrons provide infor-mation about CP violation. In parti
ular, the de
ays to��, �� and �� 
an determine the weak phase �. The the-oreti
al 
hallenge is to disentangle the strong intera
tionphysi
s from the weak phase one would like to determine.For the de
ay B0 ! �+�� the B fa
tories study the CPasymmetry,�[B0(t)! �+��℄� �[B0(t)! �+��℄�[B0(t)! �+��℄ + �[B0(t)! �+��℄= S+� sin(�mt)� C+� 
os(�mt) ; (1)with the present world averages [1, 2℄S+� = �0:50� 0:12; C+� = �0:37� 0:10 : (2)If the B ! �+�� amplitude were dominated by 
ontri-butions with a single weak phase, the observablesin(2�e�) = S+�Æq1� C2+� ; (3)would be equal to sin 2� and C+� would be zero. Thedata indi
ate that this is not a good approximation. Anisospin analysis [3℄ still allows a theoreti
ally 
lean deter-mination of � if the B0 ! �0�0 and B0 ! �0�0 ratesare pre
isely measured. Sin
e this requires very largedata samples, several strategies have been proposed toextra
t � from �e� relying on theoreti
al inputs.In the last few years the theory of B ! �� de
ayshas advan
ed 
onsiderably. Using the heavy quark limit,fa
torization theorems have been proven for the de
ayamplitudes at leading order in �=mb. The amplitudesin Eq. (5) arise from the matrix element of the e�e
tiveHamiltonian,He� = �4GFp2 ��u�C1Ou1 + C2Ou2 +Xi�3 C
iOi�

+ �
�C1O
1 + C2O
2 +Xi�3 C
iOi�+ �t Xi�3 Cti Oi� ; (4)where CKM-unitarity was not used, and i = 3; : : : ; 6; 8.(In the usual notation one has Ci = C
i�Cti .) Its B ! ��matrix element 
an be parameterized asA(B0 ! �+��) = ��u(T + Pu)� �
P
 � �tPt= e�i
T�� + ei�P�� ;p2A(B0 ! �0�0) = �u(�C + Pu) + �
P
 + �tPt= e�i
C�� � ei�P�� ;p2A(B� ! ���0) = ��u(T + C) = e�i
T�0 ; (5)where �q = VqbV �qd. (We negle
t isospin breaking [4℄ andthe 
ontributions of ele
troweak penguins, the dominantpart of whi
h 
an be in
luded model independently [5℄.)In Eq. (5) T + Pu and C � Pu are the B ! �+�� andB ! �0�0 matrix elements of the terms in the �rst linein Eq. (4), while P
 and Pt are the matrix elements ofthe se
ond and third lines, respe
tively. This implies thatea
h of the T+Pu, C�Pu, P
 and Pt terms are separatelyrenormalization group invariant.There is an ambiguity in Eq. (5) related to the free-dom in 
hoosing the weak phase �, in terms of whi
hthe amplitudes are written. There are two widely used
onventions 
orresponding to eliminating either �t or �
using unitarity (some aspe
ts of this were dis
ussed inRefs. [6℄). In the t-
onvention one eliminates �t fromEq. (5), while in the 
-
onvention one eliminates �
. Ta-ble I shows the expressions for the amplitudes and � inthese 
onventions. On
e a 
hoi
e is made, T��, C��, P��,and T�0 
an be extra
ted from the data, while furthertheoreti
al input is needed to determine T , C and Pu;
;t.The amplitudes in Eq. (5) (and their CP 
onjugates)



2TABLE I: The B ! �� amplitudes and the phase of thepenguin amplitude in the 
- and t-
onventions (Pij � Pi�Pj).amplitude t-
onvention 
-
onventionT�� j�uj(�T � Put) j�uj(�T � Pu
)C�� j�uj(�C + Put) j�uj(�C + Pu
)P�� �j�
jP
t j�tjP
t� � �satisfy the isospin relation1p2A(B0 ! �+��)+A(B0 ! �0�0) = A(B� ! ���0) :(6)The \tree" amplitudes also satisfy the relationT�� + C�� = T�0 ; (7)whi
h will play an important role in this paper, and werefer to it as the \tree triangle" (TT).Expanding the amplitudes in soft-
ollinear e�e
tivetheory (SCET) [7℄, one 
an de�ne the leading (in �=mb)parts of T , C, and Pu separately in terms of matrix el-ements of distin
t SCET operators [8℄, whi
h we denotewith (0) supers
ripts. The relative strong phase of T (0)and C(0) is suppressed by �s [9, 10℄, and therefore�T � arg�T (0) + P (0)uT + C � = O��s(mb); �QCD=mb� : (8)The numerator in
ludes P (0)u so that �T is s
ale inde-pendent. The denominator 
ould be de�ned to 
ontainT (0) +C(0), and our 
hoi
e is for later 
onvenien
e. Nei-ther of these a�e
t the right-hand side of Eq. (8) [re
all:P (0)u =T (0) = O(�s)℄. We de�ne T 0(0) � T (0) + P (0)u andT + Pu � T 0(0) + P 0u, and in the rest of this paper theprimes will be dropped. Thus, hereafter, Pu 
ontains thepower suppressed 
orre
tions to T + Pu (in
luding weakannihilation).The impli
ations of Eq. (8) for the determination of �are obs
ured by the fa
t that T and C are not dire
tlyobservable. The amplitudes T�� and C�� in Eq. (5)that 
an be extra
ted from the data in
lude 
ontribu-tions from Pu;
;t. The heavy quark limit also determinesthe power 
ounting for the penguin amplitudes, however,the 
onvergen
e of the expansion for the penguins is less
lear than it is for the trees. At leading order in �=mbthe 
al
ulable parts of Pu;
;t are suppressed by �s or thesmall Wilson 
oeÆ
ients C3;4. At subleading order, theQCD fa
torization (QCDF) formula for Pt 
ontains size-able \
hirally enhan
ed" 
orre
tions, 
omparable to theleading order term [10℄. The possible size of nonpertur-bative 
ontributions to P
 has also been the subje
t ofdebate [9, 11℄. A large P
 amplitude was found in �tsusing the leading order fa
torization results in SCET [9℄,or adding a free parameter to the leading order QCDFresult [12℄. In QCDF P
 is 
laimed to be 
omputable

XY O 1p2 A+�1p2 eA+�
W2��

eA00 A00Z

VA0+�
FIG. 1: Isospin triangles for B andB de
ay,WZY andWZX.WVZ is the tree triangle (TT), Eq. (7), with WV = T�� andZV = C��. The dashed lines show the P�� amplitudes.at leading order without nonperturbative inputs, whilePt re
eives sizable \
hirally enhan
ed" O(�=mb) 
orre
-tions. Equation (8) and allowing for large long distan
e
ontribution to P
 was used in Ref. [13℄ to determine �without using the measurement of C00 (the dire
t CPasymmetry in B ! �0�0).The penguin amplitudes P
 and Pt introdu
e a di�er-en
e between the TTs in the two 
onventions. The Puamplitude is 
ommon to T�� in the t- and 
-
onventions,but P
 enters T�� in the 
-
onvention and Pt enters T�� inthe t-
onvention. Understanding the relative hierar
hy ofthe three penguin amplitudes, Pu;
;t, is important if oneis to use Eq. (8) for the determination of �. In addition,it may also shed light on the �=mb power 
ounting for thepenguin amplitudes. In this paper we show that by 
om-paring the shapes of the TT in the 
 and t-
onventionswe 
an gain empiri
al knowledge about the relative sizesof Pu, P
 and Pt.II. ISOSPIN ANALYSIS AND TREE TRIANGLEThe isospin relation in Eq. (6) holds for both the B andB de
ay amplitudes, denoted by �A and A, respe
tively.It is 
onvenient to de�ne eAij = e2i
Aij , so that A0+ =eA0�. Figure 1 shows the resulting two isospin triangles,WZX and WZY , where the tree triangle, WZV , is alsodrawn. We follow the notation of Ref. [14℄, but normalizeA(B+ ! �0�+) =WZ = 1.To determine the TT from the data, re
all that theWZX and WZY isospin triangles 
an be obtained fromthe dire
t CP asymmetries C+� and C00, and the ratios



3of bran
hing fra
tionsR+� = B(B0 ! �+��)2B(B+ ! �+�0) �B+�B0 = 0:44+0:07�0:06 ;R00 = B(B0 ! �0�0)B(B+ ! �+�0) �B+�B0 = 0:29+0:07�0:06 ; (9)where we used the experimental inputs from [2, 15℄. Tak-ing the ratios eliminates an arbitrary overall normaliza-tion parameter. To determine the 
oordinates of V , how-ever, the measurement of S+� is also needed.It is 
onvenient to de�ne the 
oordinates of X and Yto be (�`; 0), with`2 = 12R+�h1�q1� C2+� 
os 2��i; (10)where �� � �� �e� and �e� is de�ned in Eq. (3). Thefour 
oordinates ofW and Z and the phase �� are givenby the solutions of the �ve equations [14℄1 = (xZ � xW )2 + (yZ � yW )2;R00 = x2Z + y2Z + `2;R+� = x2W + y2W + `2;R+�C+� = �2`xW ;R00C00 = �2`xZ : (11)The XV Y angle is 2(�+ 
), so that the y 
oordinate ofV (0; yV ) isyV = ��` 
ot
 ; in the t-
onvention ,` 
ot� ; in the 
-
onvention . (12)Equations (11) 
an be solved for �� and the 
oordinatesof W and Z. Be
ause of the relative orientation of theamplitudes A+� and eA+� adopted in Fig. 1, the solutionmust also satisfy sgn(��) = sgn(yW ).Some important properties of the solutions are appar-ent. First, xW = 0 if and only if C+� = 0 (similarly,xZ = 0 if and only if C00 = 0). Se
ond, the sign of xW(xZ) is opposite of that of C+� (C00). Thus, WZ 
rossesthe y axis if and only if the dire
t CP asymmetries in the
harged and neutral modes have opposite signs.In the rest of this se
tion, we treat the simpli�ed 
asewhere C00 is not known. The �rst four equations in (11)
an be used to solve for the 
oordinates of W and Z asfun
tions of ��. For any given value of ��,W and Z aredetermined up to a two-fold ambiguity, 
orresponding tothe re
e
tion of Z about the WO line. These equationsalso pla
e bounds on ` and �� [14, 16℄`2 � R+�R00 � (1�R+� �R00)24 ;
os(2��) � (1 +R+� �R00)2 � 2R+�2R+�q1� C2+� : (13)We refer to these inequalities as the isospin bound, andde�ne �bound � �e� � ��max, whi
h 
an be obtained

from Eqs. (3) and (13), and 
bound � � � � � �bound.(Here, and in what follows � is treated as known.) The
oordinates of W and Z at the isospin bound satisfyxZxW ����bound = yZyW ����bound = �1 +R00 �R+�1�R00 +R+� : (14)This means that at the isospin bound W , Z, and O areon one line and that at the boundC00��bound = �R+�R00 1 +R00 �R+�1�R00 +R+� C+���bound : (15)The present data gives at the isospin bound C00 =�(1:1� 0:1)C+�, whi
h is almost 2� from the measure-ments of C+� in Eq. (2) and C00 = �0:28+0:39�0:40 [2, 17℄.In general, and even at the isospin bound, the V vertexof the TT depends on S+� via Eq. (12). Thus, the shapeof the TT at the bound is not �xed, but depends on theexperimental results. This dependen
e enters through�e�+�� and implies that if one uses a 
onstraint on theshape of the TT to extra
t �, then i) the solution is notinvariant under ��$ ���, and ii) the allowed values of�� are not the same for ea
h dis
rete ambiguity of �e� .Both of these points are di�erent from the well-knownsymmetry properties of the usual isospin analysis.The theory predi
tion of a small strong phase in Eq. (8)implies that the TT should be nearly 
at, up to penguin
ontributions, small �s and unknown �=mb 
orre
tions.While the penguin 
ontamination makes the de�nitionof the TT itself 
onvention dependent, it is interesting to
onsider under what 
onditions the TT 
an be 
at, andits relation to the isospin bound. Sin
e at the isospinbound W , Z, and O are on a line, unless yV = 0, the TTis 
at at the isospin bound if and only if xW = xZ = 0.This implies that if any two of the following statementshold, then the other three follow:1. The t-
onvention TT is 
at for generi
 �;2. The 
-
onvention TT is 
at for generi
 �;3. � is at the isospin bound;4. C+� = 0;5. C00 = 0. (16)Equivalently, when one of the statements in (16) holds,the other four are either all true or all false. This showsthat whether the TT is 
at near the isospin bound or notdepends on the value of �; i.e., the TT being 
at and �(or 
) being 
lose to the isospin bound are in prin
ipleunrelated. III. CONSTRAINTS ON �In Ref. [13℄, the predi
ted smallness of �T and Put wasused to imply that the TT in the t-
onvention is (near)
at, whi
h, in turn, was used to extra
t 
 without theinsuÆ
iently known C00. In this se
tion we dis
uss the



4impli
ations of knowing an angle in the TT for the deter-mination of �, using a method whi
h makes transparentthe dependen
e of the 
onstraints on � on the data.For given R+�, R00, and C+�, the �rst four equationsin (11) together with (10) determine the 
oordinates ofW and Z as fun
tions of ��. If, in addition, an angle inthe TT is also known, then the position of the point V isdetermined. We �nd it simplest to dis
uss the 
onstraintsin terms of the (
onvention dependent) observable phase,� (q) � arg�T (q)��T�0 � = arg�1 + PuqT (0)�+ �T ; (17)where q = 
 or t. The TT is near 
at in either 
onventionif j� j � 1. Note that if the penguin amplitudes vanished,then � (t) = � (
) = �T . We 
an determine the 
oordinatesof V as a fun
tion of �� in two ways: from the value of� and the 
oordinates of W and ZyV (��) = yW � xW yZ � yW � (xZ � xW ) tan �xZ � xW + (yZ � yW ) tan � ; (18)and from Eq. (12) if �, S+� and C+� are measuredyV (��) = � ` 
ot(� + �e� +��) ; t-
onvention,` 
ot(�e� +��) ; 
-
onvention.(19)The expression in (19) is 
onvention dependent, be
auseso is the de�nition of � that enters in (18). These twoequations form an impli
it equation for ��.Figure 2 illustrates this method for the 
entral val-ues of the data. The solid 
urves show the solution foryV (��) vs. �� from Eq. (19): the darker (blue) 
urve
orresponds to the t-
onvention and �e� ' 106Æ, whilethe lighter (red) 
urves 
orrespond to the 
-
onvention(the upper one for �e� ' 106Æ, the lower one for its mir-ror solution �e� ' 164Æ). The dashed 
urve shows yVvs. �� from Eq. (18) for � = 0, and its interse
tionswith the solid 
urves determine the value of ��, whi
htogether with �e� gives �. For the purpose of illustrationthe dotted 
urves show � = +10Æ (lower 
urve) and �10Æ(up-most 
urve).The � = 0 
urve goes to yV = 0 at the isospin bound(see Fig. 2), in a

ordan
e with our result in Se
. II thatif �� is at the isospin bound and the TT is 
at, thenyV = 0. The right-hand side of Eq. (19) is small inthis region of ��, sin
e the argument of the 
otangentis 
lose to 90Æ (the 
entral values of the �� data give�e� ' 106Æ, so that at the smallest value of �� ' �28Æ,� + �e� +�� ' 102Æ and �e� +�� ' 79Æ). These twofa
ts imply that there is a solution for �� near the isospinbound with a 
at TT; however, this is a 
oin
iden
e andnot a ne
essity.In Ref. [13℄ it was found that for small � (t) the solu-tion for �� was 
lose to the isospin bound. This 
an beeasily seen from Fig. 2. The dashed and dotted 
urvesare steep near the bound for negative ��, so 
hanging� hardly 
hanges the solution for ��. However, for theother solution (
orresponding to positive ��, and a value
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FIG. 2: The solid 
urves are yV vs. �� from Eq. (19): thedarker (blue) 
urve 
orresponds to the t-
onvention and �e� '106Æ, while the lighter (red) 
urves to the 
-
onvention (theupper one for �e� ' 106Æ, the lower one for �e� ' 164Æ). Thedashed 
urve shows the solution of Eq. (18) for � = 0, and thedotted 
urves are � = +10Æ (lower) and � = �10Æ (upper).of � disfavored by the global CKM �t [18℄), the error issigni�
antly larger, sin
e the dependen
e of �� on � isstronger. The allowed region of �� is parti
ularly sen-sitive to R00; for example, for R00 = 0:2 (whi
h is a bitmore than 1� lower than its present 
entral value) thej� j < 10Æ 
onstraint would in
lude almost all values of�� that are allowed by the isospin analysis. Note thatwith the 
urrent data the error of � extra
ted using the
onstraint of a small � in
reases with de
reasing R00,
ontrary to the isospin analysis.The 
on�den
e level (CL) of � obtained by imposinga 
onstraint on � is shown in Fig. 3 using the CKM-�tter pa
kage [18℄. In the left plot the 
urves show(see the labels) the CL of � imposing � = 0 in boththe t- and 
-
onventions without using the C00 measure-ment in the �t. For 
omparison, we also show the re-sult of the usual isospin analysis with and without usingC00. The plot on the right-hand side shows the CL of� imposing � = 0 in the t-
onvention with and with-out using C00, and the 
onstraint in the t-
onventionimposing j� j < 5Æ, 10Æ, and 20Æ. The restri
tion on �from a 
onstraint j� j < �0 be
omes quite weak as �0 in-
reases in the range 10Æ < �0 < 20Æ. We 
an 
ompareour results with those of [13℄, whi
h use as theory in-put an upper bound on � = jIm(C(t)��=T (t)�� )j. Assumingf
; j arg(P��=T��)jg < 90Æ, we �nd sin � (t) < �pR+�,i.e., � (t) < 15:5Æ (7:8Æ) for the bounds 
onsidered in [13℄,� < 0:4 (0:2).Imposing � = 0 gives only two solutions with �2 = 0with the 
urrent data, around � � 78Æ and 132Æ. The�rst one, whi
h is 
onsistent with the Standard Model(SM) CKM �t, is disfavored by the measurement of C00.While the two solutions have 
omparable errors for � = 0,allowing a �nite range of � to a

ount for subleadinge�e
ts in
reases the error of the � � 132Æ solution morerapidly. Imposing a bound on jIm(C=T )j [13℄ allows, inaddition to � being near 0, that � is near � (mod 2�);
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FIG. 3: Left plot: 
on�den
e level for � imposing � = 0 in the t- (solid line) and 
-
onventions (dashed line) without usingC00 in the �t. The t-
onvention 
urve uses � as an input. Also shown are the results of the traditional isospin analysis [3, 18℄with (light shaded region) and without (dark shaded region) using C00. The dot with 1� error bar shows the predi
ton fromthe global CKM �t (not in
luding the dire
t measurement of �) [18℄. Right plot: 
on�den
e level for � imposing � = 0 in thet-
onvention with (dotted line) and without (solid line) using the C00 result in the �t. Also shown are the 
onstraints in thet-
onvention imposing j� j < 5Æ, j� j < 10Æ, and j� j < 20Æ (dashed lines). The shaded region is the same as in the left plot.however, the theory disfavors the latter possibility. It is
onstraining j� j modulo 2� and not � that makes someof the CL 
urves not periodi
 with a period of �.These results for � should not be taken at fa
e value,be
ause in the next Se
tion we �nd that extra
ting � us-ing the SM CKM �t as an input gives signi�
antly largervalues of j� j than 
onsidered here. The impli
ations ofthis are dis
ussed below.IV. THE PENGUIN HIERARCHY PROBLEMIf the penguin amplitudes were small then the state-ments in (16) would all hold to a good pre
ision, and �
ould be extra
ted simply from S+�. This is known notto be the 
ase, so the question is to determine whi
h pen-guins are large or small. This is 
ompli
ated by the fa
tthat, as explained in Se
. II, the amplitudes T , C, Pu
,and Put are not separately observable from the B ! ��data alone. They 
an be disentangled using SU(3) 
avorsymmetry and data on B ! K�, KK, et
.In this se
tion we propose to use the theory expe
-tation for �T in Eq. (8) to test the magnitude of thepenguins. (Another test of 
orre
tions to fa
torizationin B ! �� was proposed in [19℄.) We assume �T = 0,although we may learn from other data that power 
or-re
tions to tree amplitudes are sizable. For example, apower suppressed strong phase around 30Æ is observed inB ! D� de
ays [20℄.In the t-
onvention Put (re
all, Pij � Pi � Pj) 
on-tributes to the TT in Eq. (7), while in the 
-
onvention

it is Pu
. (We 
hoose, for 
onvenien
e, the pure treeamplitude T�0 to be real.) Thus, 
omparing the TT inthe two 
onventions tea
hes us about the relative size ofPut and Pu
. (The same information 
an in prin
iple beobtained from the �t in any one 
onvention; this 
ompar-ison makes the results more transparent.) We use the SMglobal �t to the CKM matrix that determines the weakphase 
 = (59:0+6:4�4:9)Æ [18℄. This allows the 
onstru
tionof the tree triangles in both 
onventions, as explained inSe
. II. Comparing how 
at they are, i.e., how small theangle � of the TT is, the following out
omes are possible:(i) j� (t)j � j� (
)j. This would imply Im(Put) �Im(Pu
), and the likely explanation would bejP
j � jPuj � jPtj.(ii) j� (t)j � j� (
)j. This would imply Im(Put) �Im(Pu
), and the likely explanation would bejPtj � jPuj � jP
j.(iii) j� (t)j � j� (
)j � 1. This would imply that bothIm(Put=T (0)) and Im(Pu
=T (0)) are small. In this
ase the likely explanation would be that Pq=T (0)is small for ea
h of the penguin amplitudes.(iv) j� (t)j � j� (
)j = O(1) and j� (t) � � (
)j � 1. Thiswould imply that Im(Put=T (0)) and Im(Pu
=T (0))are both mu
h larger than Im(P
t=T (0)). There ap-pears to be no single plausible explanation for su
ha 
ase. It may indi
ate that Pu (that in
ludes weakannihilation) is large, while P
 and Pt are small orhave small phases. Another, �ne tuned, possibilityis that both P
 and Pt have large but nearly equal
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FIG. 4: Con�den
e level plots for � = arg(T��=T�0) in the t- and 
-
onventions in B ! �� (left), and for B ! �� (right).phases. Last, it might be that �T = O(1), indi
at-ing large 
orre
tions to the heavy quark limit.(v) j� (t)j � j� (
)j = O(1) and j� (t)� � (
)j = O(1). Thiswould imply that Im(Put=T (0)), Im(Pu
=T (0)), andIm(P
t=T (0)) are all large. In this 
ase the likelyexplanation would be that all penguins are largeand 
omparable to T (0).Note that the � (t) � � (
) di�eren
e is related to thepenguin-to-tree ratio,� (t) � � (
) = � arg�1� j�ujj�
j P (t)��T (t)�� �; (20)and 
an be determined with better pre
ision than � (t;
)separately. A. B ! ��Using the experimental data we 
an determine � inthe t- and 
-
onventions. The results for the 
on�den
elevels of � (t;
) are shown in the left plot in Fig. 4. Atthe one sigma level only one solution is allowed (be
auseC00 disfavors one of the solutions at a near 2� level).In
luding C00 in the �t drives j� j to larger values� = ��36+6�8�Æ; t-
onvention,�30+6�8�Æ; 
-
onvention. (21)Note that the 
entral values indi
ate rather large valuesfor � in both 
onventions. Their di�eren
e is more a

u-rately determined by Eq. (20), where the �t gives� (t) � � (
) = �5:7+2:0�1:7�Æ: (22)

Eqs. (21) and (22) favor s
enario (iv). While this mayhave several reasons as explained above, the least �ne-tuned one, i.e., a large Pu (in
luding weak annihilation)and smaller P
;t penguins (or that the �T � 1 predi
tionre
eives large 
orre
tions), would be puzzling for any ap-proa
h to fa
torization. At present, this is not a very�rm 
on
lusion yet. (Note that a similar enhan
ementof the u-penguin amplitude is observed in B ! K� andb ! (ss)s de
ays, if the apparent anomalies therein areinterpreted within the SM.)B. B ! ��Sin
e B ! �� de
ays are dominantly longitudinallypolarized, the determination of � from this mode is verysimilar to that from B ! ��, ex
ept that at the few per-
ent level an I = 1 amplitude may be present [21℄. Us-ing dynami
al input to redu
e the un
ertainty of � fromB ! �� has re
eived little attention so far, be
ause theisospin bound puts tight 
onstraints on ���e� . However,this bound may be
ome worse in the future, sin
e thestrong present bound is a 
onsequen
e of the fa
t that theisospin triangles do not 
lose with the 
entral values ofthe 
urrent world averages. This is a 
onsequen
e of boththe bran
hing ratios, whose 
entral values in units of 10�3are pB(B ! �+�0) = 5:14, pB(B ! �+��)=2 = 3:87,and pB(B ! �0�0) < 1:05 (90% CL), and the smallnessof C�+�� = �0:03� 0:20 [2, 22℄. Therefore, although atpresent imposing j� j < 10Æ does not improve the 
on-straint on �� �e� in this mode, su
h a dynami
al inputmay be
ome useful in the future.In this 
ase, the � values in the two 
onventions di�erby less than a degree as shown in the right plot in Fig. 4,giving � = (0 � 12)Æ. This may tend towards the above



7s
enario (iii). If in the future the measured value of theB ! �+�0 bran
hing ratio de
reases (or that of �0�0 in-
reases) then the pure isospin bound will be
ome worse,and the �t results for � will also 
hange. If that �t still fa-vors j� (t)j � j� (
)j or j� (t)j � j� (
)j � 1 [
ases (i) or (iii)℄then we would feel 
omfortable imposing a 
onstraint onthe magnitude of � (t) to improve the determination ofthe CKM angle �.V. CONCLUSIONSThe tree amplitudes in B ! �� de
ays 
an be 
om-puted in an expansion of �QCD=mb using fa
torization.In the heavy quark limit the strong phase between thetree amplitudes is suppressed, whi
h may help to improvethe determination of the weak phase �. Using this theoryinput as an additional 
onstraint in the �t for �, requiressome understanding of the power 
orre
tions and penguinamplitudes.While the present measurement of C00 does not pro-vide a signi�
ant determination of � from the B ! ��isospin analysis, it provides useful information about thehadroni
 amplitudes. The determination of � using the
entral values of the present data with C00 repla
ed bythe assumption of a 
at TT gives a solution near theisospin bound. While a j� (t)j < 5Æ or 10Æ theoreti
albound is quite powerful to 
onstrain �, allowing for largerdeviations from the heavy quark limit (j� (t)j < 20Æ) re-du
es signi�
antly the predi
tive power of the 
onstrainton �. The present C00 result, however, disfavors being atthe isospin bound at about the 2� level. This observationis exhibited by the like-sign C+� and C00 measurements,whereas the opposite signs of the P�� terms in the �+��and �0�0 amplitudes would imply opposite signs for C+�

and C00 if the tree triangle was 
at.We proposed a 
omparison of �ts that 
an give infor-mation about the relative size of the penguins, using only�� data and the global �t for 
. While the present datais not yet pre
ise enough to give �rm 
on
lusions, itsmost likely impli
ation is that not only the 
harm (northe top) penguins in B ! �� are large, but so are theup penguins (in
luding terms proportional to Vub thatare power suppressed in the heavy quark limit), thus onemay not be able to use theory instead of C00. On theother hand, for B ! �� de
ay, it may well be the 
asethat the data will 
ontinue to favor j� (t)j � j� (
)j � 1 orj� (t)j � j� (
)j, in whi
h 
ase the theory 
an be useful toredu
e the error on � without a measurement of C00.A
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