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Abstract

On the Dynamics of Constrained Rigid Bodies

by

Theresa Elie Honein

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Oliver M. O’Reilly, Chair

In this dissertation, the dynamics of three classic mechanical systems are examined using a
combination of numerical and analytical methods. The three systems are a rolling sphere, a
pair of rolling cylinders, and a stack of blocks. The kinematics and dynamics of each of these
systems are governed by a set of constraints. For the sphere and cylinders the complexities
of their dynamics are governed by a set of non-integrable (non-holonomic) constraints, while
the complexity of the stack of blocks can be attributed to stick-slip phenomena, impacts, and
a time-varying set of integrable constraints. For each of these classic systems, we establish
new results.

Consider a rigid body rolling with one point in contact with a fixed surface. Now suppose
that the instantaneous point of contact traces out a closed path. As a demonstration of a
phenomenon known as holonomy, the body will typically not return to its original orientation.
The simplest demonstration of this phenomenon in rigid body dynamics occurs in the motion
of a rolling sphere and finds application to path planning and reorientation of spherical
robots. Motivated by recent works of Bryant and Johnson, we establish expressions for the
change in orientation (i.e., holonomy) of a rolling sphere after its center of mass completes a
rectangular path. The holonomy in this case can be quantified using an angle of rotation and
an axis of rotation. We use numerical methods to show that all possible changes in orientation
are possible using a single rectangular path. Based on the Euler angle parameterization of
a rotation, we develop a more intuitive method to achieve a desired orientation using three
rectangular paths. With regards to applications, the paths we discuss can be employed to
achieve any desired reorientation of a spherical robot.

The next mechanical system we examine was inspired by a common, yet hazardous, method
of transporting cylindrical tanks used to carry compressed gas. The method involves rolling
both tanks at opposite angles of inclination to the vertical. By propelling one of the tanks
while maintaining point contact between the tanks, both tanks can be moved such that
their centers of mass move in a straight line. The purpose of our work is to explore this
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locomotion mechanism. First, the problem of supporting an inclined cylinder in point contact
with a rough surface is examined. The analysis shows that dependent on the geometry of
the cylinder and the coefficient of static friction, a wide range of angles of inclination are
feasible. The presence of non-integrable constraints on the motion of the rolling cylinder is
explored using the concept of a holonomy. The problem of transporting two cylinders using
the aforementioned mechanism is then analyzed with the help of Frobenius’ integrability
criterion for constraints and numerical simulations. Our result demonstrate the surprising
mechanical advantage of transporting a pair of cylinders, the range of possible angles of
inclination, and the forces needed to sustain the motion.

The third mechanical system of interest is a collection of two-dimensional blocks stacked
vertically. The surfaces of the blocks are rough. Of particular interest is the case where
the bottom block in the stack is driven by simple harmonic motion. In the ensuing motion,
a typical block in the stack can be at rest, sliding, rotating, or sliding and rotating with
respect to the block underneath it. A single block in motion on a rough plane is well-known
from studies in the 1980s to exhibit complex dynamics. The complexity of the dynamics of
a stack of blocks dramatically increases as the number of blocks increases. In addition, the
challenges to numerically investigate the dynamics are considerable. In this dissertation, we
adapt a nonsmooth generalized-alpha method for systems with frictional contact to compute
the dynamics of the stack. From the simulations we observe that high-frequency excitations
of the bottom block tend to stabilize the stack. Our simulations also reveal the existence of an
abundance of distinct solutions stemming from a unique initial configuration and excitation
of the bottom block. Many, but not all, of these motions result in the toppling of the stack
of blocks: a result that illustrates the surprisingly complex dynamics of a simple mechanical
system and has application to robotic manipulation of stacks of objects.
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Chapter 1

Introduction

Constraints dictate the configurations and motions of mechanical systems. Each constraint
or set of constraints acting on a system can be classified as holonomic (integrable) or nonholo-
nomic (nonintegrable). The integrability of constraints can be determined using Frobenius’
integrability criteria [62]. For systems with nonholonomic constraints, the Newton-Euler
and Lagrange equations of motion are coupled with the nonholonomic constraint forces, thus
complicating the numerical solutions of the equations of motion. There exists alternative
formulations of the equations of motion that decouple them from nonholonomic constraint
forces, thus making them more amenable to numerical solutions [35]. Discontinuities arising
from unilateral contact constraints subject to Coulomb friction present added difficulties in
the numerical solution of equations of motion.

In this dissertation, we consider the effect of constraints on three mechanical systems
and adapt novel methods to deal with the previously described difficulties. Specifically, the
dynamics of three classic mechanical systems are examined using a combination of numerical
and analytical methods. The three systems are a rolling sphere, a pair of rolling cylinders,
and a stack of blocks. The kinematics and dynamics of each of these systems are governed
by a set of constraints. For the sphere and cylinders the complexities of their dynamics are
governed by a set of non-integrable (non-holonomic) constraints, while the complexity of the
stack of blocks can be attributed to stick-slip phenomena, impacts, and a time-varying set
of integrable constraints. For each of these classic systems, we establish new results.

1.1 The Three Mechanical Systems of Interest

Consider a rigid body rolling with one point in contact with a fixed surface. Studies of
a sphere rolling without slipping on a horizontal rough surface have a celebrated history
beginning with Leonhard Euler in the 18th century and including important contributions by
Gaspard-Gustave Coriolis in the 19th century [54, 62]. Now suppose that the instantaneous
point of contact traces out a closed path in the plane. As a demonstration of a phenomenon
known as holonomy, the body will typically not return to its original orientation. The
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simplest demonstration of this phenomenon in rigid body dynamics occurs in the motion of
a rolling sphere and finds application to path planning and reorientation of spherical robots.
Motivated by recent works of Bryant [12] and Johnson [38], in Chapter 2, we establish
expressions for the change in orientation (i.e., holonomy) of a rolling sphere after its center
of mass completes a rectangular path. The holonomy in this case can be quantified using an
angle of rotation ψ and an axis of rotation s. We use numerical methods to show that all
possible changes in orientation are possible using a single rectangular path. These results
from this numerical investigation are not transparent and we were interested in finding an
easier way of prescribing paths to achieve a given holonomy. Based on the Euler angle
parameterization of a rotation, we develop a more intuitive method to achieve a desired
orientation using three rectangular paths. With regards to applications, the paths we discuss
can be employed to achieve any desired reorientation of a spherical robot - such as the Star
Wars Robot BB-8. The work presented in Chapter 2 was previously published in the journal
article [33].1

The next mechanical system we examine was inspired by a common, yet hazardous,
method of transporting cylindrical tanks used to carry compressed gas. The method involves
rolling both tanks at opposite angles of inclination to the vertical. By propelling one of the
tanks while maintaining point contact between the tanks, both tanks can be moved such that
their centers of mass move in a straight line.2 The purpose of our work, which is described
in Chapter 3 is to explore this locomotion mechanism. First, the problem of supporting
an inclined cylinder in point contact with a rough surface is examined. The analysis shows
that dependent on the geometry of the cylinder and the coefficient of static friction, a wide
range of angles of inclination are feasible. The presence of non-integrable constraints on the
motion of the rolling cylinder is explored using the concept of a holonomy. The problem
of transporting two cylinders using the aforementioned mechanism is then analyzed with
the help of Frobenius’ integrability criterion for constraints and numerical simulations. Our
result demonstrate the surprising mechanical advantage of transporting a pair of cylinders,
the range of possible angles of inclination, and the forces needed to sustain the motion.

The third mechanical system of interest is a collection of two-dimensional blocks stacked
vertically where the surfaces of the blocks are rough. The dynamics of a vertical stack of
blocks has application to a wide range of problems including seismic response of containers
in warehouses, the stability of containers on ships at sea, and the transport of stacks of
blocks by robots. There has been a growing recent interest among the robotics community
in robots stacking objects vertically to form columns [25, 47] or dry stacking objects to form
two-dimensional walls [49, 51]. These works have mostly relied on vision-based learning
algorithms, although a few also rely on physics simulators. A central question for these
stacked objects is the prediction of their dynamics when the columns are perturbed. For
instance, will the column stay close to its original configuration or will it collapse? Of

1The work is also mentioned in two online articles: Researchers explore the phenomenon of holonomy
and Ready to roll that appeared in the Spring and Summer, respectively, of 2024.

2A demonstration of this type of transport can be found online: https://youtu.be/Vgn5fv LAk.

https://engineering.berkeley.edu/news/2024/02/researchers-explore-the-phenomenon-of-holonomy/
https://engineering.berkeley.edu/news/2024/05/ready-to-roll/
https://youtu.be/Vgn5fv__LAk


CHAPTER 1. INTRODUCTION 3

particular interest is the case where the bottom block in the stack is driven by simple
harmonic motion. In the ensuing motion, a typical block in the stack can be at rest, sliding,
rotating, or sliding and rotating with respect to the block underneath it. Earlier works on
the dynamics of a single rigid block resting on a oscillating horizontal surface show a range
of complex dynamics including sensitive dependence on initial conditions, bifurcations of
periodic motions and chaotic motions [4, 32, 36, 37]. The complexity of the dynamics of a
stack of blocks dramatically increases as the number of blocks increases. In addition, the
challenges to numerically investigate the dynamics are considerable. In Chapter 4 of this
dissertation, we adapt a recently-developed nonsmooth generalized-α method for systems
with frictional contact to compute the dynamics of the stack [3, 10, 14, 18]. We test our
numerical method on the known instability of the Leaning Tower of Lire [39]. Next, from the
simulations of the stack of blocks we observe that high-frequency excitations of the bottom
block tend to stabilize the stack. Our simulations also reveal the existence of an abundance of
distinct solutions stemming from a unique initial configuration and excitation of the bottom
block. Many, but not all, of these motions result in the toppling of the stack of blocks: a
result that illustrates the surprisingly complex dynamics of a simple mechanical system and
has application to robotic manipulation of stacks of objects.

A series of Appendices A-I are included in the dissertation. These appendices contain
additional background information, details on algebraic calculations, and conclude with a
discussion of Painlevé’s paradox.

1.2 Background and Notation

Relevant background on rigid body dynamics can be found in the textbooks [54, 62] and
Shuster’s review article [70] on rotations. We follow the notation used in [54]. To parame-
terize the rotation tensor Q of a rigid body the a set of 3-1-3 Euler angles, ψ, ϑ, and ϕ, are
used. The angles define the orientation of a basis {e1, e2, e3} that corotates with the rigid
body with respect to a fixed Cartesian basis {E1,E2,E3}: Q = e1 ⊗E1 + e2 ⊗E2 + e3 ⊗E3.
Here, ⊗ is the tensor product of two vectors. While the first and third Euler angles range
from 0 to 2π, the second Euler angle, ϑ ∈ (0, π) in order to avoid a coordinate singularity
associated with the Euler angle parameterization of a rotation tensor [31]. Additional details
on the 3-1-3 Euler angles, including a representation for the angular velocity vector ω, the
reader is referred to Appendix A.
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Chapter 2

Explorations of the Holonomy of a

Rolling Sphere

2.1 Introduction

Imagine a rolling sphere in motion so that its center of mass traces out a rectangular path
(cf. Figure 2.1). As the center of mass of the sphere returns to the starting point of this
motion, a change in orientation of the sphere may have occurred. The change in some of the
states of a system when others have returned to their original values is known as a holonomy
[7, 77], and the rolling sphere provides one of the simplest illustrations of a holonomy; one
that is amenable to classroom demonstrations using basketballs or tennis balls. If we view
the motion of the rolling sphere as simply a sequence of non-commutative rotations, then the
holonomy can be readily explained. By way of contrast, the explanation for the holonomy
behind another popular example, parallel parking, is far more challenging (cf. [13, 52]).

Our interest in the holonomy of the rolling sphere lies in potential application to spherical
robots and was inspired by Bryant [12] and Johnson [38]. If it is possible to prescribe a
rectangular path to achieve a desired reorientation, then it should be possible to use the
path to reorient a spherical robot. An example illustrating the paths of two points on a
rolling sphere is shown in Figure 2.1. Our goal for these motions is to establish expressions
for the components of the unit quaternion representing the change in orientation of the
rolling sphere (cf. (2.4.6)). For two particular types of rectangular paths, we are able to
compute explicit expressions for the axis and angle of rotation of the change in orientation.
These two paths are generalizations of those found previously by Johnson [38, Lemmas 1 &
2] and we use them to demonstrate how three rectangular paths can be used to produce any
desired change in orientation of the rolling sphere. The demonstrations also provide a novel
representation for the Euler angle parameterization of a rotation. A summary of the paths is
shown in Figure 2.2: they find application to path planning for spherical robots. The three
paths can be used to achieve any desired reorientation of a spherical robot. We also present
numerical methods that enable us to prescribe a single rectangular path that can achieve a
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i

ii

(a)

(b)

AB

S

A1

A2

E3

e1 (t0)

e2 (t0)

e3 (t0)

e1 (t1)

e2 (t1)

e3 (t1)

Figure 2.1: Time traces for the center of mass C and the material point X that was the
initial instantaneous point of contact P during a time interval [t0, t1]. The traces are labelled
i and ii, respectively. While the center of mass returns to its original location S, X has been
relocated from A to B, and the sphere has reoriented from the image shown in (a) to the one
shown in (b). Both the reorientation of the sphere and the relocation of X are manifestations
of the holonomy. An animation of the motion can be found in the supplemental material for
this chapter.

desired reorientation of a rolling sphere.
Earlier works by Bryant [12] and Johnson [38] examined the holonomy of the rolling

sphere on rectangular and circular paths. In contrast to [12, 38], our analysis relies on the
extensive use of rotation tensors. A second approach to computing the change in orientation
of the rolling sphere could use Levi’s work [48]. He showed how the change in orientation
of the rolling sphere moving on a closed path can be computed using the Gauss-Bonnet
theorem. Levi extended a classic (but forgotten) result on rotations by Kelvin and Tait [43,
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Figure 2.2: Schematic of the sequence of three rectangular paths for (a) 3-2-3, (b) 3-1-3, (c)
3-2-1, and (d) 3-1-2 sets of Euler angles.

Section 123] that can also be used to relate the change in orientation of the rolling sphere to
Codman’s paradox in orthopaedic biomechanics (cf. [17, 67]). A third approach is to examine
the holonomy from the perspective of nonholonomic constraints. This approach involves the
use Frobenius’ theorem and the methods used in Burke [13] and Nelson [52] to explore
parallel parking. We hope the reader finds our treatment of the holonomy complementary
to the insights that can be gained from the aforementioned approaches.

Supplemental material for this chapter can be found here:
https://github.com/ThH00/Explorations-of-the-Holonomy-of-the-Rolling-Sphere

https://github.com/ThH00/Explorations-of-the-Holonomy-of-the-Rolling-Sphere
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2.2 Background on Rotation Tensors

We recall, from [54], the Euler and unit quaternion parameterizations of a rotation tensor R
in terms of an axis of rotation described by a unit vector r and an angle of rotation θ:

R = R (θ, r) = cos (θ) (I− r⊗ r) + sin (θ) skewt (r) + r⊗ r

= R̃ (q0,q) =
(

q20 − q · q
)

I+ 2q⊗ q+ 2q0skewt (q) , (2.2.1)

where

q0 = cos

(

θ

2

)

, q = sin

(

θ

2

)

r. (2.2.2)

In (2.2.1) and the sequel, I is the identity tensor, skewt (a) is a skew-symmetric tensor with
the property that skewt (a)b = a × b, and ⊗ is the tensor product of two vectors: Ib = b

and (b⊗ c)d = (c · d)b for all a, b, c, and d. A tilde is used in (2.2.1) to distinguish
the quaternion and axis-angle representations of a rotation tensor. We note the useful
interpretation that the axis of rotation is a unit eigenvector of the rotation tensor: Rr = r.

As proven by Euler, a rotation tensor is proper orthogonal: RTR = I and det (R) = 1
where T denotes the transpose. The representation (2.2.1)1 can be used to show that the
inverse rotation can be found by changing the sign of the angle of rotation or the direction
of the axis of rotation:

RT = R (−θ, r) = R (θ,−r) . (2.2.3)

In addition, (2.2.1) can also be used to show the 2-1 covering of the group of rotations by
the parameter pairs (θ, r) and (q0,q):

R (θ, r) = R (−θ,−r) , R̃ (q0,q) = R̃ (−q0,−q) . (2.2.4)

The rotation tensor R has an associated angular velocity vector ωR:

ωR = θ̇r+ sin (θ) ṙ+ (1− cos (θ)) r× ṙ. (2.2.5)

The angular velocity vector was computed from the identity skewt (ωR) = ṘRT .1

2.3 A Rolling Sphere

The motion of any material point X of a rigid body can be described by a translation of the
center of mass C and a rotation:

x = QΠ+ x̄. (2.3.1)

1Details on this calculation can be found in, e.g., [54, Section 6.5] or [70].
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Here, x is the position vector of X at time t, Q = Q(t) is a rotation tensor, x̄ is the position
vector of C at time t, π = π(t) = QΠ is the position vector of X relative to C at time t,
and Π is the position vector of X relative to C in a fixed reference configuration.

In addition to the Euler and unit-quaternion parameterizations (2.2.1), there are other
useful parameterizations for the rotation tensorQ for the rigid body. For present purposes, it
is helpful to define a fixed Cartesian basis {E1,E2,E3} for E3 and to define a basis {e1, e2, e3}
that corotates with the rigid body. Thus,

Q =
3
∑

k=1

ek ⊗ Ek, QT =
3
∑

k=1

Ek ⊗ ek, QQT = I, (2.3.2)

where (a⊗ b)T = b ⊗ a for all a and b. Given a motion of a rigid body during a time
interval [t0, t1], the change in orientation of the rigid body is given by the relative rotation

Q (t1)Q
T (t0) =

3
∑

k=1

ek (t1)⊗ ek (t0) . (2.3.3)

In many instances, one chooses ek (t0) = Ek so Q (t0) = I.
Consider a rigid body rolling on a stationary rough plane and assume a single point P

of instantaneous contact. The constraints on the motion of the rigid body are vP = 0:

v̄ + ω × πP = 0, (2.3.4)

where ω is the angular velocity vector associated with the rotation Q of the rigid body. For
convenience, we choose E3 to be the normal to the plane and define an additional Cartesian
basis {A1,A2,A3 = E3}. As a result, πP = −RE3 and, with the help of (2.3.4) and the
representation ω =

∑3
k=1 ΩkAk:

v̄ = RΩ2A1 −RΩ1A2. (2.3.5)

That is, a rotation of the sphere in the A1 direction produces motion of the center of mass
in the A2 direction and vice-versa. The spinning speed of the sphere, Ω3, has no influence
on the motion of the center of mass. With the help of Frobenius’s Integrability Criterion,
it can be shown that two of the constraints on a rolling sphere are non-holonomic (cf. [54,
Section 8.5]).

We assume that the sole forces acting on the sphere of mass m are a gravitational force
−mgE3 acting at C, a normal force N = NE3 acting at P and a static friction force
Ff = Ff1A1 + Ff2A2 acting at P . A classic analysis can be used to show that the sphere
will move with constant v̄ and ω, that Ff = 0 and N = mgE3, and the center of mass will

move in a straight line. To initiate such a motion an angular impulse 2mR2

5
ω and a linear

impulse mv̄ = mRω × E3 are required.
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H2

W

H1
A1

A2

E3

e1(t)

e2(t)

e3(t)

O

S

P

Figure 2.3: The rectangular path of the center of mass C. The sphere of radius R contacts
the plane at the point S initially and the instantaneous point of contact P traces out the
closed path in a counterclockwise direction during a time interval [t0, t1]. The path has
dimensions H2 = Rϕ2 and W = Rϑ. The starting point S is specified by the parameter
H1 = Rϕ1.

2.4 Motion of a Rolling Sphere Around a

Rectangular Path

Referring to Figure 2.3, we consider a rectangular path of the center of mass and assume
that the center of mass is initially the point labelled S. The freedom to vary ϕ1 ∈ [0, ϕ2]
enables us to vary the starting point S. Applying an impulse to generate the motion and
subsequent impulses to change the linear and angular velocities, the sphere’s center of mass
can be made to follow the rectangular path in a counterclockwise direction and return to S.
The sequence of values for the angular velocity vector ω are as follows:

ω = 0 → (Ω2 > 0)A1 → (Ω1 < 0)A2 → (Ω2 < 0)A1

→ (Ω1 > 0)A2 → (Ω2 > 0)A1 → 0. (2.4.1)

Assuming the motion occurs during the time interval [t0, t1], the change in orientation of the
sphere is given by the tensor (cf. (2.3.3))

S = Ŝ (ϑ, ϕ1, ϕ2,A1,A2,	)

= R (ϕ2 − ϕ1,A2)R (ϑ,A1)R (−ϕ2,A2)R (−ϑ,A1)R (ϕ1,A2) , (2.4.2)

where

ϑ =
W

R
, ϕ1 =

H1

R
, ϕ2 =

H2

R
. (2.4.3)
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The parameter 	,� in Ŝ is used to distinguish counterclockwise and clockwise directions,
respectively, of circumnavigating the rectangular path. It is interesting to note that the
motions we employ to locomote the sphere are geodesics on the configuration manifold R

2⊗
SO(3), where SO(3) is the group of rotations and the line element for the manifold is the

kinematical line-element: ds =
√

2T
m
dt where T is the kinetic energy of the sphere.2

We note that S is a rotation tensor and has an associated axis s and angle ψ of rotation:

S = Ŝ (ϑ, ϕ1, ϕ2,A1,A2,	)

= R (ψ, s)

= R (−ψ,−s) . (2.4.4)

A change in the orientation of the sphere can also be produced by traversing the path in the
clockwise direction. It follows from (2.4.2) and (2.4.4) that the resulting change of orientation
is

ST = Ŝ (ϑ, ϕ1, ϕ2,A1,A2,�)

= ŜT (ϑ, ϕ1, ϕ2,A1,A2,	)

= R (−ψ, s) = R (ψ,−s) . (2.4.5)

Representations for the components Sik = (SAk) ·Ai of S can be found in Appendix B. The
relation (2.4.4) can be used to show that if a path is circumnavigated n times in the same
direction then the resulting reorientation has the same axis of rotation s and an angle of
rotation of nψ.

Quaternion Representation

To compute the axis s and angle of rotation ψ of S, it proves insightful to use the quaternion
parameterization of S. This representation for S can be obtained by repeated application of
the Rodrigues formula for compound rotations.3 After a set of four successive applications
of the Rodrigues formula, we find the quaternion representation for the compound rotation
S = S̃ (q0,q,A1,A2,	):

q0 = cos

(

ψ

2

)

=1− sin2

(

ϑ

2

)

sin2
(ϕ2

2

)

,

q = sin

(

ψ

2

)

s =sin (ϑ) sin
(ϕ2

2

)

Ar + sin (ϕ2) sin
2

(

ϑ

2

)

A2, (2.4.6)

2Additional details on geodesics of SO(3) can be found in [53].
3Consider a pair of rotations A = Ã (a0,a) and B = B̃ (b0,b) parameterized by unit quaternions (a0,a)

and (b0,b), respectively. Then, the compound rotation C = BA is parameterized by the unit quaternion
(c0 = a0b0 − a · b, c = a0b+ b0a+ b× a).
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where

Ar = − cos
(

ϕ1 −
ϕ2

2

)

A3 + sin
(

ϕ1 −
ϕ2

2

)

A1. (2.4.7)

We observe immediately from (2.4.6) that while the angle of rotation ψ is independent of
the starting point (i.e., ϕ1), the axis of rotation s depends on all three angles.

Rectangular Paths that Don’t Produce a Holonomy

The change in orientation of the sphere is determined by the product of five rotation tensors:
S = R4R

T
2R3R2R1 where R1,2,3,4 are rotation tensors. Suppose R2 or R3 is the identity

tensor I, then S = I and there will be no change in the orientation of the sphere (i.e., the
holonomy vanishes). Other instances of S = I can be inferred with the help of (2.4.6)1. The
following is a summary of all such instances:

Ŝ ((2ℓ− 1)π, ϕ1 ∈ [0, (2m− 1)π] , (2m− 1)π,A1,A2, ·) = R (2(2n− 1)π, s) = I,

Ŝ (2nπ, ϕ1 ∈ [0, ϕ2] , ϕ2,A1,A2, ·) = R (4mπ, s) = I,

Ŝ (ϑ, ϕ1 ∈ [0, 2nπ] , 2nπ,A1,A2, ·) = R (4mπ, s) = I, (2.4.8)

where ℓ,m, n ∈ Z
+ and the direction of circumnavigation can be in either the clockwise

or counterclockwise directions. Thus, if the sphere rolls along any rectangular path where
the length of each side is a multiple of Rπ in length or the lengths of two of the sides are
multiples of 2Rπ, then the sphere will return to its original orientation. As a consequence,
the material point corresponding to the instantaneous point of contact will also be the same.

A Pair of Rectangular Paths

The expressions (2.4.6) do not admit to a closed-form solution for the parameters ϕ1, ϕ2, and
ϑ required to produce a desired axis and angle of rotation of the sphere. However, with the
assistance of (2.2.1) and (2.2.2), two special cases are immediately apparent upon inspection
of (2.4.6): ϕ2 = π and ϑ = π. For both cases, two of the sides of the rectangle are Rπ in
length and they produce the following change of orientation of the sphere:

Ŝ (ϑ, ϕ1 ∈ [0, π] , π,A1,A2,	) = R (2ϑ,Ar) = R (−2ϑ,−Ar) ,

Ŝ
(

π, ϕ1 ∈
[

0,
ϕ2

2

]

, ϕ2,A1,A2,	
)

= R (2ϕ2,A2) = R (−2ϕ2,−A2) . (2.4.9)

An example of (2.4.9)1 is shown in Figure 2.1. For this particular example, the reorientation
can be characterized as follows (cf. (2.4.2) and (2.4.4)):

S = Ŝ

(

4π

3
− 0.5,

π

2
− 0.4, 3π,A1,A2,	

)

= R (ψ = 62.7042◦, s = −0.389418A1 − 0.921061A3) . (2.4.10)
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(a) (b)

Rϑ = Rψ
2

Rψ
2

Rϑ = Rπ

RπRϕ1 Rϕ1 S
S ψ ψ

A1

A2

Ar

A2

A3

Figure 2.4: Two rectangular paths. In (a), the sphere will have rotated through a counter-
clockwise angle ψ = 2ϑ about Ar after circumnavigating the path in the counterclockwise
(	) direction. In (b), the sphere will have rotated through a counterclockwise angle ψ = 2ϕ2

about A2 after circumnavigating the path in the counterclockwise (	) direction. The rota-
tions of the sphere for (a) and (b) are given by (2.4.9)1 and (2.4.9)2, respectively.

For the resulting motion of the sphere, e3 (t0) = E3 and e3 (t1) = 0.194194A1+0.346057A2+
0.917896E3.

The two motions (2.4.9)1,2 can be considered as generalizations of Lemmas 1 and 2,
respectively, in Johnson [38]. In addition, the rectangular paths associated with this pair of
motions will be of particular interest when we examine the Euler angle parameterization of
a rotation (cf. Figure 2.4). Lemma 1 in [38] states that traversing a rectangular path where
ϕ1 =

π
2
and ϕ2 = π will produce a holonomy of the sphere that has an counterclockwise angle

of rotation ψ = 2ϑ about an axis of rotation −A3 = −E3. By allowing other values of ϕ1,
we find that the rectangular path will produce a holonomy of the sphere corresponding to a
rotation about ψ = 2ϑ about an axis Ar. An example of the corresponding path is shown
in Figure 2.4(a). It is remarkable that by rotating the sphere successively about A2, A1,
A2, A1, and A2 has produced a clockwise rotation of 2ϑ about Ar. In addition, by varying
the starting point of the motion, we can produce an axis of rotation that has a horizontal
component. Lemma 2 in [38] states that traversing a rectangular path where ϕ1 = 0 and
ϑ = π will produce a holonomy of the sphere that has an counterclockwise angle of rotation
ψ = 2ϕ2 about an axis of rotation A2. Our results show that the same rotation can be
achieved for any ϕ1 ≤ ϕ2. An example of the corresponding rectangular path is shown in
Figure 2.4(b).
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Rϑ

Rϕ2

Rϕ1

ϑ

ϕ2A1

A2

S

0
0

π

π

2π

2π

Figure 2.5: Level sets of the angle of rotation ψ of the rotation S = Ŝ (ϑ, ϕ1, ϕ2,A1,A2,	)
defined in (2.4.2) as a function of the angles of rotations ϑ and ϕ2. The results are computed
using (2.4.11). The inset image shows the rectangular path taken by the sphere and the
dimensions of the path. The arrow indicates the direction of increasing value of ψ and the
level sets shown are for ψ = 5o, ψ = 45o, ψ = 90o, ψ = 135o, ψ = 180o, ψ = 225o, ψ = 270o,
and ψ = 315o. When ϑ = ϕ2 = π, the angle of rotation ψ = 2π: i.e., S = I.

Finding a Rectangular Path That Produces a Prescribed

Holonomy

We next seek to explore the possibility of prescribing a rectangular path so the reorientation
of the sphere by any rotation R (ψ, s) can be achieved. That is, given ψ and s, we seek
to determine ϕ1, ϕ2, and ϑ such that (2.4.6) are satisfied. We first examine the range of
possible ψ using numerical methods and compute the angle of rotation ψ as a function of ϑ
and ϕ2, ψ = ψ̂ (ϑ, ϕ2), using (2.4.6)1:

cos

(

ψ

2

)

= 1− sin2

(

ϑ

2

)

sin2
(ϕ2

2

)

. (2.4.11)

The results are shown in Figure 2.5 for values of ϑ and ϕ2 in the range of 0 to 2π and are
readily extended to other values of these angles. Referring to Figure 2.5, it is possible to
achieve any angle of rotation by appropriately choosing ϑ and ϕ2 and, apart from values
of 0 or 2π, every angle of rotation ψ is associated with a one-parameter family of values
of ϑ and ϕ2. It is tempting to conclude that given any (ψ, s), a rectangular path can be
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constructed by appropriate choice of the three parameters ϑ, ϕ1, and ϕ2, but before drawing
such a conclusion we need to examine s = ŝ (ϑ, ϕ1, ϕ2).

Ideally, we would like to prove that a three-parameter (ϑ, ϕ1, and ϕ2) rectangular path can
be found for any pair of s and ψ. However, apart from the cases s = Ar and s = A2 discussed
in Section 2.4, we needed to resort to numerical methods to explore if it was possible to find a
triple (ϑ, ϕ1, ϕ2) for any given pair (s, ψ). An outline of the numerical algorithm is presented
in Appendix C. By searching over all possible pairs (s, ψ), our numerical work demonstrated
that a rectangular path could be constructed such that a sphere circumnavigating the path
would experience a desired holonomy.

Ŝ (3.0333, 3.5379, 8.6465,A1,A2,	)

Ŝ (3.2499, 0.39626, 2.3633,A1,A2,	)

Ŝ (3.2499, 6.6794, 8.6465,A1,A2,	)

A1

A2

S

S

S

(a)

(b)

(c)

Figure 2.6: Scaled images of the three rectangular paths that produce the following holonomy
of a rolling sphere: R

(

3π
2
, 0.1A1 +

√
0.98A2 + 0.1A3

)

. From (a)–(c), the paths are described
by (2.4.12)1,2,3, respectively.

Because a holonomy remains unchanged when the lengths of the sides of the rectangle are
increased by multiples of 2πR, the path associated with a holonomy is always non-unique.
In addition to this non-uniqueness, we also find instances where a given holonomy can be
achieved by three distinct rectangular paths where the breadth and height of the rectangles
are not related by multiples of 2πR. For example, the following rotation can be achieved
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using three distinct rectangular paths:

R

(

3π

2
, 0.1A1 +

√
0.98A2 + 0.1A3

)

= Ŝ (3.0333, 3.5379, 8.6465,A1,A2,	)

= Ŝ (3.2499, 0.39626, 2.3633,A1,A2,	)

= Ŝ (3.2499, 6.6794, 8.6465,A1,A2,	) . (2.4.12)

The paths are shown in Figure 2.6 and the code used to compute the solutions can be found
in the supplemental materials for this chapter.

The complexity of finding the three parameters associated with a given rotation contrasts
with the simplicity of the Euler angle representation for a rotation. This difference led us
to explore the use of three rectangular paths to achieve any desired holonomy of the rolling
sphere. The paths and their relation to the Euler angle parameterization of a rotation are
discussed in the next section.

2.5 Euler Angles and the Motion of a Sphere

The Euler angle parameterization of a rotation tensor T can be visualized as a decomposition
of T into the product of three rotations. There are 12 possible sets of Euler angles and several
techniques can be used to visualize them. The first dates to Euler [21] and uses spherical
geometry to show a set of symmetric Euler angles, such as the 3-1-3 and 3-2-3 sets, on the
unit sphere.4 The second visualization can be traced to Lagrange [46] in 1870 and equates
the first Euler angle to the precession, the second Euler angle to the nutation, and the third
Euler angle to the spin of a celestial body. The asymmetric sets of Euler angles, such as
the 3-1-2 and 3-2-1 sets, were first formulated in optometry in the 1840s [22, 28, 30] and
aerodynamics in the late 1800s and early 1900s [11, 73]. The asymmetric sets are readily
visualized as the yaw, pitch, and roll motions of a vehicle. We now present a new method
of defining the 3-1-3, 3-2-3, 3-2-1, and 3-1-2 sets of Euler angles that exploits holonomy.
In particular, we demonstrate how a succession of three rectangular paths can be used to
produce any orientation of the sphere. A summary of the paths was shown previously in
Figure 2.2. In the construction, we make liberal use of the freedom to increase the length
of a side of a rectangle by a multiple of 2Rπ without changing the resulting rotation of the
sphere along that particular side. The developments are followed by a discussion of Euler
angle singularities.5

4Junkins and Shuster [40] have a detailed discussion of this topic.
5The reader is referred to Appendix A for additional details on the 3-1-3 Euler angles.
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The 3-2-3 and 3-1-3 sets of Euler Angles

For the 3-2-3 set, the first rotation is defined about E3 through a counterclockwise angle ν1.
This rotation can be used to define a second basis:

e′1 = cos (ν1)E1 + sin (ν1)E2, e′2 = − sin (ν1)E1 + cos (ν1)E2, e′3 = E3. (2.5.1)

The second rotation is about e′2 through a counterclockwise angle of rotation ν2:

e′′1 = cos (ν2) e
′
1 − sin (ν2) e

′
3, e′′2 = e′2, e′′3 = sin (ν2) e

′
1 + cos (ν2) e

′
3. (2.5.2)

The third and final rotation is a rotation about e′′3 through a counterclockwise angle of
rotation ν3:

e1 = cos (ν3) e
′′
1 + sin (ν3) e

′′
2, e2 = − sin (ν3) e

′′
1 + cos (ν3) e

′′
2, e3 = e′′3. (2.5.3)

The unit vectors used to define the rotations are known as the Euler basis vectors:

{g1 = E3,g2 = e′2,g3 = e′′3} . (2.5.4)

Combining the aforementioned rotations, we arrive at the representation:

T = T̄3−2−3 (ν1, ν2, ν3) =
3
∑

i=1

ei ⊗ Ei = R (ν3, e
′′
3)R (ν2, e

′
2)R (ν1,E3) . (2.5.5)

The corresponding developments for the 3-1-3 set produce the representation:

T = T̄3−1−3 (ν1, ν2, ν3) =
3
∑

i=1

ei ⊗ Ei

= R (ν3, e
′′
3 = cos (ν2)E3 − sin (ν2) e

′
2)R (ν2, e

′
1)R (ν1,E3) . (2.5.6)

For convenience, we use the same notation for both sets of angles.
For ease of exposition, we first consider the 3-2-3 set of Euler angles. Now, imagine a

rolling sphere where the center of mass describes a series of 3 rectangular paths and returns
to its original starting point S. The paths are shown in Figure 2.7. The starting point for
the first path is located at the midpoint of the side of a rectangle of height Rπ and breadth
Rν1
2
:

Ŝ
(ν1
2
,
π

2
, π,E1,E2,�

)

= R (ν1,E3) . (2.5.7)

After the sphere has circumnavigated the rectangle in the clockwise direction, a rotation of
ν1 about an axis E3 will have been achieved. The second motion is a counterclockwise path
about a rectangle which has a base of length Rπ and height Rν2

2
. The rectangle is rotated so
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1

2

3
E1

E2

e′1

e′1
e′2

e′2

S

Rν3
2

x

Rπ

Rν1
2

Rν2
2

ν1

ν1

Figure 2.7: The three motions for the set of 3-2-3 Euler angles: ν1, ν2, and ν3. The first
rectangular path (labelled 1) has a base of length Rν1

2
and height Rπ. The second rectangular

path (labelled 2) has base of length Rπ and height Rν2
2
. The third, and final rectangular

path (labelled 3) has a base of length Rν3
2

and height 3Rπ. The parameter x = R
(

π
2
+ ν2

)

defines the location of S on the third rectangle. Observe that the second and third paths
have been rotated by an angle of ν1 to the horizontal.

that the base is parallel to e′2.
6 After the sphere has circumnavigated the second rectangle,

a rotation of ν2 about an axis e′2 will have been achieved. That is,

Ŝ
(

π, ϕ1 ∈
[

0,
ν2
2

]

,
ν2
2
, e′1, e

′
2,	

)

= R (ν2, cos (ν1)E2 − sin (ν1)E1) . (2.5.8)

For the 3-2-3 set of Euler angles, ν2 is positive so the second rectangular path is always
traversed in a counterclockwise direction. For the third, and final, rotation, we consider a
rectangle with a base of length Rν3

2
and height 3Rπ. That is, ϕ2 = 3π. To determine S

and the orientation of the rectangle, we observe that for the third rotation and concomitant
rectangular path, the axes of rotation for the ensuing motion of the sphere are given by the
following respective representations (cf. (2.4.6) and (2.4.7)):

e′′3 = sin (ν2) e
′
1 + cos (ν2) e

′
3,

s3 = sin (ϕ1)A3 + cos (ϕ1)A1. (2.5.9)

6That is, the basis vectors A1 and A2 in Figure 2.5 are chosen to be e
′

1
and e

′

2
, respectively.
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To align these vectors and accommodate the range [0, π] of ν2, ϕ1, A1, and A3 are prescribed
as follows:

ϕ1 =
5π

2
− ν2, A1 = e′1, A3 = e′3 = E3. (2.5.10)

That is, the starting point and orientation of the rectangle are chosen judiciously so that the
axis of rotation for the resulting motion of the sphere will be parallel to e′′3. After the sphere
has circumnavigated the third rectangle in the clockwise direction, a rotation of ν3 about an
axis e′′3 will have been achieved. That is,

Ŝ

(

ν3
2
,
5π

2
− ν2, 3π, e

′
1, e

′
2,�

)

= R (ν3, e
′′
3) . (2.5.11)

Combining the results (2.5.7), (2.5.8), and (2.5.11), we arrive at the conclusion:

T̄3−2−3 (ν1, ν2, ν3) = Ŝ

(

ν3
2
,
5π

2
− ν2, 3π, e

′
1, e

′
2,�

)

Ŝ
(

π, ϕ1 ∈
[

0,
ν2
2

]

,
ν2
2
, e′1, e

′
2,	

)

× Ŝ
(ν1
2
,
π

2
, π,E1,E2,�

)

. (2.5.12)

That is, the 3-2-3 set of Euler angles can be defined by the change in orientation achieved
by rolling a sphere that has travelled along a set of three consecutive rectangular paths. An
animation of this type of reorientation can be found in the supplemental materials for this
chapter.

For the 3-1-3 set of Euler angles, the first rectangular path is identical to the one used
for the 3-2-3 set of Euler angles (cf. (2.5.7)). The second rotation is about e′1 and, thus, we
now choose the second rectangular path to have a base of length Rπ and a height of Rν2

2
.

The rectangle is oriented so A1 = −e′2 and A2 = e′1:

Ŝ
(

π, ϕ1 ∈
[

0,
ν2
2

]

,
ν2
2
,−e′2, e

′
1,	

)

= R (ν2, cos (ν1)E1 + sin (ν1)E2) . (2.5.13)

The third rectangle has a base of length Rν3
2

and a height of 3Rπ, and will be circumnavigated
in the clockwise direction. To prescribe the location of the starting point S and the angle
ϕ1, we note that

e′′3 = − sin (ν2) e
′
2 + cos (ν2) e

′
3,

s3 = sin (ϕ1)A3 + cos (ϕ1)A1. (2.5.14)

To align these vectors and accommodate the range [0, π] of ν2, ϕ2, A1, and A3 are prescribed
as follows:

ϕ1 =
5π

2
− ν2, A1 = −e′2, A3 = e′3 = E3. (2.5.15)
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1

2

3

E1

E2

e′1

e′1
e′2

e′2

S

Rν3
2

y
Rπ

Rν1
2

Rν2
2

ν1

Figure 2.8: The three motions for the set of 3-1-3 Euler angles: ν1, ν2, and ν3. The first
rectangular path (labelled 1) has a base of length Rν1

2
and height Rπ. The second rectangular

path (labelled 2) has base of length Rπ and height Rν2
2
. The third, and final rectangular

path (labelled 3) has a base of length Rν3
2

and height 3Rπ. For the 3-1-3 set of Euler angles,
ν2 ∈ [0, π] and y = 5Rπ

2
−Rν2.

In conclusion:

T̄3−1−3 (ν1, ν2, ν3) = Ŝ

(

ν3
2
,
5π

2
− ν2, 3π,−e′2, e

′
1,�

)

Ŝ
(

π, ϕ1 ∈
[

0,
ν2
2

]

,
ν2
2
,−e′2, e

′
1,	

)

× Ŝ
(ν1
2
,
π

2
, π,E1,E2,�

)

. (2.5.16)

The rectangular paths are shown in Figure 2.8.

The 3-2-1 and 3-1-2 sets of Euler Angles

The construction for the 3-2-1 and 3-1-2 sets follow those for the 3-2-3 and 3-1-3 sets,
respectively, with two modifications. The first of these modifications accommodates the
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range of the second Euler angle for the asymmetric sets: ν2 ∈
[

−π
2
, π
2

]

. To accommodate the
range, the second rectangle, which has a breadth of R

2
|ν2| is circumnavigated in the clockwise

direction if ν2 < 0 and counterclockwise direction if ν2 > 0. The second modification pertains
to s3. For the 3-2-1 set of Euler angles, we can follow the developments leading to (2.5.10).
We now need to prescribe ϕ1, A1, and A3 such that

e′′1 = − sin (ν2) e
′
3 + cos (ν2) e

′
1,

s3 = sin (ϕ1)A3 + cos (ϕ1)A1. (2.5.17)

To align these vectors and accommodate the range
[

−π
2
, π
2

]

, we prescribe

ϕ1 = π + ν2, A1 = −e′1, A2 = −e′2, A3 = e′3 = E3. (2.5.18)

That is, the third rectangle in Figure 2.7 will be rotated by 180◦. The developments for the
3-1-2 set of Euler angles follow from the 3-1-3 set. In place of (2.5.14), we need to prescribe
ϕ1, A1, and A3 such that

e′′2 = cos (ν2) e
′
2 + sin (ν2) e

′
3,

s3 = sin (ϕ1)A3 + cos (ϕ1)A1. (2.5.19)

Thus,

ϕ1 = 2π + ν2, A1 = e′2, A2 = −e′1, A3 = e′3 = E3. (2.5.20)

The rectangular paths are shown in Figure 2.9. The resulting representations for
T̄3−2−1 (ν1, ν2, ν3) and T̄3−1−2 (ν1, ν2, ν3) are readily inferred from our earlier work (cf.
(2.5.12) and (2.5.16)).

Euler Angle Singularities

We note that the construction applies even when a coordinate singularity known as the Euler
angle singularity is present. The arguments are similar for both the four sets of Euler angles
under consideration. In the interests of brevity, we confine our comments to the 3-2-3 set
of Euler angles. In order for the Euler basis to span E

3, the basis vectors {E3, e
′
2, e

′′
3} must

be linearly independent. Thus, the angle ν2 is restricted in order to avoid the coordinate
singularity: ν2 ∈ (0, π), otherwise where ν2 = 0, π then e′′3 = ±E3 and the Euler angles fail
to be a coordinate system for the group of rotations SO(3). These instances are the pair of
Euler angle singularities for the 3-2-3 set of Euler angles. To illustrate how this singularity
manifests in the holonomy construction, consider the case ν2 = π. In this case, (2.5.12) can
be used to show that the second rectangular path will result in a rotation of the sphere about
e′2 of π and the third rectangular path will produce a rotation about −E3 through an angle
ν3, as expected.
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2.6 Closing Remarks

The holonomies we have discussed have application to spherical robots (such as BB-8 [1]).7

By moving the robot around either a single prescribed rectangular path or a prescribed trio
of rectangular paths any given orientation of the robot can be achieved. Furthermore, most
spherical robots have a drive system which can produce fixed axis rotations (the mechanism
in BB-8 provides an excellent example) so the rectangular paths discussed in this paper are
feasible.

7Additional details on spherical robots can be found in the articles [15, 42].
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Figure 2.9: The three motions for the sets of (a) 3-2-1 Euler angles and (b) 3-1-2 Euler
angles: ν1, ν2, and ν3. The first rectangular path (labelled 1) has a base of length Rν1

2
and

height Rπ. The second rectangular path (labelled 2) has base of length Rπ and height R|ν2|
2

.
This path is circumnavigated in the clockwise direction if ν2 < 0 and in the counter clockwise
direction if ν2 > 0. The figure illustrates the latter case. The third, and final rectangular
path (labelled 3) has a base of length Rν3

2
and height 3Rπ. For the 3-2-1 and 3-1-2 set of

Euler angles, ν2 ∈
[

−π
2
, π
2

]

, x = Rπ −Rν2 and y = 2Rπ −Rν2.
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Chapter 3

On the Dynamics of Transporting

Rolling Cylinders

3.1 Introduction

A common, yet hazardous, method of transporting cylindrical tanks used to carry compressed
gas involves rolling both tanks at opposite angles of inclination to the vertical (cf. Figure
3.1).1 By propelling one of the tanks while maintaining point contact between the tanks,
both tanks can be transported together with their centers of mass moving in straight lines.
Apart from safety concerns, this mechanism for transporting tanks also raises questions
about the dynamics of the cylinders involved. For instance, is there rolling or sliding contact
at the point of contact between the cylinders and is it necessary to support the entire weight
of both cylinders?

To explore the dynamics of the locomotion mechanism, we are able to leverage the wealth
of research on rolling cylinders in the literature. Much of this work can be traced to seminal
papers by Appell [2] and Korteweg [45] on the rolling disk in the early 1900s and the large
numbers of recent papers (cf. e.g., [5, 8, 44, 71]) that were inspired by the paradoxical
behavior of a cylinder of chrome plated cast iron known as Euler’s Disk.

We start our analysis with a exploration of the problem of supporting an inclined cylinder
that has a single point in contact with a rough surface and is supported by an applied force
at the other end of the cylinder. As the contact condition is maintained by a static friction
force, multiple equilibrium configurations and a range of applied forces are feasible. As an
alternative to showing that the constraints on the rolling cylinder are non-integrable, we
instead leverage the works of [12, 33, 38] and explore the holonomy of the rolling cylinder.
With these two preliminary studies completed, we then turn to exploring the dynamics of a
pair of cylinders in contact at a single point moving in unison on rough horizontal surface.
With the help of Frobenius’ theorem on integrability of a system of constraints [54, 62],
we argue that the point contact is one of slipping. With the help of a recently developed

1A demonstrative example can be found here: https://youtu.be/Vgn5fv LAk.

https://youtu.be/Vgn5fv__LAk
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Figure 3.1: A pair of cylinders in motion on a horizontal surface. Each cylinder has a single
point of contact with the surface and a single point of mutual contact.

numerical method by Capobianco et al. [14], a numerical simulation of the locomotion
mechanism is then developed.

Supplemental material for this chapter can be found here:
https://github.com/ThH00/On-the-Dynamics-of-Transporting-Rolling-Cylinders

3.2 A Rolling Cylinder

We consider a homogeneous circular cylinder of massm, height h, and radius R. The position
vector of the center of mass X̄ is denoted by x̄ and the position vector of the instantaneous

https://github.com/ThH00/On-the-Dynamics-of-Transporting-Rolling-Cylinders
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point of contact P is denoted by xP :

x̄ = x1E1 + x2E2 + x3E3 (3.2.1)

where {e1, e2, e3} is a right-handed set of Cartesian basis vectors for E3. The position vector
of P relative to X̄ is denoted by πP .

To parameterize the rotation tensor Q of the cylinder a set of 3-1-3 Euler angles, ψ,
ϑ, and ϕ, are used. The angles define the orientation of a basis {e1, e2, e3} that corotates
with the cylinder with respect to the basis {E1,E2,E3}: Q = e1 ⊗ E1 + e2 ⊗ E2 + e3 ⊗ E3.
Here, ⊗ is the tensor product of two vectors. While the first and third Euler angles range
from 0 to 2π, the second Euler angle, ϑ ∈ (0, π) in order to avoid a coordinate singularity
associated with the Euler angle parameterization of a rotation tensor [31]. Referring to
Figure 3.2, we observe that ϑ is a measure of the inclination of the cylinder to the vertical:
when ϑ = 0, the cylinder is vertical and when ϑ = π

2
the cylinder is horizontal. In both of

these cases, the point contact assumption we employ fails. Consequently, for our analyses
we assume ϑ ∈

(

0, π
2

)

unless otherwise stated. For additional details on the 3-1-3 Euler
angles, including a representation for the angular velocity vector ω, the reader is referred to
Appendix A.

The constraints that the cylinder rolls without slipping on the horizontal surface can be
expressed in terms of the velocity vector of the instantaneous point of contact: vP = 0. As
vP = v̄ + ω × πP , the constraints can be expressed as

Π1 = 0, Π2 = 0, Π3 = 0. (3.2.2)

That is,

Πk = v̄ · Ek + (ω × πP ) · Ek, (k = 1, 2, 3) , (3.2.3)

where

πP = −h
2
e3 − re′′2, (3.2.4)

and representations for e′′2 and ω can be found in (A.1.2), (A.1.3), and (A.2.1) in Appendix
A. The constraints functions (3.2.2) can be expressed in their component forms:

Π1 = ẋ1 + f1 cos (ψ) ψ̇ − f2 sin (ψ) ϑ̇+ r cos (ψ) ϕ̇,

Π2 = ẋ2 + f1 sin (ψ) ψ̇ + f2 cos (ψ) ϑ̇+ r sin (ψ) ϕ̇,

Π3 = ẋ3 − f1ϑ̇, (3.2.5)

where

f1 = r cos (ϑ)− h

2
sin (ϑ) , f2 = r sin (ϑ) +

h

2
cos (ϑ) . (3.2.6)
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e′2

e′′2

ϑ

e3

N

Ff

Fa

Fe

F3e3

W

Figure 3.2: The forces acting on the cylinder are the weight W = −mgE3 acting at its center
of mass, the normal force N = NE3 and the friction force Ff = Ff1E1 +Ff2E2 acting at the
contact between the cylinder and the ground, and an applied force Fa = F1E1+F2E2+F3E3

at mid point of the upper surface of the cylinder.

As discussed in Appendix D, the system of constraints (3.2.2) are non-integrable (or non-
holonomic). In addition, the constraint Π3 = 0 is integrable and implies that x3 = r sin (ϑ)+
h
2
cos (ϑ) modulo a constant.
Referring to Figure 3.2, the forces acting on the cylinder are a gravitational force −mgE3

acting at X̄, a normal NE3 and static friction force Ff = Ff1E1 + Ff2E2 acting at the
instantaneous point of contact P , and an applied force Fa acting at a point Xa on the upper
extremities of the cylinder: πa =

h
2
e3. The cylinder is assumed to be axisymmetric with an

inertia tensor

J = λt (e1 ⊗ e1 + e2 ⊗ e2) + λae3 ⊗ e3, (3.2.7)

where λt and λa are moments of inertia. The balance laws for the cylinder are

Fa + Ff + (N −mg)E3 = m ˙̄v,

πa × Fa + πP × (Ff +NE3) = Jω̇ + ω × (Jω) , (3.2.8)
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where πa =
h
2
e3. These balance laws are supplemented by the constraints (3.2.2) to form a

determinate system of equations to compute the motion of the cylinder and the normal and
static friction forces.

3.3 Supporting Rectilinear Motions of a Cylinder

We start by considering the simplest possible locomotion for an inclined cylinder: rectilinear
motion of the center of mass at constant speed. The goal of our analysis is to determine the
applied force Fa required to sustain the motion. For the motion of interest, two of the Euler
angles are constant and the spin rate ϕ̇ is constant:

ψ̇ = 0, ϑ̇ = 0, ϕ̇ = ω0. (3.3.1)

The constraints (3.2.2) are satisfied provided

v̄ = −rω0e
′
1. (3.3.2)

The balances of linear and angular momenta (3.2.8) simplify dramatically:

Fe+ F3E3 + Ff1E1 + Ff2E2 +NE3 −mgE3 = 0,
(

−h
2
e3 − re′′2

)

× (NE3 − Fe) +
h

2
e3 × (Fe+ F3E3) = 0,

(3.3.3)

where the unit vector e = β1e
′
1 + β2e

′
2. With the help of equation (3.3.3)1, we conclude that

N + F3 = mg,

Ff1E1 + Ff2E2 = −Fe. (3.3.4)

After expressing the balance of angular momentum (3.3.3)2 in components with respect to
the {e′1, e′2,E3} basis, we find that:

N

(

h

2
sin(ϑ)− r cos(ϑ)

)

− hF3

2
sin(ϑ)− Fβ2 (r sin(ϑ) + h cos(ϑ)) = 0,

Fβ1 (r sin(ϑ) + h cos(ϑ)) = 0,

− Fβ1 (r cos(ϑ)− h sin(ϑ)) = 0.

(3.3.5)

We conclude from the component forms that β1 = 0 and then set β2 = 1. That is, the friction
force serves solely to balance the horizontal component of the applied force: Ff = −Fe′2.
Using (3.3.4)1 to eliminate F3 = mg − N , we find that the balance of angular momentum
reduces to a single non-trivial equation:

N (r cos(ϑ)− h sin(ϑ)) +
mgh

2
sin(ϑ) = −F (r sin(ϑ) + h cos(ϑ)) . (3.3.6)
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The friction force Ff is subject to the the static friction criterion:
√

F 2
f1 + F 2

f2 = |F | ≤ µN .

We henceforth restrict attention to the extreme cases of maximum friction force |F | = µN :

µN (r sin(ϑ) + h cos(ϑ)) =

∣

∣

∣

∣

mgh

2
sin(ϑ) +N (r cos(ϑ)− h sin(ϑ))

∣

∣

∣

∣

. (3.3.7)

This equality is equivalent to a pair of identities:

mg − F3

mg
=

N

mg
=

1
2
sin(ϑ)

sin(ϑ)− r
h
cos(ϑ)±

(

rµ
h
sin(ϑ) + cos(ϑ)

) . (3.3.8)

The condition that N > 0 and F3 > 0 are simultaneously satisfied implies that 0 < N
mg

< 1
and also places a restriction on the allowable range of the angle of inclination ϑ:

ϑ ∈
(

min

(

0, tan−1

( r
h
− µ

1
2
+ rµ

h

))

,
π

2

)

in the (+) case,

ϑ ∈
(

min

(

0, cot−1

( 1
2
− rµ

h
r
h
+ µ

))

,
π

2

)

in the (−) case.

(3.3.9)

For a given inclination of the cylinder (i.e., a given value of ϑ), two limiting friction force
distributions with distinct applied forces Fa are possible. At the transitional case where the
horizontal plane is smooth (µ = 0), (3.3.8) simplifies to

mg − F3

mg
=

N

mg
=

1
2
sin(ϑ)

sin(ϑ)− r
h
cos(ϑ)

, ϑ ∈
(

tan−1

(

2r

h

)

,
π

2

)

. (3.3.10)

To explore possible inclinations of the cylinder, we plot mg
N

as a function of the angle of
inclination for three limiting cases: Ff = −µNe′2, Ff = 0, and Ff = µNe′2. These cases are
defined by (3.3.8)−, (3.3.10), and (3.3.8)+, respectively. The results are shown in Figures 3.3,
fig:force-ratio-figs, and 3.5. From these figures we observe that not all possible combinations
of F3 and ϑ are possible because of the limiting value of the static friction force. The results
shown in Figures 3.4 and 3.5 demonstrate how the range in feasible values of (ϑ, F3) depends
on the geometry of the cylinder and the static coefficient of friction.

Referring to Figure 3.4, we observe that the curves for the case Ff = µNe′2 (i.e., (3.3.8)+)
intersect at a single point that is independent of r

h
. We can compute the coordinates of this

point from (3.3.8) by combining the r
h
terms and setting their coefficient to be zero:

(

ϑ = tan−1

(

1

µ

)

,
N

mg
=

1

2 (1 + µ2)

)

. (3.3.11)

We also note the points where N = mg and F3 = 0 at which the inclined cylinder is in
equilibrium under the action of its weight, normal and friction forces, and an applied force
that counterbalances the friction force: Fa = −Ff . As evidenced by the results shown in
Figure 3.5, the larger µ then the larger the range of angles of inclination ϑ for a given F3.
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N
mg

= 1− F3

mg
ϑ

ϑ
0

0
π
2

1

0.5

ii

i

U

U

Fa

Figure 3.3: The space of possible configurations of the inclined rolling cylinder displayed as a
function of the angle of inclination ϑ and the dimensionless force N

mg
= 1− F3

mg
. The bounding

curves correspond to the restriction imposed by the static friction criterion. For the regions
labeled U , the motions of interest are not possible. The curve labelled i is obtained from
(3.3.8)+ and the curve labelled ii is computed from (3.3.8)−. The results shown in this figure
pertain to the case where µ = 0.2 and r

h
= 0.1.

The Smallest Force

The results so far show that the same angle of inclination ϑ can be sustained by multiple
values of the applied force Fa. The multiplicity is made possible by the nature of the static
friction force. It is of interest to see if there is a minimum force. More precisely, for given
values of µ and r

h
, what is the minimum force ||Fa|| required to maintain a given angle of

inclination ϑ?
To answer the question, we return to (3.3.6) and eliminate N using the identity N =

mg − F3. After some rearranging, we find an expression for the dimensionless horizontal
component of Fa:

F

mg
= α1

(

F3

mg

)

+ α2, (3.3.12)

where

α1 =
r
h
cos(ϑ)− sin(ϑ)

r
h
sin (ϑ) + cos (ϑ)

, α2 = −
r
h
cos (ϑ)− 1

2
sin (ϑ)

r
h
sin (ϑ) + cos (ϑ)

, (3.3.13)

If we seek to compute the minimum applied force for a given ϑ, then a geometric argument
applied to the linear relation (3.3.12) in the F3 − F space, shows that the point on the line
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N
mg

= 1− F3

mg

ϑ

ϑ

0
0

π
2

1

0.5

Fa

Figure 3.4: The dimensionless force 1− F3

mg
as a function of the angle of inclination ϑ. The

black curves are obtained from (3.3.8)+, the red curves from (3.3.10) (i.e., (3.3.8)µ=0), and
the blue curves are obtained from (3.3.8)− for µ = 0.2 and various values of r

h
. The arrows

point in direction of increasing r
h
from 0 to 0.15. When r

h
= 0, the cylinder is a slender rod

of length h while at the other extreme when r
h
= ∞ the rigid body is circular disk of radius

r.

(3.3.12) closest to the origin is found by the intersection of this line with the perpendicular
intercept:

F

mg
= − 1

α1

(

F3

mg

)

. (3.3.14)

That is,
(

F3

mg
= − α1α2

1 + α2
1

,
F

mg
=

α2

1 + α2
1

)

. (3.3.15)

Thus, the minimum magnitude of the applied force for given values of r
h
and ϑ is

||Fa|| =
mg|α2|
√

1 + α2
1

=
mg

√

1 +
(

r
h

)2

∣

∣

∣

∣

r

h
cos (ϑ)− 1

2
sin (ϑ)

∣

∣

∣

∣

. (3.3.16)

The solution (3.3.15) to the minimum force problem is valid provided the static friction
criterion, |F | ≤ µN = µ (mg − F3), is satisfied:

|α2| ≤ µ
(

α2
1 + α1α2 + 1

)

. (3.3.17)
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N
mg

= 1− F3

mg

ϑ

ϑ

0
0

π
2

1

0.5

Fa

Figure 3.5: The dimensionless force 1 − F3

mg
as a function of the angle of inclination ϑ.

The black curves are obtained from (3.3.8)+, the red curves from (3.3.10) (i.e., (3.3.8)µ=0),
and the blue curves are obtained from (3.3.8)− for r

h
= 0.1 and various values of µ =

0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. The arrows point in direction of increasing µ. The results for
µ = 0 coincide with the red curve.

A representative case, labeled i, where (3.3.14) is used to compute the minimum applied
force is shown in Figure 3.6.

If (3.3.15) does not satisfy (3.3.17), then the minimizing solution must be found by
seeking the point on the line (3.3.12) that is closest to the origin that satisfies |F | ≤ µN =
µ (mg − F3). A representative case where (3.3.15) does not yield a minimal applied force
that satisfies the static friction condition (3.3.17), is shown in Figure 3.6 where it is labeled
ii. Consider the case where the point which minimizes the applied force Fa lies at the
intersection of the line (3.3.12) with µN = µ(mg − F3) = F or µN = µ (mg − F3) = −F ,
depending on whichever minimizes that Fa. This intersection points in the positive and
negative cases are, respectively,

(

F3

mg
=
µ− α2

µ+ α1

,
F

mg
= µ

α1 + α2

µ+ α1

)

,

(

F3

mg
=
µ+ α2

µ− α1

,
F

mg
= µ

α1 + α2

µ− α1

)

.

(3.3.18)

The third and penultimate case we need to consider arises when the line (3.3.12) intersects
the vertical axis F3

mg
= 0 and the restriction F3 ≥ 0 is imposed. In this case, the minimizing
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F3

mg

F
mg

ϑ

0

µ

1

µN = F

µN = −F

α1F = F3

F = α1F3 + α2

F = α1F3 + α2

i

ii
A

B

−µ

Fa = F3E3 + Fe

Figure 3.6: The space F3

mg
− F

mg
showing the admissible region defined by the static friction

criterion |F | ≤ µN and two examples of the linear relation (3.3.12). For the example labelled
i, the point corresponding to the minimum force |Fa| is labelled A and can be computed
using (3.3.15). For the example labelled ii, the minimum force |Fa| computed using (3.3.15)
does not satisfy the static friction criterion and the minimum force (labelled B) is computed
using (3.3.18). The angle ϑ and parameters r

h
and µ are all assumed to be constant.

value of ||Fa|| = mg |α2|. The corresponding values of the components of Fa are

(

F3

mg
= 0,

F

mg
= α2

)

. (3.3.19)

The fourth case arises when the cylinder is vertical (ϑ = 0) or completely horizontal. In these
cases, the normal force is balanced by gravity, the friction force vanishes, and the minimum
Fa = 0. In summary, four sets of values of (F3/mg, F/mg) are used to compute minimum
values of ||Fa|| for ϑ ∈ [0, 90◦].

As shown in Figure (3.7), we consider a fixed value of r
h
= 0.1 and a fixed µ = 0.2 and

vary ϑ ∈ (0, 90◦). With the help of (3.3.17) and (3.3.18), the locus of points (F3/mg, F/mg)
corresponding to minimum values of ||Fa|| are computed. Referring to the figure, the points
B and C correspond to the intersection points of the families of lines (3.3.12) and (3.3.14),
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F
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F3

mg

−0.3

0

0.3

−0.2 0 1

C

B
µN = F

µN = −F

Figure 3.7: The components of the minimum force Fa in the F3

mg
− F

mg
plane trace a circle with

diameter BC given by (3.3.20) for ϑ ∈ (0, 90◦). The points belonging to the aforementioned
circle for which (3.3.17) is satisfied are drawn in red, otherwise, they are drawn in black. In
the latter case, the force minimizing points that satisfy the static friction criterion are drawn
in blue, and belong either to the lines µN = ±F or F3 = 0.

respectively, for a given r
h
value. The coordinates of these points

B =

(

F3

mg
= 0,

F

mg
= 0

)

,

C =

(

F3

mg
=

1
2
+
(

r
h

)2

1 +
(

r
h

)2 ,
F

mg
=

−1
2
r
h

1 +
(

r
h

)2

)

.

(3.3.20)

Since the lines (3.3.12) and (3.3.14) always pass through the points B and C respectively,
and are perpendicular. Thus, the locus of the intersection point of these lines is a circle of
diameter BC.

For a given cylinder and contacting plane, the components of the minimum applied
force as a function of ϑ are shown in Figure 3.8. The point labelled D corresponds to the
absolute minimum applied force which is ||Fa|| = 0 which arises when the angle of inclination
ϑ = tan−1

(

2r
h

)

. The cylinder self balances at this angle of inclination and the static friction
force vanishes. The graphs of ||Fa|| (ϑ), F (ϑ), and F3 (ϑ) are discontinuous at ϑ = 0, 90◦ as
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ϑ
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mg

F
mg

||Fa||
mg
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2

−0.2

0

1

D EE

Figure 3.8: The minimum force satisfying the static friction criterion vs. ϑ for µ = 0.2 and
r
h
= 0.1. The continuous portion of the curve corresponds to solutions of (3.3.15) satisfying

(3.3.17). In the regions where (3.3.17) is not satisfied, the curve is dashed with relevant
values given either by (3.3.18) or (3.3.19). The points labeled E correspond to the minimum
values of Fa = 0 when ϑ = 0, 90◦.

the minimum applied force Fa = 0 at these points. The two points are labelled E in Figure
3.8 and signify discontinuities in the graphs of F (ϑ) and F3 (ϑ) as ϑց 0 and ϑր π

2
.

3.4 Holonomies of a Rolling Cylinder

Consider a cylinder rolling on a horizontal surface while its center of mass traces out a closed
path. After the center of mass has returned to its original location, we will typically find
that the orientation of the cylinder has changed. The change in orientation is known as
a holonomy. Holonomies in rigid body dynamics can be attributed to the non-holonomic
constraints on the motion of the body. The phenomenon in rolling spheres with application
to spherical robots has been discussed in [12, 33, 38] and discussions of holonomy in parallel
parking can be found in [13, 52].

Recall that we are using a set of 3-1-3 Euler angles to parameterize the rotation of the
cylinder. The angles ψ ∈ [0, 2π] and ϑ = [0, π] can each be individually altered without
changing the other angles or the location of the instantaneous point of contact P . As
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a result, and in contrast to our earlier work on the holonomy of rolling spheres [33], we
restrict attention to motions of the cylinder that produce changes in ϕ. The two motions
of interest are those where the instantaneous point of contact traces out a rectangular path
and a circular path. We now establish closed form expressions for the change in orientation
(holonomy) for both types of path.

O

O

A1

A1

A2

A2

E3

S

S

rφ2/2

rφ1/2

i

ii

AB

P

(a) (b)

e′1

e′2

ℓ2ℓ1

Figure 3.9: (a) The rectangular path traced by the instantaneous point of contact P between
the cylinder and the horizontal plane. The cylinder starts the circumnavigation at the point
labeled S. The location of S is defined by the parameter s ∈ [0, 1]: ℓ1 = r(1−s)φ1

2
and

ℓ2 =
rsφ1
2
. The rectangle has sides of length rφ1

2
and rφ2

2
and produces a holonomy of φ1 +φ2

in the rolling inclined cylinder. (b) Time traces of the point P and of a material point X
on the rim of the cylinder as P traces the rectangular path. The traces are labelled i and
ii respectively. While the center of mass returns to its original location S, X has relocated
from A to B. The example shown is classified as Case I.

Holonomy of a Rolling Cylinder Tracing a Rectangular Path

If we imagine an rolling inclined cylinder tracing a closed rectangular path starting at a point
S, then the change in the angle ϕ when the center of mass has returned to its original location
will typically be non-trivial. The change in the angle ϕ is an example of a holonomy. As we
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shall explain, the change in the angle is not only a function of the lengths of the sides of the
rectangles, whether or not the path is traversed in a counterclockwise or clockwise manner,
the angle ϑ of inclination of the rectangle, and whether the unit vector e′2 points inward or
outward to the path. We refer to these two instances as Case I and Case II, respectively.
The holonomy will be shown to be independent of the choice of starting point S.

To proceed with our analysis, we consider Case I. Now consider a rectangle with side
lengths rφ1

2
and rφ2

2
as depicted in Figure 3.9. Without loss in generality, the starting point

S is specified by the parameter s ∈ [0, 1]. The Cartesian basis vectors A1 and A2 are each
parallel to two sides of the rectangle. Tracing a rectangular path in a counterclockwise
manner using a rolling cylinder is achieved using two types of motion: rotations about e3
and rotations about E3. For the first of these, ω = ϕ̇e3, and the constraints vP = 0 imply
that

v̄ = −rϕ̇e′1. (3.4.1)

That is the cylinder’s center of mass moves in a straight line. As ϕ̇1 > 0, this implies that
e′1 is antiparallel to the direction of motion and e′2 is one of the two outward normals to the
path. For motions where ω = ψ̇E3, the constraints vP = 0 implies that

v̄ = −ψ̇f1e′1. (3.4.2)

These motions enable the cylinder to turn the corners of the rectangle. For the rectangular
path shown in Figure 3.9, either e′1 = ±A1 or e′1 = ±A2.

Tracing the rectangle depicted in Figure 3.9(a) in a counterclockwise direction requires
the cylinder to undergo a sequence of nine rotations. The combined rotation, which is also
the change in orientation of the cylinder, is S where

S = ŜI (ϑ, φ1, φ2, s, r, h, ψ0,	)

= A

(

sφ1

2
, 0e3

)

A
(π

2
,E3

)

A

(

φ2

2
, 3e3

)

A
(π

2
,E3

)

A

(

φ1

2
, 2e3

)

×A
(π

2
,E3

)

A

(

φ2

2
, 1e3

)

A
(π

2
,E3

)

A

(

(1− s)φ1

2
, 0e3

)

(3.4.3)

whereA (ξ, r) denotes a rotation about an axis r through a counterclockwise angle of rotation
ξ,

ie3 = A

(

iπ

2
,E3

)

0e3, (i = 1, 2, 3) ,

0e3 = sin (ψ0) sin (ϑ)E1 − cos (ψ0) sin (ϑ)E2 + cos (ϑ)E3. (3.4.4)

The parameter 	,� in Ŝ is used to distinguish counterclockwise and clockwise directions,
respectively, of circumnavigating the rectangular path. Computing the products of the
rotations in (3.4.3), we conclude that

ŜI (ϑ, φ1, φ2, s, r, h, ψ0,	) = A (φ1 + φ2, 0e3) . (3.4.5)
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That is, the holonomy is

∆ϕ = φ1 + φ2. (3.4.6)

We observe that A (2nπ, 0e3) = I, where I is the identity tensor. Thus, we can increase
the lengths of the sides of the rectangle by integer multiples of 2π without changing the
holonomy ∆ϕ. If we were to traverse the rectangle in a clockwise manner, then the sign of
the holonomy reverses:

ŜI (ϑ, φ1, φ2, s, r, h, ψ0,�) = A (−φ1 − φ2, 0e3) . (3.4.7)

That is, ∆ϕ = −φ1 − φ2.
For Case II, the expression (3.4.1) for v̄ holds, however ϕ̇ < 0. Assuming the path is

circumnavigated in a counterclockwise manner, the unit vector e′2 now points inwards. The
expression for ŜII is readily established by changing the signs of φ1 and φ2 in (3.4.3). The
resulting holonomies are

ŜII (ϑ, φ1, φ2, s, r, h, ψ0,	) = A (−φ1 − φ2, 0e3) ,

ŜII (ϑ, φ1, φ2, s, r, h, ψ0,�) = A (φ1 + φ2, 0e3) . (3.4.8)

As the expressions for the angle and axes of the holonomies are independent of s, we conclude
that the holonomies (3.4.6), (3.4.7), and (3.4.8) are independent of the starting point S.
Representative examples of Case I and Case II are shown in Figure 3.10.

We can also verify (3.4.6) and (3.4.8) using a quaternion representation of a rotation and
the Rodrigues formula for compound rotations.2 Restricting attention to Case I, repeated
application of the Rodrigues formula to (3.4.3) shows that the unit quaternion associated
with the rotation ŜI (ϑ, φ1, φ2, s, r, h, ψ0,	) has the representation

q0 = cos
(γ

2

)

= cos

(

π +
φ1

2
+
φ2

2

)

,

q = sin
(γ

2

)

r = sin

(

π +
φ1

2
+
φ2

2

)

0e3,

(3.4.9)

where γ is the angle of rotation and r is the axis of rotation: a result that is in agreement
with (3.4.6). The analysis for Case II is similar and in the interests of brevity is not presented
here.

2Consider a pair of rotations A = Ã (a0,a) and B = B̃ (b0,b) parameterized by unit quaternions (a0,a)
and (b0,b), respectively. Then, the compound rotation C = BA is parameterized by the unit quaternion

c0 = a0b0 − a · b,
c = a0b+ b0a+ b× a.
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Figure 3.10: Motions of a cylinder where the center of mass traces a rectangular path in a
counterclockwise manner and produces a holonomy: (a) Case I where ∆ϕ = 36.3901o and (b)
Case II where ∆ϕ = −36.3901o. For the results shown in this figure, h = 8.3333r, φ1 =

13π
3
,

φ2 =
29π
4
, ϑ = π

10
, and s = 0.

Holonomy of a Rolling Cylinder Tracing a Circle

We now turn to the case where the center of mass of the cylinder traces a circular path.
We are able to establish a simple expression (3.4.16) for the radius ℓ of the path of the
instantaneous point of contact P to establish any desired relative change in the Euler angle
ϕ of the cylinder. As with the case of a rectangular path and as illustrated in Figure 3.11,
there are two cases to consider: Case I where e′2 points radially outward and Case II where
e′2 points radially inwards.

For the motion of interest, ϑ is constant, ω = ψ̇0E3 + ϕ̇0e3, and ψ̇0 and ϕ̇0 are constant.
The constraints (3.2.2) imply that

v̄ = v0e
′
1 (3.4.10)

where

e′1 = cos (ψ)E1 + sin (ψ)E2, v0 = −f1ψ̇0 − rϕ̇0. (3.4.11)

For a motion to be possible with ψ̇0 6= 0 and ϕ̇ 6= 0, the center of mass traces a circle in a
counterclockwise manner: that is, the orbital speed ψ̇0 > 0. If we let k be the radius of the
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Figure 3.11: Motions of a cylinder where the center of mass C traces a circular path of radius
k and the instantaneous point of contact P traces a circular path of radius ℓ. Both paths
are traced in a counterclockwise manner. (a) Case I where e′2 points radially outward and
(b) Case II where e′2 points radially inward.

circular path traced by the center of mass, then
{

r̄ = ke′2, v̄ = −kψ̇0e
′
1 for Case I,

r̄ = −ke′2, v̄ = kψ̇0e
′
1 for Case II.

(3.4.12)

Combining the previous results, we obtain
{

(

h
2
sin (ϑ)− r cos (ϑ)

)

ψ̇0 − rϕ̇0 = −kψ̇0 for Case I,
(

h
2
sin (ϑ)− r cos (ϑ)

)

ψ̇0 − rϕ̇0 = kψ̇0 for Case II.
(3.4.13)

That is,
{

k = −h
2
sin (ϑ) + r cos (ϑ) + rϕ̇0

ψ̇0

for Case I,

k = h
2
sin (ϑ)− r cos (ϑ)− rϕ̇0

ψ̇0

for Case II.
(3.4.14)

If the center of mass traces a circle of radius k in a counterclockwise direction while ϑ is
constant, then as πP ·e′1 = 0 and πP ·e′2 = h

2
sin(ϑ)−r cos(ϑ), we find that the instantaneous

point of contact P traces a circle of radius ℓ such that
{

ℓ− k = h
2
sin(ϑ)− r cos(ϑ) for Case I,

ℓ− k = r cos(ϑ)− h
2
sin (ϑ) for Case II.

(3.4.15)
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To trace a complete circle, we require ∆ψ = 2π. We conclude that
{

∆ϕ = 2πℓ
r

for Case I,

∆ϕ = −2πℓ
r

for Case II.
(3.4.16)

We can adjust the radius ℓ of the circular path traced by P to obtain any desired rotation
∆ϕ. Representative examples for the two cases are shown in Figure 3.12. If the circular path
is traversed in a clockwise manner, then there will be sign changes to the results for ∆ϕ in
(3.4.16).

A

A

B

B

S

S

P

P

e′2

e′2

i

i

iiii

A2

A1

E3

e′1

e′1

Figure 3.12: Time traces of the point P and of a material point X on the rim of the cylinder
as P traces the circular path. The traces are labelled i and ii respectively. While the center
of mass returns to its original location S, X has relocated from A to B. The radius of the
path traced by P is ℓ (cf. (3.4.14) and (3.4.15)). For the results shown in these images,
ℓ = 9.44233r, ϑ = π

10
, and h = 13.3333r: (a) Case I where r̄ = 8.33re′2 and ∆ϕ = 59.3283o

and (b) Case II where r̄ = −10.5515re′2 and ∆ϕ = −59.3283o.

3.5 Kinematics of a Pair of Contacting Cylinders

Referring to Figure 3.1, consider a pair of cylinders are each in motion with a single point of
instantaneous contact with a horizontal surface. The sides of the cylinders touch each other at
a single point and the top of each cylinder is supported by applied forces and moments. The
system of two rigid bodies has a total of eight possible permutations of slipping and rolling
contacts at the three contact points. For present purposes, we are interested in examining
the set of constraints where one cylinder is spun about its axis while both cylinders are
constrained so that their points of contact trace straight parallel lines on the ground.
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As shown in Figures 3.1 and 3.13, we identify the individual cylinders using the indices
I, 1 and II, 2, respectively. The position vector x̄I,II of the center of mass X̄I,II of the
respective cylinders are parameterised by Cartesian coordinates:

x̄I = xI1 E1 + xI2 E2 + xI3 E3,

x̄II = xII1 E1 + xII2 E2 + xII3 E3.
(3.5.1)

Following works on the dynamics of rolling disks and cylinders (cf. [44, 56]), it is convenient
to use a pair of sets of 3-1-3 Euler angles to parameterize the rotation of the cylinders.3

Thus, the rotation tensor Q and associated angular velocity vectors ω of the rigid bodies
have the following representations:

QI = QI (ψ1, ϑ1, ϕ1) , ωI = ψ̇1 E3 + ϑ̇1 Ie
′′
1 + ϕ̇1 Ie3,

QII = QII (ψ2, ϑ2, ϕ2) , ωII = ψ̇2 E3 + ϑ̇2 IIe
′′
1 + ϕ̇2 IIe3.

(3.5.2)

The bases {E3, Ie
′′
1, Ie3} and {E3, IIe

′′
1, IIe3} are the Euler bases associated with the respec-

tive sets of Euler angles.

Formulating Contact Constraints

The constraints that cylinder I of height h1 and radius r1 rolls without slipping on the
horizontal surface can be represented as:

v1 = v̄I + ωI × πP1
= 0. (3.5.3)

The position of the instantaneous point of contact P1 relative to the center of mass has the
following representation:

πP1
= −h1

2
Ie3 − r1 Ie

′′
2. (3.5.4)

In an identical manner, the constraints that cylinder II of height h2 and radius r2 rolls
without slipping on the horizontal surface have several representations:

v2 = v̄II + ωII × πP2
= 0, (3.5.5)

where

πP2
= −h2

2
IIe3 − r2 IIe

′′
2. (3.5.6)

3Additional background on the 3-1-3 set of Euler angles can be found in Appendix A and in [54, Chapter
6, Section 8.2].
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Figure 3.13: The instantaneous contact points for the pair of cylinders. The points P1 and P2

are the instantaneous points of contact of cylinders I and II, respectively with the horizontal
plane and the points P3 and P4 are the instantaneous points of mutual contact.

The instantaneous points of contact between the cylinders are denoted by P3 and P4.
The vectors πP3

and πP4
are the position vectors of the instantaneous points of contact P3

and P4 relative to the centers of mass of the respective cylinders:

x3 = x̄I + πP3
,

x4 = x̄II + πP4
.

(3.5.7)

The tangent planes to both cylinders at P3 and P4 are identical and spanned by the basis
{Ie3, IIe3}. A unit normal n can also be defined such that

{

Ie3, IIe3, n =
Ie3 × IIe3

||Ie3 × IIe3||

}

(3.5.8)
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is a basis for E3.
The rolling contact between the two cylinders can be described by the vector equation:

v3 = v4, (3.5.9)

where

v3 = v̄I + ωI × πP3
, x3 = x̄I + πP3

,

v4 = v̄II + ωII × πP4
, x4 = x̄II + πP4

.
(3.5.10)

In these representations, πP3
and πP4

are the position vectors of the instantaneous points of
contact P3 and P4 relative to the centers of mass of the respective cylinders. Both of these
relative position vectors are functions of the two sets of Euler angles and Cartesian coordi-
nates. Additional details of the characterization of the contact between the two cylinders
are presented in Appendix E.

For the constraints (3.5.3) and (3.5.5) the resulting normal force direction is along E3 and
the static friction force lies in the plane spanned by {E1, E2}. To prescribe the friction force
at the contact between the two cylinders, it is necessary to decompose the force associated
with the constraint (3.5.9) into normal and friction components too. For this, we project the
constraint at the cylinders’ mutual contact on the basis {Ie3, IIe3, n = Ie3 × IIe3/||Ie3 ×
IIe3||}. The tangential (frictional) component of the contact constraint lies in the plane
spanned by the basis {Ie3, IIe3} while the normal component of the constraint force lies
along n. This decomposition relies on the fact that the vectors {Ie3, IIe3} span the coincident
tangent plane between the two cylinders at their mutual contact point.

The Final Set of Constraints

In Appendix F, we consider the set of nine constraints (3.5.3), (3.5.5) and (3.5.9) for a pair
of cylinders in rolling contact with each other while also in rolling contact with a horizontal
surface. We find that only eight of the nine constraints are linearly independent and the
system of nine constraints is not integrable. Furthermore, we demonstrate that it is very
challenging to extract a set of eight linearly independent constraints from the nine constraints
and equally challenging to specify a set of 8 independent Lagrange multipliers associated with
rolling constraints (cf. Appendix F.3). While, it is possible to use fixed point iterations to
simulate the motion of the rolling cylinders (cf. Capobianco et al. [14, Section 9]), we choose
to pursue a different strategy and reexamine the contact condition between the cylinders.

Based on physical intuition, one would expect that the normal force at the contact
between the two cylinders is small and thus the friction at the inter-cylinder contact point
to be insufficient to prevent the two cylinders from slipping with respect to each other. The
pair of rolling constraints between each cylinder and the ground (cf. (3.5.3) and (3.5.5)) and
the contact condition between the two cylinders,

(v3 − v4) · n = 0, (3.5.11)
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amount to seven scalar constraints. We now propose an additional set of five independent
constraints that will completely constrain the 12 degree-of-freedom system. As a result,
we will obtain the desired motion described in Section 3.5. The five additional constraints
consist of three constraints imposed on the top axis of cylinder I and two constraints imposed
on the top axis of cylinder II (points P5 and P6 respectively in Figure 3.1). We express the
aforementioned constraints as follows:

ΠΓ = 0, (Γ = 1, . . . , 12) (3.5.12)

where

Π1 = v1 · E1, Π2 = v1 · E2, Π3 = v1 · E3,

Π4 = v2 · E1, Π5 = v2 · E2, Π6 = v2 · E3,

Π7 = (v3 − v4) · n,

Π8 =

(

v̄I + ωI ×
h

2
Ie3

)

· E3, Π9 = ψ̇1, Π10 = ϕ̇1 − ϕ̇10 ,

Π11 =

(

v̄II + ωII ×
h

2
IIe3

)

· E3, Π12 = ψ̇2.

(3.5.13)

The constraint Π10 imposed on cylinder I is a prescribed spin of that cylinder about its
longitudinal axis.

3.6 Simulating the Transported Cylinders

Based on our prior analysis of the possible constraints on the contacting cylinders shown
in Figures 3.1 and 3.13, we assume rolling contact of each cylinder with the horizontal
surface and sliding contact at the points of mutual contact. The cylinders are supported
by applied forces acting at the centers of their upper surfaces and are each given an initial
spin. Thus, the system of two cylinders is subject to 12 constraints described by equation
(3.5.13). Ignoring the occupational hazards of transporting two cylinders simultaneously in
this manner, we now demonstrate that there is a mechanical advantage.

Simulating the pair of cylinders is non-trivial. We needed to utilize Capobianco’s et
al. non-smooth generalized-α method for mechanical systems with frictional contact [14] to
perform the simulations. Key features of Capobianco’s et al. algorithm include successful
resolution of frictional contact and significant reduction of numerical penetration. Numerical
penetration, which is a common issue for most popular time stepping schemes, is mitigated
though constraint stabilization in the sense of Gear-Gupta-Leimkuhler [26]. An animation
of a simulation can be found here:

https://www.youtube.com/watch?v=61 Kfkd s6o

With the aid of calculations in Appendix E, we set up an initial configuration of two
identical cylinders inclined at opposite angles to the vertical and touching at a single point.

https://www.youtube.com/watch?v=61_Kfkd_s6o
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Figure 3.14: The forces needed to sustain the motion of the two cylinders with dimensions
h = 1.2954 m and r = 0.1143 m for several values of angle ϑ ∈ (tan−1
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corresponds to the case where the vertical normal
force on each cylinder completely balances its weight. These results shown are independent
of the coefficient of dynamic friction at the contact point between the cylinders.

Motion was initiated by assigning a nonzero angular velocity to ϕ̇10 (cf. (3.5.13)), propelling
cylinder I towards cylinder II. Cylinder II is driven by this motion with ϕ̇2 = −ϕ̇10 because
both cylinders are subject to rolling constraints at their contact point with the ground.
Simulation results show that at steady state the normal force at the inter-cylinder contact
is very small (on the order of the algorithm’s set tolerance) thereby resulting in a negligible
friction force at this contact. This implies that the dynamics of each cylinder in the pair
resemble the dynamics of one cylinder that is similarly supported at its top and given a
matching initial angular velocity about its longitudinal axis. We also note that the normal
forces at the contact point between each cylinder and the ground, as well as the applied
forces at the top of each cylinder, are identical due to the configuration’s symmetries. More
importantly, the simulation results also imply that the analysis in Section 3.3 can be used
to compute the range of applied forces F3 for a given angle of inclination ϑ as well as the
minimum force needed to support the motion of the cylinder.

We conduct a series of simulations using two idealized large (220 ft3) industrial high pres-
sure cylinders that would typically hold welding gas. The cylinders undergo the previously
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described motion at varying inclination angles ϑ1 = ϑ = ϑ2 with respect to the vertical. For
each motion, we show in Figure 3.14 the vertical force applied at the top axis of each cylinder
and the normal force between each cylinder and the ground. Within a certain range of the
angle ϑ, most of the weight of each cylinder is balanced by the normal force, thus enabling
an efficient displacement of the cylinders as described in Section 3.1 for a range of applied
forces and angles of inclination (as discussed in Section 3.3).
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Chapter 4

An Abundance of Motions in the

Forced Dynamics of a Stack of Blocks

4.1 Introduction

The dynamics of a vertical stack of blocks has application to a wide range of problems
including seismic response of containers in warehouses, the stability of containers on ships at
sea, and the transport of stacks of blocks by robots. There has been a growing recent interest
among the robotics community in robots stacking objects vertically to form columns [25, 47]
or dry stacking objects to form two-dimensional walls [49, 51]. These works have mostly
relied on vision-based learning algorithms, although a few also rely on physics simulators.
A central question for these stacked objects is the prediction of their dynamics when the
columns are perturbed. For instance, will the column stay close to its original configuration
or will it collapse?

Unique features of these mechanical systems consisting of stacked blocks include the
presence of multiple frictional interfaces, the potential for impacts and collisions, and the
necessity of modeling multiple possible configurations. Earlier works on the dynamics of a
single rigid block resting on a oscillating horizontal surface show a range of complex dynamics
including sensitive dependence on initial conditions, bifurcations of periodic motions and
chaotic motions [4, 32, 36, 37]. As a result, one can anticipate a larger variety of complex
dynamics for a system of stacked blocks. Owing perhaps to this complexity, other than a
recent work by Poincloux et al. [66] on stick-slip behavior of the shearing of a stack of slabs,
we were unable to find a substantial literature on the dynamics of stacked blocks.

To study the dynamics of a stack of blocks, recourse to numerical methods is necessary.
Earlier works (e.g., [4, 32, 36, 37]) for the single block model the impact of the block with the
ground plane using a single coefficient of restitution and integrate the equations of motion
between impacts. The methods used by the aforementioned authors are known as event
driven. Event-driven schemes resolve every impact which makes them unsuitable to solve
motion with infinitely many impacts in a finite time interval, i.e., motions with accumulation
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points [14].1 Other authors, e.g., [75, 76], assume that the block rests on an elastic foundation
and do not need to consider the possibility of impact in their studies. A related elastic
interface is used in the Discrete Element Method [41, 68] used to analyze colliding rigid
bodies.

In the present chapter, we will use an event-capturing method to simulate the dynamics
of stack of blocks. The method is based on Capobianco et al.’s [14] non-smooth generalized-α
method for systems with friction and impenetrability. The method is used to explore the
dynamics of a system of stacked blocks. Our analysis reproduces a well-known instability
in the Tower of Lire and shows that low frequency excitation of a stack of blocks is often
more detrimental than high frequency excitation. When there is a change in the contact
configuration of the stack, we find that an abundance of solutions is possible - making it
highly improbable that an algorithm can be used to stabilize a stack of blocks once instability
has set in.

An outline of this chapter is as follows. In Section 4.2, we define kinematical parameters
and contact conditions for a stack of blocks. This section also contains a description of the
numerical method used to explore the dynamics of the block. The toppling of the Leaning
Tower of Lire is discussed in Section 4.3. In particular, our simulations demonstrate how
the maximum overhang configuration for this stack of blocks is (as expected) unstable to
small perturbations. Our main results are presented in Section 4.4 where the effects of a
harmonic excitation of the base of the stack can produce an abundance of possible solutions.
In Section 4.5, we examine the problem of removing a block quickly from a stack of blocks
and explore the possibility of a limiting speed for the removal of the block above which the
stack will remain intact. The chapter closes with a discussion of potential future research in
this area.

4.2 Preliminary Developments and Numerical

Methods

Consider the sample configuration of n vertically stacked blocks depicted in Figure 4.1(a).
The kth block has a mass mk, width wk, and height hk. The position vector rk of the center
of mass of the kth block has the following representation

rk = xkE1 + ykE2 (k = 1, . . . , n). (4.2.1)

The basis {E1,E2,E3 = E1 × E2} is a fixed Cartesian basis for E3. Referring to Figure 4.1(b),
we attach a co-rotational basis {ek1, ek2} to the kth block in order to record its rotational

1The most well known example of a motion with an accumulation point occurs in a ball bouncing on a
horizontal surface with a coefficient of restitution e < 1. It can be shown that the ball bounces an infinite
number of times in a finite amount of time - a phenomenon known as Zeno’s paradox (cf. [58, Chapter 6,
Section 6.5] and references therein).
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motion:

ek1 = cos
(

ϑk
)

E1 + sin
(

ϑk
)

E2,

ek2 = − sin
(

ϑk
)

E1 + cos
(

ϑk
)

E2, (k = 1, . . . , n).
(4.2.2)

Thus, the configuration of each block is defined by the three coordinates xk, yk and ϑk. The
mass and moment of inertia of the kth block are denoted by mk and Ik = m

12

(

(wk)2 + (hk)2
)

.

E1 E1

E2 E2

ek1

ek2

rk
k − 1

k

k

k + 1

k = 1

k = n

g

(a) (b)

O

rk
dk

ak

bk

ck

wk

hk

Figure 4.1: (a) A sample configuration of vertically stacked blocks. In an initial static
configuration, a block labelled k of width wk and height hk lies on top of a block labelled
k − 1 and underneath a block labelled k + 1. In the current analysis, the blocks need not
be uniform. (b) We attach a co-rotational basis {ek1, ek2} to a typical block k. We label the
corners of each block according to (G.1.1): ak, bk, ck, and dk.

Expressing the constraint equations between two contacting blocks is complicated by the
existence of five possible relative contact configurations (cf. Figure 4.2). In the present
work, we choose to write two gap distance constraints for each inter-block contact interface
according to equations (G.2.2).2 When both gap distances are zero, the blocks are not in a
state of relative rotation. When only one of two contacts is closed, the cylinders are rotating
with respect to each other while touching at one point. When both contacts are open, the
two blocks have lost contact vertically. We also include a provision for when two consecutive
blocks lose contact in the horizontal direction. Following Cundall [19], we consider the
corner-to-corner contact case as a continuation of the cases (b)i−iv.

The contact forces between the blocks include normal forces and friction forces. For the
friction forces, we distinguish the cases of static and dynamic friction and assume that the
coefficients of friction for these two cases are equal. Impact between the blocks is assumed
to be completely inelastic (i.e., the coefficient of restitution is equal to zero).

2A detailed explanation is provided in Appendix G.
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Figure 4.2: (a) A case of edge contact between the kth and (k + 1)th blocks. (b) Four cases
of point contact between the kth and (k + 1)th blocks: (i) the top right corner of block k
contacts the lower surface of block k+1; (ii) the top left corner of block k contacts the lower
surface of block k + 1; (iii) the top surface of block k contacts the lower left corner of block
k+1; and (iv) the top surface of block k contacts the lower right corner of block k+1. Here,
k = 1, . . . , n− 1.

Numerical Methods

A numerical integration scheme for the stack of blocks must be capable of accommodat-
ing the non-smooth contact and impacts. The scheme that we employ uses a nonsmooth
generalized-α algorithm for systems with friction that is presented by Capobianco et al.
[14]. Their work extends a scheme developed by Brüls and coworkers (cf. [3, 10, 18] and
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references therein) that in turn adopted the generalized-α algorithm to mechanical systems
with impacts, bilateral constraints, and friction.3. The generalized-α algorithm used in [10,
3, 9, 14, 18] stabilizes the constraints at the position, velocity, and acceleration levels, thus
preventing the interpenetration of the blocks and numerical integration errors.4

The nonsmooth generalized-α scheme enables us to solve the equations of motion of the
blocks subject to the set of constraints described in Appendix G. As the solver progresses
in time, it solves for the contact configuration and motion that simultaneously satisfies the
balance laws and the constraints associated with the computed contact configuration. The
algorithm requires a consistent set of initial conditions and constraint forces that satisfy the
imposed constraints and their derivatives. Since, in our setup, each contact is associated a
pair of constraints, we needed to slightly modify parts of the algorithm presented in [14].
These changes are discussed in Appendix H and the code we use to run our simulations can
be found in
https://github.com/ThH00/abundant-motions-in-the-forced-dynamics-of-a-stack-of-blocks.

Simulation Parameters

Referring to the algorithm parameters in [14], for the numerical simulations our work set
r = 0.3, ρ∞,0 = 0.5 , TOLn = 10−10, the finite difference parameter ε = 1e−6, gravity g = 1,
and normal and friction restitution coefficients to eN = 0 and eF = 0, respectively. Each
block’s mass is set to unity: m = 1 and all of the initial configurations start from rest. Except
for the results in Section 4.3, all of the blocks’ centers of mass are initially vertically aligned
with ϑk = 0 for k = 1, . . . , n. In the simulations where the bottom block is oscillating (cf.
Figures 4.5 and 4.6), the simulation time step is calculated using ∆t = 2π

60ω
and ∆t = 2π

100ω
,

respectively.
In our simulations, we found that some values of spectral radius at infinite frequencies

ρ∞ can produce a singular Jacobian which are not attributable to the linear dependence of
the constraints. For a given value ρ∞,0 that produces a singular Jacobian, simply changing
the numerical value of ρ∞ eliminates the singularity. In our simulations, we start with a
value of ρ∞,0 = 0.5 and change it as necessary while keeping the restriction that ρ∞,0 ∈ [0, 1].

4.3 Toppling the Leaning Tower of Lire

The Leaning Tower of Lire [39] is a popular mathematics problem [63, 65, 74] that dates to
the mid-19th century. The solution to the problem involves the calculation of the maximum
overhang that can be achieved at the edge of a table by stacking identical blocks (e.g., coins,
books, or jenga blocks) on top of each other. The static configuration of a stack with a

3For additional details on the original generalized-α algorithm for structural dynamics, the reader is
referred to [16, 20]

4For additional background on constraint stabilization, the interested reader is referred to the seminal
works by Baumgarte [6] and Gear, Leimkuhler, and Gupta [26].

https://github.com/ThH00/abundant-motions-in-the-forced-dynamics-of-a-stack-of-blocks
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maximum overhang is well known [39, 63]: the outermost edge of a block is at the center
of mass of the set of blocks above it (cf. Figure 4.3) and the resulting maximum overhang
Omax is

Omax =
n
∑

k=1

w

2n
, (4.3.1)

where w is the uniform width of the blocks. Thus, a stack of four blocks can be positioned
to achieve an overhang that is greater than the width of a single block. To obtain the
correct initial constraint forces on the maximum overhang configuration of the blocks, we
ran a simulation for one iteration where the normal contacts are forced to be closed and the
friction is forced to be static. We confirm that in this case, the normal force exerted on the
kth block by the blocks (1, . . . k − 1) beneath it is at the outer edge of the k − 1th block.

w
8

w
6

w
4

w
2

w

Figure 4.3: The maximum overhang configuration for a set of vertically stacked blocks. Each
block has a width w. The figure has been scaled horizontally in the interests of clarity.

The resulting stack of blocks in the maximum overhang configuration is unstable (in the
sense of Lyapunov). To explore this instability, we simulate the effects of a perturbation on
the set of four blocks shown in Figure 4.3. Our simulations show that displacing the top
block by 1% of its width outwards causes it to topple over. In addition, as shown in Figure
4.4(a)-(c)), displacing the lowest block one by 1% of its width outwards causes the entire
4-block column to topple over.

4.4 Harmonic Excitation of a Stack of Blocks

With its widespread application to the fields of transport and earthquake engineering, there
is a wealth of studies on the dynamics of structures (including a single block) in contact with
a moving horizontal surface [4, 32, 36, 37, 76, 75]. Of particular interest is the dynamics of
a stack of blocks that is subject to a horizontal harmonic excitation and dependency of the
dynamics of the stack on the frequency of excitation.

We constructed a column of five identical blocks on a wide base that was forced to move
in simple harmonic motion in the horizontal direction, x1 = A sin (ωt) where A = w2. The
dynamics of the blocks are complicated by the number of possible contact states between each
block. Referring to Appendix H, each pair of consecutive blocks can have 46 distinct states



CHAPTER 4. AN ABUNDANCE OF MOTIONS IN THE FORCED DYNAMICS OF A

STACK OF BLOCKS 53

(a) t = 0 (b) t = 5 (c) t = 6.4

Figure 4.4: The time evolution of the failure of a Leaning Tower of Lire composed of four
blocks with the maximum overhang configuration. At t = 0, the lowest block is displaced by
1% of its length to the right, the tower collapses and the blocks slide relative to each other
as they tumble to the ground. (a) t = 0, (b) t = 5, and (c) t = 6.4. The black block is fixed.
For each block, w = 1, h = 0.2, µ = 0.3, and ∆t = 0.01.

of contact depending on the stick-slip nature of the contact and the associated velocity
and acceleration constraints. Thus, for a stack of n = 4 blocks, we get a total of 464

states or over 4 million possible states. A second possible complication is the presence of
Painlevé’s paradoxes in the dynamics of rigid bodies with frictional contacts. Fortunately,
as discussed in Appendix I, the values of friction we use (µ = 0.2) are much lower than the
friction coefficients (µ > 4/3) required to produce the indeterminacy and multiple solutions
attributed to the paradoxes.

Algorithm 1 Resolving non converging contact states

Require: iteration fails to converge due to changing contact state
gather the list of unique contact states from the previous failed iteration
for each unique contact state do

run the code one iteration while keeping the contact state fixed
if the code converges then

continue running solver starting from this contact state
end if

end for

The simulations of the shaken stack of blocks proved far more complex than we originally
imagined. We found cases where the iterations at a given time step would not converge
because the contact states would change from one iteration to the next and oscillate between
two or more potential contact states. In these instances, Algorithm 1 was used to determine
the contact state of the blocks. Each contact state for which the numerical scheme converges
becomes a new solution branch: that is, a new starting point, for our simulations. The
results of a sample implementation are presented in Figure 4.5. Some simulations found
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(a)

(b) (c)
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Figure 4.5: (a) A snapshot of distinct solutions arising from the motion of a column of
6 blocks after the completion of 3 oscillations of the bottom block where x1 = sin

(

3π
2
t
)

.
Graphs (b) and (c) show the time change of the y6 coordinate of the center of mass and ϑ6

coordinate of the top block respectively. In these simulations, blocks n = 2, . . . , 6 have a
width w = 0.2, a height h = 0.4, and the coefficient of friction is µ = 0.3. The remaining
simulation parameters are discussed in Section 4.2.

hundreds and sometimes even thousands of solutions within the first four oscillation cycles
of the bottom block. The large number of bifurcations evident in Figure 4.5 can be explained
by the large number of possible contact states of two consecutive blocks discussed earlier.
Because of the large number of possible contact states, an exhaustive search for all possible
solutions is computationally expensive. In addition, the results will be affected by changing
the simulation parameters, such as the time step.

We ran a series of simulations for different values of the forcing frequency ω to assess
the stability of the stack.5 These experiments can be viewed as related to the problem

5In these simulations, the blocks 2, . . . , 5 are taken to be uniform with a width wk = 0.2 m and height



CHAPTER 4. AN ABUNDANCE OF MOTIONS IN THE FORCED DYNAMICS OF A

STACK OF BLOCKS 55

0 10π
ω

0
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T

x1 = sin(ωt)

Figure 4.6: A plot of 1
T
as function of the angular frequency ω of the bottom block. The

variable T is the time of the onset of failure where failure is defined to occur when any block
in the stack looses all contact with the block beneath it.

of stabilizing double and triple pendula. We plotted the reciprocal of the time of failure
onset of the stack versus different angular frequencies. The failure is defined as the instance
when any two blocks in the stack lose contact completely. As summarized in Figure 4.6, the
stack tends to be more stable at very low frequencies, becomes increasingly unstable as the
frequency increases until a sufficient high frequency is reached where the column is stable
again. The stability results for the stack have similarities to those presented in Hogan [32]
for the forced motion of a single block.

4.5 Sliding the Bottom Block

Imagine a vertical stack of blocks at rest and consider removing the bottom block by imposing
an external force so it develops a horizontal velocity ṙ1 = v0E1. If the velocity is sufficiently
small and friction is still static, then one anticipates that the entire stack should start to
move horizontally. On the other hand if the velocity is sufficiently large and friction is kinetic,
then one expects that the other blocks should be unperturbed before falling vertically as one.
For intermediate velocities where friction is kinetic, the other blocks would rotate about the
corner of the bottom block, thus causing their unstructured failure.

To validate these expectations, we simulate the dynamics of a stack of five blocks where
the lowermost block is propelled horizontally at a constant velocity. The results of our numer-

hk = 0.4 m while w1 = 1 m and h1 = 0.1 m. The friction coefficient is set to µ = 0.2 at all contacting
surfaces.



CHAPTER 4. AN ABUNDANCE OF MOTIONS IN THE FORCED DYNAMICS OF A

STACK OF BLOCKS 56

0

1.6

ϑ5

0 10
v0
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Figure 4.7: The change of the inclination angle of the top block in the stack versus the speed
v0 of the bottom block at time t = 3. These is very minor variability in some of the results
due to the multiplicity of solutions which is not discernible in this graphical presentation of
the results.

ical simulations are shown in Figure 4.7 where the angle of inclination ϑ5 of the uppermost
block is shown.6

6In these simulations, the dimensions of all blocks k = 1, . . . , 5 are wk = 0.2 m and hk = 0.4 m. The
friction coefficient at all contact surfaces is µ = 0.2.
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4.6 Conclusion

Works in the 1960s-1980s on the dynamics and stability of a block have produced several
interesting results. These results include the sensitivity of the dynamics of these systems to
initial conditions and the possibility of chaotic motions. Subsequent works on formulation of
problems involving constraints, impact and friction (e.g., [6, 26, 64]) laid the foundation for
the simulation of systems of rigid bodies with impact and friction (e.g., [3, 9, 14]) that were
used in this chapter to explore the dynamics of a stack of blocks. The simulations involved
solving discontinuous equations of motion subject to constraints that change depending on
the configuration of the system, which also need to be calculated. The numerical experiments
on the forced dynamics of a stack of blocks we have presented are far from exhaustive. We
hope that this work inspires researchers to think about related problems.

From a practical standpoint, this work is applicable to the areas of packaging and trans-
portation of materials. The developed framework can be integrated into the design of model-
informed control strategies to mitigate the toppling of stacked objects. With this, one has to
keep in mind that these structures are very sensitive to initial conditions. The bifurcations
and multiplicity of solutions may make it impossible to predict the configuration of the stack
once the onset of instability has occurred.
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Chapter 5

Concluding Remarks

In this thesis, we explored three ubiquitous mechanical systems1: a sphere rolling in the
plane in Chapter 2, a locomotion mechanism for two contacting cylinders in Chapter 3, and
the forced motion of a two-dimensional discrete column of blocks in Chapter 4. The motions
of these systems are dictated by their respective constraints.

The dynamics of these systems have great relevance to robotics. The holonomy of a
rolling sphere is central to motion planning of spherical robots such as Star Wars’ BB8 or
Omni Wheels. The investigation of the cylinders is crucial to transport problems. Simulating
the motion of a stack of blocks has applications to stacks on moving surfaces, such as during
an earthquake or transport.

The study of the rolling sphere expanded upon the classical concept of holonomy to
obtain novel results relating its change in orientation resulting from traversing one closed
rectangular path. To simulate the motion of the cylinders and the stack of blocks, we used a
modern numerical method, the nonsmooth generalized-α method for systems with friction.
Simulating these systems faithfully was only possible thanks to recent developments in the
generalized-α algorithm by a number of researchers over the course of two decades.

This thesis has revealed the remarkably rich dynamics of a stack of objects, anticipated
to be the primary novel contribution of this work. Many problems in this area remain to be
explored.

1The work in Chapter 2 is published in [33]. As of June 2024, the work in Chapter 3 has been submitted
for publication [34], and the work in Chapter 4 is being prepared for submission to an archival journal.



59

Bibliography

[1] P. Akella, O. M. O’Reilly, and K. Sreenath. “Controlling the locomotion of spherical
robots or why BB-8 Works”. In: ASME Journal of Mechanisms and Robotics 11.2
(2019), p. 024501. doi: 10.1115/1.4042296.
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[3] M. Arnold and O. Brüls. “Convergence of the generalized-alpha scheme for constrained
mechanical systems”. In: Multibody System Dynamics 18 (2007), pp. 185–202. doi:
10.1007/s11044-007-9084-0.

[4] M. Aslam, W. G. Godden, and D. T. Scalise. “Earthquake rocking response of
rigid bodies”. In: Journal of the Structural Division 106.2 (1980), pp. 377–392. doi:
10.1061/JSDEAG.0005363.

[5] M. Batista. “Steady motion of a rigid disk of finite thickness on a horizontal plane”.
In: International Journal of Non-Linear Mechanics 41.4 (2006), pp. 605–621. doi:
10.1016/j.ijnonlinmec.2006.02.005.

[6] J. Baumgarte. “Stabilization of constraints and integrals of motion in dynamical sys-
tems”. In: Computer Methods in Applied Mechanics and Engineering 1.1 (1972), pp. 1–
16. doi: 10.1016/0045-7825(72)90018-7.

[7] M. Berry. “Anticipations of the geometric phase”. In: Physics Today 43.12 (1990),
pp. 34–40. doi: 10.1063/1.881219.

[8] A.V. Borisov and I.S. Mamaev. “Conservation laws, hierarchy of dynamics and explicit
integration of nonholonomic systems”. In: Regular and Chaotic Dynamics 13.5 (2008),
pp. 443–490. doi: 10.1134/S1560354708050079.
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de l’Académie des Sciences 141 (1905), pp. 401–405.
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Appendix A

3-1-3 Euler Angle Parameterization of

a Rotation Tensor

The rotation tensors Q1 and Q2 of the individual cylinders in Chapter 3 are each parame-
terized by a separate set of 3-1-3 Euler angles. To provide relevant background and details,
it suffices to consider a rotation tensor Q parameterized by a set of 3-1-3 Euler angles ψ,
ϑ, and ϕ. These developments are also applicable to the parameterization of the rotation
tensor of the sphere in Chapter 2.

A.1 The Euler angles and Euler basis

The Euler angle parameterization of Q can be imagined as a set of 3 compound rotations.
The first rotation is defined a rotation about the E3 axis through a counter-clockwise angle
ψ. This rotation can be used to define a second basis:

e′1 = cos(ψ)E1 + sin(ψ)E2, e′2 = − sin(ψ)E1 + cos(ψ)E2, e′3 = E3. (A.1.1)

The second rotation is defined as a rotation about e′1 through a counterclockwise angle of
rotation ϑ:

e′′1 = e′1, e′′2 = cos(ϑ)e′2 + sin(ϑ)e′3, e′′3 = − sin(ϑ)e′2 + cos(ϑ)e′3. (A.1.2)

The third and final rotation is defined as a rotation about e′′3 through a counterclockwise
angle of rotation ϕ:

e1 = cos(ϕ)e′′1 + sin(ϕ)e′′2, e2 = − sin(ϕ)e′′1 + cos(ϕ)e′′2, e3 = e′′3. (A.1.3)

That is, Q =
∑3

i=1 ei⊗Ei where ⊗ is the tensor product. The unit vectors used to define the
rotations are known as the Euler basis vectors {g1,g2,g3}. For a 3-1-3 set of Euler angles:

g1 = E3, g2 = e′1, g3 = e3. (A.1.4)
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A.2 The Angular Velocity Vector

A discussion of the representations of the angular velocity vector can be found in [54, Section
6.8.2]:

ω =ψ̇E3 + ϑ̇e′1 + ϕ̇e3

=
(

ϑ̇ cos(ϕ) + ψ̇ sin(ϑ) sin(ϕ)
)

e1 +
(

−ϑ̇ sin(ϕ) + ψ̇ sin(ϑ) cos(ϕ)
)

e2

+
(

ϕ̇+ ψ̇ cos(ϑ)
)

e3.

(A.2.1)

The dual basis vectors are defined by the relations [55]

gk · gi = 1 if i = k and otherwise 0. (A.2.2)

Thus, ω · g1 = ψ̇, ω · g2 = ϑ̇, and ω · g3 = ϕ̇. Expressions for the dual basis vectors can be
found in [54, Section 6.8.2].

A.3 Matrix Identities

In the sequel, we will use the notation

A =
[

a b c
]

(A.3.1)

as shorthand for the matrix

A =





a · E1 b · E1 c · E1

a · E2 b · E2 c · E2

a · E3 b · E3 c · E3



 . (A.3.2)

For future purposes it is convenient to note that the following matrix is singular:

G =
[

g1 × x g2 × x g3 × x
]

, (A.3.3)

where x is any vector. The singular nature of G can be established by first noting that

G = −
[

x× g1 x× g2 x× g3

]

= −
[

Skew(x)
] [

g1 g2 g3

]

. (A.3.4)

We recall Sylvester’s rank inequality, if A is an m×n matrix and B is an n× k matrix, then

rank(A) + rank(B)− n ≤ rank(AB). (A.3.5)

Knowing that rank([Skew(x)]) = 2, the rank inequality allows us to conclude that rank(G) =
2.

We note that the null space of G is the vector

null(G) = [g1 g2 g3]
−1x = [g1 g2 g3]Tx, (A.3.6)

where {g1 g2 g3} is the dual Euler basis. In computing (A.3.6), we assumed that the matrix
[g1 g2 g3] is invertible which is valid when ϑ 6= 0, π.
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Appendix B

Representations for the Components

of S for the Holonomy of the Rolling

Sphere

The holonomy of the rolling sphere moving in such a manner that its center of mass traces
a rectangular path is discussed in Chapter 2. The holonomy of the sphere can be described
by a rotation S.

B.1 Expressions for the Components Sik

The components

Sik =
(

Ŝ (ϑ, ϕ1, ϕ2,A1,A2,	)Ak

)

·Ai (B.1.1)

have the following representations:




S11 S12 S13

S21 S22 S23

S31 S32 S33



 =





cos (ϕ21) 0 sin (ϕ21)
0 1 0

− sin (ϕ21) 0 cos (ϕ21)









M11 M21 M31

M12 M22 M32

M13 M23 M33









cos (ϕ1) 0 sin (ϕ1)
0 1 0

− sin (ϕ1) 0 cos (ϕ1)



 ,

(B.1.2)

where

ϕ21 = ϕ2 − ϕ1,




M11 M12 M13

M21 M22 M23

M31 M32 M33



 =





cz sysz −cysz
−sysz cy2 + czsx2 (1− cz) cysy
cysz (1− cz) cysy cy2cz + sy2



 ,

cy = cos (ϑ) , sy = sin (ϑ) ,

cz = cos (ϕ2) , sz = sin (ϕ2) . (B.1.3)
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It is straightforward to show by transposing the matrix products in (B.1.2) that the com-
panion expressions for the components of Ŝ (ϑ, ϕ1, ϕ2,A1,A2,�) are Ski.
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Appendix C

Computing the Three Angular

Variables Given an Axis and Angle of

Rotation

A desired holonomy of the sphere circumnavigating a rectangular path can be specified by
an angle of rotation ψ and axis of rotation s. The corresponding rectangular path has three
parameters: (ϑ, ϕ1, ϕ2). The question we seek to answer is as follows: given any pair (ψ, s)
how do we solve equations (2.4.6) and (2.4.7) for the corresponding triple (ϑ, ϕ1, ϕ2)?

C.1 The Simplest Cases

It is helpful to consider the case ϕ2 = (2n − 1)π. This case was discussed previously in
Section 2.4 and produces a holonomy R (2ϑ,Ar) where Ar is a function of ϕ2 (cf. (2.4.9)1).
A second case of interest is ϕ2 = 2nπ. This value of ϕ2 results in the sphere returning to its
original orientation following a circumnavigation of the rectangular path. In the sequel, we
assume that ϕ2 6= nπ.

C.2 The Case Where ϕ2 6= nπ

Returning to our development of a scheme to compute a rectangular path for a given holon-
omy, we first manipulate the four scalar equations (2.4.6) to establish the following equation
for ϕ1 as a function of ϕ2:

tan (ϕ1) =
tan
(

ϕ2

2

)

−
(

s·A1

s·A3

)

1 +
(

s·A1

s·A3

)

tan
(

ϕ2

2

)

(C.2.1)
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We seek solutions ϕ1 to (C.2.1) where ϕ2 ∈ [0, 3π], and ϕ1 ≤ ϕ2. The remaining three
equations from (2.4.6) provide three equations for the two unknowns ϑ and ϕ2:

a =
1

2
(1 + cos (ϑ) + cos (ϕ2)− cos (ϑ) cos (ϕ2)) ,

b =
1

2
(1− cos (ϑ)) sin (ϕ2) ,

c = sin2 (ϑ) sin2
(ϕ2

2

)

, (C.2.2)

where the variables a, b, and c, are prescribed by the chosen values of ψ and s:

a = cos

(

ψ

2

)

,

b = sin

(

ψ

2

)

(s ·A2) ,

c = sin2

(

ψ

2

)

(

(s ·A1)
2 + (s ·A3)

2) . (C.2.3)

We make use of the observation that if ϕ2 is a solution to (C.2.2) then ϕ2 + 2π is also a
solution to these equations. Next, we substitute (C.2.2)2,3 into (C.2.2)1 to arrive at a single
equation for ϕ2:

2a = f (ϕ2, b, c) , (C.2.4)

where the function f is

f = 1±
√

1− c

sin2
(

ϕ2

2

) + 2b
cos (ϕ2)

sin (ϕ2)
. (C.2.5)

The domain of f is restricted as follows:

ϕ2 6= nπ, 1− c

sin2
(

ϕ2

2

) ≥ 0. (C.2.6)

That is,

ϕ2 ∈ [2 sin−1
(√

c
)

, π) ∪ (π, 2π − 2 sin−1
(√

c
)

] ∪ [2π + 2 sin−1
(√

c
)

, 3π). (C.2.7)

We are now in a position to seek numerical solutions ϕ2 to (C.2.4) using the Matlab routine
vpasolve().1

Once we have found all possible solutions of (C.2.4) for a prescribed holonomy, we use
(C.2.2)1 to find the corresponding values of ϑ:

cos (ϑ) =
2a− 1− cos (ϕ2)

1− cos (ϕ2)
, (C.2.8)

1The code used to compute the solutions can be found in the supplemental materials for Chapter 2.
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We disregard any ϕ2 values that do not yield real values of ϑ. If the solution ϑ to (C.2.8)
is negative, then we add 2π to the solution and make it positive. After we have assembled
all the possible solution candidates (ϑ, ϕ2), we substitute them into (C.2.2)2,3 and eliminate
any solution pairs that do not satisfy both equations. Lastly, we use (C.2.1) to calculate ϕ1

and eliminate any solutions that do not satisfy the original equations (2.4.6).

C.3 Summary

In summary, we first express the three equations (C.2.2) in the two unknowns ϑ and ϕ2 as
a single equation for ϕ2, i.e., (C.2.4). We then solve (C.2.4) numerically and obtain the
corresponding ϑ values from (C.2.2)1 and ϕ1 values from equation (C.2.1). We also ensure
that our results satisfy (2.4.6). Thus, we find the parameters (ϑ, ϕ1, ϕ2) of a rectangle that
yield a desired rotation R(ψ, s) of a rolling sphere after it has circumnavigated the rectangle.
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Appendix D

The Frobenius Integrability Criterion

Applied to a Rolling Cylinder

The cylindrical rigid body has six degrees of freedom and the motion of the rolling cylinder is
subject to the three constraints vP = 0. While one of these constraints (vP ·E3) is integrable,
it is not clear if the entire system of constraints is integrable. To explore this issue, we use
the Frobenius integrability criterion [24] (cf. [23, 29, 54]).

D.1 Preliminaries

Each of the three constraints Πk = 0 (cf. (3.2.2)) on the rolling cylinder can be expressed in
a canonical form Π = 0 where

Π = f · v̄ + h · ω. (D.1.1)

After defining the 6 coordinates,

qi = xi, q4 = ψ, q5 = ϑ, q6 = ϕ, (D.1.2)

where i = 1, 2, 3, we compute the following representations for the three constraint functions:

Πi =
6
∑

K=1

WiK q̇
K . (D.1.3)

Referring to (3.2.5), we find that

W =





1 0 0 cos (ψ) f1 − sin (ψ) f2 r cos (ψ)
0 1 0 sin (ψ) f1 cos (ψ) f2 r sin (ψ)
0 0 1 0 −f1 0



 . (D.1.4)
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We now define the components of three skew-symmetric matrices:

SΓ
L,K =

∂WΓL

∂qK
− ∂WΓK

∂qL
, (K,L = 1, . . . , 6,Γ = 1, . . . , 3) . (D.1.5)

There remains to define three vectors:

a =







a1
...
a6






, b =







b1
...
b6






, y =







y1
...
y6






. (D.1.6)

Frobenius’ necessary and sufficient conditions for a system of 3 constraints, Π1 = 0, . . . ,Π3 =
0 to be integrable require the following equations to hold:

aT
(

SΓb
)

= 0 (Γ = 1, . . . , 3) (D.1.7)

for all values of the variables q1, . . . , q6 and for all distinct solutions a and b to the equation

W y = 0. (D.1.8)

That is, the six-dimensional vectors a and b lie in the null space of W .

D.2 Application of the Integrability Criterion

To apply Frobenuis’ integrability criterion, we now compute S1, S2, and S3:

S1 =

[

O3×3 O3×3

O3×3 E1

]

, E1 =





0 0 r sin (ψ)
0 0 0

−r sin (ψ) 0 0



 ,

S2 =

[

O3×3 O3×3

O3×3 E2

]

, E2 =





0 0 −r cos (ψ)
0 0 0

r cos (ψ) 0 0



 ,

S3 = O6×6,

(D.2.1)

where On×n is the n× n null matrix. The 3-dimensional null space of W is spanned by the
vectors

y1 =

















− cos (ψ) f1
− sin (ψ) f1

0
1
0
0

















, y2 =

















sin (ψ) f2
− cos (ψ) f2

f1
0
1
0

















, y3 =

















−r cos (ψ)
−r sin (ψ)

0
0
0
1

















. (D.2.2)



APPENDIX D. THE FROBENIUS INTEGRABILITY CRITERION APPLIED TO A

ROLLING CYLINDER 74

Finally, applying Frobenius’ criterion, we compute all unique combinations

aT
(

SBb
)

= 0, (B = 1, . . . , 3) (D.2.3)

for all distinct solutions a and b of Wy = 0 except for

yT1
(

S1y3
)

= r sin (ψ) ,

yT1
(

S2y3
)

= −r cos (ψ) .
(D.2.4)

In conclusion, the application of Frobenius’ criterion has shown that while the constraint Π3

in equation (3.2.2) is integrable, the system of three constraints is non-integrable.
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Appendix E

Contact Detection between Two

Cylinders

Given the dimensions, position, and orientation of the pair of cylinders such as the pair
shown in Figure 3.13, we seek to determine whether the cylinders penetrate (not a valid con-
figuration), touch at one point, or are apart from each other. The resulting characterization
of the gap distance d between the cylinders is necessary for contact detection in simulations.

E.1 Preliminaries

For contact detection between the cylinders, we consider the following representations for
the position vectors of points xI and xII of material points on the axes of the cylinders I
and II, respectively:

xI = x̄I +m Ie3,

xII = x̄II + n IIe3,
(E.1.1)

where

m ∈
[

−h1
2
,
h1
2

]

and n ∈
[

−h2
2
,
h2
2

]

(E.1.2)

are coordinates.

E.2 A Minimization Problem

The distance between two points on the axes of the cylinders is

d = ‖xII − xI‖,
= ‖x̄II + n IIe3 − x̄I −m Ie3‖.

(E.2.1)
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We seek to find m∗ and n∗ corresponding to the points x∗
I and x∗

II for which the distance d
is minimized. The relative position vectors of these points are normal to the axes of both
cylinders:

(x∗
I − x∗

II) · Ie3 = 0,

(x∗
I − x∗

II) · IIe3 = 0.
(E.2.2)

With the help of (E.1.1), we can express the pair of equations (E.2.2) in the form

Hh = k, (E.2.3)

where

H =

[

1 −IIe3 · Ie3
−IIe3 · Ie3 1

]

, h =

[

m∗

n∗

]

, k =

[

(x̄II − x̄I) · Ie3
(x̄I − x̄II) · IIe3

]

. (E.2.4)

For a given configuration of the cylinders, H and k are known. We seek solutions h to
the equation Hh = k. Notice that the matrix A is singular when the two cylinders are
parallel, i.e., when IIe3 · Ie3 = ±1 and there is a continuous line of contact points. In our
computational algorithm to detect the contact points, we also compute the derivatives of h
in order to explore what occurs at later instances of time:

ḣ = H−1
(

k̇− Ḣh
)

,

ḧ = H−1
(

k̈− Ḧh− 2Ḣḣ
)

.
(E.2.5)

If equation (E.1.2) is satisfied by the solutions to (E.2.3), then if










d < r1 + r2 the cylinders penetrate, not a valid configuration

d = r1 + r2 the cylinders touch,

d > r1 + r2 the cylinders are not in contact.

(E.2.6)

Once m∗ and n∗ have been computed, the relative position vectors of the contact points can
be found:

πP3
= m Ie3 + r1u,

πP4
= n IIe3 − r2u,

(E.2.7)

where the unit vector u is normal to the axes of both cylinders:

u =
xII − xI

‖xII − xI‖
. (E.2.8)

As shown in Figure 3.13, the vector u = ±n, has the representations

u = cos (χ1) Ie1 + sin (χ1) Ie2

= cos (χ2) IIe1 + sin (χ2) IIe2.
(E.2.9)

In computing the solution of the contact problem and applications of the Frobenius inte-
grability criterion, the variables m, n, χ1, χ2 should be considered as functions of the 12
coordinates Ixk, IIxk, ψ1, ϑ1, ϕ1, ψ2, ϑ2, and ϕ2.



APPENDIX E. CONTACT DETECTION BETWEEN TWO CYLINDERS 77

E.3 The Three Contacts

Referring to Figure 3.13, the two other contact detections of interest are the instantaneous
points of contact of each cylinder with the horizontal plane: P1 and P4. The normal com-
ponents of all three constraint velocities v1 = 0, v2 = 0, and v3 − v4 = 0 are holonomic.1

Thus, we can write the gap distances for the two cylinder-ground contact and for the cylinder-
cylinder contact respectively as

gN1 = (x̄I + πP1
) · E3,

gN2 = (x̄II + πP2
) · E3,

gN3 = ‖x3 − x4‖ − (r1 + r2) = (x3 − x4) · n− (r1 + r2) .

(E.3.1)

1According to Papastavridris [62, Section 2.2 p. 249] every condition expressing the direct contact of
two rigid bodies, or the contact of one of its bodies with a foreign obstacle (environment) that is either fixed
or has known motion (i.e., its position coordinates are known functions of time only), results in a holonomic
equation of motion, and the corresponding contact forces are the reactions of that constraint.
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Appendix F

Frobenius Integrability Criterion

Applied to a Pair of Rolling Cylinders

We consider a pair of cylinders each of which rolls with one point in contact with a horizontal
surface. The cylinders are also in mutual contact at a single point. Our interest lies in the
case where there is sufficient static friction such that the contact between the cylinders is
also one of rolling. We seek to apply Frobenius integrability criterion to determine if the set
of 9 rolling constraints are integrable. In the course of our investigation, we also find that
they are not independent.

F.1 Preliminaries

Referring to (3.5.3), (3.5.5), and (3.5.9), the system is subject to 9 constraints:

ΠΓ = 0, (Γ = 0, . . . , 9) , (F.1.1)

where

Πk = v1 · Ek, (k = 1, 2, 3) ,

Πk+3 = v2 · Ek,

Πk+6 = (v3 − v4) · Ek.

(F.1.2)

The cylinder has six degrees of freedom and the motion of the rolling cylinder is subject to
the three constraints vP = 0. While one of these constraints (vP · E3) is integrable, it is
not clear if the entire system of constraints is integrable. To explore this issue, we use the
Frobenius integrability criterion [24] (cf. [23, 29, 54]).
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F.2 Expressions for the Constraint Matrix W

We recall the definitions for the 12 coordinates:

qi = xIi , q4 = ψ1, q5 = ϑ1, q6 = ϕ1,

qi+6 = xIIi , q10 = ψ2, q11 = ϑ2, q12 = ϕ2, (F.2.1)

where i = 1, 2, 3. Each of the constraint functions ΠΓ in (F.1.2) are linear functions of the
velocities:

ΠΓ =
12
∑

K=1

WΓK
q̇K . (F.2.2)

With some additional work, we find that the matrix W has the following block structure:

W =







W11 . . . W112
...

...
W91 . . . W912






=





I3×3 A O3×3 O3×3

O3×3 O3×3 I3×3 B

I3×3 C −I3×3 −D



 . (F.2.3)

In the expression for the matrix W, I3×3 is the 3× 3 identity matrix and

A =
[

E3 × πP1 Ie
′
1 × πP1 Ie3 × πP1

]

=





−πP1
· E2 (πP1

· E3) sin(ψ1) −r1 cos(ψ1)
πP1

· E1 − (πP1
· E3) cos(ψ1) −r1 sin(ψ1)

0 πP1
· Ie′2 0



 ,

B =
[

E3 × πP2 IIe
′
1 × πP2 IIe3 × πP2

]

,

C =
[

E3 × πP3 Ie
′
1 × πP3 Ie3 × πP3

]

,

D =
[

E3 × πP4 IIe
′
1 × πP4 IIe3 × πP4

]

. (F.2.4)

Observe that each of the matrices A, B, C, D, and their linear combinations are of the form
(A.3.3) and are thus singular. To determine the rank of W, we perform the following matrix
row manipulations.

W =





I A 0 0
0 0 I B

I C −I −D



→





I A 0 0
0 0 I B

0 C− A 0 B− D



 , (F.2.5)

and observe that C − A and B − D are also of the form of equation (A.3.3). The rows
of [0 C − A 0 B − D] can be manipulated in a similar manner to show that the rank of
[0 C− A 0 B− D] is 2 and thus the rank of W is 8. We conclude from this result that only
eight of the nine constraints Π1 = 0, . . . ,Π9 = 0 are independent.

We note that in the singular case where C − A = 0 and B − D = 0 corresponding to
when the contact points between the two cylinders coincide with the contact points of each
cylinder with the ground, rank(W) reduces to 6.
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The null space of W is spanned by the vector wn:

wn =









−Ay

y

−Bz

z









, (F.2.6)

where y = [y1, y2, y3]
T and z = [z1, z2, z3]

T are 3-dimensional arrays whose components satisfy
the identity

(C− A) y + (D− B) z = 0. (F.2.7)

With the assistance of (A.3.4) and (A.3.6), we obtain the following solutions to equation
(F.2.7):

y = [Ig
1
Ig

2
Ig

3]T [πP2
− πP4

],

z = [IIg
1
IIg

2
IIg

3]T [πP1
− πP3

].
(F.2.8)

The resulting expression for (F.2.6),

wn =









[πP1
× (πP2

− πP4
)]

[Ig
1
Ig

2
Ig

3]T [πP2
− πP4

]
[πP2

× (πP1
− πP3

)]
[IIg

1
IIg

2
IIg

3]T [πP1
− πP3

]









, (F.2.9)

has no obvious interpretation. As a result, it is challenging to reduce the nine constraint
equations (F.1.1) to a single set of eight independent constraints.

F.3 Comments on Constraint Forces

The constraint forces and constraint moments associated with the nine constraints can be
prescribed using a standard procedure (cf. [57]). Thus, the constraints at P1 will be enforced
by a pair of static Coulomb friction forces and a normal force acting at P1:

Fc1 = Ff1E1 + Ff2E2 +N1E3 acting at P1. (F.3.1)

Similarly, the constraints at P2 will be enforced by a pair of static Coulomb friction forces
and a normal force acting at P2:

Fc2 = Ff3E1 + Ff4E2 +N2E3 acting at P2. (F.3.2)

For the mutual contact, the constraints are enforced by the following set of friction and
normal forces:

Fc3 = Ff5Ie3 + Ff6IIe3 +N3n acting at P3,

Fc4 = −Fc3 acting at P4.
(F.3.3)
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The components Ff1 , . . . Ff6 , N1, N2, and N3 can be considered as Lagrange multipliers
enforcing the nine constraints Π1 = 0, . . . ,Π9 = 0. However, because these constraints are
not independent, one of the multipliers is redundant. Determining the redundant multiplier
is non-trivial.

F.4 Expressions for the Skew-Symmetric Matrices SΓ

We recall from (D.1.5) that a set of 9 skew-symmetric matrices SΓ need to be examined.
The components of SΓ have the following representation:

SΓ
L,K =

∂WΓL

∂qK
− ∂WΓK

∂qL
, (K,L = 1, . . . , 12,Γ = 1, . . . , 9) . (F.4.1)

Four of the nine skew-symmetric matrices have only one distinct element and two of the
matrices are identically zero:

S1 =









O3×3 O3×3 O3×3 O3×3

O3×3 −E1 O3×3 O3×3

O3×3 O3×3 O3×3 O3×3

O3×3 O3×3 O3×3 O3×3









, E1 =





0 0 r1 sin(Iψ)
0 0 0

−r1 sin(Iψ) 0 0



 , (F.4.2)

S2 =









O3×3 O3×3 O3×3 O3×3

O3×3 −E2 O3×3 O3×3

O3×3 O3×3 O3×3 O3×3

O3×3 O3×3 O3×3 O3×3









, E2 =





0 0 −r1 cos(Iψ)
0 0 0

r1 cos(Iψ) 0 0



 , (F.4.3)

S3 = O12×12, (F.4.4)

and

S4 =









O3×3 O3×3 O3×3 O3×3

O3×3 O3×3 O3×3 O3×3

O3×3 O3×3 O3×3 O3×3

O3×3 O3×3 O3×3 F4









, F4 =





0 0 r2 sin(IIψ)
0 0 0

−r2 sin(IIψ) 0 0



 , (F.4.5)

S5 =









O3×3 O3×3 O3×3 O3×3

O3×3 O3×3 O3×3 O3×3

O3×3 O3×3 O3×3 O3×3

O3×3 O3×3 O3×3 F5









, F5 =





0 0 −r2 cos(IIψ)
0 0 0

r2 cos(IIψ) 0 0



 , (F.4.6)

S6 = O12×12. (F.4.7)

The matrix S3 and componentsW3L are associated with the integrable constraint vP1
·E3 = 0:

d

dt

(

Ix3 − r1 sin(Iϑ)−
h1
2
cos(Iϑ)

)

= 0. (F.4.8)
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Similarly, the matrix S6 and components W6L are associated with the integrable constraint
vP2

· E3 = 0:

d

dt

(

IIx3 − r2 sin(IIϑ)−
h2
2
cos(IIϑ)

)

= 0. (F.4.9)

The remaining three matrices S7,8,9 are far more complicated because the coordinates m, n,
and χ1,2 (cf. (E.2.7)) are non-trivial functions of q1, . . . , q12:

SΓ =









MΓ EΓ NΓ FΓ

−EΓ GΓ HΓ IΓ

−NΓ −HΓ JΓ KΓ

−FΓ −IΓ −KΓ LΓ









, (F.4.10)

where Γ = 7, 8, 9 and each of the 3 × 3 matrices EΓ, . . .MΓ are skew-symmetric. A Matlab
code that calculates the expressions SΓ for Γ = 7, 8, 9 is available with the supplementary
materials that can be found here:
https://github.com/ThH00/On-the-Dynamics-of-Transporting-Rolling-Cylinders

F.5 Application of the Integrability Criterion

The expressions of SΓ for Γ = 7, 8, 9 are complicated, so calculating aT
(

SBb
)

(B = 7, . . . 9)
for all 12-dimensional distinct solutions a and b of Wy = 0 (cf. (D.1.7)) symbolically is not
straightforward. However, we verify with a numeric example1 that equations aT

(

SBb
)

6= 0
for all possible a and b. In conclusion, the system of nine constraints (F.1.1) is not integrable.

1The numerical work can be found in the supplemental materials cited previously.

https://github.com/ThH00/On-the-Dynamics-of-Transporting-Rolling-Cylinders
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Appendix G

Calculating Gap Distances and Slip

Speeds

In this Appendix, essential preliminary developments pertaining to the gap distances and
slip speeds between a pair of adjacent (and possibly contacting) blocks depending on their
relative contact configuration.

G.1 The Four Corners

To streamline these calculations, we denote the four corners of block k by ak, bk, ck, and dk

(cf. Figure 4.1(b)) where

rka = rk +
wk

2
ek1 +

hk

2
ek2,

rkb = rk − wk

2
ek1 +

hk

2
ek2,

rkc = rk − wk

2
ek1 −

hk

2
ek2,

rkd = rk +
wk

2
ek1 −

hk

2
ek2.

(G.1.1)

In cases (ii) and (iii) we have ϑk+1 > ϑk whereas in cases (i) and (iv) ϑk+1 < ϑk. To further
differentiate these cases, we note that



















rk+1
d · ek1 > rka · ek1 for case (i),

rk+1
c · ek1 < rkb · ek1 for case (ii),

rk+1
c · ek1 > rkb · ek1 for case (iii),

rk+1
d · ek1 < rka · ek1 for case (iv).

(G.1.2)

Note that in equations (G.1.2), we could have equivalently taken the dot product with ek+1
1

instead of ek1. We note that in case (b) {Nk+1,Fk+1
f } are applied at the corner involved:
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ak for case (i), bk for case (ii), ck+1 for case (iii) and dk+1 for case (iv). In cases (i) and
(ii), we have Nk+1 = Nk+1ek+1

2 and Fk+1
f = F k+1

f ek+1
1 and in cases (iii) and (iv), we have

Nk+1 = Nk+1ek2 and Fk+1
f = F k+1

f ek1. The treatment of case (a) shown in Figure 4.1(a) will
be discussed shortly.

G.2 The Gap Functions

We need to characterize the separation distance gkN ≥ 0 between two representative blocks k
and k+1, k = 1, . . . , n−1. Equations (G.2.1) provide expressions for the minimum (normal)
distance between blocks k and k + 1 depending on their configuration. For cases (a) and
(b)i−iv, respectively, we can write

gkN =
(

rk+1 − rk
)

· ek+1
2 −

(

hk+1

2
+
hk

2

)

,

gkN =
(

rk+1 − rka
)

· ek+1
2 − hk+1

2
,

gkN =
(

rk+1 − rkb
)

· ek+1
2 − hk+1

2
,

gkN =
(

rk+1
c − rk

)

· ek2 −
hk

2
,

gkN =
(

rk+1
d − rk

)

· ek2 −
hk

2
.

(G.2.1)

In case (a), enforcing one gap distance constraint (G.2.1)1 is not sufficient to prevent blocks
k and k + 1 from penetrating. In this situation, the additional constraint ϑk = ϑk+1 which
provides a constraint moment is necessary. To avoid having a varying number of constraints
per block depending on each block’s configuration relative to its predecessor, we propose
an alternative formulation which consists of two gap distance measurements between the
top surface of block k and the bottom surface of block k + 11 for (k = 1, . . . , n − 1). This
enables a computationally elegant framework that describes all cases (a) and (b) with an
equal number of constraints: two normal constraints and one slip speed. We define

g2k−1
N =

{

ℓkb if
(

rkb − rk+1
c

)

· ek+1
1 > 0,

ℓkc if
(

rkb − rk+1
c

)

· ek+1
1 < 0

g2kN =

{

ℓka if
(

rka − rk+1
d

)

· ek+1
1 < 0,

ℓkd if
(

rka − rk+1
d

)

· ek+1
1 > 0

(G.2.2)
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where, referring to Figure G.1 the distances ℓ�,i, � ∈ {a, b, c, d} are

ℓka =
(

rk+1
c/d − rka

)

· ek+1
2 ,

ℓkb =
(

rk+1
c/d − rkb

)

· ek+1
2 ,

ℓkc =
(

rk+1
c − rka/b

)

· ek2,
ℓkd =

(

rk+1
d − rka/b

)

· ek2.

(G.2.3)

ak
bk

ck+1 dk+1

ℓkd

ℓkb

ℓka

ℓkc,

Figure G.1: Between the upper surface of block k and the lower surface of block k + 1, we
define four length measurements: ℓka and ℓkb are the minimum distances between the corners
ak and bk respectively to the lower surface of block k + 1 and ℓkc and ℓkd are the minimum
distances between the corners ck+1 and dk+1 respectively to the upper surface of block k.

In case (a), the total normal force between blocks k and k+1 is the sum of the constraint
forces associated with both gap distance constraints. Another advantage of this constraint
formulation is that the transition from (a) to (b) is seamless. If we start in case (a), whenever
one corner looses contact with the surface underneath, the block transitions from case (a) to
(b). The opposite happens when a block gains contact at a corner. An alternative option for
enforcing the gap distance constraints might be to encode all four constraints (G.2.2) for all
blocks at all times time. The drawback of this method is it yields linearly dependent force
directions in case (a). In this case, we wouldn’t be able to solve the system of equations of
motion with constraints using Newton iterations.

Equations (G.2.2) are invalid when block k + 1 is no longer horizontally supported by
block k. Hence, (G.2.2) are supplemented by the requirements that

(

rkb − rk+1
d

)

· ek+1
1 > 0 and

(

rka − rk+1
c

)

· ek+1
1 < 0. (G.2.4)
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If these conditions do not hold, then the contact between blocks k and k + 1 is lost. In this
study, we limit our scope to displacements that do not lead to a change in the initial ordering
of the blocks.

G.3 The Slip Speeds

We define the tangential slip speed between blocks k and k+1 in cases (b)i−iv, respectively,
as follows:

γkF =
(

vka − vk+1
c/d

)

· ek+1
1 ,

γkF =
(

vkb − vk+1
c/d

)

· ek+1
1 ,

γkF =
(

vka/b − vk+1
c

)

· ek1,
γkF =

(

vka/b − vk+1
d

)

· ek1.

(G.3.1)

In our numerical computations, we select the options resulting in uniform slip speed direc-
tions. Thus, in equations (G.3.1), we choose the point on block k to always be to the right
(or left) of the point on block k + 1 so that in the case of a transition from one configura-
tion to the next, the slip speed remains a continuous function of time. For case (a), any
one of equations (G.3.1) is valid. From rigid body dynamics, the relevant velocities and
corresponding slip speeds can be calculated using the identities

vk� = vk + ω
k ×

(

rk� − rk
)

, � ∈ {a, b, c, d}, (G.3.2)

where vk is the center of mass of block k. Notice that as blocks switch relative configurations,
the slip speeds remain continuous functions of time.
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Appendix H

Contact States

In Capobianco’s et al.’s [14] original algorithm, each contact is associated with one normal
constraint and one or more frictional constraints. For the applications in our work, each
contact is associated with two normal constraints. We slightly amend Capobianco’s et al.
expressions in [14, Section 9] for the contact sets at the position (Ak,1

i+1 and Ak,2
i+1), velocity

(Bk,1i+1 and Bk,2i+1), and acceleration levels (Ck,1i+1 and Ck,2i+1). The algebraic and notational com-
plexity in [14] is considerable. In the interests of brevity, we provide sufficient details so the
reader familiar with the developments and notation in [14] can follow our developments.

H.1 Sets Associated with the Normal Constraints

For the normal constraints between block k and k + 1 at iteration i+ 1, the respective sets
are

A1
i+1 =

{

k = 1, . . . , n− 1| r g2k−1
N,i+1 − κ̂2k−1

N,i+1 ≤ 0
}

,

A2
i+1 =

{

k = 1, . . . , n− 1| r g2kN,i+1 − κ̂2kN,i+1 ≤ 0
}

,

B1
i+1 =

{

k ∈ Ak,1
i+1| r ξ2k−1

N,i+1 − P 2k−1
N,i+1 ≤ 0

}

,

B2
i+1 =

{

k ∈ Ak,2
i+1| r ξ2kN,i+1 − P 2k

N,i+1 ≤ 0
}

,

C1
i+1 =

{

k ∈ Bk,1i+1| r g̈2k−1
N,i+1 − λ2k−1

N,i+1 ≤ 0
}

,

C2
i+1 =

{

k ∈ Bk,2i+1| r g̈2kN,i+1 − λ2kN,i+1 ≤ 0
}

.

(H.1.1)

The subscript 1 (2) ornamenting A, B, and C indicates that the contact on the left (right)
side of the block.
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H.2 Consolidating the Sets

To describe the sets used to record stick-slip transitions at the velocity and acceleration
levels for each two contact blocks, we consolidate the set

Ai+1 =
{

k = 1, . . . , n− 1| k ∈ A1
i+1 or k ∈ A2

i+1

}

, (H.2.1)

and write

Dst
i+1 =

{

k ∈ Ai+1| r ξkF,i+1 − P k
F,i+1 ∈ CF

(

P 2k−1
N,i+1 + P 2k

N,i+1

)}

,

Esti+1 =
{

k ∈ Dst
i+1| r γ̇kF,i+1 − λkF,i+1 ∈ CF

(

λ2k−1
N,i+1 + λ2kN,i+1

)}

.
(H.2.2)

H.3 Notation

In (H.1.1)-(H.2.2), the following abbreviations for impulses κ̂N,i+1, PN,i+1, PF,i+1, and gap
functions ξN,i+1 and ξF,i+1:

κ̂N,i+1 ≈
∫

I

∫

(ti,t]

((λN + νN) dτ + ΛNdη) dt+

∫

I

µNdt,

PN,i+1 ≈
∫

I

((λN + µN) dt+ ΛNdη) ,

PF,i+1 ≈
∫

I

(ΛFdη + λFdt) ,

ξN,i+1 = ġN,i+1 + eN ġN,i,

ξF,i+1 = ġF,i+1 + eF ġF,i.

(H.3.1)

In (H.3.1), gN is the previously defined gap distance function, and λN,F and ΛN,F are the
smooth and impulsive forces associated with the normal/friction constraints respectively.
We also note that dt and dη are absolutely continuous and singular differential measures
respectively, µN and νN are stabilization variables at position and velocity levels respec-
tively for normal constraints, and eN and eF are normal and friction restitution coefficients
respectively.

H.4 The Number of Possible Contact States

Associated with a Pair of Blocks

Following the definitions in the previous sections, we now enumerate the possible contact
states associated with a pair of blocks k and k + 1. The results are presented in Tables H.1
and H.2. An entry of 1 indicates that the index k belongs to the corresponding set, while
an entry of 0 indicates the opposite. We count 16 states in Table H.1, 15 of which have
k ∈ Ak, thus admitting 3 friction stick-slip states each according to Table H.2. Hence, the
total number of possible contact states between each two consecutive blocks in 46.
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Ak,1 Ak,2 Ak Bk,1 Bk,2 Ck,1 Ck,2
0 0 0 0 0 0 0
0 1 1 0 0 0 0

0 1 0 0
0 1

1 0 1 0 0 0 0
1 0 0 0

1 0
1 1 1 0 0 0 0

0 1 0 0
0 1

1 0 0 0
1 0

1 1 0 0
0 1
1 0
1 1

Table H.1: An enumeration of the possible normal con-
tact states associated with a pair of blocks k and k+1.
The separations correspond to the contact configura-
tions: no contact, contact of a left corner with an edge,
contact of a right corner with an edge, and edge on edge
contact between blocks k and k + 1, respectively.

Ak Dk Ek
0 0 0
1 0 0

1 0
1

Table H.2: An enumeration of the
possible friction contact States asso-
ciated with a pair of blocks k and
k + 1. The separations correspond
to the cases of no contact and con-
tact, respectively.
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Appendix I

The Painlevé Paradoxes for a Single

Block

Starting in 1895, Painlevé [59, 60, 61] published a series of papers on the dynamics of a rod
contacting a rough horizontal surface. Modeling the contact as one of dynamic Coulomb
friction, he showed that for high coefficients of friction and specific orientations of the rod it
was possible to have multiple solutions (i.e., indeterminacy) or non-existence (i.e., inconsis-
tency) of solutions. These instances of indeterminacy and inconsistency are now known as
Painlevé’s paradoxes (cf. [27, 64, 69, 72] and references therein).

To complement our numerical work, we examine the presence of the paradoxes in the
motion of a block with either one point P or an entire surface in contact with a rough
horizontal surface. Schematic illustrations of these cases are shown in Figure I.1(a) and
I.1(b), respectively.

(a) (b)

X̄
X̄

P

w

h
E1E1

E2E2

e1

e1 e2e2

ggϑ

L R

Figure I.1: A rectangular block of height h and width w in planar motion on a rough
horizontal plane: (a) motion with a single point P of contact and (b) motion where an entire
side of the block is in contact with the ground plane.
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I.1 The Case of a Single Point of Contact

The position vector of the center of mass X̄ has the representation x̄ = xE1 + yE2. For
the case where there is a single point of contact P , we conveniently choose the corotational
basis {e1, e2,E3} such that the position vector of P relative to the center of mass X̄ has the
representation

πP = −ℓe2, ℓ =

√
w2 + h2

2
. (I.1.1)

Differentiating the relationship xP = x̄+ πP twice we find that

ẍP = ẍPE1 + ÿPE2

= ẍE1 + ÿE2 + ℓϑ̈e1 + ℓϑ̇2e2. (I.1.2)

Referring to Figure I.1(a), in addition to a gravitational force −mgE2 acting at X̄, a normal
force NE2 and a friction force FfE1 act at P .

The angle ϑ has a restricted range for the case of interest. The minimum value of ϑ, which
we denote by ϑmin occurs when the block rests on the side of length h and the maximum
value of ϑmax occurs when the block rests on the side of length w. The extreme angles can
be readily computed using the corresponding values for the position vector ℓe2. Omitting
details of the computation, we find that

ϑ ∈
(

ϑmin = − arctan

(

h

w

)

, ϑmax = arctan
(w

h

)

)

. (I.1.3)

The variation of this pair of angles as functions of the aspect ratio w
h
of the block are shown

in Figure I.2(a). For blocks where w
h
= 0.5, ϑmin = −63.435◦ and ϑmax = 26.565◦. For a

slender rod of length 2ℓ, the corresponding range of ϑ is ϑ ∈
(

−π
2
, π
2

)

.
We now use (I.1.2) and the balances of linear and angular momenta for the block to

establish the following equations of motion:

mẍP = Ff +
ℓ cos (ϑ)

I
(Ffℓ cos (ϑ) +Nℓ sin (ϑ))−mℓϑ̇2 sin (ϑ) ,

mÿP = N −mg +
ℓ sin (ϑ)

I
(Ffℓ cos (ϑ) +Nℓ sin (ϑ)) +mℓϑ̇2 sin (ϑ) ,

Iϑ̈ = Ffℓ cos (ϑ) +Nℓ sin (ϑ) . (I.1.4)

where

yPN = 0, yP ≥ 0, N ≥ 0,

ẋP = 0 ⇒ −µsN ≤ Ff ≤ µsN,

ẋP 6= 0 ⇒ Ff = −µdNsgn (ẋP ) .

(I.1.5)
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In (I.1.4) and (I.1.5), I = m
12
(w2 + h2) is the moment of inertia of the block, µs is the

coefficient of static Coulomb friction, and µd is the coefficient of dynamic Coulomb friction.
We henceforth restrict attention to the case where ẋP 6= 0. It is convenient to use the

following non-dimensionalizations:

τ =

√

g

ℓ
t, uP =

yP
ℓ
, n =

N

mg
, (I.1.6)

to show that (I.1.4)2 implies that

u′′P = a+ bn (I.1.7)

where

a = a (ϑ, ϑ′) = ϑ′2 cos (ϑ)− 1,

b = b (ϑ, sgn (ẋP ) , µd) = (1 + 3 cos (ϑ)− 3µd cos (ϑ) sin (ϑ) sgn (ẋP )) . (I.1.8)

where the prime denotes the derivative with respect to τ .
The dimensionless expression for u′′P enables us to readily use analyses on the incidence

of Painlevé’s paradox for a slender rod. Following [27, 50, 64], the contact problem can be
formulated as a linear complementary problem. That is, we seek uP and n such that

nu′′P = 0, n ≥ 0, u′′P ≥ 0, (I.1.9)

where (cf. (I.1.7)) u′′P = a+ bn. As shown in [27, 50, 69], a pair of possible solutions, n = 0
and n = − a

b
, occurs when a > 0 and b < 0 and no solutions are possible when a < 0 and

b ≤ 0. That is, the Painlevé paradoxes occur when b ≤ 0.
With the help of (I.1.7) and (I.1.8), we can determine regions in the µd − ϑ plane where

Painlevé’s paradoxes occur by examining the sign of the function b (ϑ, sgn (ẋP ) , µd). The
results are shown in Figure I.2(b) and parallel the classic results for a rod of length ℓ that
date to Painlevé with the caveat that the range of ϑ is restricted by the geometry of the
block (cf. (I.1.3)). In particular, regardless of the sign of the slip speed ẋP or the aspect
ration w

h
, the minimum value of the coefficient of friction required for the paradox is µd =

4
3
-

a value which is far higher that the one used in our numerical work with the stack of blocks.

I.2 The Case of a Line of Contact

We now turn to the situation shown in Figure I.1(b). The block in this case has an entire
side of length w in contact with the rough horizontal surface. We assume that the contact
forces can be modeled as a pair of normal, NRE2 and NLE2, and friction forces FfRE1 and
FfLE1 applied at the edges of the block. The material points at the edges of the block are
labelled XL and XR:

xL = xLE1 + yLE2 = x̄− w

2
e1 −

h

2
e2,

xR = xRE1 + yRE2 = x̄+
w

2
e1 −

h

2
e2.

(I.2.1)
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(a) (b)

b (ϑ,−1, µd) < 0 b (ϑ,+1, µd) < 0

−90◦ −90◦ 90◦

90◦

ϑmin ϑmax

ϑmin

ϑmax

i ii

P P

µd

µd =
4
3

ẋP < 0

ẋP < 0

ẋP > 0

ẋP > 0

ϑ

ϑ

w
h

2

Figure I.2: (a) The values of the angles ϑmin and ϑmin as functions of the aspect w
h
. (b) The

loci of points in the ϑ−µd plane where b (ϑ, sgn (ẋP ) , µd) = 0. The loci determine the region
b ≤ 0 in the ϑ−µd plane where the Painlevé paradoxes occur. The values of ϑmin = −64.435◦

and ϑmax = 26.565◦ for w
h
= 0.5 are shown. The points labeled i and ii correspond to the

values of ϑ = ±26.6o and µd = 4
3
- which is the minimum value of µd where the Painlevé

paradoxes occur.

The balances of linear and angular momenta for the block provide the following equations
of motion:

mẍ = FfR + FfL ,

mÿ = NR +NL −mg

Iϑ̈ =
w

2
(−FfR + FfL) sin (ϑ) +

h

2
(NR +NL) sin (ϑ) +

w

2
(NR −NL) cos (ϑ)

+
h

2
(FfR + FfL) cos (ϑ) ,

(I.2.2)
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where

yRNR = 0, yR ≥ 0, NR ≥ 0,

yLNL = 0, yL ≥ 0, NL ≥ 0,

ẋ = 0 ⇒ −µsNR ≤ FfR ≤ µsNR & − µsNL ≤ FfL ≤ µsNL,

ẋ 6= 0 ⇒ FfL = −µdNLsgn (ẋL) & FfR = −µdNRsgn (ẋR) .

(I.2.3)

These equations can be non-dimensionalized:

τ =

√

g

ℓ
t, uR,L =

yR,L
ℓ
, nR,L =

NR,L

mg
, (I.2.4)

where 2ℓ =
√
w2 + h2.

We now parallel the analysis used previously and formulate the linear complementary
problem:

u′′RnR = 0, u′′R ≥ 0, nR ≥ 0,

u′′LnR = 0, u′′L ≥ 0, nL ≥ 0.
(I.2.5)

With the assistance of (I.2.2), we find that
[

u′′R
u′′L

]

= b

[

nR
nL

]

+ a, (I.2.6)

where

a = â (ϑ, ϑ′) =

[

−1 +
(

h
2ℓ
cos (ϑ)− w

2ℓ
sin (ϑ)

)

ϑ′2

−1 +
(

h
2ℓ
cos (ϑ) + w

2ℓ
sin (ϑ)

)

ϑ′2

]

,

b = b̂ (ϑ, sgn (ẋL) , sgn (ẋR) , µd) =

[

1 h
2ℓ
sin (ϑ) + w

2ℓ
cos (ϑ)

1 h
2ℓ
sin (ϑ)− w

2ℓ
cos (ϑ)

] [

1 1
δ1 δ2

]

,

(I.2.7)

where

δ1 =
mℓ

2I
(h sin (ϑ) + w cos (ϑ))− µdsgn (ẋR)

mℓ

2I
(h cos (ϑ)− w sin (ϑ)) ,

δ2 =
mℓ

2I
(h sin (ϑ)− w cos (ϑ))− µdsgn (ẋL)

mℓ

2I
(h cos (ϑ) + w sin (ϑ)) .

(I.2.8)

We now restrict attention to the case ϑ = 0 and ϑ′ = 0. Thus, ẋL = ẋR = ẋ. In this case, b
is invertible with eigenvalues 2 and mw2

4I
and respective eigenvalues:

e1 =





1−mw
2

4I (1+µdsgn(ẋ) h

w)
1−mw2

4I (1−µdsgn(ẋ) h

w)
1



 , e2 =

[

−1
1

]

. (I.2.9)

The solution to the LCP problem (I.2.5) can be found from (I.2.6),

nR =
1

2

(

1 + µdsgn (ẋ)
h

w

)

, nL =
1

2

(

1− µdsgn (ẋ)
h

w

)

. (I.2.10)

Thus, the Painlevé paradoxes are absent from this case.
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