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Abstract

Finger  gnosis (the ability to identify which finger  has been
touched) and magnitude comparison (the ability to determine
which of two numbers is larger) are surprisingly correlated.
We present a spiking neuron model of a common component
that could be used in both tasks: an array of pointers.  We
show that if the model's single tuned parameter is set to match
human accuracy performance in one task, then it also matches
on the other task (with the exception of one data point).  This
provides a novel explanation of the relation, and proposes a
common component that could be used across cognitive tasks.

Keywords: finger  gnosis;  magnitude  comparison;  spiking
neurons; neural engineering framework, numerical cognition

Introduction

Finger gnosis, the ability to differentiate which finger has
been touched,  in absence of visual feedback,  is  related to
math  performance  (Fayol,  Barrouillet  &  Marinthe,  1998;
Noël, 2005; Penner-Wilger et al., 2007, 2009, 2014, 2015).
Finger  gnosis  is  commonly  measured  using  a  finger
localization  task  (Baron,  2004;  Noël,  2005),  wherein  the
participant’s  hand  is  occluded  from  their  view  while  a
finger, or two fingers, are touched. The participant is then
asked  to  indicate  the  touched  finger(s).  Performance  is
measured in terms of number of fingers correctly identified. 

Finger gnosis ability predicts performance on a variety of
math  measures  in  children,  both  concurrently  and
longitudinally (β’s range from .22 to .36; Fayol et al., 1998;
Noël,  2005;  Penner-Wilger  et  al.,  2007,  2009).  Finger
gnosis ability also predicts performance on a variety of math
measures  in  adults  (β’s  range  from  .21  to  .30;  Penner-
Wilger  et  al.,  2014,  2015).  The  relation  between  finger
gnosis and math skill is reproducible across labs, different
samples,  age  groups,  and measures  of  math skill,  despite
controlling  for  many  other  variables  (e.g.,  visuo-spatial
working memory, finger agility, processing speed, and non-
verbal IQ).

The  relation  between  finger  gnosis  and  math  skill  is
partially  mediated  by  symbolic  number  comparison
performance  (Penner-Wilger  et  al.,  2009,  in  prep.).  In
symbolic number comparison tasks, participants are shown
two digits (e.g., 2  3) and asked to indicate which number is

more (or in some variants asked to compare a target digit to
a standard). One robust finding in number comparison is the
distance  effect  – performance is faster  and more accurate
when numbers are father apart in magnitude (e.g., 2  7) than
when  they  are  closer  together  (e.g.,  2   3;  Moyer  &
Landauer, 1967). The distance effect is proposed to reflect
mapping between numerals and their associated magnitude,
with  greater  distance  effects  reflecting  noisier  mappings
(Dehaene,  Dehaene-Lambertz  & Cohen,  1998;  cf.  Lyons,
Nuerk  & Ansari,  2015).  Children  who  perform  better  in
finger  gnosis,  reflecting  a  more  precise  finger
representation, also demonstrate smaller distance effects in
number  comparison,  reflecting  a  more  precise  number
representation (Penner-Wilger et al., 2009).  

Why are finger gnosis and math performance, specifically
a  task  indexing  the  precision/strength  of  number
representations, related? On the redeployment view (Penner-
Wilger  &  Anderson,  2008,  2013),  the  relation  between
finger gnosis and number representation arises because the
two tasks use overlapping neural substrates. On this view,
the relation is an example of  neural reuse, the use of local
regions  of  the  brain  to  support  multiple  tasks  across
domains (Anderson, 2010, 2014). Neural reuse is a dynamic
process, impacting the functional organization of the brain
across both evolutionary and developmental time, whereby
individual regions of the brain contribute to multiple high-
level  uses  (e.g.,  finger  representation  and  number
representation).  There  are  two  forms  of  neural  reuse:
redeployment  and  neuromodulation.  In  redeployment,  the
same  brain  region  supports  multiple  uses,  across
evolutionary and/or developmental time, while maintaining
the same operation (Anderson, 2014).  In neuromodulation,
the same brain region supports multiple uses, at any given
point in developmental time, without maintaining the same
operation – its operation is modulated as a result of internal
or  external  variables  (Anderson,  2014;  Bargmann,  2012;
Marder,  2012).  The  redeployment  view  posits  that  the
behavioural link between finger and number representations
is at least partially explained by neural reuse, and that the
specific  type  of  neural  reuse  involved  is  redeployment.
Thus, one (or more) local brain regions, over evolutionary
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and/or developmental time, has come to perform the same
operation in support of both uses.

In support of the redeployment view, regions associated
with finger gnosis are activated during tasks requiring the
representation  of  number  (Andres,  Michaux  &  Pesenti,
2012; Dehaene et al., 1996; Zago et al., 2001), rTMS and
direct  cortical  stimulation  disrupt  both  finger  gnosis  and
tasks  requiring  the  representation  of  number  (Rusconi,
Walsh, & Butterworth, 2005; Roux et al., 2003), and there is
interference between tasks involving finger gnosis and tasks
requiring  the  representation  of  number  (Brozzoli  et  al.,
2008).   Zago et al. (2001) pinpointed a region of overlap
between  finger  and  number  representation  in  the  left-
precentral gyrus (-42, 0, 38). Penner-Wilger and Anderson
(2011)  conducted  a  meta-analysis  of  imaging  data  to
determine the full complement of tasks, across domains, that
this  ROI was  implicated  in,  with  the  goal  of  identifying
common requirements across tasks/uses to guide structure-
function  mapping.  In  addition  to  number  and  finger
representation tasks, the ROI was implicated in generation,
inhibition and order  tasks.   Common requirements  across
these  uses  were  identified,  including  ordered  storage  and
mapping,  and  a  candidate  working  that  could  implement
both  these  requirements  was  proposed  –  an  array  of
pointers.  An  array  is  an  ordered  group,  meeting  the
requirements  for  ordered  storage,  and  a  pointer  is  a  data
structure that designates a memory location and can indicate
different data types.  Thus, an array of pointers allows for
storage and access of ordered elements, which are able to
point to—or index—representations or locations in memory,
allowing  for  mapping  between  different  representational
forms. 

The  neural  overlap  between  finger  and  number
representation could reflect redeployment, wherein the brain
region  is  reused  in  both  tasks  while  retaining  the  same
operation.  Alternatively,  the  overlap  could  reflect
neuromodulation,  wherein  the  operation  of  the  region  is
modulated.  In  the  current  paper,  we  use  computational
modelling as a means of demonstrating whether  the same
proposed working –an array of pointers— could contribute
to both number and finger representation. The goals of the
current research are to evaluate the redeployment view and
proposed shared  working by (1)  providing an in-principal
demonstration  that  the  same  working  could  contribute  to
both uses, (2) determining the psychological plausibility of
the model by comparing it to human performance on finger
gnosis and number comparison tasks, and (3) differentiating
between  support  for  redeployment  (same  ROI,  same
working)  over  neuromodulation  (same  ROI,  but  different
working). 

Common Component: A Cognitive Pointer

The core theoretical claim here is that both finger gnosis and
magnitude comparison could plausibly make use of a neural
system that is able to store a list of items, and each of those
items  can  be  used  to  indicate  other  information.   For
example, these items could mean a particular number (e.g.

ONE  or  THREE)  or  they  could  mean  any  other  known
concept.  For the purposes of this paper,  we choose these
vectors  randomly,  but  we  could  use  other  vector-based
representation methods such as LSA or word2vec.

To be explicit about what we mean by such a system, let
us define it mathematically.  First, we need a (small) set of
numerical values which are our “pointers”: p1, p2, p3, p4, and
p5.  For the purposes of this paper, we keep the size of this
set to 5 (the number of fingers on a hand).  Each of these
pointers is a numerical vector, and different values can have
different meanings.  For example, there could be one value
that  means  the  number  ONE,  with  other  values  meaning
other concepts like DOG.

In the absence of input, these pointers should not change
their value.  However, we also need some way of changing
their value when needed.  For this, we need two things: a
new  input  value  x and  a  way  to  indicate  which  pointer
should be set to the new value.  This input control we call a
mask m and it is a list of values indicating which pointer
should be set.  For example, if m=[0,1,0,0,0], then the input
x will be set to the second pointer p2.

Mathematically,  we  can  write  this  as  follows,  where  i
indexes the different pointers:

(1)
We postulate  that  the  two tasks  use  this  component  as

follows.  For the finger gnosis task, consider what happens
if  two fingers  are  touched,  the  index  finger  and the  ring
finger.  We can treat each pointer as a separate finger, and
load  in  a  vector  that  means  TOUCHED  into  the  correct
pointers by setting x=TOUCHED and m=[0,1,0,1,0].

For  the  magnitude  comparison  task,  we  load  the  first
value  into  the  first  pointer  and  the  second  value  in  the
second pointer.   For  the  case  of  comparing  5  and 7  this
means  setting  x=FIVE  and  m=[1,0,0,0,0],  and  afterwards
setting  x=SEVEN  and  m=[0,1,0,0,0].   Over  time,  this
process proceeds stepwise as follows, and maintains its state
as shown:
Finger Gnosis Task

x m p1 p2 p3 p4 p5
-- 00000 -- -- -- -- --

TOUCHED 01010 -- TOUCHED -- TOUCHED --
-- 00000 -- TOUCHED -- TOUCHED --

Magnitude Comparison Task

x m p1 p2 p3 p4 p5
-- 00000 -- -- -- -- --

FIVE 10000 FIVE -- -- -- --
SEVEN 01000 FIVE SEVEN -- -- --

-- 00000 FIVE SEVEN -- -- --

Neural Implementation

While  the  above  algorithm  gives  us  a  conceptual
understanding of this array of cognitive  pointers,  we also
want to determine how neurons could implement such an
algorithm.  By examining this neural  mechanism, we can
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gain  insights  into  how  accurate  it  would  be  in  different
conditions,  and  hopefully  gain  insight  into  individual
differences and cognitive deficits.

For our neurons, we use standard leaky-integrate-and-fire
(LIF) neurons.  These increase in voltage given their input,
and  emit  a  spike  and  reset  when  the  voltage  reaches  a
threshold.  These spikes are transmitted to all neurons that
the spiking neuron is connected to, with synaptic weights
controlling  how much  current  is  added  to  (or  subtracted
from)  the  target  neuron  each  time a  spike  occurs.   Each
connection  also  has  a  post-synaptic  time  constant  that
controls the time it takes for a spike's effect to decay away.

Figure 1: Neural implementation of an array of pointers.
Only two pointers are shown.

Figure 1 shows the basic approach used to implement this
functionality.  The groups of neurons on the right store the
individual pointer values  p1,  p2,  etc.  They are recurrently
connected such that they will have stable firing patterns over
time (i.e. whatever pattern of firing is present right now will
cause a similar firing pattern in the near future).

The  connections  from  x to  the  channels  and  from  the
channels  to  the  pointers  are  all  set  such that  the neurons
simply pass along the value without altering it.  That is, if
we input a particular  value  x,  this will  cause a particular
(and  unique)  firing  pattern  in  channel  1  and  channel  2.
These in turn will cause particular firing patterns in pointer
1 and pointer 2.  If  x is removed (i.e. set to zero), then the
pointer  patterns  will  stay  as  they  were.   Thus,  they
implement a memory of previously presented patterns.

However, we also want to be able to selectively set one or
the other pointer.   For this reason, we also include the  m
(mask)  input.   This  can  selectively  inhibit  the  channel
neurons.  If these are inhibited, then they do not fire, and so
do not affect the pointer neurons.  So, if we want to set the
value in pointer 2 only (and not change whatever is stored in
pointer 1), then we inhibit channel 1 when inputting x.

To  actually  create  this  network,  we  use  the  Neural
Engineering Framework (Eliasmith & Anderson, 2003) and
the software toolkit Nengo (Bekolay et al., 2014).  In this
approach,  we  assume  that  x is  a  vector  of  some
dimensionality that is smaller than the number of neurons in
a group.  This means that there is redundancy in the neural
code,  and  the  value  x is  distributed  across  the  neural
population.   Here,  for  simplicity,  we  assume  x is  an  8-
dimensional vector.  Previous work (Crawford, Gingerich &
Eliasmith, 2013) has shown that 512-dimensions should be
sufficient for high-level  reasoning applications,  but that is
not needed for the tasks considered here.

Within each group of 400 neurons, each individual neuron
has  a  randomly  chosen  preferred  vector.   That  is,  each
neuron will have some particular  x value for which it fires
the fastest.  This is a generalization of the standard preferred
direction  vectors  observed  throughout  cortex  (e.g.
Georgopoulos et al., 1986).

To generate the actual connections between neurons, the
NEF uses least-squares  minimization to  directly solve for
the optimal synaptic connection weights that will do the best
job of transferring a value  x from one group to the next.
This  same  process  is  used  to  generate  the  recurrent
connections for the pointers.

The synaptic time constants were set to 10ms for the feed-
forward  connections  (based  on  the  fast  AMPA  synapses
found in cortex) and 100ms for  the recurrent  connections
(based on the slower NMDA synapses  found in recurrent
connections in cortex).

It should be noted that there is nothing in the model so far
that  is  fit  to  a  particular  task.   The  optimization  of  the
connection  weights  is  over  all  possible  x values,  not  the
particular x values that mean ONE or TWO or TOUCHED
in  the  magnitude  comparison  and  finger  gnosis  tasks
themselves.  This is meant to be a generic component, not
one that is specialized for exactly these tasks.

Figure 2: Spiking activity for an example magnitude
comparison task.  Top row shows input to the model.  Other

rows show spiking neuron activity over time.  The text
indicates which vector x is represented by the pattern of
activity.  Note that pointer 1 and pointer 2 maintain their
pattern (approximately) after the input has been removed.

Figure  2  shows  the  neural  activity  when  this  array  of
pointers is used to store two numbers.  Initially, both pointer
1 and pointer 2 are  firing with some random background
firing rate.  At t=0.2s, we set the input x to be the vector for
FIVE (randomly chosen) and set the mask such that channel
1 is  the  only group  not  being  inhibited.   This  drives  the
neurons in pointer 1 to also fire with the pattern for FIVE.
At t=0.4s, we change the input to SEVEN and change the
mask so that channel 2 is not inhibited.  This drives pointer
2 to represent SEVEN.  Importantly, after x is removed, the
neurons in pointer 1 and pointer 2 retain their firing pattern.
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While  the  system  described  above  behaves  as  desired,
note that it  is not perfect.   The neurons in channel 1 and
channel 2 are not perfectly inhibited. Also, the neurons in
pointer 1 and pointer 2 do not perfectly maintain exactly the
desired firing pattern.  This is as expected, as neurons only
approximate  the  desired  functions.    We  can  now  test
whether the resulting model can still perform the two tasks,
and  whether  the  errors  made  by  the  model  due  to  these
imperfections are comparable to the errors made by people.

Task 1: Magnitude Comparison

The first  task believed to make use of  this component  is
magnitude  comparison.   Two  single-digit  numbers  are
presented, and the system must decide which is larger.  

To implement this task neurally, we add two new neural
groups.  First, a comparison group, which takes as input the
vectors in the first two pointer populations.  This means that
the comparison group has a 16-dimensional input, with the
value from p1 as the first 8 dimensions and the value from p2

as  the  second  8  dimensions.   Second,  we  have  an
accumulator.   This  takes  as  input  a  single  number  which
should be positive if the first number is larger, and should
be  negative  if  the  second  number  is  larger.   This  is
recurrently connected to itself, so that even for small inputs,
it  will  eventually  build  up  until  it  reaches  a  threshold,
making  it  a  standard  accumulate-to-threshold  decision-
making system.

Figure 3: The magnitude comparison model.  The dotted
area indicates the array of pointers.

 

The connection  between the comparison  and accumulator
neurons  needs  to  convert  from  16  dimensions  (the  two
numbers being presented) to 1 dimension (which number to
choose).   We implement this function by generating 2000
training examples of randomly chosen digits, along with the
correct answer of +1 if the first number is larger, and -1 if
the second number is larger.  We then used Nengo to find
the optimal  connection  weights  between these neurons  to
best approximate this mapping.

To evaluate this model,  we collected human participant
data from 88 undergraduate  students at  King’s  University
College  who received  course-credit  for  their  participation
(age: M=21.28 years, SD=3.8 years; 64 female).  Two single
digit  numbers  (ranging  from  1  to  9)  were  presented
simultaneously on an iPad screen. Participants were asked
to  choose  the  numerically  larger  number  as  fast  as  they
could without making any errors. Stimuli remained on the
screen for 7800ms or until  the participant made a choice,
and  the  time  between  trials  was  1000ms.  Participants
performed  a  total  of  72  trials.  Dependent  measures  were
reaction time and percent error.

Figure 4: Results from participants and from the model.
Standard errors of the mean are shown.

 

The  participant  data  (Figure  4)  displays  the  expected
distance  effect:  as  the  difference  between  the  digits
increases,  accuracies  improve  and  reaction  times  are
quicker.   For confirmation,  a  repeated  measures  ANOVA
with  a  Greenhouse-Geisser  correction  revealed  that  mean
RTs  differed  significantly  between  distances,  F(4.41,
383.91)  =  46.96,  p  <  .01.  A  second  repeated-measures
ANOVA  revealed  that  mean  percent  error  also  differed
significantly between distances, F(7, 609) = 21.37, p < .01.

Importantly, the model data shows the same effects.  To
achieve the quantitative fit for the accuracy measure (Figure
4, left side), we only fit one parameter: the strength of the
inhibition m.  That is, rather than having it always be strong
enough to completely stop all neurons in the channel from
firing (sinhibition=1.0),  we allowed this  value  to  be reduced.
This causes  some “leakage”,  where  values  meant  for  one
pointer  slightly  affect  the  other  pointers,  since  the  other
channels are not perfectly inhibited.  If there are more than 2
pointers, we assume that the inhibition gets proportionally
stronger for pointers farther from the target pointer.  For the
data shown above, sinhibition=0.875.  Surprisingly, this distance
effect occurs even though the neural activity pattern for each
digit is randomly chosen.  See (Stewart & Penner-Wilger,
2017) for further analysis.

For  the  reaction  time  data  (Figure  4,  right  side),  two
additional  parameters  were  fit.   First,  we  added  a  fixed
reaction-time  value  (i.e.  the  amount  of  time  needed  for
perception and the motor action) Tfixed. Second, we allowed a
scaling  factor  on  the  connection  from  the  comparison
neurons to the accumulator neurons.  This controls the rate
of evidence accumulation sevidence.  This is a common feature
of decision-making models.  After fitting,  Tfixed=290ms and
sevidence=5.9.  All other parameters in the model were left at
their default values.

Task 2: Finger Gnosis

In  the  finger  gnosis  task,  two fingers  are  touched on the
participant's  hand  while  that  hand is  occluded  from their
view.  They must then report which fingers were touched.

To implement this task, we use the same array of pointers,
but connect it to a different set of neurons, as depicted in
Figure 5.  The first group of neurons takes the input from all
the pointers and combines them together as one vector.  The
second  group  stores  the  reported  answer.  As  with  the
previous task, we use Nengo to find the connection weights
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that best approximate the function between the combination
neurons  and  the  answer  neurons.   In  this  case,  however,
rather than determining which value is larger,  here we do
not need to perform any complex operation as we just need
to  extract  the  information  that  is  already  encoded  in  the
neurons.   Thus,  here  we  use  Nengo  to  approximate  the
identity function, where the output is the same as the input.

Figure 5: The finger gnosis model.  Only 2 pointers are
shown, but the full model uses 5 pointers.

Importantly,  if this same array of pointers is to be used in
two different tasks, a flexible neural routing system would
be needed, so that the output of the pointer array can be sent
to this  combination system when doing the  finger  gnosis
task,  and  sent  to  the  comparison  system  when  doing
magnitude comparison.  We have previously shown how to
implement  such  a  routing  system  using  a  model  of  the
cortex-basal  ganglia-thalamus  loop  (Stewart,  Choo,  &
Eliasmith, 2010), and so do not consider that here.

To  evaluate  this  model,  we  used  the  same  88
undergraduates  as  for  the  first  task.   Participants  first
performed the magnitude comparison task, followed by the
finger gnosis task as part of a larger study.  As shown in
Figure 6, a repeated-measures ANOVA revealed that mean
percent error differed significantly between distances, F(3,
261) = 6.88, p < .01.

Figure 6 also shows the model performance.  Importantly,
no parameters were tuned to achieve this result.  We used
sinhibition=0.875, as that was the best fit value in the first task,
and all other parameters were left as they were.  The model
is statistically significantly different at a distance of 1, but
does not statistically differ for distances 2, 3, and 4.

Figure 6: Results from participants and model for the finger
gnosis task.  Standard errors of the mean are shown.

Since the only tuned parameter in the model is  sinhibition, we
also examined how the model's performance changes on the
two tasks as this parameter is varied (Figure 7).  From this,
we  note  that  the  error  rates  on  these  two  tasks  change
drastically,  given  small  changes  in  this  parameter.   This
indicates  a  strong  connection  between  the  model's

performance on one task and on the other.  The fact that a
similar parameter value is needed in each task in order to fit
the  human  data  lends  support  to  the  idea  that  there  is  a
shared working that is redeployed for these two tasks.

Figure 7: Effects of changing sinhibition in both tasks.

Conclusions

On  the  redeployment  view  (Penner-Wilger  &  Anderson,
2008,  2013),  finger  gnosis  and  math  ability  are  linked
because at  least  one local  brain region,  over evolutionary
and/or developmental time, has come to perform the same
operation  in  support  of  both  finger  and  number
representation.  The  goal  of  the  current  research  was  to
evaluate  the  redeployment  view and  the  proposed  shared
operation  –  an  array  of  pointers  (Penner-Wilger  &
Anderson,  2011).  To  this  end,  we  built  a  computational
model  to  perform  both  the  standard  finger  gnosis  and
number  comparison  tasks.  We  then  compared  the
performance of this model to human performance data (RT
and accuracy) and showed a close match on both tasks with
one parameter (sinhibition) tuned to a common value.

First,  our  work  provides  an  in-principal  demonstration
that  the  same  working  –  an  array  of  pointers  –  could
contribute to multiple uses, as the same system successfully
performed two different tasks. Our previous meta-analysis
(Penner-Wilger  &  Anderson,  2011)  also  indicates  this
region may be involved in a variety of other tasks, which we
intend to include in future research.

Second, given that the model could successfully perform
both  tasks  using  the  same  operation,  and  that  the  model
performance  mirrored  that  of  human  participants,  it  is  a
psychologically plausible explanation, which lends support
for the view that the observed neural overlap between finger
and  number  representation  reflects  redeployment (same
ROI,  same  working)  rather  than  neuromodulation (same
ROI, different working).  It follows that damage to the ROI
should  impact  performance  on  both  finger  gnosis  and
number comparison tasks. We are currently testing this in
our computational  model and it could be tested in human
participants  using  rTMS  applied  to  our  ROI  in  the  left
precentral gyrus. Previous work using rTMS applied to the
left  angular  gyrus  has  already  been  shown  to  disrupt
performance on both tasks (Rusconi et al., 2005).

Third, by offering another concrete instance of the reuse
of a basic operation in a high-level, abstract cognitive task,
the model does not just bolster the neural reuse framework,
but also serves the goal of enhancing our understanding of
the nature of and processes involved in numerical cognition.
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Finally, modeling efforts like this potentially enhance our
efforts  to  map  the  functional  structure  of  the  brain.  We
currently  lack  the  capacity  to  determine  in  vivo  when
neuromodulation has changed the underlying configuration
of  a  local  neural  network,  which  hinders  our  ability  to
attribute function  to  structure.  This  approach  offers  some
first steps toward developing reliable methods for detecting
changes  to  the  underlying  operation  a  given  local  region
supports, thereby refining our efforts to describe what the
brain is actually doing at any given time.
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