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Choosing an Optimization Method for Water Resources
Problems Based on the Features of Their Solution Spaces
Omid Bozorg-Haddad1; Melika Mani2; Mahyar Aboutalebi, M.ASCE3; and Hugo A. Loáiciga, F.ASCE4

Abstract: One of the main challenges for solving complex water-resources optimization is choosing an appropriate solution method. An
important feature of optimization problems is the convexity and extent of their solution spaces. The solution space is the set whose elements
are all the reservoir releases that meet the optimization problem’s constraints and are thus feasible. The solution space of optimization prob-
lems can be convex or nonconvex. This study presents a method for determining the convexity or nonconvexity of the optimization problem
solution space. The convexity and the extent of the solution space for a water-supply and a hydropower-production reservoir operation
problem are evaluated by the proposed method. It is shown that the solution spaces of the former and latter problems are convex and non-
convex, respectively. The dependence of the solution spaces of the two reservoir operation problems on changes in evaporation, water demand
for the water-supply reservoir, power plant capacity (PPC) for the hydropower reservoir, dead storage, reservoir capacity, and reservoir inflow
is evaluated. The results demonstrate that the generalized reduced gradient (GRG) method finds an optimal value faster and more accurately
than does the genetic algorithm (GA) when solving the water-supply problem, and that the GRG search is trapped in a local optimum when
solving the hydropower-production problem. DOI: 10.1061/(ASCE)IR.1943-4774.0001265. © 2017 American Society of Civil Engineers.

Author keywords: Optimization; Reservoir operation; Solution space; Convexity; Evolutionary and gradient-based optimization methods.

Introduction

Optimization theory has found fertile ground for application in res-
ervoir operation and design. Classical optimization methods that
have been applied to reservoir-operation optimization include lin-
ear programming (LP), nonlinear programming (NLP), dynamic
programming (DP), and stochastic dynamic programming (SDP).
Houck (1979) and Kuczera (1989) proposed LP for reservoir
operation. Chu and Yeh (1978) used duality and Lagrangian theory
for a concave optimization problem that maximized daily energy
production. Little (1955) and Stedinger et al. (1984) applied dy-
namic programming and stochastic dynamic programming to res-
ervoir operation problems. Young (1967) reviewed LP, NLP, and
DP methods for reservoir operation. Yeh (1985) reviewed NLP
methods in reservoir problems.

Classic methods have proven effective in solving well-posed op-
timization problems. However, they have several limitations with
respect to complex nonlinear problems with a large number of de-
cisions. Most classic methods are gradient-based, which involves
the approximation of partial derivatives numerically. They cannot

solve discontinuous problems (Bozorg-Haddad et al. 2006; Jordehi
and Jasni 2012). Classic methods may converge to local optima in
problems with a nonconvex solution space (Ghosh and Dehuri
2004; Del Valle et al. 2009). Convergence to local optima may
be caused by poor initial guesses of the solution (Bhattacharjya
and Datta 2005).

Karatzas and Pinder (1993) applied the outer approximation
method to solve groundwater management problems with a con-
cave objective function and nonconvex feasible decision space,
and argued that classical optimization algorithms for groundwater
quality management cannot correctly solve nonconvex problems.
Cai et al. (2001) relied on the generalized bender decomposition
for nonconvex reservoir operation and salinity control optimiza-
tions. They concluded that, because of their scale and complexity,
only specific algorithms can solve these problems.

More recently, evolutionary and metaheuristic algorithms have
become effective tools in water resources systems research. East
and Hall (1994), Oliveira and Loucks (1997), Wardlaw and Sharif
(1999), and many others used genetic algorithms (GAs) to optimize
reservoir operation. Mantawy et al. (2003) applied the simulated
annealing (SA) algorithm for multireservoir operation. Bozorg-
Haddad et al. (2008) introduced honey-bee mating optimization
(HBMO) for calculating reservoir operational rules and assessed
this algorithm’s capabilities. Bozorg-Haddad et al. (2009) applied
and evaluated the HBMO algorithm with the nonlinear, multimo-
dal, irregular Fletcher-Powell function and a nonconvex hydro-
power optimization problem. Ostadrahimi et al. (2012) used
multiswarm particle swarm optimization (MSPSO) for multireser-
voir system operation. Bozorg-Haddad et al. (2016) applied the
biogeography-based optimization algorithm for optimal operation
of the Karun 4 hydropower reservoir system in Iran. Giuliani et al.
(2015) used the direct policy search method, nonlinear approximat-
ing networks, and a multiobjective evolutionary algorithm to
design Pareto-approximate operating policies for a multipurpose
water reservoir. Asgari et al. (2015) and Azizipour et al. (2016)
reported the application of the weed optimization algorithm to res-
ervoir operation. Garusi-Nejad et al. (2016) applied the firefly
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algorithm to irrigation supply and hydropower generation, and
demonstrated the advantage of this algorithm.

A topic that has not been fully addressed in previous research
concerning reservoir operation is the study of the characteristics of
the solution space for the purpose of selecting appropriate solution
methods. Yeh et al. (1980), Simonovic (1992), Wurbs (1993), and
Labadie (2004) reported comprehensive reviews of optimization
methods in water resources systems and concluded that there is
not a single general optimization algorithm that works well for
all problems. The choice of a suitable method depends on the prob-
lem’s features, such as the type of objective function, the type of the
solution space defined by the problem constraints (convexity or
nonconvexity), and data availability (Bozorg-Haddad 2014).

This paper evaluates the convexity and extent of the solution
spaces of two types of single-reservoir operation problems, one
for agricultural and urban water supply and a second for hydro-
power generation. The evaluation of these two problems identifies
patterns with which to assess whether or not the solution space is
convex. Most of nonconvex optimization problems are complex
and sometimes they are impossible to solve exactly in a reasonable
time. Evolutionary algorithms are well suited to tackle nonconvex
problems and are commonly implemented for that purpose. In con-
trast, most of the convex optimization problems can be solved with
simpler, faster, and more-accurate methods. Therefore correct rec-
ognition of the solution space is helpful for determining suitable
solution methods. In addition to determining convexity or noncon-
vexity of a solution space, this study evaluates the changes in state
variables of selected reservoir operation problems by changing the
values of key inputs such as evaporation, water demand, minimum
and maximum storage, and power plant capacity (PPC), and as-
sesses the effect of those changes on the convexity and extent
of the solution space. Furthermore, the capacity of several optimi-
zation algorithms to solve the two example reservoir operation
problems is evaluated with convex and nonconvex spaces.

Convexity

The feasible decision space of an optimization problem, which is
called solution space, is the set of all the values that the decision
variables can take without violating the constraints of the problem
(Bozorg-Haddad 2014). The solution or solutions of an optimiza-
tion problem are within the solution space. The solution space can
be classified as convex or nonconvex. A convex set in two dimen-
sions is a set of points such that, given any two points in that set, the
line (or hyperplane in multidimensional spaces) joining them lies
entirely within the set; otherwise, the set is nonconvex. Fig. 1 il-
lustrates convex and nonconvex sets. Eq. (1) is the mathematical

definition of a convex set A. If it is not satisfied, then the set is
nonconvex

∀ X1;X2 ∈ A; ∀ λ ∈ ½0; 1�; λX1 þ ð1 − λÞX2 ∈ A ð1Þ
where X1 and X2 = any two points of set A; λ ¼ 0 − 1; and
∈ = operator that establishes membership in a set; X1 and X2

are replaced by vectors in multidimensional spaces.
A convex optimization problem has convex constraint functions

(the solution space is convex), and the objective function is a con-
vex function under minimization or a concave function under maxi-
mization. The basic difference between convex and nonconvex
optimization problems is that in convex optimization there are
globally optimal solutions that can be found relatively straightfor-
wardly without the solution algorithm converging to local optima.
Nonconvex optimization may have multiple local optima, in which
case it is difficult to ascertain the nature of any convergence point
by a search algorithm. Many optimization methods do not perform
well in nonconvex optimization. Linear functions are convex, so
well-posed linear programming problems are convex problems that
have globally optimal solutions.

Monte Carlo Method

The Monte Carlo method is a computational algorithm that imple-
ments a large number of iterations, each based on randomly gen-
erated numbers that initiate simulations of an arbitrary system. The
system outputs derived from the many simulations are viewed as
realizations of a stochastic process that can be analyzed with prob-
abilistic methods. The Monte Carlo method is widely used for sim-
ulating many types of problems. The present study applies the
Monte Carlo method for simulating and assessing convexity of
the solution space in two types of reservoir operation problems ex-
plained in the “Methods and Materials” section.

Types of Optimization Problems

Optimization problems can be classified as linear or nonlinear. An
optimization problem is linear when it involves objective functions,
equations of the simulation model, and constraints that are linear
and continuous. The problem is nonlinear if any constraint or the
objective function(s) is nonlinear or discontinuous. Most water re-
sources problems are nonlinear, such as the optimization of water
quality, water distribution systems, and groundwater management.
Nonlinear problems may be convex or nonconvex.

Implemented Optimization Methods

This study applies three optimization methods: the simplex method,
the generalized reduced gradient (GRG) method, and the genetic
algorithm. The simplex method was developed to solve linear pro-
graming problems (e.g., Hillier and Lieberman 2005). The GRG
algorithm is a gradient-based optimization method for solving non-
linear optimization. The GRG method searches for optima close to
the starting search point, whether local or global (Yeniay 2005;
Lasdon et al. 1974). The GA is an evolutionary algorithm which
is inspired by the process of natural selection of evolutionary biol-
ogy. The GA starts with a generated initial population of possible
solutions which are named chromosomes. These chromosomes are
modified by genetic operators such as crossover and mutation that
are applied to produce improved solutions. Those improved solu-
tions with superior fitness are selected and modified (recombined
and possibly randomly mutated) to generate a new population

(a) (b)

Fig. 1. Illustration of sets in two dimensions: (a) nonconvex;
(b) convex

© ASCE 04017061-2 J. Irrig. Drain. Eng.
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(Fallah-Mehdipour et al. 2012). The algorithm generating popula-
tions of solutions and improving them is repeated until a specified
search criterion is met, at which point the extant set of solutions is
very near a global optimum. Genetic algorithms and other evolu-
tionary algorithms have several advantages, such as local optimum
avoidance, simplicity, and being derivation free. Because of their
stochastic nature, they can escape local optima in contrast with
classical methods. If an evolutionary algorithm is trapped in a local
optimum, its stochastic operator helps the algorithm to escape
the local optimum. In addition, evolutionary algorithms are generally
inspired by natural concepts that are easy to understand and do not
require the derivation of a mathematical model to reach a solution.

Reservoir System Operation Model

The mass balance equation for reservoir operation is

Stþ1 ¼ St þQt − Rt − SPt − Losstt ¼ 1; 2; 3; : : : ; T ð2Þ
where Stþ1 = reservoir storage volume at the beginning of the
tþ 1th period; St = reservoir storage volume at the beginning of
the tth period; Qt = inflow to the reservoir during the tth period;
Rt = release from reservoir during the tth period; SPt = volume of
spill from the reservoir during the tth period; andLosst = evaporative
loss of volume during the tth period.

Losses are calculated by

Losst ¼ Evt × Ātt ¼ 1; 2; 3; : : : ;T ð3Þ
where Evt = depth of evaporation at the beginning and end of the
tth period; and At = average reservoir surface area in the tth period

Āt ¼
�
At þ Atþ1

2

�

t ¼ 1; 2; 3; : : : ; T ð4Þ
where At and Atþ1 = reservoir surface areas at the beginning
of periods t and tþ 1, respectively; At depends on St and is
obtained by

At ¼ a0 × St þ a1 × S2t

t ¼ 1; 2; 3; : : : ; T ð5Þ
where a0 and a1 = coefficients obtained from the water surface–
volume curve.

The reservoir spill during the tth period is

SPt ¼
�
St þQt − Smax if St þQt > Smax

0 if St þQt < Smax

t ¼ 1; 2; 3; : : : ;T ð6Þ
where Smax = largest allowed reservoir storage.

Constraints on reservoir storage are expressed by

Smin < St < Smax

t ¼ 1; 2; 3; : : : ; T ð7Þ
where Smin = minimum allowable reservoir storage.

The constraint on reservoir releases is

Rmin < Rt < Rmax

t ¼ 1; 2; 3; : : : ; T ð8Þ
where Rmin and Rmax = smallest and largest releases allowed in the
reservoir, respectively.

Eqs. (2)–(8) govern all reservoir systems regardless of their
objectives.

Eq. (9) is a convex objective function for the reservoir system
with the purpose of managing the water supply. It minimizes the
sum of squared differences between reservoir releases and water
demands. This paper uses Eq. (9) to test the GRG and GA methods

Minimize FðxÞ ¼
Xt

i¼1

ðDet − RtÞ2

t ¼ 1; 2; 3; : : : ;T ð9Þ
where FðxÞ = objective function; and Det and Rt = water demand
and reservoir release, respectively, during the tth period.

A linear objective function for the water-supply reservoir prob-
lem is defined by

Minimize FðxÞ ¼
Xt

i¼1

jDet − Rtj

t ¼ 1; 2; 3; : : : ;T ð10Þ

Eq. (10) minimizes the sum of the absolute values of the differ-
ences between reservoir releases and water demands. If the reser-
voir storage does not satisfy its constraint [Eq. (7)], penalty
functions defined in Eqs. (11) and (12) are added to the objective
function to penalize the infeasible solution

P1;t ¼
�
0 if Stþ1 > Smin

K1ðSmin − Stþ1Þ2 Otherwise
ð11Þ

P2;t ¼
�
0 if Stþ1 < Smax

ðStþ1 − SmaxÞ2 Otherwise
ð12Þ

where P1;t and P2;t = penalty functions related to the violation of
minimum storage in period t.

Reservoir Operation System Model for Hydropower
Generation

Reservoirs with a hydropower supply function exhibit nonlinear
properties that render optimization a complex task. This type of
problem includes an equation for power generation in addition
to the mass balance or continuity equation given previously

Pt ¼
γ × η ×ΔHt ×Qpt

Pft
t ¼ 1; 2; 3; : : : ; T ð13Þ

where Pt = hydropower generation in tth period; γ = specific
weight of water (9.81 kN=m3); η = efficiency of the powerhouse;
ΔHt = difference between the average water elevation at the pen-
stock inlet and the average elevation of the powerhouse’s tailwater
during operating period t; Qpt = discharge through the turbine in
the tth period per m3=s; and Pf = plant factor of the powerhouse
during the tth period.

The released water is defined in units of volume and must be
changed to a discharge in units of volume per second in Eq. (13).
This conversion is

Qpt ¼
Rt

CFt

t ¼ 1; 2; 3; : : : ;T ð14Þ

© ASCE 04017061-3 J. Irrig. Drain. Eng.
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where Rt = volume of released water for hydropower generation in
the tth period; and CFt = unit conversion factor from million cubic
meters to cubic meter per second during the tth period

CFt ¼
24 × 3,600

1,000,000
× dayt

t ¼ 1; 2; 3; : : : ;T ð15Þ

where dayt = number of days during the tth operating period.
Eqs. (16)–(18) are used to calculate ΔHt

ΔHt ¼
Ht þHtþ1

2
− ELt

t ¼ 1; 2; 3; : : : ;T ð16Þ

Ht ¼ b0 þ b1 × St þ b2 × S2t þ b3 × S3t þ b4 × S4t

t ¼ 1; 2; 3; : : : ;T ð17Þ

ELt ¼ m0 þm1 ×Qpt þm2 ×Q2
pt

t ¼ 1; 2; 3; : : : ;T ð18Þ

where Ht and Htþ1 = water elevation at the penstock inlet at the
beginning of the tth and tþ 1th periods, respectively; Elt = average
elevation of the powerhouse’s tailwater during the tth operation
period; b0, b1, b2, b3, and b4 = constant coefficients for converting
reservoir storage to the corresponding elevation of the penstock
inlet; and m0, m1, m2, m3, and m4 = constant coefficients for con-
verting discharge of water released from the reservoir to the tail-
water elevation.

Eq. (19) is a constraint on hydropower generated in any oper-
ation period

0 < Pt < PPC

t ¼ 1; 2; 3; : : : ; T ð19Þ

where PPC = powerhouse plant capacity.
Eq. (20) is a convex objective function for the hydropower res-

ervoir optimization problem

Minimize FðxÞ ¼
Xt

i¼1

ðPt − PPCÞ2

t ¼ 1; 2; 3; : : : ;T ð20Þ

The penalty function for hydropower operation model is defined
by

P3;t ¼
�
0 if Pt < PPC

ðPt − PPCÞ2 Otherwise
ð21Þ

where P3;t = penalty function that is added to the objective function
to account for the violation of the hydropower constraint.

The objective functions of the two reservoir operation problems
do not enter the analysis of the solution space. They serve solely as
test cases for assessing the performance of the GRG and the GA
algorithms.

Methods and Materials

The assessment of convexity or nonconvexity of the solution space
involves simulating the decision space and the identification of the
solution space. The decision space of two types of reservoir

operation problems that are considered in this paper (reservoir op-
eration problem for water supply and reservoir operation or hydro-
power generation) were simulated with the Monte Carlo method
using MATLAB. Monte Carlo simulation was conducted by gener-
ating random values for 12 monthly reservoir releases based on
each month’s allowable range in a year in each iteration. The al-
lowable bounds of release were defined between zero and demand.
Each generated sequence of 12 releases (one for each of 12 months)
constituted one point in the decision space. The decision space was
simulated by executing a large number of Monte Carlo iterations.
The solution space (or feasible decision space) was determined by
selecting feasible sequences of releases from all of the generated
sequences of releases. A generated point of the decision space
(i.e., a sequence of 12 releases) was feasible if all of the reservoir
system constraints were satisfied for the 12 generated release values
[Eqs. (7) and (8) for the water-supply reservoir and Eq. (19) for the
hydropower reservoir]. Thereafter, the values of the operational
parameters of the two reservoir problems were modified and the
convexity (or lack of it) of their solution spaces was evaluated.
Lastly, the performance of the simplex, GRG, and GA optimization
methods in convex and nonconvex solution spaces was tested. In
summary, the methodology consisted of: (1) creation of solution
spaces for the two reservoir operation optimization problems with
Monte Carlo simulation; (2) analyzing the convexity or nonconvex-
ity of the generated solution spaces, (3) generalizing the analysis of
convexity by including the effect that the parameters of the reser-
voir operation problems had on the extent of the feasible solution
space, and (4) assessment of the three chosen comparison optimi-
zation methods in solving problems with convex and nonconvex
solution spaces.

Phase 1: Creation of Solution Spaces of Reservoir
Operation Optimization Problems

The steps for developing the solution spaces of the two reservoir
optimization problems are as follows:
1. Generate a sequence of random values (12 random numbers in

each Monte Carlo iteration) using standard uniform distribution
for the reservoir releases within an allowable range which is
defined between zero and monthly demand values.

2. Enter the sequence of generated random releases as an input to
the reservoir simulation process and claculate the storage values
for each month (for hydropower simulation, the generated
hydropower values are also calculated in each iterations).

3. Assess storage volumes (by verifying that the storage volumes
are within the allowable range) for all 12 months of the year to
ensure that the 12 generated releases are feasible, in which case
the set of releases is feasible; otherwise, it is an infeasible set of
releases (as for hydropower, the constraint of PPC is also
verified).

4. Save the 12 values of each sequence of generated releases if they
are all feasible; this sequence of releases is saved as a point of
the solution space.

5. Calculate the ratio of the number of generated feasible sets of
releases to the total number of generated sets of releases. This
ratio produces the percentage of generated sets of feasible re-
leases and measures the extent of feasible releases among all
of the generated releases.

6. Repeat Steps 1–5 until increasing the number of Monte Carlo
iterations does not appreciably lead to a change in the percen-
tage of calculated feasible sets of releases. In other words, this
procedure is repeated until the percentage of feasible sets of
releases converges to a steady number. The solution space is
identified after completing Phase 1.

© ASCE 04017061-4 J. Irrig. Drain. Eng.
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Phase 2: Analyzing Convexity or Nonconvexity of
Solution Space

The solution space is convex if all the points located between any
two points of the space lie within that space. The analysis of con-
vexity follows these steps:
1. Randomly choose two feasible sets of releases from Phase 1,

where each feasible sets comprises 12 monthly reservoir releases;
2. Interpolate, and generate a point (or set of solutions) on the line

(or hyperplane) that connects the two feasible sets of releases
[Eq. (1)];

3. Verify the feasibility of the interpolated value as explained in
Phase 1;

4. Determine the percentage of interpolated feasible sets of re-
leases among the total number of interpolated sets;

5. Repeat Steps 1–4 according to the number of Monte Carlo
iterations;

6. If the final percentage calculated in Step 4 equals 100, all the
interpolated sets of releases are feasible and the feasible solution
space is convex; otherwise it is nonconvex.

Phase 3: Generalizing Analysis of Convexity by
Including Effect of Parameters of Reservoir Operation
Problems on Extent of Feasible Solution Space

Multiple states of the water-supply and hydropower-generation
reservoir operation problems must be created to test the convexity
or their solution spaces. This is accomplished by assigning different
values to the problems’ operational parameters, in which each value
of the parameters defines a particular system state. The steps of
Phases 1 and 2 are executed for each value of the parameters to
cover all possible reservoir system states. This is a sensitivity analy-
sis coupled with Monte Carlo simulation that allows a comprehen-
sive assessment of the feasible solution spaces and their convexity
for all possible system states. The parameters of the reservoir prob-
lem are the volume of evaporation, water demand for water supply,

PPC for hydropower generation, dead storage, reservoir capacity,
and reservoir inflow.

Fig. 2 shows how the decision space is generated and the
solution space identified by selecting feasible values, where I =
number of infeasible solutions, F = number of feasible solutions,
n = iteration counter, and N = number of allowable iterations.

Fig. 3 illustrates the algorithm for assessing the convexity of a
solution space, where M = number of infeasible solutions, L =
number of feasible solutions, k = iteration counter, and K = number
of allowable iterations.

Phase 4: Assessment of Different Optimization
Methods and Comparison of Performance of GRG
Algorithm and GA with Convex and Nonconvex
Solution Spaces

The simplex method solves linear optimization problems, which in
this case requires assuming that (1) evaporation can be ignored,
because its value is small compared with releases, and (2) the vol-
ume of water in the reservoir does not exceed the reservoir capacity.
Therefore, Losst and SPt were excluded from Eq. (2) and the
water-supply reservoir operation problem was solved with a linear
objective function [Eq. (10)]. Eliminating the Losst and SPt
parameters is a simplification implemented to demonstrate the per-
formance of the simplex method with a type of linear problem. The
water-supply and hydropower-generation problems were solved
with the convex objective function under minimization [Eqs. (9)
and (20)] for 1 year (12 months) by means of the GRG and GA
and their results were compared. The GRG method requires the
specification of an initial starting guess of a solution, whereas
the GA is initiated with a starting population of possible solutions.
The GRG’s initially guessed solution was specified in two ways:
(1) generated randomly, and (2) set equal to zero for comparison
purposes. The initial population of the GA’s search was also speci-
fied in two ways, that is, randomly and by setting it equal to zero.

Fig. 2. Illustration of the generation of the decision space and the determination of the solution space

© ASCE 04017061-5 J. Irrig. Drain. Eng.
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Benchmark Sample Reservoir

Table 1 lists the characteristics of the example reservoir. This res-
ervoir is a hypothetical example of reservoir operation introduced
by Seifollahi-Aghmiuni et al. (2016). All data required for model-
ing the system, such as inflow, evaporation, monthly water demand,
and so on, are given by Seifollahi-Aghmini et al. (2016, Tables 2
and 5, Reservoir 3). The geometric characteristics of the reservoir
include its storage volume [S (1 × 106 m3)], lake area [A (square
kilometers)], and water elevation [H (meters)]. The reservoir sur-
face area and elevation are given by

At ¼ 3.869 × 10−2 × St þ 2.284 × 10−6 × S2t

t ¼ 1; 2; 3; : : : ; T ð22Þ

Ht ¼ 7.214 × 10−2 × St − 10.734 × 10−6 × S2t þ 30

t ¼ 1; 2; 3; : : : ; T ð23Þ
The powerhouse discharge–elevation (QPt − El) equation [ELt

(meters)] and Qpt (cubic meters per second) is

Fig. 3. Flowchart of the convexity assessment algorithm

Table 1. Reservoir Characteristics

Parameter Value

Reservoir level above sea level (m) 800
Maximum water storage (1 × 106 m3) 3,000
Minimum water storage (1 × 106 m3) 400
The active storage (1 × 106 m3) 2,600
The height of dam (m) 150
Total capacity of the powerhouse (1 × 106 W) 650
The efficiency of the powerhouse (%) 96
Plant factor (%) 35
Elevation of the turbine above mean sea level (m) 790
Elevation of the tailwater above sea level (m) 785

Table 2. Value of the Objective Function for 10 Different Runs Calculated
with GA and GRG for the Water-Supply Reservoir [Objection Function
Given by Eq. (10)]

Run number

Random initial
population as the

starting search point

Zero initial
population as the

starting search point

GA GRG GA GRG

1 3.18 × 106 3.15 × 106 3.23 × 106 3.15 × 106

2 3.20 × 106 3.15 × 106 3.17 × 106 —
3 3.17 × 106 3.15 × 106 3.18 × 106 —
4 3.17 × 106 3.15 × 106 3.16 × 106 —
5 3.17 × 106 3.15 × 106 3.17 × 106 —
6 3.19 × 106 3.15 × 106 3.23 × 106 —
7 3.17 × 106 3.15 × 106 3.16 × 106 —
8 3.19 × 106 3.15 × 106 3.19 × 106 —
9 3.18 × 106 3.15 × 106 3.16 × 106 —
10 3.25 × 106 3.15 × 106 3.20 × 106 —
Minimum 3.17 × 106 3.15 × 106 3.16 × 106 —
Average 3.19 × 106 3.15 × 106 3.19 × 106 —
Maximum 3.25 × 106 3.15 × 106 3.23 × 106 —
Standard deviation 2.5 × 104 1.22 × 101 2.81 × 104 —
Coefficient of
variation

7.84 × 10−3 3.89 × 10−6 8.81 × 10−3 —
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ELt ¼ 0.2 × 10−2 ×Qp − 2.2 × 10−7 ×Q2
pt

t ¼ 1; 2; 3; : : : ;T ð24Þ

Results and Discussion

It was assumed that the initial reservoir storage volume was half its
active storage. The number of Monte Carlo iterations was 10,000
and 100,000 for creating the solution spaces of the water-supply
and hydropower generation problems, respectively. A sequence
of 12 monthly reservoir releases was generated in each iteration.
The number of iterations was determined from the convergence
of the percentage of feasible solutions to a steady value. Fig. 4
depicts the calculated convergence curves.

Extent of Solution Spaces

The constraint considered in analyzing the extent of the solution
space of the water-supply problem was that the storage volume
may not be less than the dead storage volume. If this constraint is
satisfied, the set of releases is feasible. It was found that 38.67% of
the generated sets of releases were feasible.

The reservoir operation problem for hydropower generation im-
posed the same constraint on reservoir storage applied in the water-
supply problem, and the generated power was constrained to the
range from zero to the PPC. After checking these two constraints
it was found that only 0.2% of the generated sets of releases were
feasible, which implies a much more limited solution space than
that of the reservoir operation problem for water supply.

Convexity of Solution Space

A solution space was created. New solutions were generated by
interpolating between a large number of randomly selected pairs
of points in the solution space. All the interpolating solutions using
feasible solutions for the water-supply problem were feasible
(located in the feasible solution space). Therefore this problem
has a convex solution space. Regarding hydropower, it was found
for the reservoir operation problem that many interpolated solutions
were outside the feasible solution space, thus rendering its solution
space nonconvex. The validity of these results was tested in a more
general context by changing several reservoir parameters. The re-
sulting problems were tested for convexity for each range of the
values assigned to the parameters. The parameters were reservoir

evaporation; water demand for the water-supply problem; PPC for
the hydropower-generation problem; and dead storage, reservoir
capacity, and inflow for both problems.

The results indicate that the feasible solution space of the water-
supply problem is convex, whereas the solution space for the
hydropower reservoir is nonconvex. Because the water-supply
problem is convex, most optimization methods can solve this
problem and find its global optimum efficiently. The hydropower
generation-method, on the other hand, can be solved most effec-
tively with evolutionary algorithms such as the GA. The GRG
method converges to local optima frequently when solving noncon-
vex problems unless the starting initial guess of a solution is near
the global optimum.

Assessing Effects of Operational Parameters on
Extent of Solution Space

Each operational parameter value was varied and the change in the
percentage of feasible solutions corresponding to each parameter
value was assessed. Figs. 5 and 6 depict the results. The numbers
on the horizontal axes in these figures are the values of the coef-
ficients by which the values of the reservoir parameters are multi-
plied to vary the parameters. The next two sections explain the
results.

Water-Supply Problem

The operational parameters in this problem were the volumes of
evaporation, water demand, dead storage, reservoir capacity, and
reservoir inflow. Fig. 5 shows the changes in the percentage of
sets of feasible releases corresponding to changes in reservoir
parameters.

The percentage of sets of feasible releases decreased only by 2%
when the evaporation volumes were increased from a factor of
0.5 to a factor of 2, which is a relatively small change (Fig. 5). By
increasing the values of water demand (Fig. 5) the solution space
decreased sharply and that curve exhibited a downward trend.
When values of water demand were decreased by a factor of 0.5,
all the sets of releases were feasible, and when the water-demand
values increased by a factor of 1.5, approximately 3% of the sets of
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releases were feasible. The percentage of the sets of feasible re-
leases was nearly zero when their values increased by a factor
of 2.

The graph of the dead storage (Fig. 5) shows that the solution
space decreased by increasing the value of the dead storage. The
percentage of sets of feasible releases calculated by changing the
dead storage from a factor of 0.5 times to a factor of 2 decreased
from 43 to 28%. When reservoir capacity was multiplied by factors
of 0.5, 0.75, 1, 1.5, and 2, the percentage of set of feasible releases
was 7.39, 23.17, 38.68, 64.54, and 84.75%, respectively (Fig. 5).
The extent of the solution space increased dramatically by increas-
ing the reservoir inflow values (Fig. 5). Under the initial values of
inflow, 38% of the sets of releases were feasible; however, the per-
centage reached 86% when reservoir inflow increased by a factor
of 1.5, and it became 98% when the reservoir inflow increased
twofold.

The values of demand, capacity, and inflow significantly af-
fected the span of solution space in the water supply reservoir.

Hydropower Reservoir

The impacts of changing evaporation, dead storage, reservoir
capacity, river inflow, and PPC on the extent of the solution space
were quantified. The hydropower-generation problem considered a
constraint on reservoir storage and a constraint on the hydropower
production ranging from zero to the PPC. The generated sets of
releases were feasible if they satisfied both constraints. Figs. 6
and 7 graph the changes in the feasible solution space by consid-
ering both constraints together and each one separately.

The percentage of sets of feasible releases did not change sig-
nificantly when the evaporation volume changed [Fig. 6(a)].
Changes in the percentage of sets of feasible releases by variation
of reservoir inflows did not exhibit consistent trends in how they
affected the percentage of sets of feasible releases [Fig. 6(b)]. This
was due to the presence of two constraints in the reservoir operation
problem for hydropower production that affect the feasibility of re-
leases in a complex manner.

An increase in the volume of the dead storage led to a decrease
in the number of sets of feasible releases. When dead storage de-
creased by 50% the percentage of feasible releases sets was 0.25%,
whereas if dead storage increased to twice its value, this percentage
decreased to 0.08% [Fig. 7(a)]. Increases in reservoir capacity led
to decreases in the percentage of sets of feasible releases [Fig. 7(b)].
When reservoir capacity was multiplied by coefficient values be-
tween 0.5 and 2 the percentage of sets of feasible releases decreased
from 3.3 to 0.08% [Fig. 7(b)]. Because the percentage of sets

of feasible releases was very low (0.2%) in the hydropower-
generation problem, a change from 3.3 to 0.08% is significant.
In the reservoir problem for hydropower production, the PPC plays
an important role in the extent of its solution space [Fig. 7(c)]. By
increasing the PPC values, the allowable range of hydropower gen-
eration widened and the number of the sets of feasible releases
increased.

Evaluating Performance of Solution Methods

Optimization methods were implemented in Microsoft Excel
Solver with an Intel (Chandler, Arizona) core i5 processor with
32GB RAM. The simplex method obtained the global optimum
of the linear water-supply problem [objective function Eq. (10)]
in less than 1 s. This shows the efficient performance of linear op-
timization methods for solving linear problems, for which they are
the obvious solution method.

It was established previously that the solution spaces of water-
supply and hydropower-generation problems were convex and
nonconvex, respectively. The GRG and GA, being popular
gradient-based and evolutionary optimization methods, respec-
tively, were implemented to solve the two reservoir problems.
The reservoir operation optimization problems of water supply
[with convex quadratic function Eq. (9)] and hydropower genera-
tion were solved. The objective functions of both problems involve
convex functions under minimization, and only the convexity of
the solution space influences the convexity of each problem.
The initial solutions of the GRG and GA were generated in two
ways: (1) random generation, and (2) by setting them equal to zero.
The zero initial solution was chosen to conduct a comparison of the
two methods under the same initial condition.

Tables 2 and 3 list the values of the objective functions in 10
different runs calculated with GA and GRG for the water-supply
reservoir and the hydropower reservoir, respectively.

The number of GA populations was 1,000 and this algorithm
was stopped by the specified convergence criteria [i.e., there is
no significant difference (less than 0.000001) between the average
values of the last 30 iterations]. The average computational time
invested by the GA to find the solution of the water-supply problem
was 40 s, and the average, maximum, and minimum values of
objective function in 10 runs with a random initial population of
solutions were 3.19 × 106, 3.25 × 106, 3.17 × 106, respectively
(Table 2). The difference between the solutions found in the 10 runs
was negligible given the scale of objective function values, thus
providing strong evidence that the GA found a near-optimal value.
The average computing time of the GRG was 1.5 s, and it
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Fig. 6. Illustration of changes in the percentage of feasible sets of releases by variation of the coefficients that multiply: (a) evaporation, for which the
PPC constraint, storage constraint, and both constraints are satisfied separately; (b) inflow, for which the PPC constraint, storage constraint, and both
constraints are satisfied separately, for the hydropower-generation reservoir problem
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converged to a value equal to 3.15 × 106 in all 10 runs starting the
search at different initial points. This indicates that the GRG
method is much faster and more accurate than the GA in solving
the problem with a convex solution space. The GA and GRG per-
formances when the initial solution guess equaled zero were very
similar to those observed when the initial solutions were randomly
generated.

The average, maximum, and minimum values of the objective
function for the hydropower-generating problem associated with

10 runs that had random initial populations and zero initial popu-
lations equaled 2.81 × 101, 3.70 × 101, and 1.16 × 101 and
2.78 × 101, 4.93 × 101, and 1.08 × 101, respectively (Table 3).
These values indicate variability among the solutions. This shows
that convergence to a near-optimal solution is more difficult when
solving nonconvex optimization problems. The GRG method
found very different solutions to this problem in each run. The aver-
age, minimum, and maximum values of the objective function
10 runs of the GRG with a random initial solution and with a zero
initial population were 1.18 × 102, 7.69 × 102, 1.23 × 101, and
3.57 × 102, respectively (Table 3), which differ substantially from
each other. This indicates that the GRG failed to obtain an optimal
value for the nonconvex solution space because of trapping at local
optima. The computational times invested by the GRG and the GA
in solving the hydropower-generation problem were 1.5 and 65 s,
respectively. The GA found a near-optimal value, whereas the GRG
converged to widely different local optima.

The results indicate superior performance of the simplex method
for solving the linear optimization problem, efficient GRG for
the nonlinear convex problem, and a superior GA for the nonlinear
nonconvex optimization problems.

Conclusions

This study proposed a framework for assessing convexity and non-
convexity of optimization problem solution space. The proposed
framework was applied to two types of reservoir operation optimi-
zation problems. Results indicated that the solution spaces of the
water-supply reservoir operation and hydropower generation reser-
voir operation problems are convex and nonconvex, respectively.

It was determined that changing the values of water demand,
river inflow, dead storage, and reservoir capacity significantly im-
pacted the extent of the solution space of the water-supply problem.
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Fig. 7. Illustration of changes in the percentage of feasible sets of releases by variation of the coefficients that multiply: (a) dead storage, for which the
PPC constraint, storage constraint, and both constraints are satisfied separately; (b) capacity, for which the PPC constraint, storage constraint, and both
constraints are satisfied separately; (c) PPC for which the PPC constraint, storage constraint, and both constraints are satisfied separately, for the
hydropower-generation reservoir problem

Table 3. Value of the Objective Function for 10 Different Runs Calculated
with GA and GRG for the Hydropower Reservoir [Objective Function
Given by Eqs. (20) and (21)]

Run number

Random initial
population as the
starting search

point

Zero initial
population as the
starting search

point

GA GRG GA GRG

1 29.7 12.3 10.8 357
2 33.1 12.7 31.6 —
3 25.6 14.0 29.7 —
4 25.1 18.2 18.9 —
5 36.9 11.3 25.4 —
6 11.6 31.4 49.3 —
7 26.2 61.6 29.4 —
8 32.8 97.9 19.6 —
9 37.0 769 45.7 —
10 23.3 45.5 18.1 —
Minimum 11.6 12.3 10.8 —
Average 28.1 118 27.8 —
Maximum 37.0 769 49.3 —
Standard deviation 7.59 232 12.2 —
Coefficient of variation 0.27 1.97 0.438 —
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However, the effect of changing evaporation was negligible. The
impact of changing the reservoir inflow on the extent of the solution
space of the hydropower generation problem exhibited an irregular
pattern. The impacts of changes in dead storage and reservoir
capacity on the extent of the solution space followed a pattern sim-
ilar to that of the water-supply problem. The effect of changing the
evaporation on the solution space of the hydropower-generation
problem was minor.

The GA was successful in finding near-optimum solutions for
the convex water-supply problem. Moreover, the GA performed
well in solving the nonconvex hydropower-generation problem.
The GRG, a gradient-based optimization method, found the global
optimum of the convex water-supply problem in significantly
shorter time than did the GA. The GRG converged to local optima
in the nonconvex hydropower-generation problem.

This study’s results suggest that the GRG should be a preferred
method for solving nonlinear convex optimization problems. The
GA, however, is a better choice for solving nonlinear nonconvex
optimization problems.
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