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Abstract. We present band structure calculations and quantum oscillation
measurements on LuRh2Si2, which is an ideal reference to the intensively
studied quantum critical heavy-fermion system YbRh2Si2. Our band structure
calculations show a strong sensitivity of the Fermi surface on the position of
the silicon atoms zSi within the unit cell. Single crystal structure refinement
and comparison of predicted and observed quantum oscillation frequencies and
masses yield zSi = 0.379 c in good agreement with numerical lattice relaxation.

This value of zSi is suggested for future band structure calculations on
LuRh2Si2 and YbRh2Si2. LuRh2Si2 with a full f electron shell represents
the ‘small’ Fermi surface configuration of YbRh2Si2. Our experimentally and
ab intio derived quantum oscillation frequencies of LuRh2Si2 differ significantly
from the results of earlier measurements on YbRh2Si2. Consequently, our results
confirm the contribution of the f electrons to the Fermi surface of YbRh2Si2 at
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high magnetic fields. Yet, the limited agreement with refined fully itinerant
local density approximation calculations highlights the need for more elaborate
models to describe the Fermi surface of YbRh2Si2.
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1. Introduction

LuRh2Si2 is an intermetallic compound crystallizing in the tetragonal ThCr2Si2 structure shared
by a variety of compounds including some of the recently discovered pnictide superconductors
like BaFe2As2 [1] and heavy fermion materials like CeCu2Si2 [2]. In particular, it is
isostructural to the heavy fermion material YbRh2Si2 with almost identical lattice parameters
(cf table 1). Moreover, LuRh2Si2 has the same electronic configuration as YbRh2Si2 except
that LuRh2Si2 has a completely filled 4f electron shell whereas in YbRh2Si2 the trivalent
configuration of Yb has one electron missing in the 4f shell. This missing electron can be
regarded as a 4f hole. In analogy to the Ce based heavy fermion systems with one electron in the
4f shell, the hole in the 4f shell of YbRh2Si2 is the basis for the rich physics of this system. The
scattering of conduction electrons from the 4f hole—known as the Kondo effect—gives rise to
new states near the Fermi energy which can be regarded as composite quasiparticles formed of
the f hole and the conduction electrons. These quasiparticles carry the same quantum numbers
as non-interacting electrons, however, they posses highly renormalized properties like a hugely
enhanced mass. This can for instance be seen in the three orders of magnitude difference in the
Sommerfeld coefficient exceeding 1 J mol−1 K−1 for YbRh2Si2 in the field induced Fermi liquid
state compared to few mJ mol−1 K−1 for LuRh2Si2 [3, 4]. At temperatures below TN = 70 mK,
YbRh2Si2 undergoes a transition into an antiferromagnetically ordered state which can be
fully suppressed with a small critical field of 60 mT (for fields in the basal plane) [5]. At
zero temperature the transition from this magnetically ordered state to the paramagnetic state
represents a quantum critical point (QCP). YbRh2Si2 has emerged as a prototypical system for
a new class of QCPs which need descriptions beyond the order parameter notion [6]. Hall effect
measurements show a crossover in the Hall coefficient which sharpens to a jump at the QCP
in the extrapolation to zero temperature [7, 8]. This points towards a sudden reconstruction

New Journal of Physics 15 (2013) 093014 (http://www.njp.org/)

http://www.njp.org/


3

Table 1. Lattice parameters of LuRh2Si2 were obtained at room temperature from
x-ray diffraction measurements of powdered single crystals [10]. The Wyckoff
positions zSi were deduced from single crystalline structure refinement [11]. For
YbRh2Si2 the height of the unit cell, c, has been reported to depend on the exact
Rh content [12] whereas no change in the zSi parameter was resolved [11, 13].
So far no indications for variations in the Rh content or c have been reported for
LuRh2Si2.

Compound a, b (Å) c (Å) zSi (c)

LuRh2Si2 4.006(1) 9.838(3) 0.379(2)

YbRh2Si2 4.007(1) 9.858 − 9.862 0.379(2)

of the Fermi surface which is not expected at a QCP where the magnetic order parameter
evolves continuously. Rather, these results suggest the breakdown of the Kondo effect and the
disintegration of the composite quasiparticles. Within this scenario, the Fermi surface evolves
from ‘large’, including the f electron states in the paramagnetic phase, to ‘small’ in the magnetic
phase formed of the non-f states only. The latter configuration is paralleled by LuRh2Si2 as
here the completely filled f states lie well below the Fermi energy and do not contribute to the
Fermi surface. In fact, when tuning across the QCP towards the suggested ‘small’ Fermi surface
configuration, i.e. from large fields to low fields, the Hall coefficient crossover in YbRh2Si2 has
a trend towards the Hall coefficient of LuRh2Si2 with its value increasing in the direction of
the even larger value observed in LuRh2Si2 [4]. Interestingly, chemical pressure appears to lead
to a detaching of the Fermi surface reconstruction from the antiferromagnetic QCP [9]. This
underpins the importance to understand the electronic structure of this prototypical quantum
critical material.

Moreover, at a magnetic field µ0 H0 ≈ 10 T a second transition is observed in transport,
thermodynamic and quantum oscillation measurements on YbRh2Si2 [14, 15]. With the
Kondo temperature and H0 representing similar energy scales and exhibiting scalable pressure
dependences, one might associate H0 with the polarization of the Kondo singlet states and
a suppression of the Kondo effect, yielding again a ‘small’ Fermi surface above H0 [16].
However, the continuous evolution of the quantum oscillation frequencies at H0 rather indicates
a complete depopulation of one Fermi surface branch. This field dependence is a strong
indicator for the ‘large’ Fermi surface character as this is not expected for a system with
localized f electrons. In fact, renormalized band structure calculations suggest nonlinear
dependences of the Fermi surface cross sections in magnetic field [17] which lead to changing
frequencies in quantum oscillation measurements. However, the comparison of measured
angular dependences in YbRh2Si2 with local density approximation (LDA) calculations of both
LuRh2Si2 and YbRh2Si2 representing the ‘small’ and ‘large’ Fermi surface, respectively, were
inconclusive [15, 18]. While LDA is known to fall short of modelling Yb-based heavy fermion
systems [19], LDA has proved reliable for normal metals such as LuRh2Si2. The discrepancies
between the frequencies observed in YbRh2Si2 and those expected from the calculated ‘small’
Fermi surface argue for a large Fermi surface scenario in YbRh2Si2 at high magnetic fields.
Moreover, the lack of agreement between the measured frequencies and those expected from
LDA calculations within a ‘large’ Fermi surface scenario may be attributed to the known
shortcomings of LDA calculations in Yb-based heavy fermion materials. All these earlier
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calculations [15, 18, 20] were based on generic lattice parameters different from the refined
values obtained in the present study.

For many systems of the ThCr2Si2 structure there is a strong sensitivity of the electronic
structure to the precise crystal structure. In particular, the Wyckoff parameter specifying the
position zSi of the Si atoms has a large influence on the band structure as demonstrated for
CeRu2Si2 and LaRu2Si2 [21]. For LaRu2Si2 a lattice relaxation yielded a value zSi far from the
experimental value and, moreover, led to a Fermi surface topology in much better agreement
with quantum oscillation measurements. In the iron pnictides, the Fe–As–Fe angle which is
an equivalent measure of the same Wyckoff parameter zSi is crucial for the nesting of the
Fermi surface sheets and for the optimum superconducting transition temperature [1, 22]. These
findings for other members of the ThCr2Si2 structure family underpin the need to precisely
determine the Si position for LuRh2Si2 and YbRh2Si2 and its significance for their electronic
structure. Previous electronic band structure calculations on LuRh2Si2 and YbRh2Si2 used either
a generic value zSi = 0.375 c, reflecting highest local symmetry, while other band structure
studies did not reveal the value used [4, 15, 18, 20, 23, 24]. For LuRh2Si2, also, a strong
dependence of the Fermi surface topology with respect to zSi has been found in a comprehensive
band structure calculation [25]. This confirms the need to use the precisely determined zSi rather
than the generic value for the structure type [26].

Here, we present a detailed study of the electronic structure of LuRh2Si2 using
Shubnikov–de Haas measurements which we compare with band structure calculations. Best
agreement between predicted and observed quantum oscillation frequencies is obtained at the
precisely determined experimental value zSi = 0.379 c. Future electronic structure calculations
should use the experimental Wyckoff parameter zSi and precisely determined lattice parameters.
Our electronic structure investigations on LuRh2Si2 provide a more accurate reference for the
‘small’ Fermi surface configuration. In fact, significant modifications arise from the corrected
silicon position zSi. Nevertheless, we find even stronger differences between the experimental
results on YbRh2Si2 and our refined ‘small’ Fermi surface calculations.

In addition, we find indications that some of the quantum oscillations in YbRh2Si2 with
frequencies between 4 and 7 kT arise from harmonics. If this proves to be right, band structure
calculations may be compared to the remaining frequencies below 4 kT and above 7 kT, only.
We suggest further experiments to investigate this hypothesis.

Finally, our combined band structure and Shubnikov–de Haas study identifies two
bands and thus supports the application of the two-band model to describe the Hall effect
in LuRh2Si2 and YbRh2Si2 [4]. The comprehensive knowledge on the band structure of
LuRh2Si2 obtained here is the basis for a full understanding of the complex transport properties
of LuRh2Si2.

2. Band structure calculations

2.1. Computational details

Very accurate powder x-ray diffraction measurements and single crystal structure refinement
were performed on a piece of the same single crystal used for the Shubnikov–de Haas-
measurements. The obtained crystallographic parameters of the tetragonal unit cell with space
group I 4/mmm (# 139) as given in table 1 with the relative atomic positions Lu (0,0,0), Rh
(0,1/2,1/4) and Si (0,0,zSi) were used for the band structure calculations. We show below a
very good agreement between quantum oscillation frequencies observed at low temperature and

New Journal of Physics 15 (2013) 093014 (http://www.njp.org/)

http://www.njp.org/


5

those calculated on the basis of the crystallographic parameters measured at room temperature.
This suggests that the crystallographic parameters are the same at low temperature. The band
structure and the Fermi surface topology are found to be very sensitive to details of the crystal
structure, particularly the position of the Si atoms zSi [25]. For this reason, we calculate the
variation with zSi of the total energy.

We use the WIEN2k density functional theory code to perform band structure
calculations [27]. Band energies were calculated on a 800 000 k-point mesh in the first Brillouin
zone using the Perdew–Burke–Ernzerhof generalized gradient approximation to the exchange-
correlation potential [28], RKmax = 7, and an energy range −6 to 5 Ry. This corresponds
to a valence band treatment of 4f, 5s, 5p, 5d and 6s electrons for Lu, 4p, 4d and 5s for
Rh, and 3s and 3p for Si. WIEN2k is based on a full potential augmented plane wave
and local orbits approach [27]. Relativistic effects and spin–orbit coupling are included on
a one-electron level with relativistic local orbits used for Lu and Rh whereas Si is well
approximated by non-relativistic local orbitals due to its light mass. The density of states
(DOS) was calculated utilizing the tetrahedron method. Fermi surfaces are visualized with
the XCrySDen program [29]. Extremal orbits and effective masses were calculated using the
SKEAF algorithm [30] at an interpolation of 350 in the full Brillouin zone which corresponds
to an interpolation factor of ≈5 with respect to the k-mesh of the band structure calculations.
This allows to accurately detect frequencies down to 0.017 kT. The usage of a super cell yields
reliable results for orbits extending beyond the first Brillouin zone which is particularly relevant
for the comparison with high frequency oscillations in LuRh2Si2 and YbRh2Si2.

2.2. Electronic structure and Fermi surface

We start by optimizing the crystal structure with respect to the Si position zSi by minimizing the
total energy obtained from our band structure calculations whilst keeping the lattice parameters
a and c fixed at their precisely determined experimental values (cf table 1). As can be
seen from figure 1 the total energy is minimal for zSi = 0.381 c. This value agrees with that
obtained from crystal structure refinement zSi = 0.379(2) c within experimental accuracy [11].
Moreover, the energy difference between the experimental and relaxed Si position amounts
to ≈10 meV (≈100 K) only. Indeed as we shall see from the comparison of calculated orbits
with experimentally observed quantum oscillation frequencies, we find best agreement for the
experimental zSi (cf [25]). In the following we present results obtained for the experimentally
determined value zSi = 0.379 c, if not stated otherwise.

We now turn to the DOS as displayed in figure 2. Most prominently, the large DOS peaks
well below the Fermi energy at −6 and −4 eV arise from the Lu 4f states, in good agreement
with expected behaviour for a completely filled f shell with small radial extension. The Rh
d states originating from the large overlap of Rh orbitals within the Rh–Si layers (cf crystal
structure in inset of figure 1) are distributed over a large energy range and dominate the DOS
at the Fermi energy. A minor contribution arises from the Si states as part of the Rh–Si layers.
Yet, the admixture of the Si states within this layer causes the sensitivity to the Si position, as
will be discussed below [25]. The Si s states lie far below the Fermi energy at about −10 eV.
The total DOS at the Fermi energy amounts to 2.4 states per eV and unit cell which is slightly
higher than reported previously (based on a different zSi) [4], corresponding to a Sommerfeld
coefficient γ ≈ 5.7 mJ K−2 mol−1 in good agreement with the value of γ ≈ 6.5 mJ K−2 mol−1

found experimentally [4].
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Figure 1. Total energy of LuRh2Si2 in our bandstructure calculations as a
function of zSi. A constant offset of E0 = −673 keV has been subtracted. The
inset depicts the crystal structure.
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Figure 2. DOS plotted against energy with the Fermi energy EF as reference.
Colours represent the band character; at the Fermi energy Rh 4d states dominate.

The electronic band structure is shown in figure 3. In general, we find good agreement with
previously reported band structure calculations on LuRh2Si2 and on the ‘small’ Fermi surface
(f-core) configuration of YbRh2Si2. Small differences in the vicinity of the Fermi energy of our
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Figure 3. Band structure of LuRh2Si2 for zSi = 0.379 c along symmetry lines
with the Fermi energy EF = 0 as the reference energy. The conventional notation
is adopted with Z(0,0,1), 0(0,0,0), X (1,1,0), P(1,1,1) and N (1,0,1/2) in units of
(π/2a, π/2a, π/2c). The labels s, f and u refer to (ã,0,0), (b̃,0,1) and (b̃, b̃, 1),
respectively, with ã = 1 + (a/2c)2 and b̃ = 1 − (a/2c)2. Bands close to the Fermi
energy are represented in colour.

band structure calculations with respect to previous studies are due to the strong sensitivity to
the Si position [4, 15, 23, 24]. For YbRh2Si2 a variation of the crystallographic c-axis has been
identified to originate from minute variations in the Rh content. For LuRh2Si2 no variations in
the Rh content or c are reported so far. Moreover, similar changes in the c parameter as for
YbRh2Si2 do not yield significant changes in the band structure of LuRh2Si2.

As discussed above, most of the bands have dominantly Rh 4d character. Around the Z
point the Si 3pz states admix strongly, and this causes the sensitivity of the band structure to
zSi [25]. Changes in the Si position change the penetration of the Si pz orbitals into the Rh dx2−y2

orbitals within the Rh layers. This causes a shift of the bands at the Fermi energy around the
Z point as detailed in [25]. As a consequence, the character of the band intersecting the Fermi
energy changes from Rh dx2−y2 like at low zSi to Si pz like at zSi > 0.379 c. The mass of the
bands associated with the Rh dx2−y2 and the Si pz states differ significantly, as can be seen from
the stronger curvature of the upper band. This will serve as an important point in comparison
with experimental data below.

Three bands are close to the Fermi energy (cf coloured bands in figure 3). For zSi = 0.379 c,
however, only the two at lower energy (green and red) cross the Fermi energy. These two
bands give rise to the Fermi surface sheets shown in figure 4, nicely resembling previous
calculations [4, 15, 23, 31]. They consist of two Z -centred surfaces, a closed doughnut shaped
D sheet and a J sheet (previously dubbed ‘jungle gym’), with the latter one extending across the
Brillouin zone boundary, connected via tubes along the a? direction.

The main differences to previous band structure calculations arise due to the corrected Si
position of our band structure calculations [25]: We do not obtain a third pillbox shaped P sheet.
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Figure 4. Calculated Fermi surfaces: a doughnut shaped D sheet and a
interconnected ‘jungle gym’ J sheet were obtained using the experimental value
for the Si position zSi = 0.379 c. Green and red lines represent selected extremal
orbits.

This can be seen from the band structure plot in which the band associated with the pillbox
(blue in figure 3) remains slightly above the Fermi energy at the 0 point. This P band is only
populated for zSi 6 0.378 c. At zSi = 0.379 c, we find a very thin central pillar in the J sheet
(encircled by orbit J7 figure 4) which arises from a hybridization with the states forming the
P band. The fact that the pillar is present but the P sheet is absent is due to a small gradient in
the dispersion relation from the 0 point to the Z point as detailed in [25]. In fact, the pillar is
disconnected from the main sheet due to this gradient, as can be seen in figure 4 (orbit J7).

The hole in the D sheet persists even for large variations of the Si position zSi as shown
in [25]. This hole is associated with the band crossing the Fermi energy around the Z point.
It is minimal in size for zSi = 0.379 c and widens for both decreasing and increasing zSi. The
character of the hole in the D sheet, however, changes from Rh dx2−y2 at zSi . 0.378 c to Si pz

for zSi & 0.379 c. This is accompanied by a change in the mass of this orbit as mentioned above.
The steep curvature of the Si pz-like band corresponds to a lower mass than the flat Rh dx2−y2

band. We shall use these sensitivities of the Fermi surface topology and the masses of extremal
orbits for a detailed comparison with the observed quantum oscillations below.

3. Shubnikov–de Haas measurements

3.1. Experimental details

Single crystal samples of LuRh2Si2 were grown in indium flux as described earlier [32].
Shubnikov–de Haas oscillations on a bar shaped sample were measured using a standard four
probe resistivity measurement. Contacts were provided by 25 µm gold wires spot welded to
the sample of dimensions of approximately 20 × 100 × 2000 µm3. The current was applied
within the basal plane at an angle of ≈10◦ from the (100) axis. Measurements were performed
in a 3He/4He-dilution refrigerator in magnetic fields B up to 16 T. The oscillatory part
was deduced by subtracting a polynomial fit from the raw data. The order of polynomial
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background was chosen such that its subtraction does not interfere with the lowest frequencies.
Oscillation frequencies were determined after Fourier transformation. In order to deduce the
angular dependence of the oscillation frequencies the magnetic field was rotated within the
crystallographic basal plane and from the (100) direction towards the (001) direction.

Quantum oscillation frequencies are related to the extremal cross-sectional area A of the
Fermi surface via the Onsager relation F = h̄ A/2πe. For simple non-magnetic metals the
damping of quantum oscillations is captured by the Lifshitz–Kosevich formula with the damping
factors due to impurity scattering [33]

RD = exp

(
−

BD

B

)
with BD =

√
eh̄3 F

2π

κp

kBl0
(1)

and thermal broadening of the Fermi–Dirac distribution

RT =
X

sinh X
with X = κp

T

B

m?

me
. (2)

Here, κ = 2π2kBme/eh̄ ≈ 14.7 T K−1 while p denotes the index of the harmonic, i.e. p = 1
for fundamental frequencies. The effect of these two damping factors can be seen in the field
and temperature dependence, respectively, of the amplitude of a single frequency. By fitting
equations (1) and (2) we extract the mean free path l0 and the effective mass m? of the charge
carriers. The large temperature and field range covered in our experiments yield high accuracy
determinations of these parameters for the most prominent oscillation frequencies.

3.2. Experimental results

Figure 5 shows a representative trace of the oscillatory part of the resistivity taken at 100 mK
for fields between 6 and 16 T with the field applied along the (110) direction. From the Fourier
transformed power spectrum, numerous oscillation frequencies are resolved with signal to noise
ratios exceeding 100. Note that data in the Fourier spectrum above 13 kT are multiplied by a
factor of 10 in order to make the high-frequency peaks more visible. In total, 19 frequencies
are detected for this field orientation, some of which are identified as harmonics and some
arise from mixing of fundamental frequencies as discussed below. The nomenclature of the
frequencies reflects the assignment to orbits on the different Fermi surface sheets, which we
deduce from the comparison with band structure calculations below.

The angular dependence of the oscillation frequencies is shown in figure 6 for fields rotated
from the (001) direction towards the (100) direction (left panel) and further within the basal
plane (right panel). The symmetry observed around 45◦ in the right panel nicely reflects the
crystallographic symmetry around the (110) direction. We observe frequencies from 0.06 to
42.7 kT (for fields along (001)). Generally, more frequencies are observed for fields within the
basal plane.

By comparison with our band structure calculation we identify the fundamental frequencies
and assign them to extremal orbits of the Fermi surfaces as shown in figure 4. The angular
dependence of the predicted frequencies deduced from calculations utilizing zSi = 0.379 c are
included in figure 6 as solid lines.

For the rotation of the magnetic field from the (001) to the (100) direction the assignment is
unambiguous. First, an orbit D1 associated with the hole in the D sheet is predicted which nicely
matches the angular dependence of an observed branch. In particular, the angular range over
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Figure 5. Shubnikov–de Haas oscillations in LuRh2Si2 [34]. (a) Oscillatory part
of the resistivity between 6 and 16 T for field along the (110) direction measured
at 100 mK. (b) Fourier transform power spectrum showing quantum oscillation
frequencies. Data above 13 kT are magnified by a factor of 10 for better visibility
of the high frequency peaks.

which D1 is observed agrees with the predicted angular dependence. The difference between
the observed and predicted frequency is very small—note the amplified low frequency scale
in the lower part of figure 6. The experimentally determined mass of this orbit agrees very
well with the predicted mass as can be seen from tables 2 and 3. In fact, the mass of this orbit
strongly supports the usage of zSi = 0.379 c, where our band structure calculations predict a
Si pz character of the states forming this orbit. For smaller zSi the dominating Rh dx2−y2 band
character and flatter dispersion relation yield a significantly larger mass [25]. We also detect the
second and third harmonic of the D1 orbit with the mass of the second harmonic very precisely
being double of that of the fundamental frequency (the mass of the third harmonic could not be
determined due to the strong reduction in intensity).

It is unlikely that the observed frequency corresponds to the pillbox shaped Fermi surface
sheet predicted at zSi 6 0.378. An outer orbit along the convex shape of the pillbox would lead
to a 1/cos θ form corrected by a small reduction as θ & 45◦ associated with a rounding of the
corners of the pillbox. The experimental data, however, show a small excess with respect to
a 1/cos θ form which is in good agreement with the inner orbit in the convex shaped D sheet.
Furthermore, the P sheet has extremal orbits extending all the way to θ = 90◦ and also predicts a
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lines represent calculated frequencies from our band structure calculations with
green and red representing the D and J sheet, respectively, labels refer to the
orbits depicted in figure 4. We use the SKEAF code for the extraction of the
extremal orbits from our calculated Fermi surfaces [30] (see section 2.1 for
details). Top labels and arrows indicate crystallographic orientations.

constant frequency for rotations in the basal plane which is not observed. In general, it is risky to
draw conclusions from failure to observe quantum oscillations, particularly since the amplitude
of the pillbox orbits is expected to be reduced when the angle differs significantly from the
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Table 2. Frequencies and cyclotron masses for field orientations along (110).

Experimental Calculated

Orbit F(kT) m?/me l0 (µm) F (kT) m?/me

J7 0.13 4.3
J3′

− J3 0.38 2.5(4) 0.15(2)
D3′ 2.41 0.7(3) 2.4 0.8a

D3 2.54 1.3(5) 2.8 0.4
D4 3.75 0.82(2) 0.32(2) 3.8 0.7
J4 4.95 1.4(5) 5.3 4(2)b

D2 5.10 1.17(3) 0.40(5) 5.2 1c

J3 − D4 7.05 2.3(1) 0.25(5)
2 ∗ D4 7.43 1.6(3)
J3 10.78 1.3(2)d 0.4(1) 11.1 1.1
J8 10.81
J3′ 11.17 1.26(2) 0.3–0.6e

2 ∗ J3′
− J3 11.54 3.1(3) 0.38(4)

J3 + D4 14.53 2.21(7) 0.33(3)
J3′ + D4 14.91 1.7(2)
2 ∗ J3 21.57 3.1(3)
J3′ + J3 21.95 2.4(5)
2 ∗ J3′ 22.33 2.6(2)

a Orbit D3′ only extremal for reduced zSi and at 1◦ deviation from (110).
b Small angular deviation induces large changes in the mass.
c Extremal orbit only predicted at 5◦ deviation from (110) direction.
d The mass of 1.3me was deduced from the analysis of mixed frequencies (see text). The
measured mass of 2.29(3)me is compromised by the J8 frequency which could not be separated
in the mass study.
e Field dependent mean free path, cf figure 8 and text.

axial direction. However, the fact that we observe a strong signal including the second and
third harmonics up to θ = 50◦, which suddenly disappears at larger angles, is in contrast to the
continuous reduction expected for a pillbox. By contrast, this agrees well with the expectations
for the inner orbit in the D sheet, which is not present for angles larger than 50◦.

Frequencies detected at 9.99 and 21.35 kT for field along (001) can be assigned to the orbit
D2—the circumference of the D sheet—and the orbit J1—the circumference of the J sheet.
In both cases we find a good agreement of predicted and experimentally determined effective
masses, as can be seen from tables 2 and 3. In addition, we detect the second harmonic of
the J1 orbit with its mass in agreement with twice the mass of the fundamental frequency. For
the J1 orbit we also see a good agreement with the predicted angular dependence matching
very nicely the range over which this orbit is predicted to be extremal. In fact, the predicted
range is very small due to the arms of the J sheet interrupting this orbit for larger angles.
Consequently, our quantum oscillation results strongly suggest that these arms are present in
the J sheet. As for the D1 orbit, it is unlikely that the J1 orbit is lost due to too small a signal
at angles θ > 5◦, as we observe a very strong signal including the second harmonic, which
suddenly vanishes. The D2 frequency, by contrast, has a very small amplitude for magnetic
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Table 3. Frequencies and cyclotron masses for field orientations along (001)
and (100).

Experimental Calculated

Orbit F(kT) m?/me F(kT) m?/me

(001)

D1 0.11 0.11(5) 0.08 0.11
2 ∗ D1 0.22 0.2(1)
D2 9.99 2.4(3) 9.7 1.9
J1 21.35 1.54(2) 21.4 1.3
2 ∗ J1 42.73 2.5(5)

(100)

J7 0.13 4.3
J2 0.25 1.3(5)a 0.14 0.5a

J6 1.26 1.8
J6′ 1.38 2.6
D3 1.61 0.5(1)b 1.8 0.56b

D3 1.81 0.4(3)a 2.2 0.5a

2 ∗ D3 3.22 1.2(4)
D2 4.64 0.8(1)a 4.9 0.6a

D2 4.64 1.1(1)b 4.9 0.6b

D2 4.74 1.1(1)b

J3 12.36 2.43(2)b 12.7 3b,c

a
≈5◦ off towards (001).

b
≈3◦ off towards (110).

c Extremal orbit only predicted at 5◦ towards (110) direction.

field parallel to (001) and may very well be lost due to further reduction as the field is
rotated away from this direction.

As the field direction approaches the basal plane, the D2 orbit is detected again at a
frequency of 4.7 kT for θ > 70◦, nicely reproducing the flat angular dependence of one branch
associated with this orbit as well as the mass expected for the (100) direction (cf tables 2
and 3). The two branches correspond to different extremal orbits, as depicted in figure 4.
This orbit is also observed for rotation in the basal plane with a good match to the predicted
angular dependence. Only in close vicinity of the (110) direction of magnetic field is this
orbit not expected to persist. However, for angles 42.5◦ 6 φ 6 45◦ two frequencies 4.9 and
5.1 kT are observed. One of these may be associated with the J4 orbit of the J sheet while
the other one might still arise for the D2 orbit due to small misalignment. In fact, the mass
predicted for the D2 orbit at a small angle nicely matches the observed mass of the 5.1 kT
oscillations (cf tables 2 and 3). The mass of the J4 orbit is expected to be much larger than
observed for the 4.9 kT frequency, however again, small misalignments yield an improved
agreement.

A frequency of about 1.6 kT is observed close to the (100) direction which is assigned to
an orbit D3 circling from the hole to the circumference of the D sheet (cf figure 4). Both the
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angular dependence and the mass agrees well with the results of the band structure calculations
(cf tables 2 and 3) for field orientations out of the basal plane and along the (100) direction.
For intermediate angles in the basal plane 30◦ 6 φ 6 40◦ this orbit is expected to be non-
extremal. It might be that we observe oscillations associated with a non-extremal orbit. This
is in agreement with the fact that the amplitude of this frequency is strongly reduced to almost
noise level in this angular range while other frequencies preserve a strong amplitude. However,
small misalignments in the experiment or approximations in the band structure calculations can
result in an extremal orbit. It would require further experimental and computational work to
scrutinize the hypothesis of a non-extremal orbit.

For angles close to the (110) direction 40◦ 6 φ 6 45◦, two frequencies D3 and D3′ are
observed. Both have almost no angular dependence, in agreement with an extremal orbit
D3 present over a very limited angular range 43◦ 6 φ 6 45◦. The mass of this orbit agrees
within experimental accuracy with the lower frequency D3′. For small misalignments (≈1◦)
and slightly reduced zSi our band structure calculations predict two orbits D3 and D3′ with
frequencies 2.4 and 2.8 kT close by. Their predicted masses of 0.8me and 0.4me are in
reasonable agreement given the large uncertainty of the measured mass for D3. This supports
the above suggestion of corrections to the band structure calculations to improve agreement
with experimental results.

The frequency with the largest amplitude in the power spectrum at 3.7 kT (cf figure 5) is
observed in a small angular range of 2.5◦ around the (110) direction only. This nicely matches
the predicted range for the D4 orbit of the D sheet with also the predicted mass in good
agreement with the observed value (cf tables 2 and 3). This orbit is very sensitive to changes
in the Si position zSi in our band structure calculations and vanishes for zSi > 0.380 c giving a
strong upper boundary for zSi.

A frequency with small angular dependence around 0.25 kT is observed in the rotation
study from (001) to (100) in the range 45◦ 6 θ 6 90◦. This frequency is slightly larger than that
expected for the J2 orbit circling on the outside of the arms in the J sheet but roughly matches
its angular dependence. In addition, this orbit is predicted to continue for rotations in the basal
plane up to φ 6 25◦ with a significant increase of frequency as φ increases. This nicely matches
the continued branch observed (the small offset of 0.05 kT from rotation out of the basal plane to
that in the basal plane may be due to a small misalignment of the sample in the two subsequent
rotation studies).

A group of strong frequencies is found around 11 kT for fields along the (110) direction.
The lowest of these frequencies (10.8 kT) has the largest amplitude in the power spectrum (cf
figure 5) and can be traced over the complete range of our rotation study towards the (100)
direction down to φ > 2.5◦. A high resolution study of this frequency over a wide field range
reveals a two peak structure (cf figure 5) with 10.78 and 10.81 kT. The higher amplitude arises
from the lower frequency, i.e. 10.78 kT. The angular dependence of this frequency shows good
agreement with the predicted angular dependence of the J3 orbit circling the inside of the main
body of the J sheet. It is natural to assign the frequency at 10.78 kT with largest amplitude to
the J3 orbit. We surmise that the frequency of 10.81 kT with the lower amplitude is a secondary
effect and label this frequency J8 although we have no proof for it to be related to the J sheet.

The fact that J3 is detected almost all the way to the (100) direction indicates that the
arms of the J sheet are very small as these interrupt the J3 orbit for fields along (100). In
fact, for smaller zSi the band structure calculations predict the angular range of the J3 orbit
to narrow very rapidly, thus, the observed angular dependence of the J3 orbit strongly supports
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Figure 7. Frequency mixing was identified with the help of an algorithm
comparing all measured frequencies against all combinations of sums and
differences of observed frequencies. Fundamental frequencies were deduced
from the comparison with band structure calculations. Symbols mark detected
frequencies, solid black lines mark frequencies calculated from sums and
differences of fundamental frequencies as indicated by the labels. Panel (a)
depicts the mixing of the J3 orbit with the J3′ orbit and harmonics while (b)
depicts the mixing and harmonics of the J3 and J3′ orbit with orbits of the
D-sheet, i.e. D2, D3 and D4. The solid red line in (a) reproduces the calculated
angular dependence of the J3 orbit from figure 6.

the experimental value for zSi. The frequencies at 11.2 and 11.5 kT have a smaller amplitude
and are limited in the angular range to 27.5◦ 6 φ 6 45◦. The frequencies around 11 kT give rise
to various harmonics and mixed frequencies. From the detailed analysis we identify one of the
10.8 kT frequencies and the 11.2 kT frequency to be the fundamental frequencies. We dub them
J3 and J3′ as both bear resemblance with the angular dependence and masses expected for the
J3 orbit. In the following we argue that one of them is the fundamental frequency; however, the
mechanism yielding the second frequency remains elusive.

3.3. Frequency mixing analysis

The measured frequencies are presented in figure 7(a) together with the calculated harmonics
and mixed frequencies of J3 and J3′. Clearly, we detect second and third harmonics of both J3
and J3′. We also detect the sum and difference of these two frequencies, i.e. J3 ± J3′. In addition,
we detect the sum and difference of twice J3′ with J3, i.e. 2 ∗ J3′

± J3. Finally, we also detect
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Figure 8. Dingle analysis of the field dependent amplitude [33] for the
frequencies D4, J3 and J3′. The mean free path was extracted by fitting
equation (1) to the maxima of the oscillations for D4 whereas for all other
frequencies a moving window Fourier transform was used to extract a field
dependent amplitude (squares and triangles). Cross-checking the two methods
for the D4 orbit yielded good agreement as shown by the grey curve and open
circles. For the J3′ orbit (triangles) different values of the mean free path were
found below and above 9 T as can be seen by the two fits with distinct slope (red
solid lines).

the difference of 3 ∗ J3′
− J3. The analogous sum 3 ∗ J3′ + J3 was not detected, possibly because

of unfavourable sampling for such high frequencies.
Possible mechanisms for frequency mixing are magnetic breakdown and magnetic

interaction. The former arises when the magnetic field exceeds the equivalent energy gap
separating orbits close by in k-space [33]. The latter arises because the sample’s
magnetization—which itself oscillates with varying field—feeds back into the magnetic
induction field B.

The pattern of frequencies, i.e. the observation of sums and differences, is most consistent
with magnetic interaction of two fundamental frequencies J3 and J3′. In particular, considering
first and second order effects, i.e. including fundamental frequencies J3 and J3′ and second
harmonics 2 ∗ J3 and 2 ∗ J3′ in the oscillating magnetization yields the observed second and third
harmonics as well as the sums and differences of the fundamental and harmonic frequencies.

Magnetic breakdown can be identified by a characteristic variation of the oscillation
amplitude with field: the amplitude of the fundamental frequency is expected to be reduced
above the breakdown field whereas the sums and differences are expected to be present above
the breakdown field only. We do observe unperturbed damping of the J3 and D4 orbit as can
be seen from figure 8. The damping of the J3′ orbit shows some irregularities which we discuss
below but the damping is inconsistent with a reduction of this frequency above the breakdown
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Figure 9. Lifshitz–Kosevich analysis of the temperature dependent amplitude for
the J3′ frequency and its harmonic 2 ∗ J3′. For the latter the amplitude is enlarged
by a factor of 10 for better visualization. The effective mass was deduced by
fitting equation (2).

field. In summary, this suggests that magnetic interaction is the origin for the mixing of the J3
and J3′ frequency.

The masses for second harmonics are expected to be twice that of the fundamental and for
the difference and sum the mass is expected to be the sum of the individual masses. This is not
immediately consistent with the experimentally observed masses. However, we have to take into
account that J3 and J8 could not be separated in the mass study. Therefore, the directly measured
mass of the J3 and J8 frequency may not reflect the mass of the J3 orbit. Analysing the harmonics
and mixed frequencies we are able to reconstruct the mass of J3. The second harmonic of J3′

has twice the mass of J3′ (cf figure 9 and tables 2 and 3). For the sum and difference J3′
± J3

we measure almost identical masses like for the second harmonic of J3′. Consequently, this
suggests that J3 has the same mass as J3′, i.e. 1.3me. We note that the harmonic of J3 has a mass
inconsistent with twice its fundamental mass which might be due to the influence of the non-
separable frequencies J3 and J8 contributing in different ratios to the fundamental and harmonic
frequency.

A mass of 1.3me for the J3 orbit is highly consistent with the mixing of this frequency
with other orbits. We find mixing of J3 with D4, D3 and D2 as can be seen from the detailed
analysis in figure 7(b). In the case of the sum and difference with D4, i.e. J3 ± D4 we
measure similar masses of 2.2me and 2.3me which is close to the sum of the individual masses
1.3me + 0.8me = 2.1me. We note that the angular dependence of the frequency identified with
2 ∗ D4 is also compatible with J3′

−D4 (two solid black lines close by in the bottom panel of
figure 7(b)); the mass of this frequency however, is twice that of D4 rather than the sum of the
masses of J3′ and D4. Consequently, we identify this frequency with the harmonic of the D4
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orbit. This implies that the third harmonic 3 ∗ D4 is very close to J3′. However, 3 ∗ D4 cannot
account for the J3′ orbit as D4 is limited to a much narrower angular range and 3 ∗ D4 is also
slightly higher in frequency (cf second panel from bottom in figure 7(b)).

We can rule out magnetic breakdown to yield the observed frequencies J3 ± D4 as the
orbits of J3 and D4 are well separated in k-space (cf figure 4). This is in line with the earlier
conclusion that also J3 and J3′ mix via magnetic interaction.

It remains unclear why we observe two frequencies J3 and J3′ rather than only one. One
is certainly the J3 orbit on the J sheet. The other one, however, is not predicted by the band
structure calculations. The absolute value of the predicted frequency matches best with J3′.
However, the angular dependence favours the lower frequency with a small offset. As this is
also the frequency with the higher amplitude we assign the 10.78 kT frequency with the J3
orbit.

We can rule out twinning and crystal domains to give rise to the two frequencies J3 and J3′

as this is in contradiction with the merging of the two at φ ≈ 30◦. If two domains were aligned
along the c-direction but misaligned in the basal plane this would yield a continuously shrinking
difference of the two frequencies for φ → 0◦.

For magnetic breakdown one expects deviations of the field dependence of the amplitude
from the Dingle behaviour described by equation (1). Indeed, we find anomalies in the Dingle
analysis of J3′. This is illustrated in figure 8. Two distinct slopes are present for J3′ in the
logarithmic representation against 1/B. This is in contrast to all other frequencies that are strong
enough and separable for a Dingle analysis; and which show a single slope over the full range
investigated. The change of slope for J3′ is showing an increased amplitude above 9 T. The
small deviations of J3 from exponential damping (linear behaviour in figure 8) around 10 T are
most likely due to the presence of the secondary peak at this frequency that also shows up as
a perturbation in the mass analysis. In particular, the slope at very high and small fields are
identical, in contrast to the behaviour expected for magnetic breakdown.

The enhanced amplitude of J3′ above 9 T may originate from magnetic breakdown yielding
the J3′ frequency, although it remains unclear which orbits are involved. The orbit J7 associated
with the pillar in the J sheet is one possibility. An orbit around the pillbox of the P band might
come into play when the spin majority branch starts to populate in high magnetic fields. For
both cases, however, an isotropic behaviour would be expected for rotations in the basal plane
in contrast to the vanishing splitting between J3 and J3′ in the rotation towards (100), φ → 0◦.
Interestingly, if magnetic breakdown proves to be the origin of J3′ this allows one to study
the combination of magnetic breakdown yielding J3′ and magnetic interaction of J3 and J3′ in
LuRh2Si2.

4. Discussion

4.1. Comparison to YbRh2Si2

Our electronic structure studies on LuRh2Si2 provide important refinement relevant for
understanding YbRh2Si2. First, we find that zSi = 0.379 c should be used for accurate band
structure calculations. Here, we present refined LDA band structure calculations on YbRh2Si2.
The sensitivity to zSi mostly affects calculations of the ‘small’ Fermi surface configuration
in which the f electrons were treated as core electrons not hybridizing with the conduction
electrons. This configuration parallels the natural configuration of LuRh2Si2 for which the
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Figure 10. Comparison of quantum oscillation measurements on LuRh2Si2 (a)
and YbRh2Si2 (c) [18] with band structure calculations of YbRh2Si2 treating the
f states as core electrons (‘small’ Fermi surface, (a)) and as fully itinerant (‘large’
Fermi surface, (b)). Red and black lines in (c) denote second and fifth harmonics
of the fundamental frequencies below 4 kT. Open symbols mark the frequencies
possibly originating from harmonics.

f electrons form a completely filled shell. LDA calculations of this configuration were used
in [15, 18, 20] for comparison with quantum oscillation measurements. The high frequency of
14 kT reported in [18] for fields along the (100) direction has been assigned to an orbit of the
J-sheet of the ‘small’ Fermi surface configuration. In general this frequency cannot be mapped
to any of the orbits on the D-sheet as these are limited to below 8 kT in both the ‘small’ and
‘large’ Fermi surface calculation. Nevertheless the assignment with a branch predicted for the
‘small’ Fermi surface calculation needs to be revised in the light of our results on LuRh2Si2.

In figure 10 we present a comparison of refined band structure calculations on
YbRh2Si2 with the quantum oscillation measurements of [18]. We adopt identical parameters
as used in [18] except for the refined lattice parameters (cf table 1). Since slight variations of c
originate in minute variations of the Rh content [12], we employ an average value of c = 9.86 Å
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Table 4. Frequencies and masses expected for second harmonics of the
frequencies below 4 kT compared to measured frequencies and masses between
5 and 7 kT in YbRh2Si2 after [18].

Second harmonic of Detected frequencies
frequencies below 4 kT between 5 and 7 kT

2 ∗ F 2 ∗ m?/me F m?/me

5.3 23 5.37 9.2
7.0 12 7.01 12.3
6.4 14 6.54 13.2

for our calculations on YbRh2Si2. In the case of the ‘small’ Fermi surface configuration
(simulated by calculating LuRh2Si2 utilizing crystal lattice parameters of YbRh2Si2) we find
virtually no difference to the results using lattice parameters of LuRh2Si2 (cf figure 6).
Consequently, the Shubnikov–de Haas measurements on LuRh2Si2 complemented by the
band structure calculations can directly be used as a ‘small’ Fermi surface reference of
YbRh2Si2. Importantly, within this ‘small’ Fermi surface calculation of YbRh2Si2 no high-
frequency orbit is predicted for field along (100). The J3 orbit is observed in the Shubnikov–de
Haas measurements on LuRh2Si2 all the way to (100), but has an opposing angular dependence
compared to the branch observed in YbRh2Si2. This indicates that the 14 kT frequency reported
in [18] may not be assigned to the ‘small’ Fermi surface configuration.

Likewise, the ‘large’ Fermi surface calculations as simulated in [15, 18] with fully itinerant
LDA calculations of YbRh2Si2 are sensitively affected by the choice of zSi. Using the refined
lattice parameters listed in table 1 we find some major changes as can be seen from figure 10.
A central hole emerges in the J sheet, which limits extremal orbits encircling the sheet to
angles between 15◦ and 20◦—this limits the 11 kT frequency to a narrow angular range (cf
figure 10(b)). A new extremal orbit through this central hole arises for angles above 40◦, which
extends beyond the boundary of the first Brillouin zone and has a high frequency of 16 kT.

The low frequency branches and the extremal orbits of the D-sheet are not affected by
the change of the experimental lattice parameters. The orbits on the D-sheet (green lines in
figure 10(a)) were earlier identified with all orbits observed in YbRh2Si2 below 7 kT. In the light
of the extensive presence of harmonics in LuRh2Si2 we re-examine the data on YbRh2Si2. We
include second and fifth harmonics of the frequencies below 4 kT as red and black solid lines,
respectively, in figure 10(c). The frequencies between 5 and 7 kT very well match the angular
dependence of the second harmonic. This matching extends also for rotations towards the (001)
direction reported in [15]. For two of the three putative harmonics the masses reported in [18]
show the expected scaling (cf equation (2)), as summarized in table 4. The fifth harmonic (black
line in figure 10), however, does not match with the observed branch at 14 kT suggesting this
branch to be a fundamental frequency. This is in line with the expected reduction of intensity
for high harmonics.

As indicated above harmonics are in general suppressed [33]. This seems to contradict
the suggested assignment of the frequencies between 5 and 7 kT to second harmonics as they
are observed over a wider angular range with larger intensity than the proposed fundamental
frequencies below 4 kT. However, there are two mechanisms which can compensate for this
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reduction: (i) magnetic interaction can lead to an enhanced amplitude. (ii) The modulation
technique used for the de Haas–van Alphen measurements on YbRh2Si2 in [15, 18] favours
the detection of higher frequencies and harmonics; for a typical modulation field of 10 mT the
Bessel function determining the amplitude of the quantum oscillations in the field modulation
technique yields a damping factor of ≈4 for the frequencies below 4 kT with respect to those
between 5 and 7 kT. An enhanced second harmonic has been observed in CeRhIn5 [35].

In [15] it was suggested that the frequencies below and between 5 and 7 kT arise from
orbits through the central hole of the D sheet and slightly off-centre orbits spanning the full
cross-section, respectively. In principle, this can yield roughly a factor of 2 between the two
groups of frequencies. However, the precise matching of the angular dependence of the putative
harmonic apparent in figure 10(c) gives a very low upper boundary for the hole in the D sheet
as it would otherwise violate the matching of the high frequencies with the second harmonics.
In addition, the scaling should break down for rotations towards the c-direction. An earlier de
Haas–van Alphen study covered a range up to 60◦ out of plane over which the frequencies
seem to fit with the scaling whereas the masses do deviate from the expected scaling [15]. In
order to distinguish between the two possibilities we suggest quantum oscillation measurements
extending the angular range all the way to c-axis. Here, the de Haas–van Alphen measurement
of the susceptibility is unfavourable as the susceptibility is strongly reduced for this direction.
This magnetic anisotropy, however, is favourable for quantum oscillation measurements using
torque magnetometry. Alternatively, Shubnikov–de Haas may allow one to follow the quantum
oscillations to the c-axis orientation.

If the frequencies between 5 and 7 kT prove to be truly harmonics this reduces the basis
for comparison with band structure calculations to the observed frequencies below 4 kT and
above 14 kT, which are not matched by a harmonic of the low frequencies (cf black line in
figure 10(c)).

Overall, the agreement of the data on YbRh2Si2 with the LDA calculations of both the
‘small’ and ‘large’ Fermi surface is rather limited, particularly with the branches between 5
and 7 kT possibly arising from harmonics and thus not available for comparison with band
structure calculations. The remaining fundamental frequencies below 4 kT have neither a
good agreement with the ‘small’ nor the ‘large’ Fermi surface calculation. Likewise the high
frequency of ≈14 kT, which appears to be a fundamental frequency, cannot be mapped to
orbits of the LDA calculations, yet due to the fact that the largest orbits on the D-sheet are
well below 9 kT this frequency very likely originates from the J-sheet. LDA is very well
capable to predict the Fermi surface and expected quantum oscillation frequencies of normal
metals, and we demonstrate the qualitative and quantitative agreement for LuRh2Si2. The
‘small’ Fermi surface configuration of YbRh2Si2 with conduction electrons decoupled from the
f electrons is expected to be such a normal metal. For Yb-based heavy fermion materials with
interacting conduction and f electrons, however, LDA is known to fall short in predicting the
Fermi surface topology and quasiparticle masses [19, 23, 36]. Consequently, the discrepancy
of our refined calculations of the ‘small’ Fermi surface with earlier de Haas–van Alphen
measurements on YbRh2Si2 precludes the ‘small’ Fermi surface configuration and supports
the relevance of the f electrons in the high-field regime. While the discrepancy with the LDA
band structure calculations of the ‘large’ Fermi surface is expected, they reinforce the need for
more sophisticated models like a renormalized band approach [37] or dynamical mean field
theory [38, 39] to accurately predict the electronic structure of YbRh2Si2 and to match the
observed angular dependence of quantum oscillation frequencies.
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4.2. Two-band character in Hall effect of LuRh2Si2

In Hall effect measurements on LuRh2Si2 a pronounced crossover of the Hall coefficient as
a function of temperature was found [4]. Through comparison with band structure calculations
this could be attributed to a crossover between regimes with different relative scattering rates for
the two dominating bands. The analysis in terms of a two-band model revealed similar scattering
rates for the two bands at low temperatures, while they differ significantly at high temperatures.
In our Shubnikov–de Haas measurements we were able to extract the mean free path for the
different orbits at low temperature, as illustrated in figure 8. We find that the mean free paths
extracted for different fundamental orbits to differ by 20%. The J3′ orbit shows deviations at
high fields (exceeding the field scale of the Hall effect measurements). This agrees well with
the result obtained through the two-band analysis.

While the two-band model gives a very convincing qualitative description of the Hall
effect, including the temperature range of the crossover, a small quantitative difference remains
at high temperatures which could only be resolved assuming slightly different values for the
Hall coefficients of the two major bands compared to the outcome of previous band structure
calculations [4]. The previous electronic structure calculations were based on a generic zSi =

0.375 c. Our refined band structure calculations might correct for this small difference.
We note that the magnetic breakdown possibly contributing to the mixing of the various

frequencies cannot account for the change in slope of the Hall resistivity [40]. The Hall
measurements were conducted with fields along the (001) direction whereas frequency mixing
is seen for fields in the basal plane only. Also, the crossover in mean free path observed for
the J3′ orbit is observed for fields along the (110) direction and at much higher fields than the
crossover in Hall effect [4, 40].

Likewise it is unlikely that a thermally excited population of the P sheet at temperatures of
the order of 100 K can account for the change in Hall coefficient as a function of temperature.
The charge carrier concentration of this band will be very small compared to the other bands
and its effect is therefore negligible.

5. Conclusion

We present a comprehensive study of the electronic structure of LuRh2Si2 which—owing
to almost identical lattice parameters—serves as an ideal non-magnetic reference for the
intensively studied heavy-fermion material YbRh2Si2. We find a sensitive dependence of
the Fermi surface topology on the position of the Si atoms zSi. Best agreement between
predicted and measured quantum oscillation frequencies is obtained at the experimental value
zSi = 0.379 c, very close to the value 0.381 c obtained from lattice relaxation. We therefore
recommend usage of the precisely determined experimental lattice parameters for future band
structure calculations on LuRh2Si2 and YbRh2Si2. Moreover, these findings establish the
universality of the sensitivity in electronic properties to the Wyckoff z parameter in the ThCr2Si2

structure shared by many prominent compounds, including the iron pnictide superconductors
which feature an even wider variation of z [26].

The re-examination of de Haas–van Alphen measurements on YbRh2Si2 suggests
previously unidentified harmonics which reduce the number of fundamental frequencies to a
group of frequencies below 4 kT and a single frequency at 14 kT. We compare these frequencies
with both the results on LuRh2Si2 and LDA calculations, which are consistently capable of
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describing the ‘small’ Fermi surface configuration within the f-core treatment. This comparison
reveals strong deviation which support the conclusion that the YbRh2Si2 f electrons do not
localize at µ0 H0 ≈ 10T.
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