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Abstract

Methods of examining the fit of multi-dimensional point process models using resid-

ual analysis are proposed. One method involves rescaled residuals, obtained by trans-

forming points along one coordinate to form a homogeneous Poisson process inside a

random, irregular boundary. Both vertical and horizontal forms of this rescaling are

discussed. We also present a different method of residual analysis, involving thinning

the point process according to the conditional intensity to form a homogeneous Poisson

process on the original, untransformed space. These methods for assessing goodness-

of-fit are applied to point process models for the space-time-magnitude distribution of

earthquake occurrences, using in particular the multi-dimensional version of Ogata’s

epidemic-type aftershock sequence (ETAS) model and a 30-year catalog of 580 earth-

quakes occurring in Bear Valley, California, as an example. The thinned residuals

suggest that the fit of the model may be significantly improved by using an anisotropic

spatial distance function in the estimation of the spatially varying background rate.

Using rescaled residuals, it is shown that the temporal-magnitude distribution of af-

tershock activity is not separable, and that in particular, in contrast to the ETAS

model, the triggering density of earthquakes appears to depend on the magnitude of

the secondary events. The residual analysis highlights that the fit of the space-time

ETAS model may be substantially improved by allowing the parameters governing the

triggering density to vary for earthquakes of different magnitudes. Such modifications

are important since the ETAS model is widely used in seismology for hazard analysis.

Key words: conditional intensity, spatial-temporal marked point process, ETAS model, seis-

mology, separability.
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1 Introduction.

Stochastic point process models for the space-time-magnitude distribution of earthquake

occurrences have become essential components in the assessment of seismic hazard or risk,

which are in turn critical for many purposes including civil engineering and insurance. Ex-

cellent reviews are provided in Vere-Jones (1970), Vere-Jones (1975), Brillinger (1982) and

Brillinger (1993).

Unfortunately, the critical assessment of such models has been scant. An important ex-

ception is the seminal work of Ogata (1988), who used one-dimensional residual analysis to

assess the temporal component of the Epidemic-Type Aftershock Sequence (ETAS) model,

which has subsequently become very widely used in seismology. The ETAS model exam-

ined in Ogata (1988) incorporates time and magnitude, but has no spatial component. In

recent years many models characterizing the space-time-magnitude behavior of earthquake

occurrences have been offered, but little attention has been paid to the examination of the

goodness-of-fit of such models. The aim of the current paper is to present some methods for

assessing the fit of such multi-dimensional point process models using residual analysis and

to show how these methods may be used to identify defects in models and to suggest ways

in which models may be improved.

For many statistical models such as ordinary regression models, examination of residuals

is straightforward and widely considered standard practice. For the case of point processes,

consideration of residuals is a bit trickier, since mere subtraction of the mean from a point

process does not result in a very useful diagnostic. Various forms of residual analysis are

reviewed here, including vertical and horizontal rescaling and thinned residuals. Following a
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review of some multidimensional point process models for earthquake occurrences in Section

2, these methods of residual analysis are discussed in Section 3. The methods are then

applied in Section 4 to a sample earthquake catalog, resulting in some novel seismological

observations and some suggested revisions for the models in Section 2. Section 5 contains

some concluding remarks.

2 Space-time-magnitude point process models for earth-

quakes

Catalogs of earthquake occurrences are conveniently modeled as spatial-temporal marked

point processes, i.e. as random measures on a portion S of space-time-magnitude, taking

values in the non-negative integers Z+ (or infinity), and finite on any compact subset of S.

One typically assumes the process to be simple, i.e. that with probability one all the points are

distinct. As any such process N may be uniquely characterized by its associated conditional

rate process λ (Fishman and Snyder 1976; Daley and Vere-Jones 1988), in modeling the

process N one typically prescribes a model for λ.

For S a collection of times t, spatial locations x, and magnitudes m, λ(t,x, z) may be

thought of as the frequency with which events are expected to occur around the particular

location and time and magnitude (t,x, m) in S, conditional on the entire prior history Ht of

the point process up to time t. Though various types of conditional rate exist corresponding

to conditioning on different forms of histories (see e.g. Merzbach and Nualart 1986), for

most spatial-temporal marked point processes the prior temporal history Ht is the most
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relevant for applications (Schoenberg et al. 2002), so we restrict our attention to this type

of conditional rate in what follows.

Formally, a version of the conditional rate λ(t,x, z) associated with a spatial-temporal

point process N may be defined as the limiting conditional expectation

lim
∆t,∆x,∆m↓0

E[N{(t, t + ∆t)× (x,x + ∆x)× (m,m + ∆m)}|Ht]

∆t∆x∆m
,

provided the limit exists. See Jacod (1975) for conditions for existence and uniqueness of

the conditional rate and its integrated form called the compensator. Note that some authors

instead define λ as

lim
∆t,∆x,∆m↓0

P [N{(t, t + ∆t)× (x,x + ∆x)× (m, m + ∆m)} > 0|Ht]

∆t∆x∆m
.

For orderly point processes (processes where lim|A|↓∅ P{N(A) > 1}/|A| = 0 for interval

A ⊂ S), the two definitions are equivalent. Although in the statistical literature (e.g. Daley

and Vere-Jones 1988; Karr 1991), λ is commonly referred to as the conditional intensity

rather than conditional rate, to avoid confusion the term rate may be preferred in this

context, since the term intensity is also used in seismology to describe the destructiveness of

an earthquake.

In general, λ(t,x, m) depends not only on t,x, m but also on the times and locations of

preceding events. In the simple case where λ(t,x, m) depends only on t, x, and m, however,

N is called a Poisson process, and if λ is constant over the entire space S then N is called

a homogeneous Poisson process. For a thorough treatment of point processes, conditional

intensities and their properties, see Daley and Vere-Jones, 1988.

There are numerous spatial-temporal-magnitude models for earthquake occurrences; for

reviews see Kagan (1991), Vere-Jones (1992), Rathbun (1993), Kagan and Vere-Jones (1996),
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and especially Ogata (1998). A widely used class of models for earthquake occurrences is

the epidemic-type aftershock sequence (ETAS) model introduced by Ogata (1988), which

as described in Ogata (1998) is a multi-dimensional extension of Hawkes’ self-exciting point

process (Hawkes 1971).

The space-time-magnitude ETAS model is based on the principle that earthquakes have

aftershocks nearby in space-time and are therefore clustered, and furthermore these after-

shocks can have aftershocks as well. Given a collection of points {ti,xi, mi}, i = 1, 2, . . ., the

model may be written as

λ(t,x, m) = f(m)

ν(x) +

t∫
0

∫
x

m1∫
m0

g(t− t′, ||x− x′||, m′)dm′dx′dt′


= f(m)

ν(x, y) +
∑

i:ti<t

g(t− ti, ||x− xi||, mi)

 . (1)

The functions f and ν govern the magnitude-frequency and background seismicity rate,

respectively, and the function g, called the triggering density, describes how the rate of

earthquakes increases after an earthquake, and how this increase in seismicity decays over

time and space, and as a function of the magnitude of the triggering event. There are various

forms for f , g, and ν suggested in Ogata (1998) based on well-known seismological relations,

including the Gutenberg-Richter law describing the frequency of earthquakes of different

magnitudes, and the modified Omori law governing the temporal behavior of aftershock

activity. For instance, one typically takes for the magnitude-frequency term

f(m) ∝ exp{−β(m−m0)}, (2)

where m0 is the minimal magnitude threshold for the earthquake catalog, in agreement with

the Gutenberg-Richter relation (Gutenberg and Richter 1944). For the case where the spatial
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coordinate x represents epicentral origin location (x, y) in the plane, forms for the triggering

density g given in Ogata (1998) include

g(t, x, y,m) =
K0exp{α(m−m0)}
(t + c)p(x2 + y2 + d)q

, (3)

g(t, x, y,m) =
K0

(t + c)p
exp

{
− x2 + y2

2dexp{α(m−m0)}

}
,

and

g(t, x, y,m) =
K0

(t + c)p

(
x2 + y2

exp{α(m−m0)}
+ d

)−q

.

The temporal component in these three forms of g agree with the the modified Omori law

(Utsu 1971). Functional forms for the background rate ν(x) are not typically given; instead

ν is assumed constant or estimated by smoothing the main events in the catalog, e.g. using

kernel smoothing or bi-cubic B-splines (Ogata 1998; Zhuang et al. 2002).

Note that the model (1) is separable with respect to magnitude and the spatial-temporal

coordinates, in the sense that the frequency of earthquakes of magnitude m at any time and

location depends only on the overall density of earthquakes of magnitude m given by f(m)

and on the overall rate of events dictated by ν and g, but not on the interaction of the two.

That is, while the triggering density g depends on the magnitude of the triggering event,

it does not depend on the magnitude of the event m whose rate is being calculated in the

formula for λ(t,x, m). This separability property is an important feature of the model (1)

that is explored in Section 4 below.

7



3 Residual analysis

Given a space-time-magnitude point process model for earthquakes, one typically selects the

parameter vector θ for the model by maximizing the log-likelihood function

L(θ) =
∫
S

log[λ(θ)]dN −
∫
S

λ(θ)dµ,

and selection between models is often done simply by minimizing some information criterion

such as the Akaike Information Criterion or Bayesian Information Criterion (see e.g. Ogata

and Tanemura 1984; Ogata 1998; Lu et al. 1999; Schoenberg and Bolt 2000).

Although such likelihood criteria are useful for comparing the relative fit of competing

models, they are not useful for assessing the absolute goodness-of-fit of models or for high-

lighting ways in which models may be improved. For such purposes, residual analysis may

be of service.

Point process residual analysis involves rescaling or thinning the original point process to

obtain a new point process that is homogeneous Poisson. A basic method for forming residual

point processes by rescaling is due to Meyer (1971), who showed that for a collection {Ni}

of simple univariate (i.e. purely temporal) point processes on the real half-line such that no

two processes share a point at the same time, if one rescales the points by moving each point

(t, i) to the point (
t∫
0

λ(t′, i)dt′, i), then one obtains a sequence of independent homogeneous

Poisson processes, each having unit rate. Alternative proofs and variations of this result have

been given by Papangelou (1972), Brémaud (1972), Aalen and Hoem (1978), Brown and Nair

(1986), and Kallenberg (1990). Papangelou (1972) gave the following interpretation in the

univariate case: “Roughly, moving in [0,∞) so as to meet expected future points at a rate

of one per time unit (given at each instant complete knowledge of the past), we meet them
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at the times of a Poisson process.” Meyer’s method is referred to as horizontal rescaling,

since for each point, only its temporal (or horizontal) coordinate is changed. This type of

rescaling was shown to be extremely useful by Ogata (1988), who performed residual analysis

of an ETAS model for the temporal-magnitude (i.e. non-spatial) behavior of earthquakes. In

what follows, we focus on the multi-dimensional case. Meyer’s result extends quite readily

to spatial-temporal marked point processes; i.e. by transforming each point (ti,xi, mi) to

(
t∫
0

λ(t′, i)dt′,xi, mi), one again obtains an independent sequence of homogeneous Poisson

processes of unit rate, as described in Vere-Jones and Schoenberg (2002).

Alternatively, one may choose to rescale the points vertically, i.e. to focus on one non-

temporal dimension of the point process and rescale each point along that dimension ac-

cording to the conditional intensity λ. For simple point processes on Rd, Schoenberg (1999)

generalized results of Merzbach and Nualart (1986) and Nair (1990) to show that such trans-

formation, moving e.g. (ti,xi, mi) to (ti,xi,
mi∫
0

λ(ti,xi, m)dm) again results in a homogeneous

Poisson process of rate one. When the original process is observed within a window such as

[t0, t1]× [x0, x1]× [y0, y1]× [m0, m1], for example, the transformed process is a homogeneous

unit-rate Poisson process within a boundary of irregular shape (see Schoenberg 1999). As

with horizontally rescaled residuals, one may assess the model by examining the residuals to

see if they appear homogeneous throughout the space. There are a wide variety of tests for

this purpose; see e.g. Diggle (1979), Ripley (1979), Lawson (1988), Heinrich (1991), Andersen

et al. (1993) and references therein for examples.

One potential drawback to vertical and horizontal rescaling is that inhomogeneity in the

residual process with respect to the transformed coordinates may be difficult to interpret,
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particularly when one spatial coordinate is transformed. Thus, instead of rescaling spatial

coordinates, a different method for obtaining a homogeneous Poisson residual process is by

thinning, using a variation on the useful simulation technique of Lewis and Shedler (1979)

and Ogata (1981). One may obtain a homogeneous Poisson process with rate b by keep-

ing each point (ti, xi, yi, mi) in the original point process independently with probability

b/λ(ti, xi, yi, mi), where b is the minimum of λ(t, x, y,m) over the entire observation region,

S. Like rescaled residuals, the resulting thinned residuals may be examined for uniformity

versus various alternatives such as trend, clustering, etc. In addition, because of the stochas-

tic component in the generation of the thinned residuals, one may repeatedly generate many

realizations of thinned residuals, each distributed according to a homogeneous Poisson pro-

cess with rate b. (Note that these individual thinned Poisson processes are not independent

of one another, however.)

If the minimal rate b is very small, each realization of thinned residuals may contain too

few points to allow for testing for homogeneity. In such cases, one may modify the thinning

procedure above and instead obtain an approximation of the thinned residuals by generat-

ing some number k of residual points by randomly selecting k of the original N(S) points such

that the point (ti, xi, yi, mi) is chosen with probability kλ(ti, xi, yi, mi)
−1/(

N(S)∑
i=1

λ(ti, xi, yi, mi)
−1).

Provided k is small relative to N(S), the distribution of the resulting residuals will closely

approximate that of ordinary thinned residuals.
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4 Application to Bear Valley Data

Our sample earthquake catalog consists of 580 earthquakes of magnitude 3.0 and higher (up

to magnitude 5.5) occuring along a 35 kilometer portion of the San Andreas Fault around

Bear Valley, California (latitude 36.5 to 37.0, longitude -121.5 to -121.0). The data are

described in Schoenberg and Bolt (2000), where it is noted that this dataset is typical of

a catalog used as a basis for seismic hazard calculations. The catalog was obtained from

the Council of the National Seismic System at quake.geo.berkeley.edu and details about the

data may be obtained there.

The space-time-magnitude distribution of the Bear Valley earthquakes is shown in Figure

1. The locations are epicentral origin estimates, the magnitude of each event is represented

in the Figure by the size of the circle, and the time by its darkness. One sees in Figure 1 that

most of the events occur approximately along a narrow strip, which corresponds to a portion

of the San Andreas Fault. The time-magnitude distribution of the points is highlighted in

Figure 2, where one sees the increased frequency with which the smaller earthquakes occur.

No obvious trend in the magnitude distribution over time is easily discernable in Figure 2;

this issue of separability of the marginal distributions is investigated further below.

4.1 Thinned spatial residuals

The spatial fit of the model is conveniently investigated using thinned residuals as described

in Section 3 above. We consider the model (1) with magnitude distribution (2), trigger

density (3), and background rate ν(x, y) estimated by kernel-smoothing of the larger events

(those with magnitude at least 4.0); in what follows we simply refer to this as model (1). After
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fitting this model by maximum likelihood to obtain an estimate θ̂ of the parameter vector θ =

(β, K0, α, c, p, d, q, ρ, a), where ρ is the bandwidth in the kernel smoothing for ν and a is the

constant of proportionality in (2), the thinned residuals were obtained. That is, the original

dataset was thinned by keeping each point (ti, xi, yi, mi) with probability b/λ̂(ti, xi, yi, mi),

where λ̂(ti, xi, yi, mi) = λ(ti, xi, yi, mi; θ̂) and b = min
S

λ̂(ti, xi, yi, mi). Because b is rather

small due to small values of λ at certain locations, each realization of thinned residuals

consists of only a few points. Figure 3 shows a typical example of thinned residuals based

on the model (1).

Examination of one realization for homogeneity is a very low-power method for assessing

the model, but one may readily generate many realizations of thinned residuals and examine

them collectively. Under the null hypothesis that the model is correctly specified, each real-

ization should be distributed according to a homogeneous Poisson process. A powerful test

for the alternative hypothesis that the points are instead over- or under-clustered spatially

relative to a Poisson process is the estimated K-function, which indicates the proportion of

pairs of points per unit area available that are within distance d of one another. That is, for

any spatial distance d, K(d) is estimated as

AN−2
∑
i<j

||xi−xj ||<d

s(xi,xj),

where A is the area of the observation window, N is the number of observed points, and

s(xi,xj)
−1 is the proportion of area of the ball centered at xi passing through xj that falls

within the observation window (see Ripley 1981). The solid lines in Figure 4 delimit the

middle 95%-range of the estimated K-functions for 1000 realizations of thinned residuals

based on model (1). For comparison, the shaded area in Figure 4 shows the corresponding

12



middle 95%-range of estimated K-functions for 1000 realizations of points uniformly spread

over the spatial region. That is, for each realization j consisting of nj thinned residual points,

a realization of nj uniformly distributed points is generated, and the shaded region in Figure

4 shows the range of the estimated K-functions for these uniformly distributed points.

From Figure 4 one can see that the two sets of realizations seem in general agreement as

far as the range of K-function values are considered. However, a noticeable discrepancy is

that for small values of d, the upper 95% bound for the thinned residuals is higher than that

for the uniformly distributed points; this indicates excessive spatial clustering in the thinned

residuals. In other words, Figure 4 indicates spatial clustering in the original dataset that

is not adequately accounted for in the model (1). One may suspect that the source of this

clustering is the tendency for the points in Figure 1 to fall near the fault line, as previously

mentioned. In fitting the model (1), the estimated background rate ν̂(x, y) is determined by

kernel-smoothing the larger earthquakes in the dataset, hence locations at greater Euclidean

distances from larger earthquakes have lower estimated background rate. The estimated

background rate, corresponding to the maximum likelihood estimation of the parameters in

the model (1), is shown in Figure 5 along with the larger earthquakes used for the smoothing.

It should be noted that kernel smoothing using variable bandwidths, as proposed in Zhuang

et al. (2002), does not solve the problem of residual clustering in Figure 4; in fact, application

of the method of Zhuang et al. (2002) still results in an overly smoothed background similar to

that in Figure 5, since the kernel smoothes are still isotropic and have even larger bandwidths

around the outlying points.

The obvious pattern in Figure 1 and the clustering in the residuals as observed in Figure
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4 suggest modifying the estimation of ν(x, y) in model (1) by using a non-isotropic distance

function that takes into account the approximate colinearity of most of the earthquake

locations. For instance, one may simply fit a line ` (e.g. by regression) to the locations of

the larger earthquakes and then replace Euclidean distance in the smoothing procedure for

ν(x, y) with a new distance function such that distances between two points orthogonal to

` are weighted γ times the distance in the direction of `. Like the other model parameters,

the parameter γ may be estimated by maximum likelihood. The resulting estimate of the

background rate ν(x, y) is shown in Figure 6.

The smoothing in Figure 6 is not nearly as smooth as that in Figure 5, and clearly

corresponds much more closely with the spatial distribution of the actual events. Using

the modified estimate of the background rate and the maximum likelihood estimates of the

other parameters in the model (1), one may reconstruct numerous realizations of thinned

residuals and their corresponding K-functions. After using the modified, anisotropic estimate

of ν(x, y), the value b, defined as the minimum value of λ̂ over the entire space, is now

miniscule, so each realization of thinned residuals contains only very few points (indeed, on

average less than one). Thus for the purposes of comparison with Figure 4, approximate

residuals for the modified model, hereafter referred to as model (1’), are obtained according

to the procedure described in the previous Section, with the number of points per residual

process a Poisson random variable with mean equal to the mean number of residual points

when thinning according to the original model (1). The 95% bounds for these K-functions

corresponding to 1000 realizations of the thinned residuals for the modified model (1’) are

shown in Figure 7, along with corresponding 95% bounds based on uniformly distributed
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points, just as in Figure 4. The bounds in Figure 7 agree somewhat more closely with those

of the uniformly distributed points, and a good portion of the clustering indicated in Figure

4 is no longer indicated.

4.2 Rescaled temporal-magnitude residuals

The time-magnitude distribution of the earthquake process may be investigated using rescaled

residuals. Figure 8 presents the residuals for the model (1’), integrated over all spatial lo-

cations, using vertical rescaling. Because of the epidemic-type nature of the model, the

conditional rate λ is extremely high immediately following large events and decays quickly

thereafter. Thus it is extremely difficult to discern from Figure 8 whether the points are uni-

formly scattered within this very irregularly-shaped boundary, even if the points are plotted

on logarithmic scale as in Figure 9. In addition, estimates of clustering statistics such as the

K-function based on these vertically rescaled residuals are largely dominated by boundary

effects.

A convenient alternative is to rescale the points horizontally, i.e. to fix the magnitude of

each point and rescale its temporal coordinate. The resulting horizontally rescaled residuals

are plotted in Figure 10. Once again the boundary is somewhat irregular, though not nearly

as much so as in Figure 8.

The residuals in Figure 10 appear to be relatively uniformly dispersed, though deviations

are difficult to discern. In order to investigate further, one may inspect the residual points

corresponding to each magnitude value, i.e. the residuals along each horizontal line in Figure

10. If the model is correctly specified, then the points on each line should be distributed as
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independent Poisson processes. A natural alternative hypothesis is that points on certain

lines are clustered; this corresponds to the notion that the aftershock triggering process is

not separable with respect to time and magnitude as specified in equation (1). That is, for

certain times, the proportion of earthquakes in certain magnitude ranges may be higher than

this proportion at other times. This would result in clustering in the horizontally rescaled

residuals within these magnitude ranges.

To test for nonseparability (clustering), one can examine the second-order properties of

the residuals along each horizontal line. For example, one may estimate the second moment,

or one-dimensional analog of the K-function of Ripley (1981). For the residual process, one

may estimate the standardized second moment for each magnitude m and each transformed

time-lag u as the quantity (k1 − k2)/
√

(k2), where k1 is the number of pairs of residual

points with magnitude m whose transformed times are within u of one another, and k2 is

the the expected number of such pairs for a homogeneous Poisson process. Inspection of

the estimated standardized second moment of the residuals for each magnitude reveals that

the model (1’) fits extremely well for most magnitudes, especially magnitudes greater than

3.5. However, there is excessive clustering at small distances for magnitudes between 3.1

and 3.25, inclusive; this clustering is not evident, however, for magnitudes smaller than 3.1.

Figure 11 displays the estimated standardized second moment functions, along with 95%

bounds for the Poisson process, for the residuals of several different magnitudes.

Figure 11 suggests that the residuals in certain magnitude ranges are overly clustered;

hence the assumption of temporal-magnitude separability in model (1’) appears to be inval-

idated. To remedy this, we consider a variant of model (1’) such that the parameter vector
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θ is permitted to vary with magnitude, m. That is, we fit the model

λ(t, x, y,m) = (4)

J∑
j=1

I{m∈Mj}ajexp{−βj(m−m0)}

ν(x, y) +
∑

i:ti<t

Kjexp{αj(mi −m0)}
(t− ti + cj)pj{(x− xi)2 + (y − yi)2 + dj}qj


where {Mj; j = 1, 2, . . . , J} is a partition of the observed magnitude range, and ν(x, y) is

obtained by anisotropic kernel smoothing of the larger events as in (1’). Note that this

revised model (4) is not inconsistent with the modified Omori law in (3), which governs the

decay of aftershocks over time for all magnitudes in the observed range.

The horizontally rescaled residuals obtained after fitting the revised model (4) by maxi-

mum likelihood are displayed in Figure 12, and the estimated standardized second moments

of the residuals for various magnitudes are displayed in Figure 13. In fitting (4), J is set

to 2, M1 to the magnitude range [3.1, 3.25], and M2 to the set of all other magnitudes in

the observed range [3, 5.5]. One sees that after fitting the model (4), the clustering in the

residuals for magnitudes 3.1 and 3.2 is no longer present, and in general the residuals appear

to be scattered quite uniformly across the transformed boundary. The modified form (4)

apparently provides an adequate description of the clustering in the original dataset.

5 Summary.

The residual analysis methods discussed here may be used to supplement likelihood criteria

such as the AIC in assessing the goodness-of-fit for multi-dimensional point process models.

Unlike likelihood criteria, examination of thinned and rescaled residuals enables hypothesis

testing against various alternatives such as clustering and trend, as well as graphical depiction
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of when and where models appear to fit well or poorly.

Thinned residuals appear to be especially useful for examining the spatial components

of spatial-temporal marked point process models, since such residuals do not require trans-

formation of the spatial coordinates. For epidemic-type processes such as the ETAS model

for earthquake occurrences, horizontally rescaled residuals may be preferred over vertically

rescaled residuals, since in the latter case the residuals are observed in a very highly irregular

boundary due to the high volatility of the conditional rate function over time. By compari-

son, the conditional rate tends not to vary as wildly with magnitude; hence the horizontally

rescaled residuals are observed within a much smoother and more regular boundary, facili-

tating their direct examination by eye as well as the estimation of statistical properties such

as the second moment or higher-order properties of the residuals.

In the seismological application here it was demonstrated that anisotropic kernel smooth-

ing enables better estimation of the spatially varying background rate ν(x, y) in the space-

time-magnitude ETAS model when applied to earthquakes in Bear Valley, California. This

is no great surprise because of the apparent fault structure in this region, which is accounted

for in the anisotropic smoothing. More surprising, however, is the result that the assumption

of separability of the magnitude distribution, assumed not only in the ETAS model but in all

or at least nearly all existing models for earthquake occurrences, appears to be invalidated

in this case. It is shown that for earthquakes in certain magnitude ranges (here, magnitude

3.1 to 3.25 or so) the previous triggering events appear to affect the rate of earthquakes in

this magnitude range differently than for other events. Hence, in future use of models such

as ETAS for purposes of seismic hazard estimation and other uses, it may be advisable to
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allow the model parameters to vary across different magnitude scales.

Our conclusions are not seriously affected by the problem of boundary effects, since in

each case our estimates of second moment properties are compared with simulated Poisson

processes observed on identical boundaries. However, one potential issue deserving further

consideration is the problem of artifactual regularity of the residuals when the model param-

eters are estimated rather than known. Indeed, if the model parameters are known, then the

residual processes discussed here are distributed exactly as homogeneous Poisson processes,

but if the parameters are estimated, then the residuals are typically slightly more regular

than Poisson; see e.g. Schoenberg (2002) for details. Though some authors (e.g. Khamaladze

1988, Heinrich 1991, Andersen et al. 1993) discuss the role of estimation on the distributions

of certain test statistics for point processes, the extent to which the regularity of residuals,

as well as dependence of successive iterations of thinned residuals, affects statistics such as

the K-function of the residuals is an important topic for future consideration.
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Figure 1: Locations, times and magnitudes of moderate-sized (M ≥ 3.5) earthquakes in Bear

Valley, CA, between 1970 and 2000.

25



+

+

+

+

+
+
++

+
++
+

+
+
+

+
+
+

++
+
+
+
++
++
+
++

+
+

+
+
+

+

++

+

+
++

+
++

+

+

++

+

+
+

+
+

++

+

+

++

+

+
+

+

+
+

+
++
++
++
+
+
+
+
++
+
+
++
+

+

+

+
+
++
++
+
++

+
+

+

+
++

+

+

+

+
+
+

+
+
+
+
++
+
++
+
+
++

+
+

+
+
+
+
+
+
+
+++

+

+
+
++++
+
++
+
+
++
+
+
+
+++
+
++
+++
+
+
+

+
+
+

+

++
+
+
+
+

+
+
+

+

+

+

+
+
++

+

+

+
+
+

+

+
+

+
++

+
+
+
+

+

++
++

+

+
+

++

+++
+

+

+
+

+

+

+

++

+
++

+

+
++

+

+
+

+
+
++

+

+

+
+

+

++

+

+

+
+

+

+

+

++
+

+

+

+

++

+

+
+

+
+
++

+

+

+
+

+

+

+

+

+

++

+

+

+
+

+
++
+++

+

+

+

+
++

+

+

+

+

+
+
+

+

+

+
+
+

+++
+
+

+

++
+

+

+

+

+

+

+

+

+

+

+

+

+
+
+
+
+

+

+

+

+

+

+
+
++

+

+
+

+

+

+

+

+
+

++

+

+

+
+
++

+

+

+

++

+

+
++
+
+

+

+

+

+

+

+
+

+

+
+
+

+++
++

+

+

+

+
+
+

+

+

+

+
+
+
++
+
+
+

+

+
+

+

+
+
+

+

+
+
+
+
+

+

+

++

+

+
+
+
+

+

+
+

+

+

+
+
+
+

++
+

+

+
+

+

+
++
+
+

+
++
++
+

+
+

++

+
+

+

+

+
+

+

+

+

++
+

+
+

+
+
+

+

+
+
++
+
+
+

+

+
+
+++

+

+
+
+
+

+
+

+

+

+

+

+
+

+

+
+

+++

+
++
+

+

+

+

+

+
+
+
+
+
+

+
+

+
+

+

+
+

+

+

+

+

+

++

+

+
++

+

+

+

+

+

++
+
+

+

+

+

+

+

+
+

+

+
+
+
++
+

+

+

++
++

+

+

+

+

+
+

+++
+

+

+

+

+

++
++

+

+

+

1970 1975 1980 1985 1990 1995 2000

3
.0

3
.5

4
.0

4
.5

5
.0

5
.5

year

m
a
g
n
it
u
d
e

Figure 2: Times and magnitudes of Bear Valley, CA earthquakes.
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Figure 8: Vertically rescaled residuals based on model (1’), in time-magnitude plane.
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Figure 9: Vertically rescaled residuals based on model (1’), with the rescaled magnitudes

displayed on a logarithmic scale.
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Figure 10: Horizontally rescaled residuals based on model (1’), in the time-magnitude plane.
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Figure 11: Estimated standardized second moments of horizontally rescaled residuals based

on model (1’), for (a) magnitude 3.1; (b) magnitude 3.2; (c) magnitude 3.5; (d) magnitude

3.8.
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Figure 12: Horizontally rescaled residuals based on model (4).
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Figure 13: Estimated standardized second moments of horizontally rescaled residuals based

on model (4), for (a) magnitude 3.1; (b) magnitude 3.2; (c) magnitude 3.5; (d) magnitude

3.8.
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