UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Interaction in Spoken Word Recognition Models: Feedback Helps

Permalink
https://escholarship.org/uc/item/24i8{91x

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 27(27)

ISSN
1069-7977

Authors

Harris, Harlan D.
Magnuson, James S.
Strauss, Ted

Publication Date
2005

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/24j8j91x
https://escholarship.org
http://www.cdlib.org/

Interaction in spoken word recognition models: Feedback helps

James S. Magnuson™ (james.magnuson@uconn.edu)
Ted Strauss (ted.strauss@uconn.edu)
Harlan D. Harris (harlan.harris@uconn.edu)

Department of Psychology, University of Connecticut
Storrs, CT 06269-1020 USA

Abstract

A long-standing debate between autonomous and interactive
models of spoken word recognition was given new life with
the claim that not only are autonomous models more
parsimonious, but feedback cannot aid recognition (Norris,
McQueen, & Cutler, 2000). The claim was bolstered by
simulations with the preeminent interactive activation model,
TRACE (McClelland & Elman, 1986). When lexical feedback
is turned off, as many words are recognized more quickly as
are recognized /ess quickly (Frauenfelder & Peters, 1998),
suggesting that feedback does not help recognition, even in
the prototypical interactive model. However, these
simulations used only a small subset of the lexicon, and did
not address a primary motivation for interaction: to make the
model robust in noise. We compared recognition of every
item in a large TRACE lexicon with and without feedback
under multiple levels of noise. With or without noise, most
words were recognized more quickly with feedback than
without. Feedback also makes the model resistant to noise:
recognition is more accurate and faster with feedback than
without when noise is added to the input. In short, feedback
helps.

Word recognition: Interactive or autonomous?

The nature of information flow during perception and
beyond is a central question in cognitive science. When
should sensory data be integrated with prior knowledge?
Does veridical perception require that sense data be
protected from top-down knowledge, or can direct top-down
interaction make bottom-up processing more efficient and
robust in noise? Compelling arguments have been made for
both positions. On the one hand, the case for early
encapsulation follows from concerns that it would be
difficult if not impossible to balance top-down and bottom-
up information sources so as to allow veridical perception
(Fodor, 1983); an organism that hallucinates tigers
whenever it sees a flash of orange will not be able to act
efficiently in its environment. Instead, veridical perception
requires an encapsulated first-pass analysis of the bottom-up
input that feeds its results forward to higher levels of
representation where top-down knowledge can be integrated
safely.

On the other hand, proponents of interaction argue that a
system can learn to balance top-down and bottom-up
interaction such that veridical perception is not sacrificed
but top-down information is available to guide perception

* Also at Haskins Labs, New Haven, CT.

continuously from its earliest moments. On this view, early
and continuous access to prior knowledge will make
processing more efficient, essentially by tuning perceptual
systems to prior probabilities based on experience (Knill &
Richards, 1996).

While Fodor’s (1983) arguments for modularity were
meant to apply between rather than within input systems,
similar arguments have been made for information flow
within modalities. A notable example is the domain of
speech perception and spoken word recognition, where this
debate has recently taken center stage. The core phenomena
at issue are lexical effects on the perception of sublexical
units, e.g., phonemes (consonants and vowels), such as the
word superiority effect (phonemes are detected more
quickly in words than nonwords; Rubin, Turvey, & Van
Gelder, 1976), and phoneme restoration (context dependent
restoration of a phoneme replaced with noise or an
ambiguous sound as a function of lexical or sentential
context, e.g., Samuel, 1981).

Proponents of interactive models (e.g., McClelland &
Elman, 1986) hold that early and continuous interaction not
only accounts for effects of top-down knowledge, but does
so in a way that is efficient and leads to robust performance
given noise (McClelland & Rumelhart, 1981). Indeed,
despite well-known deficiencies (McClelland & Elman,
1986; Norris, 1994), the TRACE interactive-activation
model continues to hold its position as the model of speech
perception and spoken word recognition that accounts for
the broadest and deepest set of empirical phenomena.

Proponents of autonomous models (e.g., Norris,
McQueen, & Cutler, 2000) argue that purely feedforward
models can account for top-down effects via post-lexical
interaction, precluding sublexical hallucination from
feedback, and avoiding the arguably more complex
machinery of feedback connections. Recently, the debate
has been re-energized both empirically and theoretically.
The empirical impetus came from evidence that apparently
compelling evidence for interaction (that a lexically-restored
phoneme could drive compensatory coarticulatory effects at
the phoneme level, suggesting lexical feedback had truly
modulated sublexical representations; Elman & McClelland,
1988) could arise from a potentially sublexical locus
(diphone transitional probabilities) rather than from top-
down lexical feedback (Pitt & McQueen, 1998). Later
studies (e.g., Magnuson, McMurray, Tanenhaus, & Aslin,
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2003; Samuel & Pitt, 2003) replicated the original results
using lexical contexts that could not be attributed to
transitional probabilities, but not all parties are convinced
(McQueen, 2003).

The theoretical impetus came from a paper by Norris et
al. (2000), who argued that feedback is not necessary, and
furthermore, it could never help word recognition — and
might in fact hinder it. As Norris et al. put it:

The best performance that could possibly be expected
from a word recognition system is to reliably identify
the word whose lexical representation best matches
the input representation. This may sound trivially
obvious, but it highlights the fact that a recognition
system that simply matched the perceptual input
against each lexical entry, and then selected the entry
with the best fit, would provide an optimal means of
performing isolated word recognition (independent of
any higher-level contextual constraints), limited only
by the accuracy of the representations. Adding
activation feedback from lexical nodes to the input
nodes (whether phonemic or featural) could not
possibly improve recognition accuracy at the lexical
level (p. 301).

Norris et al. bolstered this argument by pointing out that
while feedback in TRACE does modify phonemic
processing, Frauenfelder and Peeters (1998; FP98 from here
on) showed that it does not have a “general beneficial effect
on word recognition.” FP98 compared the time it took a
target word to reach a threshold with feedback set to the
default level or turned off (set to 0.0; their Simulation 5).
They compared recognition times for a set of 21 words that
had been chosen for two other simulations. The expectation
was that feedback would speed recognition, since the
bottom-up input should be amplified by recurrence via top-
down connections. However, FP98 found that about half
their items were recognized more quickly without feedback
than with feedback. The implication would seem to be that
feedback in TRACE does not serve any useful purpose aside
from accounting for top-down effects.

However, the FP98 simulation does not address a crucial
motivation for feedback: it makes a model robust under
degraded conditions, such as the presence of external or
internal noise. This issue is addressed briefly in the original
TRACE paper (McClelland & Elman, 1986), as it was
addressed in depth in the first major interactive-activation
paper (McClelland & Rumelhart, 1981). Noise is a crucial
ecological consideration, given considerable internal noise
in neural systems and the variable (and often literally noisy)
conditions under which speech is experienced.

One way to construe feedback in interactive-activation
models is that they make the models implicit Bayesians (cf.
Movellan & McClelland, 2001). The simple addition of
feedback gives the model early and continuous access to
dynamic, context-sensitive prior probabilities at multiple
windows of analysis without explicit representations of the
probabilities. For example, simple diphone and longer n-
phone transitional probabilities will emerge as a function of

the structure of lexical neighborhoods: the more words there
are with a particular sequence, the more feedback the
component phonemes of that sequence receive. In the case
of weak bottom up information (e.g., due to a low amplitude
input signal or the presence of noise), feedback will help.
Given roughly equivalent evidence for two sublexical
alternatives, if one is contained in a word and the other is
not, or one is contained in more words than the other,
feedback will push the system towards that alternative.
Given roughly equivalent bottom-up information for two
lexical alternatives, if one has a higher prior probability
(either in terms of lexical frequency [if it is implemented
Dahan, Magnuson, & Tanenhaus, 2001] or sublexical
frequencies implicit in the lexicon), this will be reflected in
greater feedback and will push the system to favor the
alternative more consistent with prior knowledge. Why,
then, did FP98 fail to find a benefit of feedback? We argue
that the apparent failure of feedback to help lexical
recognition in TRACE stems from the failure to test the
model in conditions where the bottom-up information does
not perfectly identify a lexical alternative. We will also
consider the possibility that the result may not generalize
beyond the 21-word subset FP98 tested.

Simulations: Feedback and Noise

We reexamined the role of feedback in TRACE by
comparing word recognition in TRACE with and without
feedback, and under levels of increasing noise. This allows
us to test the expectation that feedback in interactive-
activation models should make them robust to noise. We
also tested the generality of the FP98 failure to find a
feedback advantage without noise by testing every word in a
large, 901-word lexicon. FP98 only tested 21 words with
homogenous characteristics (seven-phoneme words with
uniqueness point at phoneme position four). These were
chosen for specific reasons for their earlier simulations, but
it is possible that they are not representative of the entire
lexicon with respect to the effects of feedback.

Methods

Lexicon. We did not have access to FP98’s “biglex”
lexicon of 1024 words, so we generated our own
(“biglex901”) by following the procedures FP98 describe
for compiling biglex: we scanned a large electronic
dictionary (20,000 words) for all items that could be
transcribed using only TRACE’s 14 phonemes (/p/, /b/, /t/,
/d/, 1%/, 1gl, Isl, IS/, /tl, 1, /al, /i/, o/, ™). This yielded a set
of 462 words, so we substituted /*/ for schwa in the
dictionary, which brought the total to 604. Collapsing across
vocalic and consonantal liquids (substituting /I/ and /1/ for
both) brought the total to 901.

TRACE parameters. We used the standard (McClelland
& Elman, 1986) settings for all but two parameters. We
assumed our lexicon would work best if we modified lexical
inhibition and feedback as FP98 did to optimize
performance with their biglex. We changed lexical
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inhibition from the standard 0.030 to 0.025, and of course,
we manipulated feedback.

Feedback. We used three levels of feedback: none (0.00),
the FP98 value for lexical feedback in large lexicons (0.015)
and twice that (0.030, also the value used in the standard
parameter set).

Noise. Gaussian noise was sampled from a normal
distribution function and added to the input stimulus values
(which range from 0.0 to 1.0). The mean of the distribution
was kept constant at 0.0, while a 7-step continuum was
created on the standard deviation of the noise in steps
ranging from 0.0 to 1.5 in steps of 0.25.

Operationalizing recognition. TRACE solves the
segmentation problem by reduplicating each phoneme and
word unit. For example, there are copies of the template
corresponding to the word “cat” aligned with the pseudo-
spectral trace every 3 time cycles. In this way, a “cat”
template will be closely aligned with any corresponding
input over the entire input to the model. However, a modeler
must decide how to interpret the bank of word units. FP98
based their interpretation on the method McClelland and
Elman (1986) used for phoneme decisions: one simply
chooses the unit known to be aligned with the input. FP98
point out that the unit immediately to the right of the
perfectly aligned unit sometimes attains a higher activation,
and therefore they summed the activation of the target unit
perfectly aligned with the input and the unit immediately
following it. One must also decide how to treat potential
competitors. FP98 considered any unit with any overlap
with the target as competitors. Response probabilities were
then calculated at each TRACE processing step using the
Luce (1959) choice rule:

ka;
e 1

2 :

where R; is the response probability for item i, a; is that
item’s activation in TRACE, £ is a constant (set to 20, as in
FP98 simulations) that controls target-competitor
separation, and the summed activations in the denominator
include all target and competitor units. As in the FP98
simulations, an item was considered “recognized” when its
response probability exceeded a threshold of 0.9.

While we have serious reservations about this decision
rule (in particular, the selective nature of the target and
competitor sets), we used it to maintain consistency with
FP98. However, simulations with decisions rules that avoid
these problems yield quite similar results (Magnuson,
Strauss, & Harris, in preparation).

Simulation software. The simulations were conducted
using jTRACE, a recent Java reimplementation of the
original TRACE C code (Strauss, Magnuson & Harris,
2005, this volume). We have successfully replicated all
attempted previous TRACE simulations with jTRACE,
despite minor implementational differences (e.g., the
original TRACE code depended heavily on pointer
arithmetic, which is not available in Java). jJTRACE is also
augmented with an easy to use interface, and facilities for

R =

graphical representation, scripting and batch processing, and
is available at http://maglab.psy.uconn.edu/jtrace.html. For
our current purposes, JTRACE’s ability to run large batches
of simulations was crucial.

Procedure. Each word in the biglex901 lexicon was used
as the target 21 times: 3 (levels of feedback) X 7 (levels of
noise). We also repeated the simulations with smaller
lexicons (including the original, 212-word TRACE lexicon
known as slex), for reasons we discuss below. In each case,
the decision rule described above was applied and
recognition time and accuracy were recorded. Simulations
were run for 100 cycles. Without noise, most words in the
lexicon were recognized by cycle 95. Thus, 100 cycles
provided adequate time for recognition; accuracy would not
significantly increase at any feedback X noise level were we
to run the simulations for more cycles. The items that were
not correctly recognized typically fell short of the threshold,
and could never reach it. This issue is addressed further
below and by Magnuson et al. (in preparation).

Results

Feedback helps in the absence of noise. First, we
examined whether we replicated the FP98 result that equal
numbers of items are recognized more quickly with and
without feedback. The left panel of Figure 1 is a scatter plot
comparing reaction times with and without feedback. Items
below the equality line were recognized more quickly with
feedback than without. In fact, 73% of items in the lexicon
were recognized more quickly with feedback.

How can we reconcile this with the FP98 report that
feedback does not confer a general advantage? Recall that
FP98 used a set of 21 words chosen to have particular
characteristics important for earlier simulations. The 21
words they selected consisted of all the seven-phoneme
words in their lexicon with uniqueness point at the fourth
phoneme. We examined whether those items might have
particular combinations of neighborhood, length, etc., that
could lead to the FP98 result. In our 901-word lexicon, we
only had 8 items that matched the FP98 characteristics. The
right panel of Figure 1 shows the results for those 8 items.
Just as FP98 reported, there is not a general feedback
advantage for items with these characteristics.

So on the one hand, the items FP98 had chosen for other
simulations happened to have characteristics that seem to
counteract a feedback advantage. On the other, there remain
a substantial proportion of items that are recognized more
quickly without feedback. Our analyses so far show that
items that are recognized more quickly without feedback fall
into at least one but more often two or all three of the
following sets: (a) long words — the longer a word is, the
more items it overlaps with temporally, each of which can
inhibit it; (b) items with multiple shorter words embedded
within them; (c) items that share onsets with items that get
early advantages from a “gang effect” — for example,
“colleague” (/kalig/) is recognized more quickly without
feedback, and its strongest competitor is “car” (/kar/), which
receives feedback from several words beginning with /ka/

1381



110— T T . : . T

100+ . :

Nel
(=]
T

80

70k . ‘?:. 344

RT with feedback (0.015)

60 - -

50+ Qd —

40, I L [
40 50 60 70 8 90 100 110

RT without feedback

100 T T T T

Nl
(=]
I
|

o)
(=]
I
|

RT with feedback (0.015)
oy =
S =)
T T
\ \

w
(=)
I
|

P T B [
4910 50 60 70 80 90 100

RT without feedback

Figure 1: Response times in TRACE cycles with feedback (vertical axis) and without (horizontal). Items below the
equality line are recognized more quickly with feedback. Left panel: all 901 items in the lexicon; size of a symbol
indicates how many words lie at a point. Right panel: 8-item subset comparable to the FP98 set of 21 items.

and /kar/. In each of these cases, feedback boosts the
activation of competitor items early on such that inhibition
from those competitors slows the target’s activation. We
discuss these issues in more detail in Magnuson et al. (in
preparation).

Feedback makes recognition resistant to noise. Again,
the argument FP98 and Norris et al. (2000) make about the
FP98 results — that there is no general benefit to feedback —
neglects an important motivation for interactivity:
robustness in noise (leaving aside for the moment the fact
that we have now found a general benefit of feedback).

This motivated us to repeat the simulations with different
levels of noise added to the input. As described above,
Gaussian noise with a mean of 0.0 and standard deviation
ranging from 0.0 (i.e., no noise) to 1.50 in steps of 0.25 was
added to each input unit. All words in a lexicon were tested
at each noise level. We also used three levels of feedback:
none (0.0), the standard level for large lexicons (0.015) and
the standard level for the original, 212-word lexicon (0.030).

100 \ . : ‘ ‘
e—e Feedback = 0.000]
=--aFeedback = 0.015
80 . AN + -+ Feedback = 0.030|
>
g 60r -
5
g
& 40’ 7
20+ B
O |

0 05 1
Noise Magnitude (sd)

For each simulation, we measured accuracy and response
time (time for the response probability of a unit to exceed
the threshold).

Figure 2 shows accuracy and response time for each
feedback condition at each level of noise. Regarding
accuracy, note that there is a consistent advantage with
feedback once the standard deviation of the noise reaches
0.5. The difference between the 0.015 and 0.030 levels of
feedback demonstrates that too much feedback has a
deleterious effect on accuracy, which suffers in the low-
noise conditions.

Finally, we have the surprising result that accuracy
without noise does not reach ceiling levels; it is a bit better
than 85% with the lower level of feedback or without
feedback. The items that are not recognized were always the
most active item, but could not reach the FP98 threshold.
These were typically short words or words in larger cohort
groups.

To better understand why these words were problematic,

80+ |
3
) L
>
Q
&
<70* -
a4
E | ]
=}
3
Eo- S i
R I — Feedback = 0.000
P Ex ~--+Feedback = 0.015| A
Ca -« Feedback = 0.030
50 | | | ! |

0.5 1 1.5
Noise Magnitude (sd)

Figure 2: Mean accuracy (left) and response time for every item in the 901-word lexicon at each level of feedback and
noise. Error bars in the right panel represent standard error (standard error is not meaningful for accuracy, as it is based on
a binary measure — correct or not — for each item from a single simulation). The response time curves end at different
noise levels for different levels of feedback because accuracy falls to 0 more quickly at different levels.
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Figure 3: Mean accuracy (left panel) and response time for every item in the original 212-word TRACE lexicon (slex) at
each level of feedback and noise. Error bars in the right panel represent standard error.

we explored several possible explanations. First, we tested
whether the phoneme substitutions we used to get the
lexicon up to 901 words might be responsible, as those
substitutions could generate unnatural neighborhoods. We
incrementally removed our substitutions, and repeated the
full set of simulations with different lexicons. First, if we do
not collapse across vocalic and consonantal liquids the
lexicon is reduced to 604 words, but there is not a
significant increase in accuracy. Second, if we do not
substitute /~/ for schwa, the lexicon is further reduced, to
462 words, and there is a very modest improvement in
accuracy. Reducing the lexicon back to the original 212
items and using the original parameter settings brings
accuracy above 98% in the no- and low-feedback
conditions. The results with this lexicon are shown in Figure
3.

Our current best explanation is that the accuracy decline
with lexicon size reflects a scaling problem related to
TRACE’s small phoneme inventory. Neighborhoods
become unrealistically dense as we increase the size of the
lexicon, since we sample only from a small portion of the
overall phonological space of the full English lexicon.
Furthermore, a few of the vowel representations in TRACE
seem to be insufficiently specific, as they occur in a larger
than expected proportion of items that are not correctly
recognized. For more detail, please see Magnuson et al. (in
preparation).

The effects on response time are clear. Feedback speeds
recognition (of those items recognized correctly), with an
additional advantage to increasing feedback (with an
accuracy trade-off, as increasing feedback also hurts
accuracy at low levels of noise). A general benefit is
observed, which increases with noise.

In short, feedback helps.

General Discussion

When the performance of TRACE is examined on a large
number of items under clear and noisy conditions, the
helpful role of feedback becomes apparent. Feedback is not

a poorly-motivated mechanism that simply allows the model
to account for top-down effects like word superiority.
Instead, the underlying motivation for feedback in
interactive activation models is to make performance robust
under difficult conditions, such as speech in noisy or
otherwise degraded or suboptimal conditions. Our
simulations show feedback substantially boosts efficiency
under clear and difficult conditions, both in accuracy and
response time. This validates the original motivation for
feedback, and demonstrates that the ability of a model like
TRACE to account for top-down effects emerges from a
mechanism with an important functional purpose.

Why does feedback help? As we discussed earlier, the
top-down/bottom-up resonance that feedback generates
makes an interactive activation model approximate a
Bayesian analyzer; lexical representations encode sublexical
patterns of varying grain sizes that guide the system as a
whole towards the most likely cause of a particular input
pattern. Given noisy input that is consistent with two
sublexical patterns, one of which occurs in one or more
lexical items but the other of which does not occur (e.g., a
segment midway between /s/ and /S/ preceding /tr/), lexical
feedback provides sublexical base-rate information, and
guides the system to a rational response given the input.

Some (e.g., Norris et al., 2000) have claimed that
feedback in a model like TRACE entails that the model will
hallucinate clear inputs when it “hears” ambiguous ones.
However, whether the model hallucinates or not is a
function of the amount of feedback. Indeed, examples like
Figures 13 and 30 in the original TRACE paper
(McClelland & Elman, 1986) demonstrate how sensitive
TRACE is to distorted input. In cases where ambiguous or
incorrect phonemes are presented (e.g., /tluli/ instead of
/truli/), TRACE recognizes a word, but one cannot claim it
hallucinates the word or the restored phoneme. The word is
recognized more slowly than a clear version, and the same
holds at the phoneme level — e.g., in the /tluli/ example, /1/ is
activated by feedback recurrence, but not as much as it
would be given /truli/ as the input. Furthermore, the trace
from which the model takes its name — the bank of memory
units aligned with points in time — contains substantial
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information about the surface details of the input, and
evidence that in fact /I/ rather than /r/ was “heard.”

Some (e.g., Cairns et al., 1995; Norris et al., 2000) have
argued that one could account for apparent top-down lexical
effects sublexically. For example, one could build in
sublexical base rate information by encoding diphone
transitional probabilities at a phonemic level of
representation. Proponents of this view often make the
additional argument that this is how simple recurrent
network models of spoken word recognition work —
especially those without explicit lexical representations.
However, Magnuson et al. (2003) report transitional
probability analyses that demonstrate that for many lexical
effects, the relevant base rate information is item-specific;
that is, a transitional probability explanation for one item
must appeal to diphones, while triphone or larger sequences
are needed to account for other lexical effects. What is
apparently needed is a dynamic, context-specific n-phone
representation, where n equals uniqueness point or word
length — which is exactly what lexical representations
provide.

Magnuson et al. also argued that such representations are
precisely what simple recurrent networks encode, even
though the locus of the representation need not be an
explicit lexical level; hidden units become sensitive to
context-specific short- and long-range dependencies,
providing a distributed lexical representation. Note that
those representations depend on top-down feedback: the
input to a simple recurrent network at a given time step
includes bottom-up signal information as well as
information about the states of the hidden units at previous
time steps (via context units).

We have made a strong case that feedback can help
recognition. But what of Norris et al.’s (2000) larger point —
that feedback is never necessary? Norris et al. have
abandoned the strong view contained in the extended quote
we used earlier. They now acknowledge that there are times
when prior knowledge — even lexical knowledge — has a
prelexical influence (e.g., Norris, McQueen, & Cutler,
2003). We have argued against one solution — encoding
diphone transitional probabilities at the phoneme level — as
insufficient and certainly less efficient than lexical feedback
for accounting for the dynamic, context-sensitive scope of
relevant probabilities. Norris et al. have speculated that
there is another solution that avoids online lexical feedback:
feedback for learning (in analogy to backpropagation) could
change feedforward phoneme-to-lexeme weights after
processing. It remains to be seen whether such a mechanism
can be implemented, but it keeps open the possibility that
online feedback may not be necessary. However, given that
online feedback can help — as we have demonstrated here —
it has the potential to provide a more parsimonious account,
if online feedback can also provide a basis for short- and
long-term learning. Learning is beyond the current scope of
TRACE, and we leave this question for future research.
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