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ABSTRACT OF THE DISSERTATION

New Interactions in Effective Theory

by

Kyungwook Kim

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, March 2011

Dr. Jose Wudka, Chairperson

I studied the physics beyond the Standard Model by using effective field theory. I built

models of new heavy physics and obtained their low energy effective Lagrangians; I

studied new effects on physical observables in collider experiments and nuclear, astro-

physical and cosmological processes. In Part 1, I will discuss the phenomenology of the

most general effective Lagrangian including up to dimension five operators built with

standard model fields and right-handed neutrinos. In particular, the new interactions by

a dimension five electro-weak moment operator of right-handed neutrinos will be shown

mainly. In Part 2, new interactions for neutrinoless double beta (0νββ) decay will be

discussed. The observation of the 0νββ decay will (i) tell us the type of neutrinos (Ma-

jorana or Dirac); (ii) open up the possibility of new physics; (iii) provide the constraints

on the energy scales of the new heavy physics. I will list the effective operators and

possible new physics models contributing to the 0νββ decay. Then I will present the

condition for the dominant contribution of each effective operator over other operators,

the lower limits on the energy scales of the new physics models, and the types of heavy

particles that can contribute to the 0νββ decay and may also be produced at the LHC.
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Chapter 1

Introduction

In Part 1, I will discuss the phenomenology of the dimension five effective oper-

ators including right-handed neutrinos. This work was published on Physical Review D

in 2009 [1] by Alberto Aparici, Kyungwook Kim, Arcadi Santamaria, and Jose Wudka.

In the following section an introduction to the effective field theory will be given, which

is one of the most efficient tools to describe the physics beyond the Standard Model.

1.1 Effective field theory

Effective field theory is a tool to describe the physics of elementary particles

with an energy scale above the Standard Model and below the mass scale of the heavy

particles in new heavy physics which we do not know the details. The effective theory

is described by effective Lagrangian that provides a parameterization of virtual heavy

physics effects. In this section, I will follow the ref. [2], in which an introduction to

effective theory is given.

2



1.1.1 Effective Lagrangian

To construct a model for a certain set of phenomena, first we need to determine

the corresponding fields for the light particles. Second, we need to specify low-energy

symmetries of the model based on the experimental evidence. Finally, we can construct

the most general Lagrangian with the fields satisfying the symmetries.

Since we need an effective theory describing the physics at energy scale below

a certain level Λ (the energy scale of new physics) the effective action SΛ
eff for the theory

will be obtained by integrating the action of the corresponding full theory over all

Fourier components of energy ≥ Λ and all fields of masses above Λ. Then the effective

Lagrangian, Leff can be defined in the effective action as follows

SΛ
eff =

∫
d4xLeff =

∫
d4x

∑
i

αi(Λ)Oi, (1.1)

where Oi are effective operators consist of only low energy fields and αi are Λ-dependent

coefficients. The effective Lagrangian describes all the virtual effects of heavy physics.

The form of the effective Lagrangian is independent of the model of new physics and

provides consistent, complete and unitary description of heavy physics effects at scales

below Λ. In this thesis, we will assume that in all the theories we consider, the heavy

physics is weakly-coupled and decoupling. This means that, if we define L(4) as part of

Leff containing operators of dimension less than four, L(4) is renormalizable. Then all

new-physics effects disappear in the limit Λ → ∞, so the coefficients αi can be expanded

in powers of 1/Λ.

1.1.2 Symmetries of effective theory

Since the energy level of heavy physics Λ is greater than the energy level of

electroweak symmetry breaking, we impose the same gauge invariance on the effective

3



theory as the Standard Model has. However, we do not need to impose global symmetries

such as lepton or baryon number conservations because they are accidental symmetries

of the Standard Model.

1.1.3 Redundancy of effective operators

Effective operators can be removed from the effective Lagrangian if the S ma-

trix does not change by replacing the effective operators by others or linear sum of other

operators. This is the case when operators are related by the equations of motion [3].

1.1.4 Estimations of the effective operator coefficients

We can estimate the coefficient of an effective operator from the new physics

generating the effective operator. The estimation depends on whether the corresponding

new physics is weakly or strongly coupled theory. If an effective operator is generated

from a weakly coupled new physics at tree level the coefficient estimate is,

αi ∼
1

Md−4
NP

(1.2)

where MNP is the energy scale of the new physics and d is the energy-dimension of the

effective operator. If an effective operator can only be generated at one-loop level then

the coefficient estimate will be further suppressed by a factor of 1/16π2.

If an effective operator is generated by a strongly coupled theory, the coefficient

is estimated as follows [2, 4]

αi ∼
Λ4−A−3B/2−C−D

(4π)2−A−B
, (1.3)

where A, B, C, and D are the number of scalar fields, the number of fermion fields,

the number of derivatives, and the number of gauge fields in the effective operator

respectively.
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1.2 Neutrino physics

In this section, I will give a brief introduction to neutrinos and their non-zero

masses following [5, 6] and the references therein.

1.2.1 Discovery of neutrinos

The discovery of neutrinos was from the observation of the decay processes of

nuclei

N(A,Z) → N ′(A,Z ± 1) + e∓, (1.4)

where N and N ′ are the initial and final nuclei. In the above processes the total energy

Ee of the emitting electron is approximately the difference between the initial and the

final masses of the nuclei

Ee ∼ MN −MN ′ ≡ Q. (1.5)

However, the experimental result for Ee was different from the expectation. The elec-

tron’s total energy varied continuously between electron’s rest mass and Q. Pauli sug-

gested that a neutral fermion with spin 1/2 should be emitted together with an electron

to explain the observation. This idea was developed by Fermi, and he invented the effec-

tive theory of weak interaction. Fermi’s theory predicted the decay rates of neutron and

muon, and also predicted the smallness of the neutrino’s cross-section. By year 2000,

the existence of all three neutrinos have been experimentally proved.

1.2.2 Evidence for non-zero neutrino mass

Whether or not neutrinos are massive the created neutrino through a weak

interaction

−L =
g√
2
ν̄Lγ

µeLW
+
µ +H.c. (1.6)
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is a flavor eigenstate, where the constant g is a gauge coupling constant, νL and eL

are flavor eigenfields of left-handed neutrino and left-handed electron, and W±
µ are the

charged weak bosons. If neutrinos are massive, then the flavor eigenstate created through

the above interaction will, in general, be a linear combination of mass eigenstates

|να⟩ =
n∑

i=1

U∗
αi|νi⟩, (1.7)

where n is the number of the generations of neutrinos and U is the mixing matrix

between charged left-handed leptons and left-handed neutrinos in flavor space. If n = 3

then U can be parameterized as

U =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e

−iδ

0 1 0

−s13e
iδ 0 c13




c21 s12 0

−s12 c12 0

0 0 1




eiη1 0

0 eiη2 0

0 0 1

 ,

(1.8)

where sij ≡ sin θij , cij ≡ cos θij and δ, ηi are phases. η’s appear only for Majorana

neutrinos and cannot be measured in neutrino oscillation experiments. The Majorana

phases can be measured in experiments for neutrinoless double beta decay which will

be treated in Part 2 of this thesis.

1.2.2.1 Neutrino oscillations in vacuum

As a flavor eigenstate of neutrino travels the space, each mass eigenstate will

evolve differently depending on its energy. For simplicity, let us consider the case that

n = 2 and use the standard approximation that the mass eigenstates are momentum

eigenstates. Then the flavor eigenstates at time t and at the distance l from where the

neutrino was created will be as follows, |να, t, l⟩

|νβ , t, l⟩

 =

 cos θ sin θ

− sin θ cos θ


 e−i(E1t−p1l)|ν1⟩

e−i(E2t−p2l)|ν2⟩

 (1.9)
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where ν1 and ν2 are mass eigenstates with m1 ≤ m2. Without loss of generality the

mixing angle θ can be taken as 0 ≤ θ ≤ π/2, and it can be assumed that the neutrino

propagates in vacuum or not very dense matter. If neutrinos are light enough to be

relativistic, and have the same momentum p then

Ei ∼ p+
m2

i

2E
, l ∼ t, (1.10)

and, omitting an overall phase, (1.9) will be approximately |να, l⟩

|νβ , l⟩

 =

 cos θ sin θ

− sin θ cos θ


 e−im2

1l/2E |ν1⟩

e−im2
2l/2E |ν2⟩

 . (1.11)

As a result neutrinos oscillate between their flavor states as they travel, and from the

above equation, the probability that α-flavor eigenstate becomes β-flavor eigenstate is

Pαβ = ⟨να|νβ , l⟩ = sin2 2θ sin2 ϕ21, (1.12)

where

ϕji ≡
∆m2

jil

4E
, ∆m2

ji ≡ m2
j −m2

i , (1.13)

in natural units, in which c = ~ = 1 and in more practical units for experimental

observations,

ϕji = 1.3∆m2
ji

l

E

MeV

eV2 ·m
, (1.14)

where ∆m2 is in eV2, l is in meters, and E is in MeV. The survival probability can be

easily obtained as

Pαα = 1− Pαβ . (1.15)

From (1.14), if the neutrino oscillation is observed we can conclude that at least one

flavor of neutrinos has non-zero mass.

Since neutrinos have small masses, ∆m2 is also small. Therefore, to have non

trivial value for the oscillation probability, l/E in (1.12) has to be large enough such

7



that

ϕ21 &
π

2
. (1.16)

When l is very large we can take the average value of sin2 ϕ21 as 1/2. We are going

to use this throughout the chapter. l/E is different in various experiments. For solar

neutrino experiments, the distance l from the sun to the detector on the earth is about

1011 m and E ∼ MeV so the experiments can probe ∆m2 down to 10−11 eV2. Long

baseline reactor experiments have l ∼ 105 m and E ∼ MeV so ∆m2 can be probed down

to 10−5 eV. For atmospheric experiments l ∼ 104 km and E ∼ GeV so ∆m2 can be

probed down to 10−4 eV. A long baseline accelerator experiment has l ∼ 103 km and

E ∼ GeV so ∆m2 can be probed down to 10−3 eV.

1.2.2.2 Atmospheric neutrino oscillation

In the earth’s atmosphere, π and K mesons are created in the collisions of

high energy cosmic rays with nuclei. The produced mesons decay dominantly into

µ+(µ−) + νµ(ν̄µ) through the Standard Model weak coupling because, in the rest frame

of the π or K meson, decaying into relativistic e+(e−)+νe(ν̄e) is not allowed by angular

momentum conservation. Super-Kamiokande (SK) experiment [7] detected clearly fewer

number of νµ compared to the expected number from the known cosmic ray fluxes

without neutrino oscillations. This νµ-deficit indicates νµ − ντ oscillation. The data

from the SK showed that the survival probability

Pµµ = 1− sin2 2θatm sin2 ϕatm, (1.17)

where

ϕatm ≡ 1.3∆m2
atm

l

E

MeV

eV2 ·m
, (1.18)

∆m2
atm ≡ (heavier mass eigenvalue)2 − (lighter mass eigenvalue)2, (1.19)

8



was minimum when l/E ∼ 500km/GeV. This means

1.3∆m2
atm500

km

GeV

MeV

eV2 ·m
=

π

2
. (1.20)

From this we can obtain

∆m2
atm = 2.4× 10−3 eV2. (1.21)

Also, from the observation of large oscillation

sin2 2θatm ∼ 1, (1.22)

which means

θatm ∼ π

4
. (1.23)

The above two results agreed with two long-baseline accelerator experiments K2K [8]

and MINOS [9]. The lepton mixing angle is very large when it is compared to the mixing

angle in quark sector, and therefore it is not as obvious how to assign each neutrino mass

eigenvalue to each flavor eigenstate as in the quark sector.

1.2.2.3 Neutrino oscillations in matter

When neutrinos are in a dense matter the Hamiltonian will include potential

energy terms in addition to the kinetic energy terms. The potential is generated by the

charged weak interaction of neutrinos with the matter. This will affect the neutrino

oscillation significantly if the neutrino interaction in matter is coherent and forward

scattering, which means that the neutrinos have the same momentum and spin before

and after the interaction. The effect of the effective potential on the neutrino oscillation

is known as MSW effect [10,11]. Let us consider the case that νe is traveling in a medium

with electrons, protons and neutrons. Then from the wave equation, the neutrino mixing

in the matter can be calculated, and the flavor eigenstates created at x can be expressed
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as [6]  να

νβ

 =

 cos θm sin θm

− sin θm cos θm


 νm1

νm2

 , (1.24)

tan 2θm ≡ ∆m2 sin 2θ

∆m2 cos 2θ −A
, (1.25)

A ≡ 2
√
2GFE[nα(x)− nβ(x)], (1.26)

where νm1,2 are mass eigenstates in matter, and nα(β)(x) is the density of neutrino α(β)

at x. When A = 0 then θm = θ. For A > AR ≡ ∆m2 cos 2θ, if θ < π/4, the mass

eigenstate in the matter will have inverted flavor components compared to the mass

eigenstates in vacuum. Therefore, when a neutrino mass eigenstate in matter is passing

across the region where A = AR, flavor components will be switched. This is called level

crossing.

The mass eigenstates of neutrinos in matter are not energy eigenstates. How-

ever, if the matter potential is a slowly varying function of position then the mass eigen-

states in matter are approximately mass eigenstates, which is the adiabatic transition

approximation. In this case, the oscillation probability can be expressed as [6]

Pαβ =

∣∣∣∣∣
2∑

i=1

ŨαiUβi exp

{
− i

2E

∫ l

0
m2

i (x)dx

}∣∣∣∣∣
2

, (1.27)

where

Ũ ≡

 cos θm sin θm

− sin θm cos θm

 , U =

 cos θ sin θ

− sin θ cos θ

 , (1.28)

mi are the masses of the eigenstates in matter and the integration is performed along

the path of the neutrinos.

1.2.2.4 Solar neutrino oscillation

The electron density in the sun decreases monotonically and slowly from its

center to surface. Therefore (1.27) can be used to analyze the neutrino oscillation in the

10



sun, and the survival probability at detectors on the earth can be rewritten as

Pee = cos2 θm cos2 θsol + sin2 θm sin2 θsol

+
1

2
sin2 2θm sin2 2θsol cos

[
1

2E

∫ l

0
dx{m2

2(x)−m2
1(x)}

]
, (1.29)

where θsol is a mixing angle of U in (1.28), and we choose to use the convention of

positive ∆m2 and 0 ≤ θsol ≤ π
4 . Then the last term is averaged to zero for the sun

giving

Pee =
1

2
(1 + cos 2θm cos 2θsol). (1.30)

In the above equation cos 2θ is always positive, and therefore whether Pee is greater

than 1/2 depends on the sign of cos 2θm, which depends on the sign of the denominator

of (1.25), AR −A.

If A ≪ AR then θm ∼ θsol and the survival probability on the earth will be the

same as in vacuum (1.12) with sin2 ϕ=1/2 because of the long l.

If A . AR

Pee >
1

2
. (1.31)

Since Pee implies no flavor change, the above equation means that most neutrinos will

be electron-like when they get to the Earth.

If A > AR then

cos 2θm cos 2θsol < 0 → Pee <
1

2
. (1.32)

For example, if A ≫ AR then

θm =
π

2
→ Pee = sin2 θsol, (1.33)

which resolves the solar neutrino problem that we observe less νe than we expected

without taking account of MSW effect.
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The electron density and adiabatic condition in the sun leave four independent

solutions for ∆msol and sin2 2θsol. They are SMA (Small Mixing Angle), LMA (Large

Mixing Angle), LOW (Low Mass), and VAC(Vacuum Oscillation). By comparing the

experimental results from SK, SNO [12, 13], KamLAND [14–16] and the predicted sur-

vival probabilities [8] for the four different solutions, all other solutions have been ruled

out but the LMS solution. The best fit value for the solar neutrino oscillations were

∆m2
sol = 7.7× 10−5eV 2, sin2 θsol = 0.33. (1.34)

1.2.3 Neutrino mass hierarchy and the lepton mixing matrix

From the various neutrino oscillation experiments, ∆m2
atm and ∆m2

sol were

found, and also it is found that ∆m2
atm > ∆m2

sol between neutrino mass eigenvalues.

Assuming there are only three mass eigenvalues, we still do not know if ∆m2
sol is the gap

between the lightest two mass eigenvalues or the heaviest two. If we define ∆mij and

θij as the mass-squared difference and the mixing angle between two mass eigenstates

νi and νj , and ∆m2
sol = ∆m2

21 then from the reactor experiment CHOOZ [17], it was

found that

sin2 θ13 ≤ 0.07. (1.35)

This means that νe component of ν3 is very small and therefore we can conclude that

θsol ∼= θ12, θatm ∼= θ23, ∆m2
sol = ∆m2

21, and ∆m2
atm = ∆m2

32.

For the case there are only three neutrino mass eigenvalues, from the known

mixing angles and the unitarity of the lepton mixing matrix, the ranges of the elements
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of the absolute value of U in (1.8) have been obtained in [6, 18] at 90% CL

|U | =


.80 ∼ .84 .53 ∼ .60 .00 ∼ .17

.29 ∼ .52 .51 ∼ .69 .61 ∼ .76

.26 ∼ .50 .46 ∼ .66 .64 ∼ .79

 . (1.36)

1.2.4 Physics models for massive neutrinos and the see-saw mechanism

In the Standard Model, after the spontaneous breaking of SU(2) symmetry,

fermions acquire masses through the Yukawa interaction terms. Each fermion mass

is Yukawa coupling constant times the vacuum expectation value of the scalar fields

v/
√
2 = 174 GeV. A Yukawa term consists of a pair of SU(2) doublets of a scalar and

a left-handed fermion, and a right-handed fermion singlet. The matter content of the

Standard Model does not include right-handed neutrinos, which does not allow neutrinos

to have masses.

Since we have been obtaining the information that neutrinos are massive and

also their masses are very small compared to the charged fermions, we need new physics

allowing neutrinos to have masses much smaller than the vacuum expectation value. In

effective field theory, if we include the matter content with n additional right-handed

neutrinos and the local symmetries of the Standard Model, we can have the following

mass terms after the spontaneous symmetry breaking

Lmν = −ν̄LMDνR − 1

2
νcRMRνR − 1

2
νcLMLνL +H.c., (1.37)

where MD,MR, and ML are mass matrices in the flavor space and are called Dirac,

Right-handed Majorana, and left-handed Majoran mass term respectively. MD is a

completely general 3× n matrix, MR is a complex symmetric n× n matrix, and ML is

a complex symmetric 3× 3 matrix. The Dirac mass term is from a Yukawa interaction,

the right-handed neutrino mass term can be put either by hand or through effective
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operators, and the left-handed neutrino mass term can be generated only by effective

operators, the lowest dimension one is unique:

Leff =
¯̃
ℓϕχϕ̃

†
ℓ+H.c., (1.38)

where χ is a complex symmetric 3 × 3 flavor matrix and have energy dimension, −1.

This dimension five operator was first introduced by Weinberg [19]. The neutrino mass

terms in (1.37) can be rewritten in a convenient form as

Lmν = −1

2

(
ν̄L νcR

) M †
L MD

MT
D MR


 νcL

νR

+H.c. (1.39)

If MR = ML = 0, then neutrinos will have usual Dirac masses as charged

fermions. However, the Dirac mass, which is proportional to the coefficient of the

Yukawa coupling of the neutrinos times v/
√
2, can be made small only if the Yukawa

coupling is extremely small.

If the scales of the eigenvalues of the mass matrices are

MR ≫ MD ≫ ML, (1.40)

then the symmetric neutrino mass matrix can be approximately diagonalized by a uni-

tary matrix as follows

Lmν = −1

2

(
ν̄L νcR

)
V ∗V T

 M †
L MD

MT
D MR

V V †

 νcL

νR

+H.c.

≃ −1

2

[
(ν̄L − νcRε

†)Uν (ν̄Lε+ νcR)V
∗
N

]
Dν

 V T
ν (νcL − ε∗νR)

V †
N (εT νcL + νR)

+H.c., (1.41)

where

V ≃

 U∗
ν M∗

DM
−1
R U∗

N

−M−1
R MT

DU
∗
ν UN

 (1.42)
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is the (3 + n)× (3 + n) unitary matrix in flavor space diagonalizing the mass matrix,

ε ≡ MDM
−1
R , (1.43)

and

Dν ≃

 U †
ν (M

†
L −MDM

−1
R MT

D)U
∗
ν 0

0 UT
NMRUN

 . (1.44)

In the above equation, the block elements are diagonalized by a 3×3 unitary matrix Uν

and a n× n unitary matrix UN . Then, with the following definitions

νmL ≃ U †
ν (νL − ενcR), NR ≃ U †

N (νR + εT νcL), (1.45)

mν = U †
ν (M

†
L − εMT

D)U
∗, MN = UT

NMRUN , (1.46)

the diagonalized mass term can be written as

Lmν = −1

2
(νmL + νcmL)mν(νmL + νcmL)−

1

2
(NR +N c

R)MN (NR +N c
R)

= −1

2
ν̄mνν − 1

2
N̄MNN, (1.47)

where

ν ≡ νmL + νcmL, N ≡ NR +N c
R (1.48)

are Majorana neutrinos

νc = ν, N c = N. (1.49)

The matrix ε characterizes the mixing between heavy and light neutrinos and its ele-

ments can be estimated as

|εij | ∼
√

mν

mN
, (1.50)

where mν is a mass of the order of the light neutrino masses and mN is a mass of

the order of the heavy neutrino masses. In most scenarios |εij | are very small then

the three components of ν correspond to very light Majorana neutrinos and they are
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mostly left-handed neutrinos νL, but n components of N will have very large masses

and they are mostly right-handed neutrinos νR. This is known as standard (Type-I)

see-saw mechanism [4,20–24], and can explain the smallness of the neutrino masses.

New physics models generating the left-handed neutrino mass term at tree

level with ML ∼ v2/MNP ∼ mν in (1.37) through the effective operator in (1.38) can

be categorized into three types [25] known as type-I, type-II and type-III [25–33]. Since

there is only one dimension 5 operator (1.38) generating the left-handed neutrino mass

term, all these heavy physics will give the same result.

A Lagrangian that can realize the type-I see-saw mechanism is

L = N̄i/∂N − ℓ̄λϕ̃N − 1

2
N̄ cMN +H.c., (1.51)

where N is a heavy fermion field with the following quantum numbers

(SU(3)-charge, SU(2)-isospin, U(1)-hypercharge) = (0, 0, 0), (1.52)

and λ is a Yukawa coupling. After ϕ acquires VEV and the heavy fields are integrated

out, we can obtain an effective Majorana mass term

Leff = −¯̃
ℓϕ(λM−1λT )†ϕ̃

†
ℓ+H.c. (1.53)

VEV−→ −νcLMLνL +H.c., (1.54)

where

ML =
v2

2
(λM−1λT )†. (1.55)

When the scale of the heavy fermion masses becomes large the scale of neutrino masses

become small. If the above Lagrangian has heavy fermion triplets instead of the singlets

we will obtain the same result, which is the type-III.

The type-II see-saw mechanism can be realized by a Lagrangian

L =
¯̃
ℓλΦIσ

Iℓ− µϕ̃
†
Φ∗
Iσ

Iϕ+H.c.− 2M2Φ†Φ, (1.56)
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where Φ is a heavy scalar field with quantum numbers (0, 1, 1), σI are Pauli matrices,

and µ is a dimensionful coefficient. ΦIσ
I can be written in terms of charge eigenfield

basis

ΦIσ
I =

 Φ3 Φ1 − iΦ2

Φ1 + iΦ2 −Φ3

 =

 Φ+/
√
2 Φ++

Φ0 −Φ+/
√
2

 , (1.57)

and 2Φ†Φ = |Φ0|2 + |Φ+|2 + |Φ++|2. The first term in the Lagrangian plus its Her-

mitian conjugate are Majorana mass terms, and the remaining terms correspond to a

scalar potential. Through the minimization of the potential, Φ0 will acquire a vacuum

expectation value together with the scalar field of the Standard Model,

ϕ2
VEV−→ v√

2
, Φ0

VEV−→ vΦ√
2
, vΦ =

µv2√
2M2

. (1.58)

If M ∼ µ ≫ v then the heavy scalars will be integrated out and neutrinos will acquire

small Majorana masses proportional to vΦ.

1.2.5 Right-handed neutrinos and leptogenesis

The heavy Majorana fermions, i.e., heavy Majorana neutrinos in (1.51) can

decay into two modes

N → e− + ϕ+ or (1.59a)

N → e+ + ϕ−, (1.59b)

where e is a charged lepton and ϕ± are the first component of the scalar doublet in the

Standard Model. The decay rates in the above two processes are different in general

because the Yukawa coupling is a complex matrix. And the phases of the Yukawa

coupling can not be removed by field redefinitions since the redefinitions are not canceled

out in the Majorana mass term. Therefore we will have a non zero CP asymmetry

ϵ��CP ≡ Γ(N → e− + ϕ+)− Γ(N → e+ + ϕ−)

Γ(N → e− + ϕ+) + Γ(N → e+ + ϕ−)
. (1.60)

17



This is the standard process of the leptogenesis and could contribute to the baryon

asymmetry in the early universe because B − L is conserved [34].
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Chapter 2

Dimension five effective

Lagrangian

If we include right-handed neutrinos in the collection of light fields in effective

theory we may have new effective interactions involving νR. We will assume that there

are two scales of new physics: the heavy Majorana mass M and Λ, and we will usually

(but not always) assume v < M < Λ.

The electroweak part of the most general effective Lagrangian including νR up

to dim-5 operators is

Leff = iℓ̄ /Dℓ+ iēR /DeR − (ℓ̄YeeRϕ+H.c.) + · · · (2.1a)

+ iν̄R /∂νR − (
1

2
νcRMνR +H.c.)− (ℓ̄YννRϕ̃+H.c.) (2.1b)

+ νcRζσ
µννRBµν + (

¯̃
ℓϕ)χ(ϕ̃

†
ℓ)− (ϕ†ϕ)νcRξνR +H.c., (2.1c)

where ℓ is left-handed lepton doublet, eR is right-handed charged lepton singlet, and

ϕ is scalar doublet. Ye and Yν are 3 × 3 and 3 × n complex matrices in flavor space

respectively, where n is the number of flavors of νR. ζ is a n× n antisymmetric, χ is a

3× 3 symmetric and ξ is a n×n symmetric complex matrix in flavor space respectively,
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and all these couplings have energy dimension −1.

The first line (2.1a) of the above effective Lagrangian is the electroweak part of

the Standard Model, the second line (2.1b) contains the operators of dimension 4 or less

involving νR, and the third line has dim-5 effective operators. The second operator in

the last line (2.1c), which was already introduced in the previous chapter, contributes to

the left-handed Majorana-neutrino mass matrix ML in (1.37) and provides the various

lepton number violating interactions of left-handed neutrinos with Higgs. The first and

the third operators in (2.1c) are new due to the addition of νR. The third operator in

(2.1c) contributes to the right-handed Majorana-neutrino mass matrix MR in (1.37) and

generates lepton number violating interactions of right-handed neutrinos with Higgs.

The first operator in (2.1c), which has not been considered in the previous lit-

erature, produces unique electroweak magnetic couplings of νR. There are other types

of effective operators producing neutrino magnetic moments: dim-6 or higher operators

generating ℓ − νR (Dirac-type) magnetic moments and dim-7 or higher operators gen-

erating ℓ − ℓ (Majorana-type) magnetic moments, which are suppressed by their small

couplings (that is, higher powers of 1/Λ) compared to the dim-5 magnetic moments. In

addition, these Dirac-type and Majorana type operators contribute to the light neutrino

mass terms at the loop level, and therefore their couplings will be strongly constrained

due to the small mass of light neutrinos. In Part 1, we will discuss the various effects

of the dim-5 magnetic moment operator in collider experiments and astrophysical and

cosmological processes.
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2.1 New heavy physics for the dim-5 effective operators

and coefficient estimates

We will present possible heavy physics models that can generate the dim-5

effective operators at low energies. From the heavy physics, we can identify the couplings

of the effective operators in terms of the couplings and the masses of the heavy physics.

More than one model of heavy physics can generate the same effective operator but they

all give the same coefficient estimate in terms of the mass scale of the heavy physics

as long as the effective operators are induced at the same level of diagram, i.e., tree

or loop level. Therefore, we will consider only the simple heavy physics models for the

coefficient estimations.

2.1.1 νL Majorana mass term ¯̃ℓϕχϕ̃
†
ℓ

As previously mentioned in Subsection 1.2.4, the new physics models generating

the three types of see-saw mechanism can induce the νL Majorana mass term. For weakly

coupled heavy physics, independent of the type of the see-saw mechanism, the coefficient

estimate is

χ ∼ λ2

MNP
, (2.2)

where λ is the coupling of the heavy particles to the Standard Model particles as we can

see in Subsection 1.2.4, and MNP is the mass of the corresponding heavy particle.

2.1.2 νR Majorana mass term (ϕ†ϕ)νc
RξνR

This operator can be generated by either a heavy scalar SU(2) singlet of hy-

percharge Y = 0 or a heavy fermion doublet of Y = 1/2. The coefficient estimate
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is

ξ ∼ λ2

MNP
, (2.3)

where λ is the coupling of the heavy scalar particles to ϕ†ϕ and νν or the coupling of

the heavy fermion to ϕν.

2.1.3 νR electroweak coupling νc
Rζσ

µννR

The νR magnetic moment operator cannot be generated at tree-level, but can

be obtained from a one-loop diagram by a pair of scalar and fermion fields with opposite

(nonzero) hypercharges or a pair of vector and fermion fields with opposite (nonzero)

hypercharges. An example of the Lagrangian for the scalar-fermion pair is

Lint =
∑
i

λ′
iν

c
iREω∗ + λiĒνiRω +H.c., (2.4)

where the subscript i is a flavor index, and we take λi and λ′
j are real. This Lagrangian

generates the νR magnetic moment through the diagrams in figure 2.1 [35]. Then, the

νR
ν

c
R

ω
−

B

E
−

E
− νR

ν
c
R

E
−

B

ω
−

ω
−

(a) (b)

Figure 2.1: Diagrams generating νcRζσ
µννR.

coefficient estimate is

ζ ∼ g′yλ2

16π2ME
∼ 1

16π2MNP
, (2.5)

where we assumed λ ∼ λ′ andMω ∼ ME , g
′ is the coupling constant of U(1) gauge boson

in the covariant derivative of the Standard Model, and y is the hypercharge of E or ω.
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The coupling is suppressed by 1/16π2 because of the loop. However, if the heavy physics

is strongly coupled and right-handed neutrinos participate in these strong interactions

then the coefficient can be estimated by naive dimensional analysis (NDA) [4,36] as

ζ ∼ 1

MNP
, (2.6)

where MNP is the scale of the strong interactions. This enhanced coupling may have

interesting effects at colliders.

2.2 The effective Lagrangian in terms of mass eigenfields

of Majorana neutrinos

After ϕ acquires a VEV, the effective Lagrangian (2.1) can be written in terms

of the mass eigenfields of Majorana neutrinos. The mass terms have the same form

as (1.37)

Lmν = −ν̄LMDνR − 1

2
νcRMRνR − 1

2
νcLMLνL +H.c. (2.7)

where the various mass matrices are defined in terms of the coupling constants as follows

MR = M + ξv2, ML = χv2, MD = Yν
v√
2
. (2.8)

From (1.45) and (1.48), we can have the expressions of the flavor eigenstates in terms

of the Majorana mass eigenstates of neutrinos as follows

νL ≃ PL(Uνν + εU∗
NN), (2.9)

νR ≃ PR(UNN − εTU∗
ν ), (2.10)

where ε was defined and estimated in (1.43) and (1.50). PL (PR) is the left-handed

(right-handed) projection operator for fermion fields and we have used the following
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definitions

PL ≡ 1− γ5

2
, PR ≡ 1 + γ5

2
. (2.11)

Plugging (2.9) and (2.10) into (2.1), each interaction terms will be written in terms of

the mass eigenfields.

The νR magnetic moment term can be written as

Oζ ≡ νcRζσ
µννRBµν +H.c.

≃ (N̄UT
N − ν̄U †

νε)PRζσ
µν(UNN − εTU∗

ν ν)(cWFµν − sWZµν) + H.c., (2.12)

where cW ≡ cos θW , sW ≡ sin θW , θW is the weak mixing angle and we have used

Bµ = cWAµ − sWZ0
µ, (2.13)

here Aµ is the massless electromagnetic gauge boson and Z0
µ is the massive neutral elec-

troweak gauge boson. As we can see from (2.12), Oζ produces six different electroweak

interactions between the Majorana neutrinos and the neutral bosons. Let us summarize

the new interactions schematically as follows

[N −N − (γ or Z0)]× ζ, (2.14a)

[N − ν − (γ or Z0)]× ζε, (2.14b)

[ν − ν − (γ or Z0)]× ζε2. (2.14c)

The interactions are suppressed by ε or ε2 depending on how many ν’s get involved.

The smallness of ε leads to a strong suppression of any electroweak-moment coupling to

ν. Also, notice that since the electromagnetic moment coupling ζ is an antisymmetric

flavor matrix, any two neutrinos in each of the above interactions must have two different

flavors.
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The νR mass term in terms of mass eigenfields will be

OνR ≡ −(ϕ†ϕ)νcRξνR +H.c.

≃ −(H + v)2

2
(ÑUT

N − ν̄U †
νε)PRξ(UNN − εTU∗

ν ν) + H.c., (2.15)

where H is the Higgs boson. The new interactions are schematically as follows

[N −N − (H or H2)]× ξ, (2.16a)

[N − ν − (H or H2)]× ξε, (2.16b)

[ν − ν − (H or H2)]× ξε2. (2.16c)

OνR provides the interactions of Higgs bosons with Majorana neutrinos. The interactions

involving ν are suppressed by ε or ε2.

The νR Yukawa term can be written as

OYν ≡ −ℓ̄ϕ̃YννR +H.c.

≃ − 1√
2
(H + v)(ν̄U †

ν + N̄UT
Nε†)PRYν(UNN − εTU∗

ν ν) + H.c., (2.17)

and the corresponding new interactions can be schematically shown as

[H −N − ν]× Yν , (2.18a)

[H −N −N ]× Yνε, (2.18b)

[H − ν − ν]× Yνε. (2.18c)

OYν also provides Higgs interactions with Majorana neutrinos, especially the dominant

contribution to the decay of the lightest heavy neutrino into a Higgs boson and a light

Majorana neutrino. For later uses, it is useful to see the relationship and the relative

size of the neutrino Yukawa coupling Yν and the mixing matrix ε. From (1.43), (1.50)

and (2.8)

Yν =
√
2
MR

v
ε, |Yν | ∼

√
2
mN

v
|ε|. (2.19)
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Finally, if we substitute (2.9) and (2.10) into the covariant derivative term of

lepton doublet in (2.1a) and writing only the interaction terms

iℓ̄ /Dℓ =
g√
2
W−ēLγ

µνL +H.c. +
g

2cW
Z0
µν̄Lγ

µνL + · · ·

≃ g√
2
W−

µ ēLU
†
eγ

µPL(Uνν + εU∗
NN) + H.c.

+
g

2cW
Z0
µ(ν̄U

†
ν + N̄UT

Nε†)PRγ
µ(Uνν + εU∗

NN) + · · · . (2.20)

And the above equation can be expressed schematically

[W − ν − e]× g, (2.21a)

[N −W − e]× gε, (2.21b)

[Z0 − ν − ν]× g, (2.21c)

[N − Z0 − ν]× gε, (2.21d)

[Z0 −N −N ]× gε2. (2.21e)

Among the above interactions, (2.21b) and (2.21d) produce the decay of the lightest

heavy Majorana neutrinos into a pair of Standard Model particles. If the heavy neutrinos

are lighter than the W and Z, they would affect the decay modes of these particles, and

LEP data can then be used to put a limit on ε.
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Chapter 3

New interactions at colliders

From the fact that the heavy Majorana neutrinos have not been produced at

LEP2 (Large Electron-Positron collider at 209 MeV) or Tevatron (proton-antiproton

collider at 1 TeV), we can conclude that the heavy physics scale MNP > 100 GeV. As

it was mentioned in Subsection 2.1.3, if the heavy physics is weakly coupled, from (2.5)

the coefficient will be suppressed as

ζ ∼ 1

16π2MNP
∼ 1

15 TeV.
(3.1)

Therefore, we considered the case that the heavy physics is strongly coupled. We took

ζ ∼ 1

MNP
, (3.2)

and studied the interesting effects of νR magnetic moments on the observables at LEP,

LHC and ILC (International Linear Collider).

3.1 Decay rates and decay lengths of heavy neutrinos

Since the Majorana particles are neutral, it is important to know their decay

rates and lengths to detect them at colliders. In this section, the dominant decay modes
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and lengths of the heavy neutrinos for relevant experiments will be discussed. For

simplicity, we assumed n = 2, i.e., there are only N1 and N2 with m2 > m1.

If the νR magnetic moment coupling is strong enough to produce N2 at a

collider, it will decay dominantly by the same interaction as follows

N2 → N1 + γ,

N2 → N1 + Z0, (3.3)

unlessm1 andm2 are almost the same, and if the second process is kinematically allowed.

If N2 is relatively heavy, m2 > 10 GeV, the energy of the produced photon will be large

then it could be a signal for N2 decay. The decay length and the lifetime of N2 is very

short. For example, we found that if N2 is produced at center of mass energy 100-1000

GeV then the decay length is well bellow 10−8 m unless m1 ≃ m2.
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Figure 3.1: Decay branching ratio of N1. Solid line for N1 → ν + γ and dashed line for
N1 → e + W∗ → e+ fermions, N1 → ν + Z∗ → ν+ fermions, and N1 → ν + H (see
text). We take ε ∼ 10−6, ΛNP = 10 TeV and mH = 130 GeV.
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However the lightest heavy neutrino can only decay into Standard Model par-

ticles. As we can see from (2.14b), (2.21b) and (2.21d), the interactions are always

suppressed by ε. In addition, (2.18a) generates the decay H → N + ν and this process

is also suppressed by ε, which we can see from the discussion below (A.8). Therefore

the branching ratios of N1 decay will be sensitive to the magnitude of ζ. The possible

decay modes are as follows

N1 → ν + γ, (3.4a)

N1 → e+W ∗ → e+ fermions, (3.4b)

N1 → ν + Z∗ → ν + fermions, (3.4c)

N1 → e+W, (3.4d)

N1 → ν + Z0, (3.4e)

N1 → ν +H, (3.4f)

where the asterisk on top of W or Z means that the particle is a virtual because the

mass of the decaying particle is not heavy enough to produce W or Z0. Notice that

(3.4b) and (3.4d) includes both cases of decaying into e− and e+. Fig. 3.1 shows an

example of N1 decay for MNP = 10 TeV. In the figure, we can see that, for m1 < mW ,

(3.4a) dominates but as m1 grows, (3.4b) and (3.4c) become more and more important.

Form1 > mW , the branching ratio of (3.4a) drops rapidly and (3.4d) becomes a

dominant decay mode, and for m1 > mZ , (3.4e) becomes also important. For m1 > mH ,

N1 can decay into ν and H. When m1 ≫ mH , the decay ratios of (3.4e) and (3.4f) are

equal and a half of (3.4d) (see the discussion below (A.8)). In figure 3.1 we assumed

MNP = 10 TeV but if MNP ∼ 1 TeV, then (3.4a) could be important even when

m1 > mW . In figure 3.2 we estimated the decay lengths of a N1 when the N1 is
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Figure 3.2: N1 decay lengths for a N1 produced together with a N2 at CM. We present
result for CM energies of

√
2 = 100 GeV (solid line), 500 GeV (dashed line), and 1 TeV

(dotted line); we took m2 = 2m1,∆NP = 10 TeV, and ε = 10−6.

produced together with a N2 by the νR magnetic moment interaction, for example,

e−+e+ → N1+N2. The produced N1 will decay into one of the possible modes in (3.4).

We considered the case that the center of mass energies are 100 GeV, 500 GeV and

1 TeV. And we assumed m2 = 2m1, ΛNP = 10 TeV and ε = 10−6. The figure shows

that for m1 < 100 GeV, the decay length is from a few millimeters to 10 km depending

on the variables involved and the center of mass energy
√
s. In particular, for a certain

range of m2, N2 could be observed through a displaced photon vertex [37–39].
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3.2 Heavy Majorana neutrinos in electron-positron collid-

ers

If N1 and N2 are sufficiently light, when they are produced at an electron-

positron collider, their decay lengths could be long and will escape the detector. As

we mentioned before, N1 decay is suppressed by ε so the decay length could be very

large. However, N2 could decay into N1 and an energetic photon. If the energy of the

produced photon is large enough to be detected, then strong bounds on the magnetic

moment coupling can be set, which depend on the masses of the heavy neutrinos. Notice

that the results depend on the specific values of the masses and couplings, and we will

not cover all possibilities in full detail, but will concentrate in cases where interesting

effects might occur.

First, let us consider the case that Z0 decays into N1 and N2 invisibly. We

calculated the decay rate Γ(Z0 → N1+N2) by the νR magnetic moment coupling ζ and

compared with the experimental data to obtain a bound on ζ. We assumed that only

the standard decay modes Z → νℓ + ν̄ℓ (ℓ = e, µ, τ) and Z → N1 +N2 contribute to the

invisible Z-decay. From the data at the LEP [40] we can have

Γinv = 3ΓSM
ν̄ν + Γ(Z0 → N1 +N2) = 499± 1.5 MeV. (3.5)

Also from the decay rate of Z0 into a pair of charged leptons [40]

Γ(Z → ℓ̄+ ℓ) = 83.984± 0.086 MeV, (3.6)

and the ratio of the neutrino and charged leptons partial widths calculated within the

Standard Model

ΓSM
ν̄ν

ΓSM
ℓ̄ℓ

= 1.991± 0.001, (3.7)
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we find the mean value of Γ(Z → N1 +N2) as

Γ(Z → N1 +N2) = Γinv − 3

(
Γν̄ν

Γℓ̄ℓ

)SM

Γℓ̄ℓ ≃ −2.6± 1.5 MeV. (3.8)

Since the mean value is negative, we use the Feldman and Cousins prescription [41] to

obtain the following bound

Γ(Z0 → N1 +N2) < 0.48× 1.5 MeV = 0.72 MeV 95% C.L.. (3.9)

Comparing this value with the calculation (A.2), we obtain the bound on |ζ12|

MNP =
1

|ζ12|
> 7

√
fZ(mZ ,m1,m2) TeV, (3.10)

where fZ(mZ ,m1,m2) is a phase space factor and defined in (A.1). For example, if

m1 = m2 = 35 GeV then

MNP =
1

|ζ12|
> 1.9 TeV. (3.11)

Now we consider the case that ζ-coupling is large enough to produce N1 and

N2 at the LEP. The dominant decay mode for N2 is N2 → N1 + γ unless m1 ≃ m2.

If the produced photon has energy Eγ > 10 GeV, it could be detected and separated

from the background. The searches for this type of processes have been conducted at

LEP1 [42–45] and at LEP2 [46–48]. If 5 GeV < m2 < 90 GeV and BR(N2 → N1+γ) = 1,

one typically obtains upper bounds on the production branching ratio [42,49]

BR(Z0 → N1 +N2) ∼ 2× 10−6 − 8× 10−6, (3.12)

depending on m1 and m2. For example, if m1 = 0, 10 GeV < m2 < mZ and if we use

BR(Z0 → N1 +N2) < 8× 10−6, we obtain

MNP =
1

|ζ12|
> 40 TeV. (3.13)
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LEP2 data can also be used to obtain bounds on |ζ12|. For typical values of m1 and m2,

one can obtain the upper bounds on the production cross section of the order of 0.1 pb

for
√
s = 207 GeV. This means

MNP =
1

|ζ12|
> 1 TeV. (3.14)
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Figure 3.3: e++e− → N1+N2 as a fuction of the heavy neutrino mass, m2, for different
center of mass energies. We took m1 = 0,MNP = 10 TeV

Figure 3.3 shows the cross section for e+ + e− → N1 +N2 as a function of m2

for four different
√
s values. We took m1 = 0 and MNP = 10 TeV. Here

√
s = 200 GeV

is for LEP and
√
s = 500 GeV and

√
s = 1 TeV are for future electron-positron colliders,

for example, the International Linear Collider (ILC). We can see from the figure that

except for the collisions at
√
s = mZ , cross sections are almost independent of the center

of mass energy as long as the reactions are kinematically allowed.
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3.3 Heavy Majorana neutrino production at the LHC

By the νR magnetic moment coupling, the heavy neutrinos can also be pro-

duced at hadron colliders through the Drell-Yan process. The differential cross section

for proton-proton collisions can be calculated in terms of the partonic cross sections

dσ(p+ p → N1 +N2 +X)

=
∑
q

∫ 1

0
dx1

∫ 1

0
dx2{fq(x1, ŝ)fq̄(x2, ŝ) + (q ↔ q̄)}dσ̂(q + q̄ → N1 +N2, ŝ), (3.15)

where ŝ = x1x2s is the partonic center of mass invariant square mass, σ̂ is the partonic

cross section, and fq(x1, ŝ), fq̄(x2, ŝ) are the parton distribution function for the proton.

Using the partonic cross sections in (A.12) we can find the total cross section as a

function of m1, m2 and ζ12.
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Figure 3.4: p+ p → N1 +N2 cross section at the LHC (
√
s = 14 TeV) as a functions of

the mass of N2. We took MNP = 10 TeV and drew three curves for few representative
masses of the N1.

In figure 3.4, we show the total cross sections for the heavy neutrino production
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at the LHC as a function of m2 for three different m1 examples. Here we assumed that

MNP = 10 TeV and
√
s = 14 TeV. The cross sections are more than a 100 fb if

m1 +m2 < mZ . For larger m2 the cross section decreases very fast.
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Figure 3.5: Transverse momentum distribution of the process p+ p → N1 +N2 +X for
different sets of heavy neutrino masses.

Figure 3.5 shows the differential cross section for p + p → N1 + N2 + X as a

function of the transverse momentum pT for different sets of m1 and m2. In the figure,

we clearly see the peek of Z0 boson for m1 +m2 < mZ .

3.4 Higgs decays into heavy neutrinos

As mentioned in Section 2.2, νR mass term can generate Higgs decay into a

pair of heavy neutrinos by the interaction (2.16a). The other two interactions which

are suppressed by ε have been neglected. We also neglected the Yukawa interactions

in (2.18), which are suppressed by Yν and ε. We computed the decay rate from (2.15),
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which is given in (A.13), and compared this result with the Standard Model decay rates

of the Higgs boson.

tt
�

bb
��

W+W-

Z Z

N N

100 150 200 250 300 350 400

1.

0.5

0.1

0.05

0.01

0.005

0.001

mH HGeVL

B
R
HH
®

X
L

Figure 3.6: Estimated branching ratios for Higgs decays with the new-physics scale at
1/ξ = 10 TeV. Heavy neutrino masses have been neglected.

In figure 3.6 we presented the branching ratio of the Higgs decay into pairs of

heavy neutrinos and the Standard Model particles, where we assumed MNPξ = 10 TeV

and neglected the masses of the heavy neutrinos for simplicity. In the figure, we see

that for mH < 2mW , the decay rate Γ(H → N1 + N2) is dominant. If the coupling

ξ = 1/MNPξ becomes larger Γ(H → N1 +N2) could be dominant even for mH > 2mW .

If the νR magnetic moment interaction takes place the produced N2 can decay into N1

and a photon which could be detected. Also N1 can decay into a light neutrino and

a photon. But this decay mode is suppressed by ε, therefore the decay length of the

N1 could be long and produce nonpointing photons which could be detected. If the νR

magnetic moment coupling is weak or does not exist, there will be three-body decays
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N1 → W ∗ + ν or N1 → Z∗ + ν which are suppressed by ε.
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Chapter 4

Astrophysical and cosmological

effects

In this chapter we will consider the effects of the νR magnetic moment on

several astrophysical and cosmological systems and processes. We will focus on some of

the most interesting effects.

4.1 Astrophysical effects

Among the various astrophysical processes the cooling of red giant stars pro-

vides a very tight bound on the magnitude of the νR magnetic moment coupling ζ if

the neutrinos involved in the process have sufficiently small masses. In the plasma of a

red giant star a photon acquires a temperature-dependent effective mass. This massive

photon is called a plasmon. The plasmon decays into a pair of neutrinos by ζ-coupling

if the neutrinos are lighter than the plasmon. If the neutrinos are produced, they will

leave the star and contribute to the cooling rate that is very sensitive to the size of the

magnetic moment [50–56]. This provides an upper limit on the coupling.
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From (2.12), the electromagnetic part of the electroweak moment coupling to

the heavy neutrinos is

LEM = cW N̄σµν(ζPR + ζ†PL)NFµν , (4.1)

where we took UN = 1. In a nonrelativistic nondegenerate plasma, the emissivity of

neutrinos is dominated by transverse plasma [57], which have an effective mass equal to

the plasma frequency ωP . The decay rate of the plasmon into two heavy neutrinos are

Γ(plasmon → Ni +Nj) =
2c2W |ζij |2

3π

ω4
p

ω
fZ(ωP ,mi,mj), (4.2)

where i and j are the flavors of the heavy neutrinos, ω is the plasma energy in plasma

rest frame, and fZ is defined in (A.1). Then the total decay rate is

Γ(plasmon → N +N) =
µ2
eff

24π

ω4
P

ω
,

µ2
eff = 16c2W

∑
all

|ζij |2fZ(ωP ,mi,mj), (4.3)

where the sum runs over all allowed channels, i > j such that mi +mj < ωP . Compar-

ing (4.3) with the observation, we get [57]

µeff < 3× 10−12µβ , (4.4)

where µβ is the Bohr magneton. This then provides a bound on |ζij | when the heavy

neutrinos are light

|ζij | < 8.5× 10−13µβ ; mi,j ≪ ωP ≃ 8.6 KeV, (4.5)

which means

MNPζ > 4× 106 TeV. (4.6)

By the interactions (2.14b) and (2.14c), the plasmon can also decay into N +ν

or ν+ν. But these processes are suppressed by ε and ε2 respectively, and therefore they
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can affect plasma decays only for extremely light N, mN ∼ mν . In this case the masses

of all the neutrinos can be neglected compared to the plasma frequency ωP ∼ 10 KeV.

However, if mN > ωP ∼ 10 KeV the plasma will decay into only light neutrinos. Since

this interaction is suppressed by ε2 the bounds from this process will be suppressed by

ε4, which is very small. For example, if mν = 0.1 eV and mN = 10 KeV then

MNP &
(
mν

mN

)2

× 4× 106 TeV ∼ 400 MeV. (4.7)

The discussion above can be applied to other astrophysical objects. The plasma

frequency in the crust of a neutron star is ωP = 1 MeV. This larger frequency allow us

to obtain bounds from processes involving heavier neutrinos. However, the much weaker

limit [58],

µeff < 5× 10−7µβ , (4.8)

provides a weaker bound

MNP & 23 TeV, mij . 1 MeV. (4.9)

This limit is interesting in the region 10 KeV < mN < 1 MeV, where red giant bounds

do not apply. However, the bounds from neutron stars are less reliable than the bounds

from red giant stars and supernovae.

The magnetic moment coupling also generates a new supernova cooling mech-

anism. In a supernova a light neutrino can transform to a heavy neutrino by the in-

teraction (2.14b). The produced heavy neutrino will escape the star and contribute

to the cooling rate. Since the process is suppressed by ε, with the observational limit

µeff < 3 × 10−12µβ [57] and mN < 30 MeV (which is of the order of the maximum

neutrino energy in the supernova core), we obtain a bound on the new physics scale

MNP & 4× 106
(
mν

mN

)
TeV. (4.10)
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If mν ∼ 0.1 eV and mN = 10 KeV then

MNP > 40 TeV, (4.11)

and for mν ∼ 0.1 eV and mN = 1 MeV

MNP > 400 GeV. (4.12)

The bounds from the cooling of supernovae are weaker than the limit derived from

neutron stars for 17 KeV < mN < 1 MeV.

It is also worth noting that if mN ∼ 1 KeV, N may contribute to the dark

matter content of the universe [59–64].

4.2 CP asymmetries

Now let us consider an example of cosmological effect of the νR magnetic mo-

ment. The required conditions for any interactions to generate the baryon number

asymmetry in the early universe are as follows [65]:

1. Baryon number (B) violation.

2. C and CP violation.

3. Departure from thermal equilibrium.

The ζ operator in (2.1c) violates lepton number by two and transforms under C and P

as follows

νcRζσ
µννRBµν +H.c.

C−→ νcRζ
∗σµννRBµν +H.c., (4.13)

νcRζσ
µννRBµν +H.c.

P−→ νcRζσ
µννRBµν +H.c., (4.14)
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where we used ζT = −ζ. Therefore the νR moment coupling satisfies the condition 1

(from the conservation of B − L) and 2. In a process in which the condition 3 is given,

the electroweak moment may contribute to the baryogenesis in our universe [34].

As lepton-number-violating processes, we considered the standard decaying

processes in (1.59)

N → e±ϕ∓, (4.15)

which receive a contribution from the νR magnetic moment in one-loop diagrams as in

figure 4.1. The loop diagrams will generate a lepton asymmetry only if the decaying

N2 N1

φ+

B

e− e−

e−

B

φ+

φ+

N2 N1

(a) (b)

Figure 4.1: One-loop graphs involving electroweak moments contributing to lepton-
number-violating heavy neutrino decays.

heavy neutrino is heavier than the virtual heavy neutrino in the loop. Because of this,

this type of contribution may be relevant only when the lightest of the heavy neutrino

states are degenerate or almost degenerate (for a recent review see [66]).

In the calculation of the decay rate of the heavy neutrinos, we assumed that

mN ≫ v so that all gauge bosons, leptons and scalars are massless except the heavy

neutrino which has a mass by a Majorana mass term. We also neglected Yukawa cou-

plings for charged leptons for simplicity. The relevant part of the Lagrangian in (2.1)
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is

LN =
i

2
N̄ /∂N − 1

2
N̄MNN − ℓ̄YνPRNϕ̃− ϕ̃

†
N̄Y †

ν PLℓ

+ N̄σµν(ζPR + ζ†PL)NBµν − i
g′

2
(∂µϕ

†)Bµϕ+ i
g′

2
Bµϕ†(∂µϕ) (4.16)

whereMN , without loss of generality, can be taken diagonal. Since we ignore Ye in (2.1a),

we can transform the lepton doublet ℓ by a unitary matrix so that Yν is Hermitian. But

we do not have freedom to rotate ζ because of the Majorana mass term. For n flavors of

N both Yν and ζ contain n(n−1)/2 phases. In particular, for n = 3 we will have a total

of six phases. But even for n = 2 we will have two phases, which means, for simplicity,

we can consider a case with n = 2 to have non zero CP asymmetries.

Assuming there are only two heavy neutrino flavors N1 and N2 with m2 > m1,

we considered the following lepton-number-violating decays

N2 → e− + ϕ+, (4.17a)

N2 → e+ + ϕ−, (4.17b)

to calculate CP -violating asymmetry

ϵ��CP ≡ Γ(N2 → e− + ϕ+)− Γ(N2 → e+ + ϕ−)

Γ(N2 → e− + ϕ+) + Γ(N2 → e+ + ϕ−)
. (4.18)

At tree level the amplitudes are simply

A0(N2 → e−ϕ+) = Ye2ū(pe)PRu(p2), (4.19)

A0(N2 → e+ϕ−) = Ye2v̄(p2)PRv(Pe),

= −Y ∗
e2ū(pe)PLu(p2), (4.20)

where Yij is an element of Yν , pe and p2 are the momenta of the outgoing electron and

N2 respectively, and we used v(p) = uc(p).
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The one loop corrections to the decay processes involving the electroweak mo-

ment coupling ζ are given in figure 4.1. Since the ζ is antisymmetric the virtual heavy

neutrino must be N1. Therefore we can expect finite imaginary contributions from

these diagrams. After a tedious calculation, we found the following finite CP -violating

asymmetry in N2 decays

ϵ��CP = − g′

2π
(m2

2 −m2
1)
m1

m3
2

Im

{
Ye2Y

∗
e1

|Ye2|2
(ζ∗12m2 + ζ12m1)

}
. (4.21)

If m2 ≫ m1 the above equation becomes

ϵ��CP ≃ − g′

2π
m1Im

{
Ye2Y

∗
e1

|Ye2|2
ζ∗12

}
∼ − g′

2π

m1

ΛNP
Im

{
Ye2Y

∗
e1

|Ye2|2
e−iδ12

}
, (4.22)

where we have used ζ12 ∼ eiδ12/ΛNP.

These contributions to CP violating asymmetry are relevant only for the decay

of the heavier neutrinos and so could be relevant for leptogenesis only when m1 and m2

are relatively close [67–70]. In (4.21), if ζ12 is real, the CP asymmetry is maximum

when

m1

m2
=

1 +
√
17

8
≃ 0.64, (4.23)

and the corresponding maximum CP asymmetry is

ϵ��CP ≃ −0.97
g′

2π

m1

ΛNP
Im

{
Ye2Y

∗
e1

|Ye2|2

}
. (4.24)

For a comparison, we present the CP -asymmetry in the same decay processes in (4.15)

by using the Lagrangian in (4.16) without the magnetic moment coupling. According

to the reference [34] the CP asymmetry, from the interference of the tree diagram and

the one-loop radiative correction by a Higgs boson, is

ϵ��CP ∼ 9

8π

m1

m2
|Y22|2δ, (4.25)
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where δ is the phase causing CP , Y is the Yukawa coupling matrix, and m1,2 are heavy

neutrino masses. In the calculation they assumed Y22 to be the largest element of Y

and m2 ≫ m1.
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Chapter 5

Summary of Bounds, prospects

and Conclusions of Part I

In Part 1, we have seen that the dimension five effective operators involving

right-handed neutrinos open up observable effects in various interesting physical pro-

cesses. The electroweak moment operator νcRζσ
µννRBµν + H.c. provides the richest

phenomenology and the right-handed neutrino mass term −(ϕ†ϕ)νcRξνR + H.c. can af-

fect Higgs boson decays. After spontaneous symmetry breaking, the ξ operator gives

rise to new interaction vertices involving right-handed neutrinos and the Higgs bosons

as in (2.16). The vertex H −Ni −Nj in (2.16a) provides new decay modes of the Higgs

to heavy neutrinos if the processes are kinematically allowed. These new decay modes

could dramatically change the Higgs decay branching ratios (see figure 3.6), especially

in the region 100 GeV < mH < 160 GeV where the decaying into gauge bosons are kine-

matically not allowed. The new decays could result in an invisible Higgs, if the heavy

neutrinos cannot be detected, or in new, enhanced detection channels if the right-handed

neutrinos can be seen through their own decay channels, for example N2 → N1 + γ or
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N1 → ν + γ and N1 → e+W with a displaced vertex.

Figure 5.1: Summary of bounds and prospects. The shaded areas labeled N magnetic
moment, N − ν transition, and LEP denote regions excluded by the corresponding
observables; the areas marked EFTw and EFTs correspond to the regions where the EFT
parametrization is inconsistent (for the weak- and strong-coupling regimes, respectively).
Finally, shaded areas marked CP asym. and LHC denote the range of parameters where
the dimension five electroweak moment might affect the corresponding observables. See
the text for details.

In the basis of mass eigenfields, as shown in (2.14), the unique electroweak

moment operator generates N−N, N−ν, and ν−ν magnetic moments, and N−N, N−

ν, and ν − ν tensor coupling to the Z0 bosons giving rise to a very rich phenomenology

which depends basically on three parameters: the coupling matrix ζ ≡ 1/ΛNP, the heavy-

light mixing matrix ε, and the masses of the heavy neutrinos. Figure 5.1 summarizes

the bounds of the νR magnetic moment coupling on the plane of the new physics scale

and the heavy neutrino’s mass. The figure also shows two interesting regions, the region

relevant for the LHC and the region that can provide a relatively large CP asymmetry. In
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the figure, except for the shaded area labeled as CP -asym, we assumed that mN = m2,

ε ∼
√

mν/mN with mν = 0.1 eV and m1 = 0. For the CP -asym area, we assumed

mN = m1 = 0.64m2. Then we presented the regions in the ΛNP −mN plane forbidden

by the red giant bound on the N magnetic moment, by the supernova bound on the

transition magnetic moment N − ν and by the LEP bound from the invisible Z0-boson

decay width.

To test the new interactions involving heavy neutrinos at the LHC, one should

produce first the heavy neutrinos and then one should detect them. The analysis of the

detection is complicated and depends on the details of the spectrum and the capabilities

of the detectors, but at least one should produce them with reasonable rate. In the

shadowed area marked as LHC, the cross section of p+ p → N1+N2+X is at least 100

fb.

The new interactions we have introduced new sources of CP violation which

can modify the standard leptogenesis scenarios. In particular, we have found that the

electroweak moment coupling gives additional contributions to the CP asymmetry in

N2 → e− + ϕ+ decay processes. These could be relevant in leptogenesis if ϵ��CP ∼

(g′/2π)(mN/ΛNP) > 10−6 and mN > 1 TeV. This region is represented in figure 5.1 as

the shaded area marked CP -asym.

Finally, in the regions marked as EFTw and EFTs, mN > MNP so the effective

field theory is not available. In the region EFTw, ΛNP = 16π2MNP, and in the region

EFTs, ΛNP = MNP.

From figure 5.1 we can draw the following conclusions:

(i) For mN . 10 KeV, we obtain very tight bounds ΛNP > 4× 106 TeV coming from

red giants cooling. This energy scale is too large that any effect of the electroweak
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moment coupling would be totally negligible in any present or planned collider

experiment. For mν . 1 MeV, the cooling of neutron stars provides bounds

ΛNP & 23 TeV. Although, this limit is interesting in the region 10 KeV . mν .

1 MeV, where the red giant bounds do not apply, we did not put it in figure 5.1

because the bounds from neutron stars are less reliable than the bounds from red

giants and supernovae.

(ii) For mN . 30 MeV supernova cooling by the magnetic-moment-transitions γ+ν →

N provides bounds on the new physics scale. However, the amplitudes for these

processes are suppressed by ε and therefore provide relatively weak bounds. For

this mass range, the limits on the magnetic moment coupling from the cooling of

red giants are obtained from plasmon decay into a pair of light neutrinos. How-

ever, these decay processes has amplitudes suppressed by ε2 and therefore yields

extremely weak constraints.

(iii) For mN . mZ , the invisible Z0 decays impose ΛNP & 7× 103 GeV, depending on

the details of the heavy neutrino spectrum.

(iv) For mN ∼ 1 − 200 GeV and roughly 7 TeV < ΛNP < 100 TeV, heavy neutrinos

could be produced at the LHC with cross sections above 100 fb. Assuming there

are three flavors of right-handed neutrinos, the heaviest two neutrinos would decay

rapidly to hard photons which could be detected. The lightest heavy neutrino is

quite long-lived and would produce nonpointing photons which could be detected.

In the above conclusions we have assumed that the new heavy physics generating the

νR magnetic moment operator is strongly coupled, in which 1/ζ = Λ = MNP. If the

operator is generated by perturbative physics it arises at one loop and one expects

ζ ∼ 1/(16π2MNP). Thus, in this case, all the constraints discussed above still valid if
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ΛNP is replaced by 16π2MNP. Then, if the new physics is weakly coupled, the interesting

range for collider physics, ΛNP ∼ 10 − 100 TeV, corresponds to MNP ∼ 0.1 − 1 TeV,

which is too low that the effective theory cannot be applied at LHC energies and one

should use the complete theory generating the νR electroweak moments. Those complete

theories should contain new particles carrying weak charges with masses ∼ 0.1− 1 TeV

which should be produced in the LHC by the Drell-Yan process, for example.

There still remains much work to be done around this effective theory, especially

concerning astrophysical and cosmological scenarios:

(a) The magnetic moment coupling may have effects in the early universe because it

can potentially alter the equilibrium conditions of the heavy neutrinos and their

decoupling temperature.

(b) Heavy neutrinos with masses mN ∼ 1 KeV could be a good dark matter candidate.

The magnetic moment coupling could change significantly the analysis of this

possibility.

(c) One should evaluate carefully the effects of the Majorana magnetic couplings on

nonthermal leptogenesis.

(d) Sufficiently large ζ might lead to the trapping of the right-handed neutrinos in the

supernova core.
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Part II

New physics effects in

neutrinoless double-beta decay
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Chapter 6

Introduction

Neutrinoless double-beta decay (0νββ decay) violates lepton number conser-

vation which is valid in the Standard Model. 0νββ decay also requires neutrinos to

be Majorana particles regardless of what model of new physics generated the decay.

Observation of neutrinoless double beta decay will prove that there exist new physics

beyond the Standard Model. In the following chapter, we will give a brief introduction

to the 0νββ decay, the standard mechanism generating the decay, and current limit on

the half life of the decay. In Chapter 7, we will list the Feynman diagrams and effective

operators generating 0νββ decay, and discuss the possible types of new physics con-

tributing to the effective operators. In Chapter 8, we will estimate the amplitude of the

0νββ decay for each effective operator from the Feynman diagrams and find the range

of the new physics scale of each effective operator for the dominant contribution to the

0νββ decay over the contributions from other operators including the operator for the

standard mechanism. Then we will estimate the lower limit of each new physics scale,

and show that some types of heavy particles which can contribute to the 0νββ decay

may be produced at the LHC. In addition, we will present the discovery limits on the

52



new physics scales for same-sigh dilepton production at the LHC.

6.1 Neutrinoless double-beta decay

In this section, a brief introduction to 0νββ decay will be given. The detailed

reviews can be found in [71–73].

The 0νββ decay is a nuclear process emitting two electrons without anti-

neutrinos

(A,Z) → (A,Z + 2) + e− + e−, (6.1)

where A and Z are the numbers of the nucleons and protons in the nucleus respec-

tively. In this process two neutrons decay into two protons and two electrons, which

violates lepton number by two. The standard mechanism generating the above process

is diagrammatically shown in figure 6.1.

×

u
d
d

u
d
u

e−

e−

ν

W

W

d
d
u

u
d
u

n

n

p

p

Figure 6.1: The standard mechanism for 0νββ decay. The cross mark indicates a Ma-
jorana mass insertion.

The amplitude of the standard mechanism in figure 6.1 is proportional to the

hadron part times the weak interaction part. Since the average momentum of the

exchanged virtual neutrino is typically 100 MeV which is well below the W mass, we
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can use four-fermion effective vertex for the amplitude calculation

Lweak =
GF√
2
2(ēLγ

µνeL)jµ, (6.2)

where the Fermi constant GF is

GF√
2
≡ g2

8m2
W

=
1

2v2
, (6.3)

and the charged hadronic current jµ is

jµ ≡ 2 cos θcūLγµdL, (6.4)

θc is the CKM angle. The lepton part of the decay amplitude is

(ēLγ
µνeL)(ēLγµνeL)

T = −ēLγ
µνeLν

T
eLCγµe

c
L, (6.5)

where the contraction νeLν
T
eL is nonzero only if the neutrinos are Majorana particles.

This means that if neutrinos are Majorana particles then the 0νββ decay can occur.

However it has been shown that if the 0νββ decay occurs, the type of the neutrinos

exchanged in the decay process have to be Majorana [74–76]. If the neutrinos have

Majorana masses the contraction can be written in momentum space as

νeLν
T
eL =

∑
k

(UL
ek)

2PL

i(/q +mk)

q2 −m2
k

PL =
∑
k

(UL
ek)

2mk
i

q2 −m2
k

PL, (6.6)

where UL
ek is the lepton mixing matrix, mk is the mass of k-th Majorana neutrino, and

q is the momentum of the virtual neutrino. Then the amplitude of 0νββ decay can be

calculated as [71]

A0νββ = 2

(
GF√
2

)2∑
k

(UL
ek)

2mkū(p1)γ
µPLγ

νCūT (p2) (6.7)

×
∫

d4x1d
4x2e

ip1·x1+ip2·x2

∫
d4q

(2π)4
ie−iq·(x1−x2)

q2 −m2
k

(6.8)

× ⟨p′|T [Jµ(x1)Jν(x2)]|p⟩ − (p1 � p2), (6.9)
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where p1 and p2 are the momenta of the outgoing electrons, p and p′ are the momenta

of the initial and final nucleus respectively, and Jα(x) is the weak charged current in

the Heisenberg representation. After applying the conventional approximations [77],

and also using mν ≪ |q⃗| ∼ q0, one can find that the amplitude of the 0νββ decay is

proportional to the effective Majorana-neutrino mass

⟨mν⟩ =
∑
k

(UL
ek)

2mk. (6.10)

As we can see from the expression for the lepton mixing matrix (1.8), the effective

mass depends on the Majorana-neutrino masses, mixing angles, CP -violating phases

and Majorana phases.

6.2 Current limits in neutrinoless double-beta decay

What is measured in the experiment for 0νββ decay is the half life. The inverse

half life, also called the decay rate, can be expressed as

1

T 0ν
1/2

= G(Z,Q)|M0ν |2|⟨mν⟩|2, (6.11)

where G(Z,Q) is from the phase space integral, a function of the proton number Z, and

the kinetic energy of the electrons Q = Mi−Mf −2me, where Mi and Mf are the initial

mass and final mass of the nucleus. M0ν is the nuclear matrix element for the decay

process.

Currently, the strongest limit on the half life is from the non-observation of

0νββ decay in Heidelberg-Moscow experiment [78]

T 0ν
1/2 > 1.9× 1025 years with 90% C.L., (6.12)

which gives an upper limit of the effective Majorana-neutrino mass [78]

|⟨mν⟩| < 0.35 eV with 90% C.L.. (6.13)

55



At present, there are many planned future projects for the 0νββ decay experiment [79].

For example, GERDA experiment will test the effective Majorana-neutrino mass down

to several 10 meV [80].

Notice that the above limits will be true only if the standard mechanism is the

sole contribution to the 0νββ decay. If there are new mechanisms contributing to 0νββ

decay, the limit on the effective Majorana-neutrino mass will be changed. In 2001 the

subgroup of the Heidelberg-Moscow experiment claimed the observation of 0νββ decay

[81–84] with the following half life and effective neutrino mass [84]

T1/2 = 2.23+0.44
−0.31 × 1025 years, |⟨mν⟩| = 0.32± 0.03 eV. (6.14)

However, this observation does not have detailed analysis of systematic errors, and

the only way to verify the claim is performing more sensitive experiment, for example,

GERDA experiment [85].
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Chapter 7

Diagrams and effective vertices

Since 0νββ decay is generated by non-standard physics (in the canonical case

by Majorana masses) it is sensible to explore the types of new physics that can give rise

to this effect. Since all the energies involved are well below the scale of new physics,

the new physics effects can be catalogued using an effective Lagrangian. In this chap-

ter, we list the relevant operators that can be separated into lepton-number-violating

operators (LNVOs) and lepton-number-conserving operators (LNCOs). However, the

LNCOs contribute only in the presence of right-handed neutrinos and in combination

with a Majorana mass term.

Our goal is to determine the kinds of new physics that can affect 0νββ decay

and to see what other observable effects they can have. The last point is important

because one cannot differentiate between different contributions to 0νββ decay by doing

this measurement only.
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7.1 List of diagrams

Figure 7.1 shows all possible diagrams generating 0νββ decay produced by

either LNVOs or LNCOs plus the Majorana mass insertion. We will use the same

notation used in [86] for the diagrams by the LNVOs. For the diagrams by the LNCOs

we will simply prime the notations for the diagrams by LNVOs. After the spontaneous

symmetry breaking in the Standard Model, there can be one graph by a light Majorana

neutrino mass term and five graphs by LNVOs. Also, we can have two graphs including

both LNCO and the left-handed Majorana mass vertex.

7.2 List of contributing operators

In this section, we list the effective operators generating each effective vertex

from Dν to D9 in figure (7.1). All the LNVOs up to dim-11, not containing gauge bosons

were surveyed in [86] and [87]. We will use their notations for LNVOs. As mentioned

in [87], we will omit the LNVOs which have the form of (ϕ†ϕ) × O∆L=2 because the

presence of those operators implies the presence of O∆L=2 and the contributions of

those higher dimensional operators to the 0νββ decay is negligible compared to the

contributions of the lower dimensional operators O∆L=2. For simplicity, we will not

show the color indices of the fields in the effective operators but we will denote SU(2)

indices explicitly. Also note that the covariant derivative acting on a field in an operator

can also act on the other fields in the operator, but mostly we will only show one example

for each operator, and therefore the actual number of operators contributing to the 0νββ

will be more than we present.

Dν : Any operator generating left-handed Majorana neutrino mass term will
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Figure 7.1: Graphs generating 0νββ-decay. νL’s are left-handed neutrinos and ν’s are
Majorana neutrinos.

contribute to Dν . However, there is only one dim-5 LNVO contributing to the mass

term at tree level, which is

Oν =
¯̃
ℓϕχϕ̃

†
ℓ. (7.1)
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D4: There are three dim-7 LNVOs

Og4a = ēR(ϕ
†i /Dϕ̃)(ϕ†ℓ̃),

Og4b = (ℓ̄Dµℓ̃)(ϕ
†Dµϕ̃),

Og4c = (ℓ̄ϕ̃)[(Dµϕ)
†(Dµℓ̃)]. (7.2)

D′
4: This graph includes both Majorana mass vertex and a LNCO. There are

two dim-6 LNCOs contributing to D′
4

ONeϕ = (ϕT iσ2iDµϕ)(ν̄Rγ
µeR),

O(3)
ϕℓ = (ϕ†iDµσ

Iϕ)(ℓ̄γµσIℓ), (7.3)

where ONeϕ and O(3)
ϕℓ were considered first in [88] and [89] respectively. However, the

contributions of these operators are negligible when the corresponding new physics scales

are less then ∼ TeV compared to other operators’ contributions.

D5: There are two dim-7 LNVOs contributing to D5

Og5a = [Dµℓℓ̃][(D
µϕ)†ϕ̃],

Og5b = [Dµℓϕ̃][(D
µϕ)†ℓ̃], (7.4)

and one dim-9 LNVO

Og5c = ēRe
c
R[ϕ

†(Dµϕ̃)][ϕ
†(Dµϕ̃)], (7.5)

where ℓ̃ ≡ iσ2ℓc and ϕ̃ ≡ iσ2ϕ∗. The above operators have not been studied in the

previous literature.

D6: There are five dim-7 LNVOs and four of these operators can have Lorentz

contractions by the antisymmetric tensors σµν = i
2 [γ

µ, γν ] instead of charge conjugation
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C

O3a = (ℓ̄ℓ̃)(q̄dRϕ̃), O′
3a = (ℓ̄σµνiσ

2ℓ̄
T
)(ϕ̃

T
dTRσ

µνqc),

O3b = (ℓ̄iℓ
c
j)(q̄kϕ

∗
ℓdR)ϵikϵjℓ, O′

3b = (ℓ̄iσµν ℓ̄j
T
)(dTRσ

µνϕ†
ℓq

c
k)ϵikϵjℓ,

O4a = (ℓ̄iϕ
†ℓ̃)(ūRqi), O′

4a = (ℓ̄iϕ
†iσ2σµν ℓ̄

T
)(qTi σ

µνucR),

O4b = (ℓ̄ℓ̃)(ūRϕ
†q), O′

4b = (ℓ̄iσ2σµν ℓ̄
T
)(qTσµνϕ∗ucR),

O8 = (ℓ̄ϕ̃γµe
c
R)(ūRγ

µdR), (7.6)

and there are five dim-9 LNVOs

O5 = (ℓ̄ϕϕ†ℓ̃)(dcRϕ
†q̃), O′

5 = (ℓ̄ϕϕ†iσ2σµν ℓ̄
T
)(dTRσ

µνϕ†q̃),

O6 = (ℓ̄ϕϕ†ℓ̃)(ūRϕ
†q), O′

6 = (ℓ̄ϕϕ†iσ2σµν ℓ̄
T
)(qTσµνϕ∗ucR),

O7 = (ēRγµϕ
†ℓ̃)(q̄ϕ̃γµϕ†q), (7.7)

where the subscripts of the fields are SU(2) indices and the repeated indices are assumed

to be summed. The LNVOs in the above equation were introduced in [87] and [86].

D′
6: This graph also contains both a Majorana mass vertex and a LNCO. There

are three dim-6 LNCOs

O(3)
ℓq = (ℓ̄γµσ

Iℓ)(q̄γµσIq),

Oqde = (ℓ̄eR)(d̄Rq), O′
qde = (qTσµνd

c
R)(e

T
Rσ

µνℓc), (7.8)

where the LNCOs were introduced in [89]. All these operators have negligible contribu-

tions to 0νββ-decay.

D7: There is one dim-7 LNVO

Og7a = (iDµℓℓ̃)(ūRγ
µdR), (7.9)
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and the dim-9 LNVOs contributing to D7 are

Og7b = (ℓ̄iDµℓ̃)(q̄γ
µϕ̃)(ϕ†q),

Og7c = ℓ̄i(ϕ
†iDµℓ̃)q̄jγ

µ(ϕ†q)ϵij ,

Og7d = ℓ̄i(ϕ
†iDµℓ̃)(q̄ϕ̃)γ

µqi,

Og7e = (ℓ̄iℓ
c
j)(q̄kγ

µqj)(iDµϕ)
†ϕ̃ϵik,

Og7f = ℓ̄i[(iDµϕ)
†ℓ̃]q̄jγ

µ(ϕ†q)ϵij ,

Og7g = ℓ̄i[(iDµϕ)
†ℓ̃](q̄ϕ̃)γµqi,

Og7h = (ℓ̄γµecR)(iDµϕ̃)(q̄dRϕ̃),

Og7i = (ℓ̄iγ
µecR)(q̄jdR)[(iDµϕ)

†ϕ̃]ϵij ,

Og7j = ēRe
c
R(ūRγ

µdR)(ϕ
†iDµϕ̃). (7.10)

D9: Only the LNVOs will contribute to D9, which were listed in [86]. There

are five dim-9 operators, O11b, O12a, O14b, O19, O20, and fifteen dim-11 operators, O24a,

O28a, O28c, O32a, O36, O37, O38, O47a, O47d, O53, O54a, O54d, O55a, O59, O60.

7.3 Possible types of new physics contributing to each op-

erator

Each effective operator can be induced by one or more models of new physics.

Since the form of an effective operator is independent of the type of new physics, we will

mostly consider simple examples of heavy physics except for the operators generating

D5. To denote the heavy fields, we will use the following notations:

Φ = scalar, Ψ = fermion, X = vector, (7.11)
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and their quantum numbers will be indicated as

(I, Y ) = (SU(2)-isospin, U(1)-hypercharge) (7.12)

or in the graph, the quantum numbers will be appeared as subscripts, for example, ΦI,Y .

Notice that the diagrams in this section will simply list the minimal set of

heavy fields that the new physics must contain in order to generate a given operator.

In general a complete model of the heavy physics will contain additional fields and

interactions, these do not contribute to the operators being studied, but can have other

low-energy effects. This can have the advantage that a complete model can have many

more predictions, but it is also possible that the current experimental constraints on the

other effects are so strong as to insure that the contribution to 0νββ is negligible.

Dν : As we mentioned in the introduction of Part 1, the operator Oν can be

generated though the see-saw mechanisms by the following heavy particles

Ψ0,0, Ψ1,0, Φ1,1. (7.13)

D4: Og4 can be induced at tree level from a new physics. The Lagrangian is

LOg4 = Ψ̄i /DΨ−MΨΨ̄Ψ−M2
ΦΦ

†Φ

+ (Y ℓ̄σIΨI ϕ̃+ Y ′Ψ̄IΦ
∗
Ie

c
R + vΦϕ

+σIΦI ϕ̃+H.c.), (7.14)

where Ψ = (1, 0) and Φ = (1, 1). Y ’s are coupling constants, vΦ is a massive coupling

constant of the order of MΦ for consistency, and the corresponding interaction is showed

in figure 7.2. However, both Ψ and Φ can also generate Oν at tree level and induce the

interaction Dν . This means that the physics scale Λg4 is the same as Λν and constrained

through both diagrams Dν and D4 from 0νββ decay but the contribution of the heavy

physics through the diagram D4 is negligible compared to the contribution through Dν .
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W

eR

Φ

φ
φ φ

Figure 7.2: A new physics diagram generating Og4 (D4). This diagram involves heavy
physics contributing to Dν at tree level. Ψ = (1, 0), Φ = (1, 1).

The exception is the heavy physics in figure 7.3 [90]. This heavy physics induces D4

but does not induce Dν at tree level. In the figure, the heavy vector X has quantum

numbers (12 ,
3
2) and X ′ has quantum numbers (0, 1) or (1, 1).

φ

φ

X X ′

φ`

eR

Figure 7.3: A new physics that contributes to D4 but does not contribute to Dν at tree
level. X = (12 ,

3
2), X ′ = (0, 1) or (1, 1).

D′
4: ONeϕ can be generated from the following Lagrangian

LONeϕ
= iΨ̄ /DΨ−MΨΨ̄Ψ + (Y νcRϕ

†Ψ+ Y ′Ψ̄ϕ̃ecR +H.c.), (7.15)

where Ψ = (12 ,
1
2), and Y and Y ′ are coupling constants. The corresponding interaction

is in figure 7.4.

Ψ Ψ

Wφ φ

νR eR

Figure 7.4: A new physics diagram inducing ONeϕ (D′
4), Ψ = (12 ,

1
2).
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O(3)
ϕℓ can be generated from following Lagrangian

LO(3)
ϕℓ

= Ψ̄i /DΨ−MΨΨ̄Ψ + (Y ℓ̄ΨIσ
I ϕ̃+ Y ′ϕ̃

†
σIΨ̄Iℓ+H.c.), (7.16)

where Ψ = (1, 0), and the corresponding interaction is in figure 7.5.

Ψ Ψ

Wφ φ

` `

Figure 7.5: A new physics inducing O(3)
ϕℓ (D′

4). Ψ = (1, 0).

D5: Dim-7 Og5a,b can be obtained from the following Lagrangians

LOg5 = Ψ̄i /DΨ−MΨΨ̄Ψ + (Y ℓ̄σIΨI ϕ̃+ Y ′ϕ†Ψ̄Iσ
I ℓ̃+H.c.), (7.17)

L′
Og5

= (DµΦ)
†(DµΦ)−M2

ΦΦ
†Φ+ (vΦϕ

†ΦIσ
I ϕ̃+ YΦℓ̄Φ

∗
Iσ

I ℓ̃+H.c.), (7.18)

where Ψ = (1, 0) and Φ = (1, 1). The corresponding interactions are in figure 7.6. These
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W
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Φ

φ
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Figure 7.6: New physics diagrams generating Og5 (D5). All these diagrams involve
heavy physics contributing to Dν . Ψ = (1, 0), Φ = (1, 1).

heavy particles can also generate Oν .

Dim-9 Og5c can be induced by the same heavy particles generating Oν , but

there are also heavy physics models inducing Og5c but not Oν . The heavy physics and

their particles are presented in figure 7.7.
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Figure 7.7: New physics diagrams generating dim-9 Og5c (D5). Subscripts of the fields
denote isospin and hypercharge, for example, ΦIY denotes a heavy scalar with isospin
I and hypercgarge Y .

D6: O3a can be obtained from the following Lagrangian

LO3a = (DµΦ)
†(DµΦ) + (DµΦ

′)†(DµΦ′)−M2
Φ|Φ|2 −M2

Φ′Φ′†Φ′

+ YΦℓ̄ℓ̃Φ
∗ + YΦ′ q̄Φ′dR + vΦΦ

′†ϕ̃Φ+H.c., (7.19)

where Φ = (0, 1) and Φ′ = (12 ,
1
2). The corresponding interaction is in figure 7.8.

Φ Φ
′

φ q

dR

`

`

Figure 7.8: A new physics diagram generating O3a (D6). Φ = (0, 1), Φ′ = (12 ,
1
2).
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D′
6: O

(3)
ℓq can be induced from a Lagrangian

LO(3)
ℓq

= −1

4
FµνF

µν + Y ℓ̄γµXI
µσ

Iℓ+ Y ′q̄γµXI
µσ

Iq, (7.20)

where X = (1, 0) and the corresponding interaction is in figure 7.9.

`

`

q

q

X

Figure 7.9: A new physics diagram generating O(3)
ℓq (D′

6). X = (1, 0).

D7: Og7a has both SU(2)-singlet and doublet fermions without ϕ’s, and there-

fore, it can be generated only at the loop-level.

The heavy physics models generating the operators contributing to D9 are

listed in [87]. The new physics diagrams in this section give possible cases generating

a given operator. Although there is no guarantee that a complete model that contains

these particles will satisfy all experimental constraints, it still has a measurable effect

at a current or near future experiment.

67



Chapter 8

Estimates and calculations

We will estimate the amplitudes of the 0νββ decay by using the diagrams

in figure 7.1 for different effective operators, and evaluate the decay rate explicitly

for Og5. The amplitude for the 0νββ decay is proportional to the multiplication of

the weak interaction part (the amplitude for a graph in figure 7.1) and the strong

interaction part which is incorporated in the nuclear matrix element. The calculation

of the nuclear matrix elements is complicated many body nuclear physics problem.

However, we will assume that the strong interaction part of the decay amplitude for each

effective operator is in the same order of magnitude, and therefore we will concentrate

on the weak interaction part of the amplitude. Then, based on the amplitude estimates,

we will evaluate the ranges of the new physics scales for the dominant contributions to

the 0νββ decay, and obtain the limits on the new physics scales for each diagram by

using the data from currently the most sensitive 0νββ decay experiment. In addition,

we will present the discovery limits on the new physics scales for same-sigh dilepton

production at the LHC.

68



8.1 The amplitude estimate for each case

In this section, we will present amplitude estimates for different effective ver-

tices. From the diagrams in figure 7.1, amplitudes can be estimated by using the fol-

lowing rules:

(i) For each Standard Model W vertex, include a factor of g

(ii) Replace each W propagator by 1/(g2v2)

(iii) Replace each νL propagator by 1/Q

(iv) Replace each contraction of νL and νTL by mν/Q
2

(v) Replace each contraction of νL and νTR by ε/Q

where v is the electroweak scale, and Q is the momentum of intermediate particles,

which is typically ∼ 100 MeV.

Since the various operators can arise from new physics at different scales we

will distinguish between the corresponding Λ’s (new physics scales). Then the amplitude

estimates are as follows:
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diagrams dim. operators amplitudes

Dν 5 Oν 1/Q2v2Λν

D4 7 Od7
D4

1/QvΛ3
ν

7 Od7
D4

1/QvΛ3
4

D′
4 6 ONeϕ 1/QvΛ′2

4 Λν

D5 7 Od7
D5

1/v2Λ3
ν

9 Od9
D5

1/Λ5
5

D6 7 Od7
D6

1/QvΛ3
6a

9 Od9
D6

v/QΛ5
6b

D7 7 Od7
D7

1/16π2v2Λ3
7a

9 Od9
D7

1/Λ5
7b

D9 9 Od9
D9

1/Λ5
9a

11 Od11
D9

v2/Λ7
9b

(8.1)

In the above chart we used

mν =
v2

Λν
, (8.2)

and the following definitions

Λ = The new physics scale of each operator,

Od7
D4

≡ {Og4a,b,c},

Od7
D6

≡ {O3b,O4a,O4a,O8}, Od9
D6

≡ {O5,O6,O7},

Od7
D7

≡ Og7a, Od9
D7

≡ {Og7b,c,d,e,f,g,h,i,j},

Od9
D9

≡ {O11b,O12a,O14b,O19,O20}

Od11
D9

≡ {O24a,O28a,c,O32a,O36,O37,O38,O47a,d,O53,O54a,d,O55a,O59,O60}, (8.3)
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where the superscript dn of Odn
Dm

indicates the dimension of the operator and the sub-

script Dm indicates the type of the corresponding Feynman diagram. Notice that, as it

was mentioned in Section 7.3, the same Λν for Oν also has been used for Od7
D4

and Od7
D5

because the heavy physics models inducing these operators also induce Oν . Therefore,

the limits on Λν can be obtained from more than one diagrams, but the contributions

of the heavy physics to 0νββ through D5 and D7 are negligible compared to the contri-

butions through Dν .

8.2 Ranges of dominance for each type of graph

Table 8.1 shows the condition that each operator has dominant contribution

to the 0νββ decay over other operators’ contributions. In the table, we have assumed

Q = 100 MeV and v = 246 MeV.

8.3 Limits on the new physics scales from 0νββ decay

Using the limit on the effective Majorana-neutrino mass from currently the

most sensitive experiment, the limit on the amplitude of 0νββ decay can be estimated

as

A < 8× 10−3 TeV−5. (8.4)

From this we can obtain the limit on the new physics scale assuming that each new

physics is the only contribution to the 0νββ decay. We also assume that there is no

accidental suppression by the presence of small couplings.

The lower limits on the heavy physics scales are listed in the following chart
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diagrams new physics scales lower limits in TeV

Dν Λν 2× 1011

D4 Λ4 170

D5 Λ5 2.6

D6 Λ6a 170

Λ6b 12.5

D7 Λ7a 2.3

Λ7b 2.6

D9 Λ9a 2.6

Λ9b 2.3

(8.5)

where we have assumed Q = 100 MeV and v = 246 MeV.

The lower limits on Λν , Λ6a, and Λ6b are so large that the corresponding heavy

particles cannot be produced at any collider in the present and near future. All other

physics scales are several TeVs and the corresponding heavy particles can be produced

at the LHC. The limits on the heavy physics scales generating D9 were first mentioned

in [87]. The observation of 0νββ decay will open up the possibility that there are some

types of heavy particles that contribute to the 0νββ decay and also can be produced at

the LHC.

8.4 Discovery limits on new physics scales at the LHC

The effective operators Od7
D5

and Od9
D5

contributing to D5 can contribute to the

same-sign dilepton production in proton-proton collisions

p+ p → ℓ+ + ℓ+ +X. (8.6)
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Reference [91] provides the discovery limits when the processes (8.6) are generated by

right-handed neutrino interactions at the LHC. These results can be easily translated

into limits on the new physics scale Λν for Od7
D5

, and Λ5 for Od9
D5

for 1, 3 and 10 events.

Then, the upper limits on the new physics scales for the discovery of the same-

sign dilepton production by Od7
D5

and Od9
D5

at the LHC are as follows

n Λν(TeV) Λ5(TeV)

10 2.7 1.0

3 3.2 1.2

1 3.9 1.3

(8.7)

Here n is the number of events, and it is assumed that the luminosity of the beam at

the LHC is 100 fb−1 and
√
s = 14 TeV. As we can see from the chart, the discovery

limits of the new physics scales are below the lower bounds on the scales from the 0νββ

decay.

8.5 Explicit evaluation of the decay rate for Og5

In this section we are going to evaluate the decay rate of 0νββ induced by Lg5.

We are going to follow the calculation in [71].

After ϕ aquires a VEV, eq.(7.17) can be rewritten in the basis of electric-charge

eigenfields as follows

Lg5 =
g√
2
W−

µ (Ψ̄−γ
µΨ0 − Ψ̄0γ

µΨ+) + Y vēLΨ− + Y ′vΨ̄+e
c
L +H.c.

− MΨ

2
Ψ̄+Ψ+ − MΨ

2
Ψ̄−Ψ− −MΨΨ̄0Ψ0, (8.8)

where Ψ− ≡ Ψ1+iΨ2,Ψ+ ≡ Ψ1−iΨ2 and Ψ0 ≡ Ψ3, which have electric charges −1, −2
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and 0 respectively. We integrate out only Ψ− and Ψ+ to have the following expression

Lg5 ∼ Y v
g√
2
(
−i

MΨ
)ēLW

−
µ γµΨ0 − Y ′v

g√
2
(
−i

MΨ
)Ψ̄0W

−
µ γµecL +H.c.. (8.9)

From the above Lagrangian, with the W -hadron current in the Standard Model, we can

obtain an effective Lagrangian for 0νββ decay as in figure 8.1, which is in the same form

as the effective Lagrangian for the standard mechanism

d d

u ue
−

e
−

W WΨ0

Figure 8.1: 0νββ by Og5

Lβ
W = −i

Y v

MΨ

GF√
2
2(ēLγ

µΨ0)jµ + i
Y ′v

MΨ

GF√
2
2(Ψ̄0γ

µecL)jµ, (8.10)

jµ ≡ 2 cos θcūLγµdL, (8.11)

where θc is the CKM mixing angle.

Following the calculations in [71] we obtain the amplitude for the 0νββ decay

Ag5 = iY Y ′
(

v

MΨ

)2(GF√
2

)2 MΨ

R
ū(p1)(1 + γ5)CūT (p2)

× (MF − g2AMGT)δ(p10 + p20 +M ′ −M), (8.12)

where M and M ′ are the masses of the initial and final nuclei respectively. Here we

neglected the momentum of the final nucleus. Then the above amplitude gives the same

decay rate as the standard mechanism with G2
F is replaced by G′2

F ≡ Y Y ′(v′/MΨ)
2G2

F

and the effective neutrino mass |⟨m⟩| is replaced by MΨ. Here, notice that this does
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not imply that the decay rate diverges as MΨ → ∞, because MΨ is included in other

factors too.

The decay rate will then be

Γ0νββ =
G′

F
4m5

e

2(2π)5
M2

Ψ

1

R2

∣∣MF − g2AMGT

∣∣2 F 2(Z)

× 1

15
(ε50 + 10ε40 + 40ε30 + 60ε20 + 30ε0), (8.13)

where the constants and the functions are defined as follows [71]

me ≡ Electron mass,

R ≡ The radius of the initial nucleus,

gA ≡ 1.25,Axial constant,

F (Z) ≡ 2πα(Z + 2)

1− exp[−2πα(Z + 2)]

= Fermi factor of the coulomb corrections,

ε0 ≡
1

me
(Minitial nucleus −Mfinal nucleus − 2me)

= Kinetic energy of the final electrons, (8.14)

MF and MGT are the nuclear matrix elements. MF is negligible compared to MGT [73].

In the reference [73], MGT is calculated for the cases in which the mass of the mediating

particle is light or heavy. When the standard mechanism is mediated by a heavy particle

of mass MΨ, the nuclear matrix element is proportional to 1/M2
Ψ

MGT ∼ R

48r

(
MA

MΨ

)2

e−MAr{(MAr)3+3(MAr)2+3(MAr)}, (8.15)

where r is the distance between the neutrons, and the dipole form factor mass of the

nucleon MA ∼ 0.9 GeV.
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Chapter 9

Conclusions of Part II

The observation of 0νββ decay will tell us if neutrinos are Majorana particles

and it also opens up the possibility of new physics and provide the constraints on the

new physics scales. If the 0νββ decay is generated by only the standard mechanism,

the amplitude of the decay is proportional to the effective Majorana-neutrino mass

which depends on the Majorana-mass eigenvalues of light neutrinos, the CP -phases

and Majorana phases of the lepton mixing matrix. However, it is possible that the

0νββ decay can also be generated by various effective vertices induced from new physics

models.

In Part 2, we discussed mechanisms for the 0νββ decay, effective operators and

possible new physics models for the new mechanisms as follows:

(i) We listed all possible tree-level Feynman diagrams with effective vertices con-

tributing to 0νββ decay. These diagrams include Standard Model vertices and

a lepton number violating vertex. We also considered diagrams containing the

standard Majorana mass insertion and a lepton-number-conserving effective ver-

tex. But the contributions of the lepton-number-conserving effective vertices were
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negligible compared to the lepton-number-violating vertices.

(ii) We listed the effective operators generating the effective vertices contributing to

the 0νββ decay.

(iii) We found possible types of new physics with heavy particles generating the effective

operators at tree level. In this work, we especially considered the heavy physics

generating the effective vertices involvingW bosons. Among the effective operators

contributing to the diagram D7, dim-7 operator is not generated at tree level but

the dim-9 operator can be generated at tree level. The heavy physics models

inducing D9 were considered in the reference [87].

(iv) We estimated the amplitude of the 0νββ decay for each effective operator. For

a dim-7 operator contributing to D5 diagram, we calculated the amplitude of the

0νββ explicitly. Based on the amplitude estimates, we presented a table in which

we provided the condition for the dominance of each operator’s contribution to

the 0νββ decay over other operators’ contributions.

(v) By using the most strict experimental limit on the amplitude of the 0νββ decay,

We estimated the lower limit of each new physics scale. We found that there are

heavy particles whose energy scale limits are within several TeVs, which means

that some of these heavy particles can generate the 0νββ decay and also can be

produced at the LHC. The heavy particles that contribute to D5 but not to Dν at

tree level were

Φ02, Φ 1
2

3
2
, Ψ 1

2
1
2
, X01, X11, X 1

2
3
2
, (9.1)

where ΦIY , ΨIY , and XIY indicate a heavy scalar, a heavy fermion, and a heavy

vector with isospin I and hypercharge Y respectively. All these heavy particles

78



may be produced at the LHC but a definite statement in this respect requires a

complete model. The above set of heavy particles includes doubly charged scalar

and vector particles.

(vi) We also obtained the discovery limits on the new physics scales for same-sigh

dilepton production at the LHC.
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Appendix A

Decay rates and cross sections

We present the relevant formulas for decay rates and cross sections used in

Part 1.
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A.1 Notations and definitions

We have used the following notations and definitions:

cW ≡ cos θW , sW ≡ sin θW , α ≡ e2

4π
, (A.1a)

ζij = |ζij |eiδij , (A.1b)

qf ≡ charge of fermion f, (A.1c)

af ≡ t3(f) = eigenvalue of t3 of f, t3 =
1

2
σ3, (A.1d)

vf ≡ t3(f)(1− 4|qf |s2W ), (A.1e)

λ(a, b, c) ≡ a2 + b2 + c2 − 2ab− 2ac− 2bc, (A.1f)

fZ(mZ ,mi,mj) ≡

√
λ(m2

Z ,m
2
i ,m

2
j )

m6
Z

× [m2
Z(m

2
Z +m2

i +m2
j − 6mimj cos 2δij)− 2(m2

i −m2
j )

2], (A.1g)

χ(s) ≡ s

s−m2
Z + imZΓ(Z → N1N2)

, (A.1h)

ηf (s) ≡ 4q2fc
2
W − 4qfvfRe{χ(s)}+

v2f + a2f
c2W

|χ(s)|2. (A.1i)

A.2 Decay rates for Z0 → NiNj

The decay rate of the Z0 boson into heavy Majorana neutrinos is

Γ(Z0 → Ni +Nj) =
2|ζij |2

3π
s2Wm3

ZfZ(mZ ,mi,mj), (A.2)

where fZ is defined in (A.1g) and fZ(mZ , 0, 0) = 1.
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A.3 N2 decay rates

The decay rates of the heaviest neutrino into a neutral boson and a lighter

heavy neutrino are

Γ(N2 → N1 + γ) =
2

π
c2W |ζ12|2m3

2

(
1− m2

1

m2
2

)3

, (A.3)

Γ(N2 → N1 + Z0) =
2

π
s2W |ζ12|2m3

2f2(mZ ,m1,m2), (A.4)

with

f2(mZ ,m1,m2) = −
m6

Z

2m6
2

fZ(mZ ,m1,m2),

f2(0, 0,m2) = 1. (A.5)

A.4 N1 decay rates

The lightest heavy neutrinos N1 can only decay into the SM particles. If

m1 > mZ the dominant decays proceed through the SM interactions induced by the

mixing of heavy-light neutrinos:

Γ(N1 → ℓ−β +W+) =
1

16
|εβW |2 αm3

1

s2Wm2
W

(
1−

m2
W

m2
1

)2(
1 + 2

m2
W

m2
1

)
, (A.6)

where β is a flavor index and εW characterizes the mixing of heavy-light neutrinos in

W boson couplings, which is of the order of
√

mν/mN .

For N1 → νβ + Z0 decays we obtain

Γ(N1 → νβ + Z0) =
1

16
|εβ1Z |2 αm3

1

s2W c2Wm2
Z

(
1−

m2
Z

m2
1

)2(
1 + 2

m2
Z

m2
1

)
, (A.7)

where εZ is defined as εW but for Z0 boson couplings. Notice that since mW = cWmZ

the two decay widths are equal up to phase space factors and differences in the mixing

factors εZ and εW . However, we have two decay channels into W ’s, N1 → e−+W+ and
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N1 → e+ + W−, and only one into Z’s (we already took into account that the νβ are

Majorana particles; should we treat them as Weyl particles, we have two decay channels

and the sum over them gives the same result).

If m1 > mH the N1 can also decay into Higgs bosons. The decay rate of

N1 → ν +H is

Γ(N1 → νβ +H) =
|Y β1

ν |2m1

32π

(
1−

m2
H

m2
1

)2

. (A.8)

If we use ε ≃ MDM
−1
N , MD = Yνv/

√
2 and α/(s2Wm2

W ) = 1/(πv2) to rewrite

|ε|2αm3
1

s2Wm2
W

∼ |Yν |2
m1

2πv2
, (A.9)

then in the limit m1 ≫ mH ,mW ,mZ , the above three decay rates are identical, i.e.,

Γ(N1 → ℓ−β + W+) = Γ(N1 → νβ + Z0) = Γ(N1 → νβ + H). This is required by the

equivalence theorem [93, 94] which states that, in this limit, the calculation could have

been performed in the theory before spontaneous symmetry breaking; in that theory, all

the fields except the N are massless, there is no heavy-light mixing and the N ’s decay

into the doublet of leptons and the Higgs scalar doublet through the standard model

Yukawa couplings. However for moderate m1, the phase space factors are important, in

particular, Γ(N1 → νβ +H) decreases rapidly as m1 approaches mH .

If m1 < mW , N1 dominantly decays into a light neutrino and a photon by the

magnetic moment coupling, which is suppressed by the heavy-light mixing. The decay

rate is

Γ(N1 → νβ + γ) =
2

π
|εβ1γ |2c2Wm3

1, (A.10)

where εγ is a parameter that characterizes the strength of the N1 − νβ − γ interaction

and it is of the order of (1/ΛNP)
√

mν/mN .
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A.5 Cross section for e+e− → N1 +N2 +X

If we neglect the interactions involving light neutrinos, the cross sections at

the LEP and ILC are

σ(e+ + e− → N1 +N2) =
2α

3
|ζ12|2fZ(

√
2,m1,m2)ηf (s), (A.11)

where ηf is defined in (A.1i) and f = e.

A.6 Partonic cross section for p+ p → N1 +N2 +X

To calculate σ(p + p → N1 + N2 + X), We need to calculate the differential

cross sections for q + q̄ → N − 1 +N2, which proceed through the electroweak-moment

interaction and are dominated by γ and Z0 exchange:

dσ̂

dΩ
(q + q̄ → N1 +N2)

=
α

6π
|ζ12|2ηq(ŝ)

√
λ(ŝ,m2

1,m
2
2)

ŝ3

× [(m2
1 +m2

2)(ŝ+ 2t̂)− 2t̂(ŝ+ t̂)− (m4
1 +m4

2)− 2ŝm1m2 cos 2δ12], (A.12)

where ŝ and t̂ are the Mandelstam variables for the partonic collision in the center of

mass frame of the quarks, and ηq(ŝ) is defined in (A.1i) with f = q. Then the total

partonic cross section is obtained by integration of the angular variables and the result

is the same as (A.11) with an additional factor 1/3 due to color and with qf , af , vf

appropriate for f = u, d.
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A.7 Decay rates for H → N1 +N2

The operator (ϕ†ϕ)νcRξνR can induce new decay modes for the Higgs boson.

We found

Γ(H → N1 +N2) =
v2

2πm3
H

|ξ12|2
√
λ(m2

H ,m2
1,m

2
2)

× [(m2
H −m2

1 −m2
2)− 2m1m2 cos 2δ

′
12], (A.13)

where ξij = |ξij |eiδ
′
ij and ⟨ϕ(0)⟩ = v/

√
2.
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