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Robust Fitting of Mixtures of Factor Analyzers Using1

the Trimmed Likelihood Estimator2

Li Yang ∗, Sijia Xiang †, and Weixin Yao ‡3

Abstract4

Mixtures of factor analyzers have been popularly used to cluster the high di-5

mensional data. However, the traditional estimation method is based on the nor-6

mality assumptions of random terms and thus is sensitive to outliers. In this7

article, we introduce a robust estimation procedure of mixtures of factor analyzers8

using the trimmed likelihood estimator (TLE). We use a simulation study and a9

real data application to demonstrate the robustness of the trimmed estimation pro-10

cedure and compare it with the traditional normality based maximum likelihood11

estimate.12

Key words: EM algorithm, Factor analysis, Mixture models, Robustness, Trimmed13

likelihood estimator.14

1 Introduction15

Factor analysis is a statistical dimension reduction technique for modeling the covariance16

structure of high dimensional data using a small number of latent variables (Ghahramani17

∗Department of Statistics, Kansas State University. E-mail: liy@k-state.edu.
†Corresponding Author, School of Mathematics and Statistics Zhejiang University of Finance and

Economics. E-mail: fxbxsj@gmail.com.
‡Department of Statistics, University of California, Riverside. E-mail: weixin.yao@ucr.edu.

1



and Hinton, 1997). It can be extended by allowing different local factor models in18

different regions of the input space. This results in a model which performs clustering19

and dimension reduction at the same time, and can be thought of as a reduced dimension20

mixture of Gaussians. Ghahramani and Hinton (1997) and Hinton et al. (1997) originally21

proposed mixtures of factor analyzers (MFA) model. They used this model to visualize22

high dimensional data in a lower dimensional space to explore the grouping structure.23

Tipping and Bishop (1997, 1999) and Bishop (1998) considered the related model of24

mixtures of principal component analysers for the same purpose. MFA model is in25

fact a nonlinear model which can be considered as a combination of traditional factor26

analysis (FA) model and the finite mixture models. Therefore, MFA model offers a way to27

overcome the linear limitation of the traditional FA model. In recent years, MFA model28

has received considerable interest. See, for example, Fokoué and Titterington (2003),29

Yung (1997), Dolan and VanderMaas (1998), and Arminger et al. (1999). McLachlan et30

al. (2003) discussed the application of mixtures of factor analyzers to density estimation31

and the clustering of high-dimensional data.32

MFA has been traditionally fitted using the maximum likelihood estimator (MLE)33

based on the normality assumptions of the random terms. Ghahramani and Hinton34

(1997) introduced an exact Expectation-Maximization (EM) algorithm to compute the35

MLE of MFA. However, it is well known that the normal based MLE can be very sensitive36

to outliers. In fact, even a single outlier can make an enormous impact on the MLE,37

which in mixture models means that at least one of the component parameter estimates38

might be arbitrarily large.39

In this article, a robust fitting of mixtures of factor analyzers is introduced based40

on the idea of trimmed likelihood estimator (TLE) (Neykov et al., 2007). The TLE is41

designed to fit the majority of the data, whereas the remaining data will be considered42

as outliers and thus will not be used for parameter estimation. We use a simulation43
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study and a real data application to demonstrate the robustness of the new estimation44

procedure and compare it with the traditional normality based maximum likelihood45

estimate.46

The rest of the paper is organized as follows. In Section 2, we briefly introduce47

the EM algorithm for a factor analysis (FA) and the mixture of factor analyzers (MFA).48

Section 3 presents the robust fitting of the mixture of factor analyzers using the trimmed49

likelihood estimator (TLE). Simulation results and a real data application are presented50

in Section 4. A discussion section ends the article.51

2 Mixtures of Factor Analyzers52

2.1 Factor analysis53

Let y1, ...,yn be a random sample of size n on a p-dimensional random vector. A typical54

factor analysis model is given by:55

yi = µ+ Λzi + ei, i = 1, ..., n, (2.1)

where µ is the mean of yi, zi is a q-dimensional (q < p) vector of latent or unobservable56

variables called factors, and Λ (p × q) is a factor loading matrix. The factors zi are57

assumed to be i.i.d. Nq(0, Iq), independent of the errors ei, which are assumed to be58

i.i.d. Np(0,Ψ) with Ψ a diagonal matrix Ψ = diag(σ2
1, ..., σ

2
p). The marginal density59

of yi is then Np(µ,ΛΛT + Ψ). For the purpose of classifying and reducing data, the60

traditional factor analysis is a useful tool for reducing a mass of information to an61

efficient description and grouping interdependent variables into descriptive categories.62

In statistics, it is a method used for explaining data, in particular, correlations between63

variables in multivariate observations.64
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The factor analysis model (2.1) can be fitted by maximizing the log-likelihood:

`(θ) =
n∑

i=1

log{(2π)p/2|ΛΛT + Ψ|−1/2 exp[−1

2
(yi − µ)T (ΛΛT + Ψ)−1(yi − µ)]},

with θ = (µT ,ΛT ,ΨT )T , which can be computed iteratively via the EM algorithm if zi

is considered the missing data.

E-step: Given the current estimator θ(k), calculate the following conditional expectation

given the observed data y:

a
(k)
i =E(zi|yi,θ

(k)) = Λ(k)T (Ψ(k) + Λ(k)Λ(k)T )−1yi,

b
(k)
i =E(ziz

T
i |yi,θ

(k)) = I − Λ(k)T (Ψ(k) + Λ(k)Λ(k)T )−1Λ(k)

+ {Λ(k)T (Ψ(k) + Λ(k)Λ(k)T )−1yi}{Λ(k)T (Ψ(k) + Λ(k)Λ(k)T )−1yi}T .

M-step: Calculate

µ(k+1) =
n∑

i=1

(yi − Λ(k)a
(k)
i ),

Λ(k+1) =
{ n∑

i=1

yia
(k)
i

T
}{ n∑

i=1

b
(k)
i

}−1
,

Ψ(k+1) =
1

n
diag

{ n∑
i=1

(yiy
T
i − Λ(k+1)a

(k)
i yT

i )
}
.

2.2 Mixtures of factor analyzers65

Although the factor analysis model (2.1) provides a global linear model for the presen-66

tation of the data in a lower-dimensional subspace, its application is limited when the67

data is not homogenous. The mixture of factor analyzers model (MFA), which allows68

different local factor models in different regions of the input space, is a natural exten-69

sion of the factor analysis. Assume we have a mixture of m factor analyzers with mixing70
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proportion πj, j = 1, ...,m. The marginal density of y is given by:71

f(y;θ) =
m∑
j=1

πjNp(y;µj,ΛjΛ
T
j + Ψ), (2.2)

where θ = (πT ,µT ,ΛT ,ΨT )T , π = (π1, ..., πm−1)
T , µ = (µT

1 , ...,µ
T
m)T , Λ = (ΛT

1 , ...,Λ
T
m)T .

Here, µj is the mean of the jth component, Λj is the factor loading matrix of the jth

component, and Ψ is the diagonal matrix of the error terms. It will be useful in the

estimation equations to have a definition of the mixture factor analyzers in terms of

conditional densities. For the jth component, the conditional density function is:

fj(y|z) = Np(y;µj + Λjz,Ψ).

Within each component of the mixture, we have the following joint density of y and z:

 y

z

 ∼ Np+q


 µj

0

 ,
 ΛjΛ

T
j + Ψ Λj

ΛT
j Iq


 .

Similar to the factor analysis, the mixture of factor analyzers can be estimated by

maximizing the following likelihood:

`(θ) =
n∑

i=1

log
m∑
j=1

πj

[
(2π)p/2|ΛjΛ

T
j + Ψ|−1/2 exp{−1

2
(yi − µj)

T (ΛjΛ
T
j + Ψ)−1(yi − µj)}

]
.

(2.3)

However, there is no explicit solution for the above maximizer. Ghahramani and Hinton72

(1997) introduced an EM algorithm to maximize (2.3). More specifically, let ωij be an73
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indicator variable indicating which component yi comes from. That is,74

ωij =

 1, if yi is from jth component,

0, otherwise.
(2.4)

Then the complete log-likelihood for {(yi, zi, ωij), i = 1, . . . , n, j = 1, . . . ,m} is

`c(θ) =
n∑

i=1

log
m∏
j=1

π
ωij

j

[
(2π)p/2|Ψ|−1/2 exp{−1

2
(yi − µj − Λjzi)

TΨ−1(yi − µj − Λjzi)}
]ωij

.

The EM algorithm iterates between E-step, which computes the expected complete log-

likelihood given current parameter estimates, and M-step, which maximizes the expected

completed log-likelihood calculated in the E-step. We summarize the EM algorithm to

maximize (2.3) as follows:

E-step: Given the current estimator θ(k), calculate the following conditional expectation

given the observed data y:

E(ωij|yi,θ
(k)) =

π
(k)
j Np(yi;µ

(k)
j ,Λ

(k)
j Λ

(k)
j

T
+ Ψ(k))∑m

j=1 π
(k)
j Np(yi;µ

(k)
j ,Λ

(k)
j Λ

(k)
j

T
+ Ψ(k))

= p
(k)
ij ,

a
(k)
ij = E(zi|yi, ωij = 1,θ(k)) = Γ

(k)
j (yi − µ

(k)
j ),

b
(k)
ij = E(ziz

T
i |yi, ωij = 1,θ(k)) = I − Γ

(k)
j Λ

(k)
j + Γ

(k)
j (yi − µ

(k)
j ){Γ(k)

j (yi − µ
(k)
j )}T ,

where Γj = ΛT
j (Ψ + ΛjΛ

T
j )−1.75

76

M-step: Calculate

π
(k+1)
j =

1

n

n∑
i=1

p
(k)
ij ,

µ
(k+1)
j =

{
n∑

i=1

p
(k)
ij (yi − Λ

(k)
j a

(k)
ij )

}{
n∑

i=1

p
(k)
ij

}−1
,
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Λ
(k+1)
j =

{
n∑

i=1

p
(k)
ij (yi − µ

(k+1)
j )a

(k)
ij

T

}{
n∑

i=1

p
(k)
ij b

(k)
ij

}−1
,

Ψ(k+1) =
1

n
diag

{
n∑

i=1

m∑
j=1

p
(k)
ij

(
yi − µ

(k+1)
j − Λ

(k+1)
j a

(k)
ij

)(
yi − µ

(k+1)
j

)T}
.

3 Robust Fitting of Mixtures of Factor Analyzers77

Using the Trimmed Likelihood Estimator78

The maximum likelihood estimator introduced in Section 2 is easy to implement, but very79

sensitive to outliers. Even a single outlier can make an enormous impact on the MLE,80

and make at least one of the component parameters to be arbitrarily large. To overcome81

this, McLachlan et al. (2007), Andrews et al. (2011), and Baek and McLachlan (2011)82

proposed mixtures of t−factor analyzers by assuming multivariate t−distributions for83

component errors and factor distributions. In this section, we apply the idea of trimmed84

likelihood estimator (TLE), proposed by Neykov et al. (2007), to fit the the mixtures85

of factor analyzers in a robust way. Compared to the proposed method based on TLE,86

the mixture of t−distributions has a very small breakdown point and is not robust when87

the outliers are extreme (Hennig, 2004; Yao et al., 2014).88

Suppose a number k (k ≤ n) of n observations are regular observations in the data,

and the remaining n − k observations may be gross or outliers. The basic idea of TLE

is removing the n − k observations which do not follow the model, and using only the

k observations to fit the model. The combinatorial nature of the TLE can be expressed

as:

max
I∈Ik

max
θ

∑
i∈I

log f(yi;θ),

where Ik is the set of all k-subsets of (1, . . . , n) and f(y;θ) is defined in (2.2). The89

fact that all possible
(
n
k

)
partitions of the data have to be fitted by the MLE makes90
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the estimation procedure very computational expensive. To find an approximate TLE91

solution for large data sets, an algorithm called FAST-TLE was developed by Neykov92

and Müller (2003). The basic idea behind FAST-TLE algorithm contains two steps: a93

trial step followed by a refinement step.94

(i) Trial step: Randomly select a subsample of size k∗ from the data sample and then95

fit the model to that subsample to get a trial maximum likelihood estimate (MLE).96

(ii) Refinement step: This step is based on the so-called concentration procedure.97

(a) Starting with the trial MLE, find a combination with the k smallest negative98

log-likelihoods based on the current estimate.99

(b) Obtain an improved estimator by fitting the model to these k cases.100

(c) Repeat (a) and (b) until convergence.101

At the end of this step, the solution with the largest trimmed likelihood is stored.102

This value may not be guaranteed to be the global optimal but would be a close103

approximation to it.104

The choice of trial size k∗ and refinement subsample size k are related to the break-105

down point (BP). The breakdown point (i.e., the smallest fraction of contamination106

that can cause the estimator to take arbitrary large values) of TLE was studied by us-107

ing d-fullness technique. Vandev and Neykov (1993) determined the value of d for the108

mixtures of normals to be m(p + 1). It was proved that if log f(y) is d-full, then the109

BP of TLE is not less than 1
n

min{n −m + 1,m − d + 1} (Neykov and Müller, 2003).110

The trial subsample size k∗ should be greater than or equal to d for the existence of111

MLE. The choice of k can be any number within [d, n]. When k = b(n+ d+ 1)/2c, the112

BP of the TLE is maximized (Neykov and Müller, 2003). If the expected percentage of113

outliers α in the data is a known priori, a recommended choice of k is bn(1− α)c which114

can increase the efficiency of the TLE.115
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The process of TLE applied particularly to the mixtures of factor analyzers can be116

performed as follows:117

Input: A trial subset with sample size equals to k∗ and initial parameters θ(0) =118

(π(0)T ,µ(0)T ,Λ(0)T ,Ψ(0)T )T .119

Output: A subset of size k which has the k smallest negative log-likelihoods.120

At the (l + 1)th iteration:121

E-step: Compute the expectation of component indicators ωij, latent variable z, and122

zzT based on the current subsample of size k.123

M-step: Maximize the complete log-likelihood of subsample of size k with respect to124

each unknown parameter and thus get a new parameter125

θ(l+1) = (π(l+1)T ,µ(l+1)T ,Λ(l+1)T ,Ψ(l+1)T )T .

T-step: Define a new subsample of size k which has the k smallest negative log-126

likelihoods with the new parameter θ(l+1).127

Repeat EMT steps until convergence.128

4 Simulation Study and Real Data Application129

4.1 Simulation study130

In this section, we use a simulation study to assess the performance of the MLE and the131

TLE to the mixtures of factor analyzers. For TLE, 20 randomly generated initial values132

are used and TLE reports the estimate whose log-likelihood is the biggest. True value133

(T) is also used as initial value for MLE and TLE. For the 20 initial values, we first134

use the R code “hc” from the R package “mclust” to cluster the randomly generated135

subsets of the data and then use the R code “factanal” from the R package “stats” to136
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do factor analysis for each cluster. The trimming proportion α is set to be 5% and thus137

k = bn(1 − α)c is used for TLE in all examples. We will discuss how to choose α data138

adaptively in Section 5.139

A two-component mixture of factor analyzers are considered in the simulation:

f(y) =
2∑

j=1

πjNp(y;µj,ΛjΛ
T
j + Ψ),

where the mixing proportions are π1 = 0.4 and π2 = 0.6. The means µ1 and µ2

are p × 1 vectors with all the elements equal to 0 and 5, respectively, and the factor

loading matrices Λ1 and Λ2 are p× 2 matrices with all the elements equal to 0.5 and 1,

respectively. That is,

µ1 =


0

...

0


p×1

,µ2 =


5

...

5


p×1

,

Λ1 =


0.5 0.5

...
...

0.5 0.5


p×2

,Λ2 =


1 1

...
...

1 1


p×2

.

We consider p = 10, 20, and 30. Sample sizes of n = 200 and n = 400 are conducted140

over 200 repetitions. To assess the robustness of the estimators, only (1−α0)× 100% of141

the observations are generated from the above model with α0 = 0, 0.01, 0.03, and 0.05,142

and the remaining α0 × 100% of the data is generated randomly from U(20, 30). The143

simulation was done through R on a personal laptop with an i7-3610QM CPU and 8GB144

of RAM. The computation time of the new algorithm (with 20 random initial values) is145

45 seconds for n = 200 and 61 seconds for n = 400.146

The performance of the estimates is measured by the miss-classification probability
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(MCP), which is defined to be the proportion of observations that are misclassified:

MCP = 1− {
n∑

i=1

2∑
j=1

ωijIpij>0.5}/n,

where ωij, defined in (2.4), indicates which component yi comes from, and pij is the

classification probability calculated by

pij =
π̂jNp(yi; µ̂j, Λ̂jΛ̂

T
j + Ψ̂)∑2

j=1 π̂jNp(yi; µ̂j, Λ̂jΛ̂T
j + Ψ̂)

, i = 1, . . . , n, j = 1, 2.

Note that for mixture models there are well known label switching issues (Celeux, et al.,147

2000; Stephens, 2000; Jasra et al., 2005; Yao and Lindsay, 2009; Grün and Leisch, 2009;148

Yao, 2012a, 2012b). In our simulations, the labels are found by minimizing the MCP.149

Tables 1 and 2 report the means and standard deviations of MCP for n = 200 and150

400, respectively. Based on the above tables, both TLE(T) and TLE(I) have smaller151

MCP than MLE for all three p values and both n = 200 and n = 400. In Tables152

3 and 4, we also report the means and standard deviations of the Euclidean distance153

between the estimates π̂1, µ̂1, and µ̂2 and their corresponding true values based on 200154

repetitions. From the tables, we can see that the TLEs with both true initial values and155

random initial values have better performance than the MLE when there are outliers,156

especially for µ2 and π1. The TLEs with randomly generated initial values work almost157

the same as those with true initial values. In addition, the TLE still works well when158

the trimming proportion is larger than the proportion of outliers. Furthermore, when159

there are no outliers (α = 0), TLE has comparable performance to the traditional MLE.160
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Table 1: Average (Std) of MCP, with n = 200.

Dimension Method α = 0 α = 0.01 α = 0.03 α = 0.05

MLE 0.984(0.012) 0.117(0.032) 0.103(0.031) 0.089(0.029)

p = 10 TLE(T) 0.984(0.011) 0.017(0.010) 0.018(0.012) 0.017(0.012)

TLE(I) 0.982(0.012) 0.019(0.011) 0.020(0.013) 0.020(0.014)

MLE 0.982(0.012) 0.089(0.030) 0.097(0.029) 0.140(0.029)

p = 20 TLE(T) 0.982(0.012) 0.019(0.013) 0.020(0.013) 0.067(0.010)

TLE(I) 0.980(0.014) 0.022(0.015) 0.022(0.014) 0.070(0.013)

MLE 0.151(0.354) 0.076(0.025) 0.105(0.031) 0.100(0.032)

p = 30 TLE(T) 0.151(0.353) 0.026(0.014) 0.033(0.018) 0.021(0.012)

TLE(I) 0.145(0.347) 0.029(0.021) 0.040(0.036) 0.026(0.029)

4.2 Real data application161

In this example, we consider applying both MLE and TLE of the mixture of factor162

analyzers to the wine data, which is available at the Machine Learning Repository of163

the University of California. The data set contains the results of chemical analysis164

of wines grown in the same region in Italy, but derived from three different cultivars.165

Therefore, a three component mixture model is suitable to fit the data if we do not use166

the cultivars of the wines. The analysis determined the quantities of p = 13 constituents167

found in each of n = 178 wines. Both MLE and TLE of the mixture of factor analyzers168

were fitted to this data set. Similar to the simulation study, the trimming proportion is169

set to be 0.05 for TLE.170

Based on McLachlan and Peel (2000), the miss-classification rate is smallest for q = 2171

and 3. In our analysis, q = 2 is used as our reduced dimension. Figure 1 shows the172

estimated posterior means of the q = 2 factors following a three-component mixture173

of factor analyzers of the wine data, which is actually the aij calculated from E-step.174

These posterior means have been plotted with their true group labels corresponding to175
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Table 2: Average (Std) of MCP, with n = 400.

Dimension Method α = 0 α = 0.01 α = 0.03 α = 0.05

MLE 0.986(0.006) 0.125(0.024) 0.123(0.020) 0.130(0.019)

p = 10 TLE(T) 0.986(0.006) 0.025(0.007) 0.044(0.006) 0.064(0.006)

TLE(I) 0.986(0.006) 0.026(0.008) 0.044(0.006) 0.064(0.006)

MLE 0.986(0.006) 0.110(0.021) 0.123(0.022) 0.131(0.019)

p = 20 TLE(T) 0.986(0.006) 0.025(0.007) 0.044(0.006) 0.065(0.007)

TLE(I) 0.986(0.006) 0.025(0.007) 0.045(0.006) 0.065(0.007)

MLE 0.984(0.008) 0.096(0.021) 0.124(0.020) 0.091(0.022)

p = 30 TLE(T) 0.984(0.009) 0.025(0.006) 0.047(0.008) 0.016(0.007)

TLE(I) 0.984(0.009) 0.025(0.007) 0.047(0.008) 0.017(0.008)

the three different cultivars displayed. From Figure 1 we can see that mixtures of factor176

analyzers have been useful here in exploring the grouping structure of the data in a much177

reduced dimension.178

To assess the robustness of the two estimation methods, we also consider the contam-179

inated data by adding 1% and 3% outliers from U(9, 11). Table 5 displays the estimated180

means µ1, µ2, and µ3 via MLE and TLE when the proportion of outliers are α0 = 0,181

0.01, and 0.03, and Table 6 displays the estimated component proportions π1 and π2.182

The true parameter values are calculated by using true classification labels based on183

the cultivars of the wines. From both tables, we see that when there are no outliers184

(α0 = 0), both MLE and TLE can provide comparatively good estimators. When the185

data is contaminated, however, TLE performs much better than MLE. As the proportion186

of outliers gets higher, MLE departs further away from the original MLE, while TLE187

does not change much when the outliers are added to the data.188
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Figure 1: Wine data: Plot of the estimated posterior means of the q = 2 factors (4, ◦,
and ∗ denote true component membership).

5 Discussion189

Mixtures of factor analyzers have been popularly used to do dimension reduction and190

model based clustering for high dimensional data. In this article, we investigate a robust191

estimation procedure of the mixtures of factor analyzers based on the TLE proposed by192

Neykov et al. (2007). The simulation study and real data analysis demonstrated the193

effectiveness of the TLE based robust estimation procedure.194

It is well know that the scale estimate by TLE is biased for univariate data. A195

scale factor is usually needed to to make the scale estimate an unbiased consistent196

estimator. Based on our limited empirical experience, the TLE based covariance estimate197

for mixtures of factor analyzers are also biased. However, it requires more theoretical198

studies whether a scale or vector factor could make the TLE based covariance estimator199

unbiased and consistent.200

In our examples, we have fixed the trimming proportion to be 0.05 for TLE. It works201

well whenever the true proportions of outliers are no more than 5%. However, it requires202

14



more research to find a data adaptive optimal or conservative trimming proportion for203

TLE in practice. Neykov et al. (2007) recommended a graphical tool to choose the204

trimming proportion in their examples. However, based on our limited empirical expe-205

rience, such graphical tool was not very successful in choosing the trimming proportion206

for mixtures of factor analyzers. There have been many methods proposed for choosing207

the trimming proportion for TLE in the non-mixture context. For example, Jurećková208

et al. (1994) studied the problem of choosing the trimming proportion for a trimmed L-209

estimator of location, and recommended the L-estimators with smooth weight functions.210

For the trimmed mean in the location modeling and for the trimmed least-squares esti-211

mator in the linear regression model, Dodge and Jurećková (1997) proposed a partially212

adaptive estimator of the trimming proportion based on a rank-based decision proce-213

dure. Clark and Schubert (2010) studied an adaptive trimmed likelihood estimator of214

regression, whose algorithm tends to expose the outliers automatically and provide the215

estimators with the outliers removed. It will be interesting to know whether we can216

extend the foregoing methods to adaptively choose the trimming proportion for TLE in217

the mixture context.218
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Table 3: Average (Std) of Euclidean distance, with n = 200.

Dimension Method α = 0 α = 0.01 α = 0.03 α = 0.05

µ1: 0.023(0.026) 0.051(0.032) 0.042(0.038) 0.044(0.033)

MLE µ2: 0.025(0.034) 1.359(0.469) 2.979(1.505) 6.368(0.825)

π1: 0.001(0.002) 0.021(0.012) 0.021(0.016) 0.030(0.016)

µ1: 0.024(0.020) 0.023(0.020) 0.021(0.021) 0.025(0.014)

p = 10 TLE(T) µ2: 0.028(0.030) 0.030(0.035) 0.024(0.028) 0.032(0.035)

π1: 0.001(0.002) 0.001(0.002) 0.002(0.003) 0.003(0.004)

µ1: 0.026(0.022) 0.025(0.021) 0.021(0.022) 0.030(0.030)

TLE(I) µ2: 0.030(0.034) 0.033(0.038) 0.031(0.066) 0.036(0.038)

π1: 0.001(0.002) 0.001(0.002) 0.002(0.003) 0.003(0.004)

µ1: 0.022(0.015) 0.046(0.091) 0.042(0.024) 0.042(0.027)

MLE µ2: 0.027(0.029) 0.849(0.298) 2.792(0.479) 5.449(0.690)

π1: 0.001(0.001) 0.013(0.009) 0.020(0.012) 0.028(0.014)

µ1: 0.023(0.015) 0.026(0.024) 0.023(0.018) 0.025(0.016)

p = 20 TLE(T) µ2: 0.029(0.030) 0.036(0.046) 0.030(0.030) 0.031(0.036)

π1: 0.001(0.002) 0.001(0.002) 0.002(0.003) 0.003(0.003)

µ1: 0.024(0.016) 0.029(0.025) 0.027(0.025) 0.029(0.023)

TLE(I) µ2: 0.039(0.057) 0.047(0.068) 0.037(0.037) 0.038(0.040)

π1: 0.001(0.002) 0.002(0.003) 0.002(0.003) 0.003(0.003)

µ1: 0.004(0.010) 0.034(0.022) 0.040(0.024) 0.018(0.032)

MLE µ2: 0.005(0.021) 0.528(0.213) 2.248(0.392) 1.551(2.216)

π1: 0.001(0.001) 0.008(0.008) 0.019(0.012) 0.010(0.016)

µ1: 0.004(0.009) 0.024(0.015) 0.024(0.014) 0.010(0.018)

p = 30 TLE(T) µ2: 0.009(0.043) 0.027(0.033) 0.028(0.031) 0.008(0.020)

π1: 0.001(0.001) 0.002(0.002) 0.002(0.003) 0.001(0.003)

µ1: 0.004(0.010) 0.047(0.201) 0.079(0.465) 0.044(0.401)

TLE(I) µ2: 0.012(0.063) 0.037(0.048) 0.039(0.049) 0.013(0.036)

π1: 0.001(0.001) 0.002(0.002) 0.003(0.007) 0.001(0.005)
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Table 4: Average (Std) of Euclidean distance, with n = 400.

Dimension Method α = 0 α = 0.01 α = 0.03 α = 0.05

µ1: 0.010(0.007) 0.031(0.020) 0.023(0.015) 0.020(0.013)

MLE µ2: 0.013(0.018) 1.566(0.289) 3.757(0.364) 6.630(0.595)

π1: 0.001(0.001) 0.025(0.011) 0.026(0.010) 0.030(0.011)

µ1: 0.011(0.008) 0.012(0.009) 0.012(0.009) 0.012(0.008)

p = 10 TLE(T) µ2: 0.015(0.021) 0.016(0.017) 0.013(0.014) 0.012(0.012)

π1: 0.001(0.001) 0.001(0.001) 0.001(0.001) 0.002(0.002)

µ1: 0.011(0.009) 0.012(0.009) 0.013(0.009) 0.012(0.009)

TLE(I) µ2: 0.016(0.022) 0.017(0.019) 0.015(0.016) 0.014(0.014)

π1: 0.001(0.001) 0.001(0.001) 0.001(0.001) 0.002(0.002)

µ1: 0.011(0.006) 0.025(0.013) 0.021(0.012) 0.020(0.014)

MLE µ2: 0.013(0.013) 1.056(0.235) 2.963(0.324) 5.713(0.511)

π1: 0.001(0.001) 0.018(0.008) 0.024(0.010) 0.028(0.010)

µ1: 0.011(0.007) 0.011(0.006) 0.012(0.008) 0.012(0.008)

p = 20 TLE(T) µ2: 0.014(0.016) 0.016(0.016) 0.013(0.013) 0.013(0.015)

π1: 0.001(0.001) 0.001(0.001) 0.001(0.001) 0.002(0.002)

µ1: 0.012(0.008) 0.011(0.006) 0.012(0.008) 0.013(0.014)

TLE(I) µ2: 0.016(0.020) 0.018(0.017) 0.014(0.014) 0.015(0.016)

π1: 0.001(0.001) 0.001(0.001) 0.001(0.001) 0.002(0.002)

µ1: 0.011(0.008) 0.021(0.013) 0.022(0.014) 0.016(0.014)

MLE µ2: 0.014(0.015) 0.715(0.171) 2.503(0.316) 3.616(2.238)

π1: 0.001(0.001) 0.013(0.008) 0.022(0.010) 0.021(0.016)

µ1: 0.012(0.009) 0.011(0.007) 0.012(0.007) 0.009(0.008)

p = 30 TLE(T) µ2: 0.018(0.024) 0.014(0.013) 0.017(0.019) 0.009(0.011)

π1: 0.001(0.001) 0.001(0.001) 0.001(0.002) 0.001(0.002)

µ1: 0.013(0.009) 0.012(0.008) 0.012(0.007) 0.009(0.008)

TLE(I) µ2: 0.019(0.023) 0.016(0.015) 0.019(0.019) 0.010(0.013)

π1: 0.001(0.001) 0.001(0.001) 0.001(0.002) 0.001(0.002)
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Table 5: Wine data: Estimated Means with α0 = 0, 0.01, and 0.03.

α0 = 0 α0 = 0.01 α0 = 0.03

True MLE TLE MLE TLE MLE TLE

µ1 13.74 13.66 13.74 13.44 13.74 12.34 13.73
2.01 1.99 2.01 1.61 2.02 0.21 1.99
2.46 2.47 2.46 2.09 2.46 0.79 2.43
17.04 17.49 17.05 16.42 17.18 15.77 17.01

106.34 107.87 106.30 105.67 106.04 105.95 105.34
2.84 2.85 2.84 2.50 2.84 1.29 2.84
2.98 3.00 2.98 2.69 2.98 2.11 2.96
0.29 0.29 0.29 -0.03 0.29 -1.25 0.28
1.90 1.92 1.90 1.53 1.90 0.66 1.87
5.53 5.44 5.52 5.29 5.53 7.09 5.50
1.06 1.07 1.06 0.71 1.06 -0.40 1.06
3.16 3.16 3.16 2.78 3.14 1.53 3.14

1115.71 1097.23 1114.12 1144.08 1115.45 1284.31 1115.80

µ2 12.28 12.28 12.30 12.34 12.32 12.92 12.30
1.93 1.95 1.96 1.98 1.95 1.97 1.97
2.24 2.22 2.25 2.26 2.24 2.33 2.24
20.24 19.96 20.26 20.21 20.09 18.88 20.08
94.55 91.86 90.09 94.98 90.07 99.06 91.30
2.26 2.23 2.23 2.30 2.24 2.51 2.24
2.08 2.04 2.06 2.14 2.05 2.48 2.07
0.36 0.37 0.38 0.37 0.37 0.33 0.38
1.63 1.60 1.55 1.64 1.53 1.75 1.59
3.09 3.05 3.07 3.17 3.07 4.11 3.06
1.06 1.05 1.06 1.05 1.05 1.06 1.05
2.79 2.77 2.79 2.82 2.78 2.95 2.78

519.51 502.67 496.14 534.54 496.23 777.10 498.36

µ3 13.15 13.12 13.13 13.12 13.12 13.11 13.12
3.33 3.31 3.37 3.30 3.30 3.27 3.29
2.44 2.44 2.43 2.44 2.44 2.43 2.44
21.42 21.42 21.34 21.42 21.41 21.33 21.41
99.31 100.03 99.35 100.03 100.04 100.02 100.05
1.68 1.68 1.65 1.68 1.67 1.68 1.67
0.78 0.79 0.77 0.79 0.79 0.80 0.79
0.45 0.44 0.45 0.44 0.44 0.44 0.44
1.15 1.16 1.12 1.16 1.16 1.15 1.16
7.40 7.29 7.27 7.28 7.27 7.25 7.25
0.68 0.69 0.69 0.69 0.69 0.69 0.69
1.68 1.70 1.68 1.70 1.70 1.69 1.70

629.90 630.27 629.56 630.53 631.24 627.43 632.32
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Table 6: Wine data: Estimated component proportions with α0 = 0, 0.01, and 0.03.

α0 = 0 α0 = 0.01 α0 = 0.03

True MLE TLE MLE TLE MLE TLE

π1

0.3315 0.3516 0.3516 0.3049 0.3386 0.0331 0.3201

π2

0.3989 0.3726 0.3726 0.4190 0.3697 0.6853 0.3869
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