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ABSTRACT
Interstitial lung disease (ILD) associated with rheumatoid 
arthritis or with connective tissue diseases such as 
systemic sclerosis can be collectively named systemic 
autoimmune rheumatic disease-associated ILDs (SARD-
ILDs) or rheumatic musculoskeletal disorder-associated 
ILDs. SARD-ILDs result in substantial morbidity and 
mortality, and there is a high medical need for effective 
therapies that target both fibrotic and inflammatory 
pathways in SARD-ILD. Phosphodiesterase 4 (PDE4) 
hydrolyses cyclic AMP, which regulates multiple 
pathways involved in inflammatory processes. PDE4 is 
overexpressed in peripheral blood monocytes from patients 
with inflammatory diseases. However, clinical data on 
pan-PDE4 inhibition in fibrotic conditions are lacking. 
The PDE4B subtype is highly expressed in the brain, 
lungs, heart, skeletal muscle and immune cells. As such, 
inhibition of PDE4B may be a novel approach for fibrosing 
ILDs such as idiopathic pulmonary fibrosis (IPF) and SARD-
ILD. Preclinical data for PDE4B inhibition have provided 
initial evidence of both anti-inflammatory and antifibrotic 
activity, with reduced potential for gastrointestinal toxicity 
compared with pan-PDE4 inhibitors. In a proof-of-concept 
phase II trial in patients with IPF, nerandomilast (BI 
1015550), the only PDE4B inhibitor currently in clinical 
development, prevented a decline in lung function over 
12 weeks compared with placebo. The potential clinical 
benefit of PDE4B inhibition is now being investigated in the 
phase III setting, with two trials evaluating nerandomilast 
in patients with IPF (FIBRONEER-IPF) or with progressive 
pulmonary fibrosis other than IPF (FIBRONEER-ILD). Here, 
we review the preclinical and clinical data that provide 
rationale for PDE4B inhibition as a treatment strategy in 
patients with SARD-ILD.

INTRODUCTION
Connective tissue diseases (CTDs) are a heter-
ogeneous group of mostly rare multiorgan 
systemic autoimmune diseases that include 
inflammatory idiopathic myopathies (IIMs), 
Sjögren’s disease, systemic sclerosis (SSc), 
mixed CTD (MCTD) and systemic lupus 
erythematosus.1 2 Rheumatoid arthritis (RA), 

the most common autoimmune arthritis, 
is a systemic autoimmune disease in which 
polyarthritis is the leading clinical manifesta-
tion. Interstitial lung disease (ILD) associated 
with CTD (CTD-ILD), RA (RA-ILD) and a 
few other systemic autoimmune diseases such 
as microscopic polyangiitis have been collec-
tively named systemic autoimmune rheu-
matic disease-associated ILDs (SARD-ILDs)3 
or rheumatic musculoskeletal disorder ILDs. 
SARD-ILDs may be predominantly inflamma-
tory, predominantly fibrotic, or a mixture of 
both, and are a leading cause of morbidity 
and mortality for patients with SARDs.4 The 
published prevalence rates of SARD-ILDs vary 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Interstitial lung disease (ILD) is a relatively common 
and life-threatening complication of systemic auto-
immune rheumatic diseases (SARDs), comprising 
connective tissue diseases, microscopic polyangiitis 
and rheumatoid arthritis.

	⇒ The pathophysiology of SARD-ILDs has both fibrotic 
and inflammatory components.

	⇒ Despite the use of immunomodulatory and antifi-
brotic therapies, a high medical need remains.

WHAT THIS PAPER ADDS
	⇒ Preferential inhibition of phosphodiesterase 4B 
(PDE4B) is a novel approach, with both antifibrotic 
and anti-inflammatory activity.

	⇒ While pan-PDE4 inhibitors are available in other in-
dications, specific PDE4B inhibition reduces gastro-
intestinal toxicity, enabling higher dosing and may 
preferentially target the lungs.

HOW THESE FINDINGS MIGHT AFFECT 
RESEARCH, PRACTICE OR POLICY

	⇒ Preclinical and clinical data of the PDE4B inhibitor 
nerandomilast suggest that PDE4B inhibition may 
provide a novel, possibly superior, treatment strat-
egy for patients with SARD-ILDs.
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widely by disease, likely at least partly due to differences 
in screening and diagnostic methods, as well as reporting 
and rates of referral to specialised centres. The highest 
incidence of ILD has been reported among patients 
with IIMs, MCTD and SSc.5 6 The reported frequency of 
ILD in RA varies widely, depending on the population 
and diagnostic method.7 However, RA-ILD is one of the 
most commonly observed SARD-ILDs due to the high 
number of patients with RA compared with other auto-
immune rheumatic conditions. Table  1 shows the esti-
mated frequency of ILD in a range of SARD-ILDs, based 
on a recent systematic review8 and cohort studies in 
IIM/antisynthetase syndrome.9 10 However, the evidence 
levels for these estimates are highly variable, and while 
the frequency of ILD in SSc is derived from relatively 
robust studies, evidence in other disorders is weak and 
the frequency of ILD in patients with RA has also been 
reported at much higher levels than given in the table.11

Established therapies for SARD-ILD are largely based 
on immunosuppressive treatments such as mycopheno-
late, cyclophosphamide and glucocorticoids, although 
this may vary according to the underlying disease.3 12 
Tocilizumab (an anti-interleukin (IL)-6 receptor anti-
body) is approved for the treatment of SSc-ILD in the 
USA, and rituximab (an anti-CD20 antibody) is approved 
for SSc in Japan, following positive data from the phase III 
FocuSSced and DESIRES trials, respectively.13 14 The non-
immunosuppressive antifibrotic medications nintedanib 
and pirfenidone, originally developed for idiopathic 
pulmonary fibrosis (IPF), have also been evaluated in 
SARD-ILDs. Nintedanib is approved in SSc-ILD, based 
on the phase III Safety and Efficacy of Nintedanib 
in Systemic Sclerosis (SENSCIS) trial,15 and in other 
chronic fibrosing ILDs with a progressive phenotype, 
including SARD-ILDs, based on the phase III INBUILD 

trial.16 17 Prespecified analyses of INBUILD have demon-
strated that the efficacy of nintedanib was consistent 
across subgroups of patients with autoimmune ILDs,18 19 
although the number of patients in these subgroups was 
relatively small.20 Pirfenidone has also shown evidence 
of activity in the phase II TRAIL1 trial in patients with 
RA-ILD, where it slowed the rate of decline of forced vital 
capacity (FVC); however, the trial was underpowered and 
failed to meet its composite primary endpoint.21

Despite advances in the treatments for SARD-ILDs, 
there remains a high medical need for effective therapies 
that target both the fibrotic and inflammatory pathways 
in SARD-ILDs, as well as treatments for extrapulmonary 
manifestations.

PULMONARY FIBROSIS IN SARD-ILDS
Historically, ILDs have been grouped according to 
histology, with different diseases showing different 
patterns of inflammation and fibrosis. IPF, the archetypal 
progressive fibrosing ILD, has a usual interstitial pneu-
monia (UIP) histology.22 Apart from IPF, other ILDs with 
a frequently reported UIP pattern include chronic hyper-
sensitivity pneumonitis,23 RA-ILD24 and antineutrophil 
cytoplasmic antibodies-associated ILD.25 A UIP pattern 
is often associated with progression. However, other 
patterns and histologies, more frequently seen in ILDs 
associated with SSc, IIM, Sjögren’s disease or MCTD,26 
may also become progressive. Thus, a varying propor-
tion of patients with SARD-ILDs exhibit progressive ILD. 
The long-term course of progression can be variable, 
but is generally associated with increased mortality.27 
The pathophysiological mechanisms driving progressive 
fibrosis in IPF have been extensively investigated in in 
vivo and in vitro studies (reviewed by Spagnolo et al).28 In 
SARD-ILD, where rarity is combined with a wide hetero-
geneity of underlying causes, data are much more sparse. 
Both further studies based on international collabora-
tions and dedicated multicentre drug trials are required 
to understand the mechanisms of inflammation and 
fibrosis and optimal treatment strategies in SARD-ILD. 
Nevertheless, it has been proposed that the mechanisms 
of progressive fibrosis are similar between IPF and other 
forms of progressive pulmonary fibrosis.29 While experi-
mental proof for this hypothesis is still lacking for most 
mechanisms, it provides the rationale for the evalua-
tion of established treatments approved for IPF in other 
progressive fibrosing ILDs.

PHOSPHODIESTERASE (PDE) 4 INHIBITION IN THE TREATMENT 
OF FIBROSIS
PDEs are a group of enzymes that hydrolyse cyclic guano-
sine monophosphate (cGMP) and cyclic AMP (cAMP) 
during intracellular signalling.30 31 The PDE superfamily 
includes 11 gene families (PDE1–11), with multiple 
subtypes within most families (PDE1A, 1B, etc) and 
further variants of some subtypes (PDE1A1, 1A2, etc). 
PDE1–3, 10 and 11 hydrolyse both cAMP and cGMP, 

Table 1  Reported frequency of ILD by disease subtype in 
a systematic review8 and cohort studies9 10

Disease
Reported prevalence range in 
registry/multicentre studies (%)*

RA8 1–7 (up to 40% subclinical ILD)

SSc8 48–54

IIM9† 25–50

Antisynthetase 
syndrome10

Up to 75

Sjögren’s8 4–19

MCTD8 40

*Prevalence data are shown as a percentage of study populations 
using only data from registry (SSc) or multicentre studies (other 
conditions) reported in the cited publications. The overall 
prevalence range reported in the publication may be different as it 
includes single-centre studies.
†Highly dependent on the autoantibodies.
IIM, inflammatory idiopathic myopathy; ILD, interstitial lung 
disease; MCTD, mixed connective tissue disease; RA, rheumatoid 
arthritis; SSc, systemic sclerosis.
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whereas PDE4, 7 and 8 are specific for cAMP, and PDE5, 
6 and 9 hydrolyse cGMP (figure  1).30–33 Proinflamma-
tory cytokines such as transforming growth factor beta 
(TGFβ), tumour necrosis factor alpha (TNFα), IL-1, IL-6 
and others have been shown to be involved in many inflam-
matory diseases, including SARD-ILDs.7 34 A regulator 
of inflammatory cytokine production, PDE4, has been 
shown to be overexpressed in peripheral blood mono-
cytes from patients with inflammatory diseases, including 
psoriasis, psoriatic arthritis, Crohn’s disease and systemic 
lupus erythematosus.35 Whether PDE4 is overexpressed 
in mesenchymal cells from patients with fibrotic diseases, 
however, remains to be determined. Unsurprisingly, 
PDE4 has been a target for pharmaceutical intervention 
in several inflammatory diseases, including asthma and 
chronic obstructive pulmonary disease (COPD), as well 
as psoriasis, psoriatic arthritis, ankylosing spondylitis, 
Behçet’s disease, atopic dermatitis, inflammatory bowel 
diseases, RA, lupus erythematosus and neuroinflamma-
tion.36 37 Three pan-PDE4 inhibitors (ie, drugs that do 
not preferentially inhibit any PDE4 subtype) have been 
approved for treatment, including roflumilast for severe 
COPD,38 apremilast for psoriasis, psoriatic arthritis and 
oral ulcers associated with Behçet’s disease,39 and topical 
crisaborole for mild-to-moderate atopic dermatitis.40

Preclinical studies have suggested that PDE4 inhib-
itors reduce or prevent inflammation-driven fibrosis. 
The PDE4 inhibitor rolipram inhibited lung fibrosis in 
inhaled bleomycin-challenged mice and rats.41 Similarly, 
roflumilast inhibited histologically assessed fibrosis and 

fibrosis-associated serum markers in a bleomycin mouse 
model of lung fibrosis42; it also inhibited fibrosis and 
collagen deposition in a mouse model of graft-versus-
host disease.43 In addition, there is evidence for possible 
direct antifibrotic effects of PDE4 inhibition. PDE4 inhib-
itors have been shown to inhibit fibrosis and/or fibrotic 
markers in preclinical studies in tissues other than the 
lung. These include the skin, where rolipram and apremi-
last reduced the activity of macrophages and release of 
fibrotic cytokines,44 kidneys, where rolipram replenished 
cAMP levels and inhibited extracellular matrix (ECM) 
deposition in fibrotic kidney tissue,45 and liver, where 
roflumilast normalised levels of fibrotic cytokines in rats 
with chemically induced liver fibrosis.46 The full mech-
anism by which PDE4 inhibits fibrosis is not completely 
understood, but in vivo it is believed to also involve inhi-
bition of myofibroblast transformation and proliferation, 
and expression of ECM proteins, in addition to effects 
on inflammatory cells, including macrophages and 
monocytes.36 As shown in figure 2, PDE4 acts via 5’-AMP 
in monocytes, macrophages and fibroblasts, to increase 
the release of proinflammatory cytokine and cellular 
mediators. Additionally, in monocytes and macrophages, 
PDE4 degrades cAMP, promoting proinflammatory cyto-
kine and downregulating anti-inflammatory cytokine 
release, whereas in fibroblasts the degradation of cAMP 
by PDE4 increases ECM synthesis, fibroblast prolifera-
tion and myofibroblast differentiation. Conversely, inhi-
bition of PDE4, using either pan or preferential PDE4 
subtype inhibition, prevents the degradation of cAMP 

Figure 1  PDE substrate specificity. PDE4, 7 and 8 hydrolyse cAMP; PDE5, 6 and 9 hydrolyse cGMP; PDE1–3, 10 
and 11 hydrolyse both cAMP and cGMP. cAMP, 3’,5’-cyclic AMP; cGMP, 3’,5’-cyclic guanosine monophosphate; PDE, 
phosphodiesterase.
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Figure 2  Proposed mechanisms of anti-inflammatory and antifibrotic activity associated with PDE4 inhibition (based on 
Kolb et al).36 Preferential PDE4B inhibition may target this activity to the lung. cAMP, cyclic AMP; ECM, extracellular matrix; 
EPAC1/2, exchange protein directly activated by cAMP 1/2; GPCR, G protein-coupled receptor; PDE, phosphodiesterase; PKA, 
protein kinase A.
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in monocytes, macrophages and fibroblasts.36 Increased 
cAMP in monocytes and macrophages enhances anti-
inflammatory cytokine synthesis and reduces proinflam-
matory cytokine synthesis, whereas in fibroblasts it is 
hypothesised to reduce ECM synthesis, fibroblast prolif-
eration and myofibroblast differentiation.36 47 However, 
clinical data on pan-PDE4 inhibition in fibrotic condi-
tions are lacking.

PREFERENTIAL INHIBITION OF PDE4B
Differential expression of PDE subtypes/families across 
different tissues and cell types allows pharmacological 
targeting in different diseases.36 PDE4 is involved in 
inflammatory signalling and is widely distributed, but 
the PDE4B subtype has high expression in brain, lung 
and immune cells, as well as heart and skeletal muscle 
(figure  3).30 36 With high expression of PDE4B in the 
lungs, preferential inhibition of this subtype may offer 
the possibility of selectively inhibiting lung fibrosis with 
reduced adverse effects in other tissues. For example, 
PDE4D, but not PDE4B, is believed to be the subtype 
responsible for the nausea and emesis (vomiting) associ-
ated with pan-PDE4 inhibitors, due to differential activity 
on adrenoceptor signalling.48

Preclinical data
Nerandomilast (BI 1015550) is a preferential PDE4B 
inhibitor and is the only one currently in clinical develop-
ment, to our knowledge. Nerandomilast is approximately 
nine times more potent in vitro for inhibition of recom-
binant PDE4B compared with PDE4D,47 suggesting that 
it may be used at higher effective doses than pan-PDE4 
inhibitors. Nerandomilast has both anti-inflammatory and 
antifibrotic effects. In vitro, nerandomilast inhibited the 
release of proinflammatory cytokines (TNFα and IL-2) 
in human and rat whole blood and/or peripheral blood 
mononuclear cells. Potent anti-inflammatory activity was 
also shown by the ex vivo inhibition of TNFα synthesis in 
two well-known mouse models of lung fibrosis (induced 
either by bleomycin or silica), and by the inhibition of 
neutrophil influx into bronchoalveolar lavage fluid in 
Suncus murinus,47 a house shrew that is phylogenetically 
closer to primates than rodents and is particularly sensi-
tive to emesis induction.49 The inflammation-dependent 
antifibrotic effects of nerandomilast were shown in vivo 
by improved lung function parameters and reduced 
fibrosis in the bleomycin and silica murine models of 
fibrosis, with significant differences in FVC and pulmo-
nary pressure volume in the bleomycin model. These in 

Figure 3  PDE4 expression in different tissues.36 PDE, phosphodiesterase.
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vivo data were supported by in vitro data showing anti-
fibrotic effects. Nerandomilast mediated the inhibition 
of the profibrotic activity of primary lung fibroblasts 
from patients with IPF.47 TGFβ-stimulated myofibroblast 
transformation was inhibited, as was basic fibroblast 
growth factor plus IL-1β-induced cell proliferation, and 
the expression of various ECM proteins was reduced.47 
Interestingly, when added to nerandomilast, nintedanib 
showed an approximately tenfold synergistic inhibitory 
effect on the proliferation of primary lung fibroblasts 
from patients with IPF, and an additive effect on the 
expression of collagen 1A1. No additive effects were seen 
on the expression of collagen 3A1 or fibronectin.47 In 
S. murinus, nerandomilast also showed less potential to 
induce emesis compared with the pan-PDE4 inhibitor 
roflumilast.47

Clinical data
Nerandomilast was first evaluated in a phase I study in 
healthy individuals and a phase Ic study in patients 
with IPF, in which it showed an acceptable tolerability 
profile.50 The efficacy and safety of nerandomilast 
were subsequently investigated in a placebo-controlled, 
randomised (2:1) phase II study in 147 patients with 
IPF receiving or not receiving a stable dose of pirfeni-
done/nintedanib background treatment for at least 
8 weeks before screening.51 Nerandomilast prevented 
lung function decline over 12 weeks in patients with 
and without background antifibrotic use compared with 
placebo: median change in FVC was +2.7 mL (95% cred-
ible interval (CI) −38.2 to 38.2) vs −59.2 mL (95% CI 
−111.8 to −17.9) in patients with background antifibrotic 
use; in those without background antifibrotic use it was 
+5.7 mL (95% CI −39.1 to 50.5) vs −81.7 mL (95% CI 
−133.5 to −44.8).51 The median difference in patients 
with or without background antifibrotic use compared 
with placebo was 62.4 mL (95% CI 6.3 to 125.5) and 
88.4 mL (95% CI 29.5 to 154.2), respectively, with the 
probability of nerandomilast being superior to placebo 
being 0.986 and 0.998, respectively (exceeding the treat-
ment effect probability of 0.75).51 Nerandomilast had 
an acceptable safety profile, with mild-to-moderate diar-
rhoea the most common adverse event (more frequent 
in patients receiving background antifibrotics), and few 
patients reporting nausea/vomiting.51 Severe gastroin-
testinal (GI) effects have been reported with pan-PDE4 
inhibitors. For example, apremilast can cause diarrhoea, 
nausea and vomiting events (some requiring hospitali-
sation), which may require apremilast discontinuation, 
and this has resulted in a warning/precaution on the 
label.39 Gradual dose escalation may improve tolerability. 
Improved GI side effects are particularly important for 
SARD-ILDs; while the GI side effect profile appears prom-
ising with nerandomilast, the phase II study was only 12 
weeks in duration. These promising results in phase II 
warranted further investigation, and nerandomilast is 
currently being evaluated over 52 weeks in two phase III, 
placebo-controlled trials in more than 1000 patients with 

IPF (FIBRONEER-IPF, NCT0532106952) and in a similar 
number of patients with other progressive fibrosing ILDs 
(FIBRONEER-ILD, NCT0532108253). The trials will 
address longer-term efficacy and safety of nerandomilast. 
Both trials include patients receiving and not receiving 
background antifibrotic therapy. In the phase II trial, 
patients receiving nerandomilast who were on back-
ground antifibrotic therapy had a higher incidence of 
diarrhoea than those not on antifibrotics (31% vs 17%) 
and were more likely to discontinue treatment due to diar-
rhoea (6% vs 0%).51 It will therefore be important to fully 
establish the GI tolerability of nerandomilast in combina-
tion with antifibrotic therapy in these phase III studies. 
Another important consideration is the role of PDE4B in 
the brain. PDE4B plays a major role in brain signalling 
and has been implicated in cognitive function, memory 
and psychiatric disorders and neuroinflammation.54 A 
low risk of psychiatric events was observed in studies of 
the pan-PDE4 inhibitor apremilast.55 The FIBRONEER 
trials will also therefore assess psychiatric events as events 
of special interest. Both of these trials have completed 
recruitment with results expected in 2025.

CONCLUSIONS
Inhibition of PDE4B has been shown to reduce inflamma-
tory markers and inflammation-driven fibrosis in in vitro 
and animal studies, with evidence of direct antifibrotic 
effects on fibroblasts from patients with IPF in vitro. In 
a phase II clinical trial, the PDE4B inhibitor nerandomi-
last stabilised lung function over 12 weeks in patients with 
IPF. The available data suggest that preferential PDE4B 
inhibition is a promising strategy in the treatment of 
SARD-ILD.
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