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Abstract 

Cluster analysis was applied to daily 8 h ozone maxima modeled for a summer season to 

characterize meteorology-induced variations in the spatial distribution of ozone. Principal 

component analysis is employed to form a reduced dimension set to describe and interpret ozone 

spatial patterns. The first three principal components (PCs) capture ~85% of total variance, with 

PC1 describing a general spatial trend, and PC2 and PC3 each describing a spatial contrast. Six 

clusters were identified for California’s San Joaquin Valley (SJV) with two low, three moderate, 

and one high-ozone cluster. The moderate ozone clusters are distinguished by elevated ozone 

levels in different parts of the valley: northern, western, and eastern, respectively. The SJV ozone 

clusters have stronger coupling with the San Francisco Bay area (SFB) than with the Sacramento 

Valley (SV). Variations in ozone spatial distributions induced by anthropogenic emission 

changes are small relative to the overall variations in ozone amomalies observed for the whole 

summer. Ozone regimes identified here are mostly determined by the direct and indirect 

meteorological effects. Existing measurement sites are sufficiently representative to capture 

ozone spatial patterns in the SFB and SV, but the western side of the SJV is under-sampled.  
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1 Introduction 

Ozone is a designated criteria pollutant and has harmful effects on human health (Bell and 

Dominici 2008) and agriculture productivity (Emberson et al. 2009). Understanding the spatial 

distribution of ozone pollution and its temporal changes is of interest to determine the level of 

exposure. Meteorological factors can either alter directly ozone chemistry and transport, or 

indirectly affect ozone formation by influencing light and temperature sensitive precursor 

emissions from biogenic sources (Dawson et al. 2007; Tao et al. 2007). Thus temporal variations 

in the magnitude and spatial extend of ambient ozone pollution may reflect the changes in 

meteorological conditions. Past observational studies identified reoccurring spatial distributions 

of ozone to determine the associated meteorology that influences air quality (e.g. Ludwig et al. 

1995; Dayan and Levy 2002; Beaver and Palazoglu 2006). This approach is valid only when 

changes in ozone are not significantly influenced by factors other than meteorology (e.g. large 

wild fire emissions and changes in anthropogenic emissions). Furthermore, questioning whether 

the limited spatial coverage of measurement locations can adequately capture regional level 

ozone patterns has largely been ignored. 

Cluster analysis (Everitt, 1993) is commonly employed to classify pollution regimes, and is 

traditionally applied to observational data that generally have extensive temporal coverage to 

account for uncertainties resulting from inter-annual variability and emission changes. When the 

approach is applied to an extensive modeling study, some of the limitations associated with 

observational studies can be controlled. Factors other than meteorology such as emission inputs 

can be specified and contributions from changes in meteorology vs anthropogenic emissions can 

be compared with sensitivity studies. There are no spatial gaps in the gridded model data, hence 

spatial representativeness is no longer an issue. Nevertheless, few analyses of photochemical 

modeling results have been guided by this approach. This is because model development and 

input data preparation generally limit highly resolved simulations to short modeling periods of a 

few days which are insufficient for resolving representative patterns. 

California’s San Joaquin Valley suffers from serious ozone air pollution problems due to its 

unique geography as well as diverse emission sources from both local and upwind areas. As 

previous modeling studies have often focused on ozone episodes that last for 3 to 5 days, 



 

 3

knowledge of meteorological regimes that influence ozone behavior has been obtained mainly 

from statistical analysis of historical observations at limited measurement sites (e.g. Ludwig et 

al. 1995, Beaver and Palazoglu 2009). Photochemical modeling has been conducted for all of 

summer 2000 in Central California (Jin et al., 2010), which provides an opportunity to 

demonstrate cluster analysis applied to model results.  

In this paper, we characterize regimes of modeled ozone spatial behavior in the San Joaquin 

Valley in relationship with upwind air basins in Central California, i.e. Sacramento Valley and 

San Francisco Bay area. Variations induced by changes in anthropogenic emissions are 

quantified to determine whether ozone regimes identified here are mainly attributable to them or 

to underlying meteorological processes. Spatial representativeness of existing measurement 

locations is also discussed. The results can serve as a basis to investigate associated 

meteorological features to reveal mechanisms for regional ozone transport and accumulation in 

subsequent work  

2 Methods 

Cluster analysis and principal component analysis are employed in this study to determine 

and interpret spatial distributions of ozone in Central California.  

2.1 Principal Component Analysis 

Both ozone and meteorological fields have large spatial dimensions, for example, 10
4
 

dimensions are needed to describe surface 8 h ozone maxima on one day for a domain of size 

100 by 100. These dimensions are redundant and can be reduced by considering spatial 

correlation. To accomplish this, Principal Component Analysis (PCA) (Pearson 1902; Hotelling 

1935) or Empirical Orthogonal Function (EOF) technique (Lorenz 1935), has been frequently 

employed by linearly combining the original large number of dimensions into a few new 

dimensions without compromising much of the data variance.  Reduced dimensionality makes 

the dataset much easier to manage and interpret. The basic idea is that the spatial data at any 

given time can be represented by the sum of the mean pattern and multiples of a few principal 
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spatial patterns (PCs or EOFs). These principal component multipliers (defined as “scores”) can 

be used as a reduced set of descriptors for the spatial patterns. The resulting PCs are associated 

with distinct physical processes when they strongly influence the spatial variations. In this case 

the scores can be interpreted as indicating the strength of these physical processes.  

The spatial data are the 8 h ozone maxima for a specific region, and here these are used to 

form the data matrix (M) as follows: 
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where, Xis is the maximum 8 h ozone concentration on day i at grid cell s; N is the total 

number of days, P is the total number of grid cells. The anomaly matrix ( M ′) is formed as  
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where 
isX ′ is the departure of 

isX from the time average at grid cell s. The principal components 

are determined through singular value decomposition (SVD) on M ′: 

 T
M UDV′ =  (3) 

where U (with dimension N r× , with r the rank of M ′) and V (with dimension P r× ) are 

orthogonal matrices, whose column vectors consist of left and right singular vectors, 

respectively. D is a diagonal matrix with singular values dii. PCs are thus the column vectors in 

V, and the variance explained by the i
th

 PC is 2 2

1
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The PCs provide a new orthogonal basis for the daily ozone (8 h) maxima. Ozone maxima 

on day i: 1 2( , , , )T

i i i iP
X X X X=
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L can now be represented as follows: 
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where, 
1

1 N

i

i

X X
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is the average ozone maxima over all N days; aim is the score (or 

coefficient) of the concentration anomaly 
i i

X X X′ = −

rr r
 of day i projected onto the m

th
 PC: 

1 2( , , , )T

m m mP
x x xL . The PCs in Equation (4) are arranged in descending order of importance as 

defined by the explained variance. Putting all the days together, scores on the first PC have the 

largest variability, scores on the second PC are next, followed by the third, and so on.  

2.2 Cluster Analysis Methods 

In this study, cluster analysis is used to define the spatial patterns of daily 8 h ozone maxima 

of specified subregions in Central California. Days that have similar spatial 8 h maximum ozone, 

with respect to magnitude and spread, are grouped together to define a unique ozone pattern.  

The dissimilarity measurement (
ij

D ) between any two days i and j is the Euclidean distance 

between the 8-hr maximum ozone vectors (
i

X
r

and jX
r

) associated with them: 
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where s is the grid index within the subregion, and P is the total number of grid cells.  

In most observational studies, the data matrix is scaled to weigh all the measurement 

locations equally in the analysis.  Observations from each station are scaled independently by 

removing their mean over all the days then dividing by their standard deviation. In this study, all 

the grid cells are included in the analysis; hence such scaling is no longer appropriate. Low 

ozone levels are predicted for the majority of the domain grid cells, while high ozone levels are 

concentrated near the source regions. Consequently, standardizing each grid cell tends to 

exaggerate the ozone variations at locations that are relatively clean. No scaling is applied here 

so that the ozone patterns are distinguished by their absolute ozone magnitude and spatial extent.  



 

 6

In this study, we employ the most widely used partitioning method (the Hierarchical and 

Partitioning methods are described in Supporting Information), k-means clustering (Anderberg 

1973). The clustering procedure partitions the ozone days into k groups, where the within-group 

sum of square over all the dimensions is minimized. For any given k, different initial partitioning 

gives different final clustering results. In order to stabilize the final clustering result, we repeat 

the process with 50 random starts and pick the one that has the minimum within-group sum of 

squares (WSS) (See Supporting information Figure S1) as the final result. This gives us more 

consistent clustering results.  

There is no consensus on an objective method for determining the number of groupings, k 

(Everitt et al. 2001). Some studies combined Hierarchical methods with Partitioning methods to 

aid visual inspections of the data structure for selecting an appropriate number of groupings (e.g., 

Kaufmann and Whiteman, 1999; Beaver and Palazoglu, 2006) or used a criterion with single 

metrics like the Silhouette
1
 measure of Kaufman and Rousseeuw (1990). Others were entirely 

subjective (e.g. Ludwig et al., 1995) so as to have enough clusters to encompass the range 

patterns in the data set but not too many to reduce greatly the size of each cluster. Although an 

automated scheme is desirable, some expert knowledge can be incorporated a priori, as practiced 

in Darby (2005), to insure that important information is revealed without engaging in over-

interpretation at the same time. Increasing k for the k-means method generates more compact 

clusters and thus generally decreases the within-group sum of squares. To avoid over-

interpretation, the difference between WSSk and WSSk+1 is calculated for a number of clusters k = 

1, 2, …, 20. WSS generally does not decrease significantly after k is in the range 4-7. Therefore, 

{4,5,6,7} forms a candidate set for k. The final value of k is selected after visually examining 

                                                 
1
 For each observation i, the silhouette number s(i) is defined as follows:  

Let a(i) = average dissimilarity between i and all other points of the cluster to which i belongs (if i is the only 

observation in its cluster, s(i) := 0 without further calculations). For all other clusters C, put d(i,C) = average 

dissimilarity of i to all observations of C. The smallest of these d(i,C) is b(i) and can be seen as the dissimilarity 

between i and its “neighbor” cluster, i.e., the nearest one to which it does not belong. Finally,  

s(i) = ( b(i) - a(i) ) / max( a(i), b(i) ). 

Therefore, silhouette number can be used for describing how well a data point fits into the cluster that it is assigned 

to. 
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cluster centers to insure important spatial patterns are revealed. Silhouette numbers are also 

computed for the range of k that was considered, and they usually do not differ significantly. 

2.3 Data and subregions  

Hourly ozone concentrations were simulated using the Community Multiscale Air Quality 

(CMAQ) modeling system for the period from 2 June to 26 September 2000. Details of model 

inputs and evaluation against observations can be found in Jin et al (2010).  The model is capable 

of reproducing observed ozone concentrations, especially for the San Joaquin Valley.   

Clustering of ozone spatial distributions is done for the San Joaquin Valley as well as two 

major upwind air basins in Central California (see Figure 1), which also experience frequent 

ozone exceedances during the summertime.  Subregions are defined by extending each of three 

air basins: San Francisco Bay Area (SFB), San Joaquin Valley (SJV), and Sacramento Valley 

(SV), to include their respective downwind areas (indicated in Figure 1 by lighter colors), 

according to the dominant summer flows. Including these additional downwind areas allows for 

capturing of pollutant spatial patterns that are closely related to prevailing wind regimes.  

The 8 h ozone maxima were determined for each grid cell and for each day. Days with less 

than 0.1% of the grid cells in the CCOS domain exceeding 84 ppb, are considered as very clean. 

These very clean days are labeled as cluster 0, and are excluded from further clustering analysis. 

The Sacramento Valley is heavily influenced by large forest fire emissions from Aug 18
th

 to 29
th

. 

These days are also excluded from clustering analysis because their variations are largely 

induced by emission changes rather than meteorology, as the meteorological changes induced by 

the fires were not captured by the model. 

3 Results  

3.1 Spatial ozone behavior in Central California 

PCA was performed for the 8 h ozone maxima for all the days in each subregion to reduce 

the number of dimensions needed to describe ozone behavior on each day. PCA provides 
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insights on underlying physical processes; if one or two processes are particularly influential, 

they are very likely to be reflected in one of the first few PCs. Figure S2 (Supporting 

Information) reveals that the first six PCs explain more than 90% of the variance in daily ozone 

maps, and the first three PCs usually account for about 85% of the variance for all subregions. A 

subspace spanned by the first few PCs can represent the spatial ozone anomalies quite well. 

Daily 8 h ozone maxima in each subregion can then be described by the summer average 

and strengths of individual PCs. Figure 2 presents the 8 h ozone maxima averaged over the 

whole summer (except for SV, where the days significantly affected by forest fire emissions are 

excluded). The summer averages (the mean field) describe ozone features common to all the 

summer days. For example, the SJV has the highest ozone levels among all the air basins, and 

especially high ozone levels are seen in Fresno, Bakersfield, and Sacramento. Figure 3 shows 

ozone loadings on the first three PCs for the three subregions. The first three PCs characterize 

the most prominent patterns observed in the remaining ozone anomaly fields (deviation of daily 

ozone maxima from the mean field). The anomaly fields describe features unique to individual 

summer days. Color scales in Figure 3 were chosen to reveal the spatial patterns for individual 

PCs. 

PC1 is mostly positive, describing an average spatial trend in ozone concentrations, 

governed by the relative distribution of emissions, with higher ozone levels near emission 

sources and lower in remote rural areas. Higher score on this PC implies higher ozone 

concentrations with magnitude mostly proportional to the availability of precursors. For 

example, Fresno ozone increases on hotter days, and this increase is greater than those found for   

more remote areas. PC2 (and PC3) in each subregion is usually a spatial contrast
2
 or gradient in a 

specific direction, characterized by the transition from positive loadings in one part of the region 

to negative loadings in another. For example, PC2 for the SJV is a spatial contrast between the 

northwestern and southeastern sides of the valley, and larger scores on this PC imply larger 

differences (stronger contrast) in ozone anomalies between the two sides of the valley. These 

spatial contrasts in ozone concentrations could be caused by meteorological factors such as a 

temperature gradient under certain synoptic conditions, or wind flows that carry pollutants from 

source regions to downwind areas. In the case of SJV PC2, for example, the spatial contrast 

                                                 
2
 Contrast is a statistical term usually used in experimental designs. The coefficient (or score, here) of a contrast 

measures the average difference between treatments that are marked by different signs in the contrast. 
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follows the direction of typical up-valley flows, moving pollutants from the source regions in the 

valley to the Sierras and the Mojave desert, which causes a decrease in ozone levels in the 

northwest and an increase in the southeast. A summary description of the first three PCs for each 

of the subregions can be found in Table 1 

Cluster analysis can be performed with the original ozone data, or with the reduced data set 

by projecting ozone anomalies onto the subspace defined by the first six PCs that generally 

capture more than 90% of the variability in the original data set. Both methods produce the same 

results. Clusters are ranked according to the average scores on the first PC (usually accounting 

for ~70% of total variance), which indicates the magnitude of the average ozone levels for that 

cluster.  

 

3.2 Ozone regimes in the SJV 

The San Joaquin Valley has the most serious ozone problems in Central California. After 

excluding 27 very clean days (defined in section 2.3 as cluster 0), 90 days are grouped into six 

ozone clusters for the SJV. The distribution of cluster members is visualized in a reduced 

dimension space (Figure 4), while average ozone anomaly fields of each cluster are plotted using 

the original dimensions (Figure 5). Average ozone anomaly fields obtained by subtracting the 

seasonal mean provide a better representation of the spatial features that are unique to individual 

clusters.  Figure 4 is a boxplot
3
 that summarizes the distribution of the scores on the first three 

PCs to illustrate how each cluster (1 to 6) is significantly different from the others in terms of 

one or more PC scores.  

Clusters 1 and 2 have significantly less ozone than other clusters, as indicated by negative 

scores on PC1, and they differ from each other by spatial contrasts mainly described by PC2. The 

spatial contrasts are also reflected in the mean ozone anomaly maps of these two clusters: 

                                                 
3
 Boxplot is a box and whisker plot for scores on each PC. The box has lines at the lower quartile, median, and 

upper quartile values. The whiskers are lines extending from each end of the box to show the extent of the rest of the 

data. Outliers are data with values beyond the ends of the whiskers. If there are no data outside the whisker, a dot is 

placed at the bottom whisker. In a notched box plot the notches represent a robust estimate of the uncertainty about 

the medians for box-to-box comparison. Boxes whose notches do not overlap indicate that the medians of the two 

groups differ at the 5% significance level. 
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elevated ozone on the western side of the valley in cluster 1 and on the eastern side in cluster 2. 

Clusters 3 to 5 have moderate ozone levels with similar PC1 scores, higher than clusters 1 and 

2, and lower than cluster 6. These three clusters differ from each other based on spatial 

distributions of ozone anomalies governed by PC2 and PC3. Cluster 3 has higher scores on PC3 

compared to clusters 4 and 5. Clusters 4 and 5 differ by having PC2 scores of opposite signs. 

These features are in accord with spatial patterns of mean ozone anomalies (see Figure 5): 

Cluster 3 has elevated ozone levels on the north side, Cluster 4 on the western side, and Cluster 5 

on the more downwind southeastern side. Cluster 6 has significantly higher ozone than others 

(highest PC1 scores).  

The dynamic relationships among the SJV clusters can be revealed by modeling the 

transitional probabilities (e.g. Beaver et al. 2008); however their statistical significance cannot be 

determined due to the number of days (117) considered in this study. The number of days when 

ozone air quality transitioned from one cluster to another (see Supporting information Table S1) 

indicates that low-ozone days are less likely to develop into high-ozone clusters on the next day. 

This implies that ozone accumulation in the SJV usually takes multiple days. The transition 

matrix indicate the two most probable paths for SJV ozone levels to develop from low to high: 

1�4�6 (then back to 5), or 2�3�5 (then back to 2, or, less likely, develop into 6).  As seen in 

Figures 4 and 5, clusters 2 and 5 have similar spatial contrast features as characterized by PC2, 

but different average ozone levels as characterized by PC1. Similarly, clusters 1 and 4 have 

similar spatial contrasts but different ozone levels. The two paths (1�4�6 and 2�3�5) may 

imply the development of two different weather regimes. 

3.3 Ozone regimes in the SFB and the SV 

The Bay area and the Sacramento Valley are, at times, influential upwind source areas that 

affect air quality in the San Joaquin Valley. The remaining 90 days from summer 2000 (after 

clean days are excluded) are grouped into four SFB ozone clusters. Five clusters are obtained for 

the SV after excluding 12 additional days on which air quality was significantly affected by 

forest fires.  

The average spatial patterns of ozone anomalies indicated in Figures 6 and 7 are in accord 

with the PC scores of the SFB and SV (Figure S3 in Supporting Information). SFB cluster 4 has 



 

 11

more elevated ozone levels near the ocean (western and southern) rather than in more inland 

areas as in cluster 3. This is likely due to a decrease in strength of the sea breeze. SV cluster 3 

experiences an ozone decrease in Sacramento and an increase in the northern end of the valley. 

With ozone transported to downwind areas, locations near Sacramento become rather clean as in 

SV cluster 3, despite moderately high PC1 scores.  SV cluster 5 is characterized by overall high 

ozone levels both in Sacramento (high PC1 scores in Figure S3 in Supporting Information) and 

downwind to the north (high PC2 scores in Figure S3). The characteristics of each cluster are 

summarized in Table 2. 

Subregional daily cluster memberships are plotted for the entire simulation period in Figure 

8. Similar to the SJV, the highest ozone cluster in the Sacramento Valley does not follow 

immediately after the cleanest days (clusters 0, 1, and 3), but rather evolves over multiple days. 

Ozone levels in the SFB respond more rapidly to changes in mesoscale meteorology (e.g., 

changes in strength of the sea breeze). A clean day in SFB (clusters 0, 1 and 2) can be followed 

by a high ozone day (clusters 3 and 4), which entails ozone increases of as much as 10 ppb at hot 

spots in the Livermore and Santa Clara Valleys, according to the mean ozone anomaly maps 

shown in Figure 6. 

 

4 Discussion  

4.1 Interbasin Coupling 

The coupling between upwind airbasins and SJV can reveal source-receptor 

relationships that are associated with different meteorological processes. The joint 

distribution of ozone clusters in SJV in relation to SFB and SV is presented in Table 3. 

Moderate high ozone clusters 3 and 5 in the SJV are mostly associated with a relatively 

clean SFB ozone pattern (cluster 2), while SJV cluster 4 is mostly associated with high-

ozone SFB clusters 3 and 4.  High ozone levels in SFB (cluster type 4) sometimes occur 

when SJV experiences its lowest ozone levels (cluster 1), which could be caused by the 

high ozone sensitivity to SFB meteorology. SFB produces and accumulates ozone over 
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the course of a day when it experiences a sudden weakening of westerly flows that are 

insufficient to ventilate pollutants. Since the transport of pollutants from the SFB is 

diminished, the SJV can maintain lower ozone levels. There are fewer clear relationships 

between SJV and SV ozone patterns, partly due to smaller sample sizes in the SV. When 

SV is experiencing its highest ozone levels, SJV ozone levels are generally high (clusters 

3-6), and low SJV ozone levels (clusters 1 and 2) do not occur on the highest SV ozone 

days (cluster 5). Among moderate ozone days for the SJV (clusters 3, 4, and 5), clusters 3 

and 5 are associated with moderate to high SV ozone levels, while cluster 4 is associated 

with relatively low SV ozone levels.  

 

 

4.2 Effects of Weekend Emission Reductions on Spatial 

Distribution of ozone 

The variations of ozone patterns induced directly (through chemistry and physical 

processes) and indirectly (through the effects on biogenic emissions) by changes in 

meteorology can be confounded by changes in anthropogenic emissions. When using 

ozone spatial patterns in the SJV to reveal meteorological regimes, it is important to 

understand whether ozone patterns are significantly affected by changes in anthropogenic 

emissions. Anthropogenic emissions used in this modeling study have day-of-week 

variations, with lower weekend emissions than on weekdays (see Tonse et al. 2008). To 

investigate the weekend effect on ozone spatial patterns, we simulated all the weekend 

days with weekday emissions and examined the variations of ozone spatial patterns 

induced by the emission change. Ozone differences on Sundays (∆O3wnd) were used in 

this analysis.  

∆O3wnd = O3a – O3h        (6) 

where, O3a are the Sunday ozone concentrations simulated using actual Sunday 

emissions, and O3h is the Sunday ozone concentrations simulated using typical weekday 

emissions. Saturdays are excluded from the analysis because they can be affected by 

carryover of Friday emissions. 
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∆O3wnd is projected onto the same SJV ozone PCs, 1 to 3, described in Section 3.1. 

The scores (shown in Figure 9) can be compared to the overall variations in ozone 

anomalies observed for whole summer (Figure 4). Scores in Figure 12 suggest that the 

reduction of weekend emissions will reduce overall ozone levels (PC1) and increase the 

spatial imbalances (PC2 and PC3). Compared to Figure 4, these changes are small 

relative to the overall variations seen for the whole summer and within each cluster. For 

example, in Figure 4, the scores on PC1 across all clusters range from –500 to more than 

1000; even within each cluster, the scores on PC1 generally vary by more than 300. In 

contrast, weekend effects only induce average variations of ~100. These minor effects are 

confirmed by reclustering SJV ozone patterns simulated using all weekday emissions.  

The new results are not significantly different from the ones we presented previously (see 

Table 4), in that the tabulation shows only a few off-diagonal elements. The column total 

represents the “true” clustering results that are driven only by the variations in 

meteorology. Within each column, distribution among the rows reflects the effects of 

changes in anthropogenic emissions. The off-diagonal elements in each column can be 

explained by emission changes occurring on weekends, e.g., in the last column, the 

overall decreases in weekend ozone concentrations lead to assigning three days in cluster 

6 to cluster 5.  Similarly, in column 5, three days in cluster 5 are assigned to cluster 2, 

which has a similar spatial pattern but lower ozone levels. This analysis confirms that the 

variations seen in ozone spatial patterns are mostly attributable to changes in 

meteorology. 

 

4.3 Representativeness of ozone measurement sites 

Surface measurements have better temporal coverage but may not be spatially 

representative. The ozone observation sites in Central California are shown in Figure 1 

for each of the three subregions. Modeling results on highly resolved grids can be used to 

investigate whether there are adequate and appropriately located observational sites to 

reflect region-wide and subregional ozone patterns.  
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The same clustering procedure is now repeated using modeled data but only at 

observational sites. Clean days (cluster label 0) here are defined to be those with no more 

than one site exceeding 84 ppb (8 h maximum ozone). Resulting cluster memberships are 

compared with those from modeled data in Table 5.  

Cluster memberships determined by the two approaches are in reasonable agreement 

for both the SFB and the SV, since there are few off-diagonal elements. Measurement 

sites in SJV can distinguish relatively high ozone days (clusters 3, 4, 5, 6) from relatively 

low ozone days (clusters 1 and 2) and clean days (cluster 0).  As for more subtle 

differences in the clusters, however, SJV observation sites could not distinguish cluster 1 

from 2, or cluster 4 from 5 (highlighted in red). About 70% of the days that should be in 

cluster 4 have been grouped into cluster 5. These clusters are separated by the contrast in 

ozone between the western and eastern sides of the SJV, which is likely to be caused by 

different meteorological conditions that yield different ozone production and transport 

patterns. Figure 1 indicates measurement sites in the SJV tend to be located in more 

populated areas in the middle or eastern side of the valley. The western side of the SJV is 

under-sampled. As a result, the current distribution of measurement sites in the SJV alone 

cannot resolve the spatial contrast between the western and eastern sides of the valley 

adequately, so that days having ozone distributions characteristic of clusters 4 or 5 tend to 

be lumped together. Recall that SJV cluster 4 is generally associated with high SFB 

ozone, while SJV cluster 5 is linked to low SFB ozone. Including SFB sites in the 

clustering procedure applied to observations can help to distinguish days in SJV ozone 

cluster 4 from those in cluster 5 without knowing the actual ozone concentrations on the 

western side of the SJV.   

 

5 Conclusions 

In this paper, we applied k-means cluster analysis to daily 8 h ozone maxima 

modeled for a summer season to characterize meteorology-induced variations in the 

spatial distribution of ozone air pollution. Principal component analysis is employed to 

form a reduced dimension set to describe and interpret ozone spatial patterns. The first 
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three principal components (PCs) capture ~85% of total variance, with PC1 describing a 

general spatial trend, and PC2 and PC3 each describing a spatial contrast. Results were 

reported for the San Joaquin Valley, and in relationship to clustering results for two 

upwind air basins: San Francisco Bay area and Sacramento Valley. Six clusters were 

determined for the SJV, with two lower ozone clusters 1 and 2, three moderate ozone 

clusters 3 to 5, and one high-ozone cluster 6. The moderate ozone clusters are 

distinguished by elevated ozone levels in different parts of the valley: northern, western, 

and eastern side, respectively. The SJV ozone clusters have stronger coupling with SFB 

ozone clusters than with the SV.  

Variations in ozone spatial distributions induced by anthropogenic emission changes 

are small relative to overall variations in ozone over the whole summer. Therefore, 

differences in the ozone regimes characterized here are mostly attributable to direct and 

indirect meteorological effects. Existing measurement sites are able to capture ozone 

spatial patterns in the SFB and SV, whereas the western side of the SJV is under-

represented.  
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Table 1 Description of the first three PCs for each subregion. 

Subregion 
Principal 

Component 
Descriptions 

SJV 

1 

Largely positive, describing a general spatial pattern in ozone 

concentrations (higher loadings seen along Highway 99, and 

near Fresno and Bakersfield). 

2 

A spatial contrast in southeastern direction, with positive 

loadings in the Sierras and Mojave desert, and negative 

loadings in the northwest (Modesto to Fresno). 

3 

A spatial contrast in northeastern direction, with positive 

loadings in the Sierras and northeastern SJV, and negative 

loadings along the southwestern side of the valley.  

SFB 

1 

Largely positive, describing a general spatial pattern in ozone 

concentrations (larger loadings seen in Livermore valley and 

south bay). 

2 
An east-west spatial contrast between coastal and inland 

areas, with positive loadings on the coastal side. 

3 
A north-south spatial contrast with positive loadings on the 

northern side. 

SV 

1 
Largely positive, describing a general spatial pattern in ozone 

concentrations (larger loadings near Sacramento). 

2 
A north-south spatial contrast with positive loadings in 

northern, more rural areas 

3 

An east-west spatial contrast between the Sacramento Valley 

and Mountain County air basins, with positive loadings in the 

Sierras. 
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Table 2 Descriptions of ozone clusters 

Subregion 
Ozone 

level 

Spatial 

pattern 

cluster 

Descriptions of ozone anomalies 

SFB 

Low 

1 Mostly negative, indicating lower than average ozone levels 

2 
Very small ozone increases on the eastern side (more to the 

inland side) of the basin 

High 

3 
Elevated ozone concentrated on the southeastern side of the 

basin 

4 
Elevated ozone levels on the western, central, and southern side 

(more to the ocean side) of the basin 

SJV 

Low 

1 
Overall lower than average ozone levels, with very small 

increases on the western side of the valley 

2 
Small ozone increases in the Sierras and the Mojave desert, 

downwind side of the major urban areas. 

Moderate 

3 Moderate ozone increases on the north side 

4 Moderate ozone increases on the western side 

5 Moderate increases on the southeastern 

High 6 Strong ozone increases throughout the valley 

SV 

Low 

1 
Very small ozone increases in the Sacramento area (southern 

end of the valley) 

2 Small ozone increases near Sacramento 

3 

Strong ozone increases in the north, but decrease in the 

Sacramento, resulting in rather clean conditions in the usual 

ozone hot spots. 

Moderate 4 
Moderate ozone increases both in the south and southeast 

Sacramento area 

High 5 Strong ozone increases throughout the valley 
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Table 3 Inter-basin relationships of ozone clusters.  

             SJV cluster  

SFB          1  2  3  4  5  6 

cluster   1  2 17  3  0  3  0 

          2  2  4 11  1 16  3 

          3  0  1  2  6  0  6 

          4  5  0  1  6  0  1 

 

          SJV cluster  

SV         1  2  3  4  5  6 

cluster 1  5  3  2  4  0  1 

        2  1  3  4  4  6  2 

        3  2 10  2  0  2  0 

        4  0  3  4  2  6  3 

        5  0  0  4  1  3  1 

Each entry at i
th
 row and j

th
 column is the number of days that has ozone cluster types i and j in 

the respective subregions.  

 

 

Table 4 Comparison of SJV clustering results with all weekday emissions only versus 

day-of-week dependent emissions
4
 

SJV clusters 

(c1~c6) 

Meteorology induced variation 

 

 

Meteorology 

+ Emission 

               

     c1 c2 c3 c4 c5 c6 

 c1  8  0  0  0  0  0 

 c2  0 15  3  0  4  0 

 c3  0  1 14  1  0  0 

 c4  1  0  0 12  0  0 

 c5  0  0  4  0 12  3 

 c6  0  0  1  0  0  9 

 

                                                 
4
 An outlier day 265 is removed from the clustering due to its exceedingly large score on PC 3. 
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Table 5 Comparison of clustering results with modeled data at all grids versus using 

modeled data only at observational sites.  

SJV SFB SV 
       sites 

grids   0  1  2  3  4  5  6 

     0 25  2  0  0  0  0  0 

     1  3  4  0  2  0  0  0 

     2  1  9  8  4  0  0  0 

     3  0  0  0 11  1  5  0 

     4  0  0  0  1  3  8  1 

     5  0  0  2  0  0 17  0 

     6  0  0  0  0  1  1  8 

 

      sites 

grids   0  1  2  3  4 

     0 25  0  2  0  0 

     1  3 15  7  0  0 

     2  1  2 32  2  0 

     3  0  0  1 12  2 

     4  0  0  0  0 13 

 

      sites 

grids   0  1  2  3  4  5 

     0 24  0  1  1  0  0 

     1  4 10  1  0  0  0 

     2  0  4 16  0  0  0 

     3  0  1  1 14  0  0 

     4  0  0  2  0 12  4 

     5  0  0  0  1  0  8 

 

The bold faced numbers are cluster labels (row labels are clusters resulting from using modeled 

data at all grids, column labels are clusters resulting from using modeled data at measurement 

sites). 

 



 

 23

 

 

Figure 1 Subregions in Central California used for clustering ozone spatial patterns. 

Black dots are actual ozone measurement sites. SJV (red+pink), SFB (blue+lightblue), 

SV (green + lightgreen). 
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Figure 2 Summer average 8 h ozone maxima (ppb) for the three subregions.  



 

 25

 

 

Figure 3 Ozone loadings (ppb) on the three PCs of 8 h ozone maxima.  
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Figure 4 Visualizing SJV ozone clusters (1 to 6) with PC scores.  
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Figure 5 Ozone anomaly field (ppb) averaged over SJV clusters.  
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Figure 6 Mean ozone anomaly fields (ppb) patterns of SFB clusters. 
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Figure 7 Mean ozone anomaly fields (ppb) patterns of SV clusters. 
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Figure 8 Cluster memberships. 

Clean days (cluster 0) are blank. Days with significant forest fire influence on SV ozone levels are indicated on the plot. 

SJV Key (cluster type from 1 to 6)  

SFB Key (cluster type from 1 to 4)  

SV Key  (cluster type from 1 to 5)



 

 31

 

Figure 9 SJV weekend effects on ozone spatial variations projected onto the first three PCs. 

 

 




