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Abstract

Cognitive tasks that are too hard or too easy produce imprecise measurements of ability, which, in 

turn, attenuates group differences and can lead to inaccurate conclusions in clinical research. We 

aimed to illustrate this problem using a popular experimental measure of working memory—the 

N-back task—and to suggest corrective strategies for measuring working memory and other 

cognitive deficits in schizophrenia. Samples of undergraduates (n = 42), community controls (n = 

25), outpatients with schizophrenia (n = 33), and inpatients with schizophrenia (n = 17) completed 

the N-back. Predictors of task difficulty—including load, number of word syllables, and 

presentation time—were experimentally manipulated. Using a methodology that combined 

techniques from signal detection theory and item response theory, we examined predictors of 

difficulty and precision on the N-back task. Load and item type were the two strongest predictors 

of difficulty. Measurement precision was associated with ability, and ability varied by group; as a 

result, patients were measured more precisely than controls. Although difficulty was well matched 

to the ability levels of impaired examinees, most task conditions were too easy for non-impaired 

participants. In a simulation study, N-back tasks primarily consisting of 1- and 2-back load 

conditions were unreliable, and attenuated effect size (Cohen’s d) by as much as 50%. The results 

suggest that N-back tasks, as commonly designed, may underestimate patients’ cognitive deficits 

due to non-optimized measurement properties. Overall, this cautionary study provides a template 

for identifying and correcting measurement problems in clinical studies of abnormal cognition.
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Cognitive tasks that are too hard or easy produce imprecise measurements (Lord, 1980), 

confound studies of differential deficit (Chapman & Chapman, 1973), and complicate 

translational research (Callicott et al., 2000; Manoach et al., 1999). Researchers have 

explicitly recommended that task difficulty be a main criterion used to select 

neurobehavioral probes (Gur, Erwin, & Gur, 1992), and problems associated with using tests 

with non-optimized item properties have been known for many years (Lord & Novick, 

1968). Despite this, the relative match, or mismatch, between ability and difficulty is rarely 

discussed in applied research, likely because there have been few demonstrations of its 

practical consequences. In this paper, we illustrate these problems using a popular 

experimental measure of working memory—the N-back task—and suggest strategies for 

precisely measuring working memory and other cognitive deficits in schizophrenia. The 

methodology applied is general, and can inform future studies of abnormal cognition in 

schizophrenia and other neurocognitive disorders.

Item Difficulty and Measurement Error

Ability estimates are most precise when item difficulty is closely matched to ability 

(Embretson, 1996; Lord, 1980). To understand why, it is important to distinguish between 

classic and modern conceptualizations of measurement error. Classical test theory defines 

measurement error as the square root of one minus the ratio of true score variance to 

observed score variance: standard error of measurement. As such, measurement error in 

classical test theory is a constant. Modern psychometrics—particularly item response theory 

(IRT; Lord, 1980)—on the other hand, defines measurement error as the standard deviation 

of the estimate of ability: standard error of estimate. As such, estimates of measurement 

error in IRT may vary over scores within a population (Embretson, 1996); specifically, error 

is often a “U”-shaped function of ability. Although unequal precision is not a desirable 

property, it is, unfortunately, a real and everpresent one that may go unnoticed by researchers 

using classical methods (e.g., split-half reliability or coefficient alpha). This problem occurs 

because items that are too hard or too easy produce little systematic variation in observed 

test scores (Lord, 1980); in extreme cases, tests may show “floor” or “ceiling” effects (i.e., 

when all examinees within a particular range of the ability distribution receive the same 

score; Haynes, Smith, & Hunsley, 2011).

There are practical consequences of administering tests with item difficulties that are poorly 

matched to ability. It is an axiom of psychometric theory that associations between variables 

are attenuated to the extent that measures of those variables are unreliable (Haynes et al., 

2011; Spearman, 1904). Moreover, because reliability is a function of the standard errors 

associated with individual estimates of ability obtained within a sample (Embretson, 1996; 

Lord, 1955), and because, as noted above, error often varies with ability, samples with 

different mean abilities—such as patients and healthy controls—can be measured with 

unequal reliability. As a result, associations between ability and outcome, as well as changes 

in ability, can appear relatively smaller in one group when compared to the other purely due 

to a measurement confound.

IRT can be used to identify and correct these problems (Thomas, 2011). Unfortunately, the 

approach is rarely used in neuropsychological test development, and the formal use of IRT in 
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small-scale neurocognitive research is unprecedented. As Strauss (2001, p. 12) noted, IRT’s 

large sample requirements—usually several hundred to thousand participants—implies that 

the “… method does not seem practical for testing specific, theoretically based 

hypotheses...” However, with the use of alternative, less statistically demanding 

measurement models, it is possible to utilize certain applications from IRT in small-scale 

research (e.g., Thomas, Brown, Thompson, et al., 2013). We describe one such model next.

Measurement Approach

A limiting factor in the application of IRT to measures of abnormal cognition has been the 

disconnect between measurement models that are popular in item response theory and 

measurement models that are popular in cognitive assessment. In particular, most 

applications of item response theory rely on unidimensional measurement models (i.e., 

models in which a single person variable is thought to influence item responses), with only a 

small portion of studies using multidimensional approaches (i.e., models in which multiple 

person variables are thought to influence item responses) (Thomas, 2011). Applications of 

the latter that have been published are generally exploratory (e.g., Thomas, Brown, Gur, et 

al., 2013). Measurement models used in cognitive assessment, in contrast, are often 

multidimensional, theory-based, and rely heavily on experimental cognitive research.

A prime example is the equal variance signal detection theory (SDT; Snodgrass & Corwin, 

1988) model, which is commonly used to score data from recognition memory tasks (e.g., 

Kane, Conway, Miura, & Colflesh, 2007; Ragland et al., 2002). The SDT model, shown in 

Figure 1, distinguishes between two classes of items: targets and foils. Targets are repeated 

(or old) items that the examinee is expected to remember. Foils are non-repeated (or new) 

items that the examinee is not expected to remember. The SDT model assumes that the 

presentation of target or foil items during testing invokes a sense of familiarity that can be 

represented as unimodal, symmetric probability distributions with identical variances but 

different means. The distance between distributions is a measure of discriminability (d′), 

and is often the primary outcome score of interest. d′ can reflect perceptual, memory, or 

other types of sensitivity to the detection of signal against a backdrop of noise (Witt, Taylor, 

Sugovic, & Wixted, 2015). However, because the familiarity distributions of targets and foils 

often overlap, the SDT model assumes that examinees must establish a criterion, or level of 

familiarity, beyond which items will be classified as targets. It is useful to define a measure 

of bias as the value of the criterion relative to the midpoint between target and foil 

distributions (Ccenter). Ccenter can reflect both perceptual and response biases (Witt et al., 

2015). The primary advantage of using the SDT measurement model in studies of abnormal 

cognition is the ability to disentangle sensitivity from bias.

Previous work has shown that the SDT model can be formulated as a generalized linear 

model with coefficients representing examinee ability and item difficulty (DeCarlo, 1998, 

2011). In other work (Thomas et al., 2016), and in the Appendix, we show that this model is 

also equivalent to a multidimensional IRT model, thus linking a valuable body of 

psychometric research and technical literature to the measurement of a general class of 

cognitive constructs. Moreover, because this framework assumes certain item properties 

based on theory, and allows others to be estimated as a function of task properties, sample 
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size demands are greatly reduced. Researchers can use the approach to investigate standard 

error of ability estimates, even in relatively small samples, provided that the cognitive tasks 

used are scored using the SDT framework.

The application of modern psychometric ideas to SDT scoring of test data in experimental 

studies of abnormal cognition would provide tangible evidence of the problems associated 

with administering items and tests that poorly match difficulty to ability. Next, we describe 

one domain of assessment that is ripe for the application of these ideas: the assessment of 

working memory deficits in schizophrenia.

Working Memory Deficits in Schizophrenia

Decreased brain volume, altered morphology, and impaired functioning in brain regions 

associated with complex cognitive processes (e.g., prefrontal cortex, limbic and paralimbic 

structures, and temporal lobe) are common in patients diagnosed with schizophrenia (Brown 

& Thompson, 2010; Levitt, Bobrow, Lucia, & Srinivasan, 2010), and are linked to a host of 

cognitive deficits, including impaired attention, language, executive functioning, processing 

speed, and memory (Bilder et al., 2000; Kalkstein, Hurford, & Gur, 2010; Reichenberg & 

Harvey, 2007). Cognitive deficits are core, treatment-refractory, even endophenotypic traits 

that might prove useful in identifying targets for the next generation of psychological and 

pharmacological therapies (Brown et al., 2007; Gur et al., 2007; Hyman & Fenton, 2003; 

Insel, 2012; Lee et al., 2015).

Working memory is a core deficit in patients diagnosed with schizophrenia (Barch & Smith, 

2008; Kalkstein et al., 2010; Lee & Park, 2005). Although the construct has been 

characterized by several evolving theories (Atkinson & Shiffrin, 1968; Baddeley & Hitch, 

1974; Cowan, 1988), it can generally be defined as, “those mechanisms or processes that are 

involved in the control, regulation and active maintenance of task-relevant information in the 

service of complex cognition…” (Miyake & Shah, 1999, p. 450). The construct has been 

intensively studied in cognitive psychology (Baddeley, 1992; Cowan, 1988), neuroscience 

(Owen, McMillan, Laird, & Bullmore, 2005), and clinical neuropsychology (Lezak, 

Howieson, Bigler, & Tranel, 2012). Deficits in working memory also occur in several other 

neurological and psychiatric disorders including attention-deficit/hyperactivity disorder 

(Engelhardt, Nigg, Carr, & Ferreira, 2008), autism (Williams, Goldstein, Carpenter, & 

Minshew, 2005), dementia (Salmon & Bondi, 2009), depression (Christopher & MacDonald, 

2005), traumatic brain injury (Vallat-Azouvi, Weber, Legrand, & Azouvi, 2007), and post-

traumatic stress disorder (Shaw et al., 2009).

The N-back task, where examinees are asked to monitor a continuous stream of stimuli and 

respond each time an item is repeated from N items before, is one popular measure of 

working memory deficits in schizophrenia. N-back tasks were introduced to study serial 

learning and short-term retention of rapidly changing information (Kirchner, 1958; 

Mackworth, 1959; Welford, 1952). Figure 2 shows an example of a 2-back task (i.e., load or 

N = 2) using words as stimuli. Examinees are asked to respond to targets but not to foils or 

lures (i.e., items that have been repeated from some lag other than N [e.g., a 3-back item 

presented during a 2-back condition; see Figure 2] and thus should not be responded to). The 
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N-back task gained popularity as an experimental working memory paradigm in the 1990s 

(Cohen & Servanschreiber, 1992; Gevins & Cutillo, 1993; Gevins et al., 1990; Jonides et al., 

1997), and has since been widely adapted, using stimuli varying across modality, including 

letters, digits, words, shapes, pictures, faces, locations, auditory tones, and even odors 

(Owen et al., 2005). These diverse versions of the N-back task have been shown to require 

both stimulus-specific processes as well as recruit common brain regions (Nystrom et al., 

2000; Owen et al., 2005; Ragland et al., 2002). Although experimental versions of the N-

back task are popular in schizophrenia and neuroimaging research—to the point of being 

considered a “gold standard” paradigm (Glahn et al., 2005; Kane & Engle, 2002; Owen et 

al., 2005), and have even shown efficacy for use in cognitive remediation (Jaeggi, 

Buschkuehl, Jonides, & Perrig, 2008)—questions nevertheless remain about the 

psychometric properties of these tasks (e.g., Jaeggi, Buschkuehl, Perrig, & Meier, 2010).

Several investigators have reported only moderate, weak, and even non-significant 

associations between N-back performance and performance on prototypical working 

memory paradigms such as measures of simple and complex span (e.g., Jacola et al., 2014; 

Jaeggi et al., 2010; Kane & Engle, 2002; Miller, Price, Okun, Montijo, & Bowers, 2009; 

Shamosh et al., 2008; Shelton, Elliott, Matthews, Hill, & Gouvier, 2010). One possible cause 

for the N-back’s poor validity is poor reliability. Reliability estimates reported in the 

literature have ranged from poor to good (e.g., Jaeggi et al., 2010; Kane et al., 2007; 

Salthouse, Atkinson, & Berish, 2003; Shelton et al., 2010) and appear to depend on N-back 

load condition and stimulus modality (e.g., Jaeggi et al., 2010; Salthouse et al., 2003). 

Indeed, in a study examining the split-half reliability of the N-back task under different load 

manipulations, Jaeggi et al. (2010) concluded that, “the N-back task does not seem to be a 

useful measure of individual differences in working memory [capacity], due to its low 

reliability.” However, the N-back’s poor, or at least inconsistent, reliability may be a 

function of poorly matched examinee ability and item difficulty.

Current Study

In this study our first aim was to determine how task manipulations influence difficulty and 

precision on the N-back. This was accomplished by using techniques from IRT to quantify 

measurement error for estimates of d′ and Ccenter produced by a SDT measurement model. 

As noted above, measurement error varies when item difficulty is not well matched to the 

full range of ability within a sample. Because the N-back appears to have a restricted range 

of difficulty (i.e., few load conditions), and because reliability estimates reported in the 

literature have varied substantially from sample to sample, we hypothesized that error in 

empirical estimates of d′ and Ccenter would vary as a function of ability. Our second aim 

was to use this information to explore the potential impact of imprecision on observed group 

differences in clinical studies of working memory deficits in schizophrenia. We 

hypothesized that mismatched ability and difficulty would lead to attenuated precision and 

effect size. That is, if item difficulty on the N-back is well matched to the abilities of healthy 

controls or patients, but not both, this should result in unequal precision between groups. 

Furthermore, because mismatched ability and difficulty increases measurement error, and 

because measurement error attenuates effect size, we also assumed that restricted range of 

item difficulty would result in lower effect size for one group when compared to the other.
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Method

Participants

We sought to study a heterogeneous sample in order to maximize variance in working 

memory ability. The sample comprised two cognitively healthy groups—undergraduates (N 
= 42) and community controls (N = 25)—and two groups of patients diagnosed with either 

schizophrenia or schizoaffective disorder—outpatients (N = 33) and inpatients (N = 17). 

Undergraduates were recruited from an experimental subject pool, outpatients and 

community controls were recruited from the general community, and inpatients were 

recruited from a locked long-term care facility. Demographic characteristics of the samples 

are reported in Table 1. Written consent was obtained from all participants. Patients were 

assessed on their capacity to provide informed consent. When relevant, consent was obtained 

from court-ordered conservators. Research procedures were reviewed and approved by the 

UC San Diego Human Subjects Protection Program (protocol numbers 071831, 080435, 

101497, and 130874).

Diagnoses (or lack thereof) were verified using the patient and non-patient editions of the 

Structured Clinical Interview for DSM-IV-TR (First, Spitzer, Gibbon, & Williams, 2002a; 

First, Spitzer, Gibbon, & Williams, 2002b) for both patient groups and community controls, 

respectively, and by using a self-report questionnaire for the undergraduates. Exclusion 

criteria included inability to understand consent and self-reported non-fluent English 

speaker, previous significant head injury (i.e., loss of consciousness > 30 minutes, residual 

neurological symptoms, or abnormal neuroimaging finding), neurological illness, and severe 

systemic illness. Patients and community controls were excluded if they had a history of 

alcohol or substance abuse or dependence within the preceding one month, or had a positive 

illicit drug toxicology screen at the time of testing. Patients were also excluded if they did 

not meet diagnostic criteria for schizophrenia or schizoaffective disorder, or if they reported 

current mania. Undergraduates and community controls were also excluded if they reported 

any history of psychosis, current Cluster A personality disorder, current Axis I mood 

disorder, history of psychosis in a first degree family member, or current treatment with any 

antipsychotic or other psychoactive medication.

Cognitive Task

An N-back task using words as stimuli designed specifically for the purposes of this study 

was administered to all participants. We generated a list of words using an online word pool 

database (Wilson, 1988), saved each word’s letter, syllable, and frequency count, and then 

removed any offensive words and personal names. This left us with a stimulus pool of 

32,236 English words taken from all parts of speech. Next, we generated one hundred 40-

word lists containing 32 foil and 8 target or lure item types, so that 1 out of every 5 words 

presented, on average, was either a target or a lure. Words were randomly selected from the 

word pool.1 To prevent examinees from guessing the order and rate at which targets and 

lures were presented, a script written in R (R Core Team, 2013) was used to pseudo-

1We also explored the effect of including words with a similar spelling (n-grams) as the items presented N words before (e.g., “DOG” 
- “CAT” - “DIG” in a 2-back condition). However, early analyses suggested that these items did not add difficulty to the N-back task 
over and above lures, and were highly variable in terms of difficulty level. For simplicity, these items were removed from all analyses.
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randomize the order of stimulus presentation (although the order was held constant over 

examinees).

We experimentally manipulated three crossed factors: N-back load (3-levels: 1, 2, or 3), 

number of word syllables (3-levels: 1, 2, or 3), and presentation time (3-levels: 500ms, 

1,500ms, or 2,500ms followed by a blank screen to attain a fixed presentation rate of one 

word every 3,000ms).2 We did not include a 0-back load condition (i.e., where examinees 

are asked to respond anytime a key word is shown) because we felt that the condition may 

differ not just quantitatively, but also qualitatively from load conditions that require both 

active maintenance and continuous updating of newly encoded information. Although load 

manipulations are common, syllable length and presentation time are generally fixed over 

items on N-back tasks; however, we reasoned that—because these manipulations can 

increase pressure on encoding and maintenance processes—they might produce a wider 

range of item difficulty for the N-back task which could benefit measurement precision 

overall.

We generated unique 40-word lists for each combination of factors. In addition to the 

experimentally manipulated factors, word frequency and item count within runs were 

included in all analyses. At an administration time of two minutes per list, we could not 

administer all unique combinations of factor levels to each participant. Therefore, we used 

incomplete counterbalancing of conditions. Participants were administered nine lists each 

with the requirement that they should receive all levels of each factor. A short set of 

instructions followed by a practice trial with feedback preceded each new N-back load 

condition. Participants were encouraged to take short breaks after each run. The task was 

administered online using a web application designed and programmed for neurocognitive 

task administration and lasted approximately 25 to 30 minutes per participant. Words were 

presented in large black font on a light grey background with minimal screen distraction. 

The protocol was the same for all participants except inpatients, who were administered only 

six N-back lists (three 1-back followed by three 2-back) due to time and fatigue constraints.

Analyses

Model—All analyses were conducted within the context of SDT. In equal variance SDT 

models, the probability of responding to stimuli can be expressed using the following 

general linear model (see DeCarlo, 1998 Appendix A):

(1)

where Φ−1 is the inverse cumulative distribution function for the normal distribution; P(Uij = 

1) is the probability that individual i responds positively (presses the button) to item j; Zj is a 

binary variable equal to 1 if item j is a target and −1 if it is a foil or lure; d′i is the ability of 

2We also manipulated the number of word letters to determine whether syllable and letter effects were independent. Because syllables 
and letters are correlated, the word letter factor was only partially crossed with the word syllable factor (i.e., 3, 4, or 5 letters for 1-
syllable words; 5, 6, or 7 letters for 2-syllable words; and 7, 8, or 9 letters for 3-syllable words). Results suggested that number of 
word letters did not significantly improve model fit when number of word syllables had already been accounted for.

Thomas et al. Page 7

J Abnorm Psychol. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



individual i to discriminate between target and foil or lure items; and Ccenter,i represents 

individual i’s bias. In order to be consistent with IRT, the SDT model can be modified to 

express the probability of correct answers (as opposed to the probability of responding) and 

to include the notion of item difficulty (see Appendix):

(2)

where P(Xij = 1) is the probability of a correct answer for individual i on item j, and ρj 

represents the easiness of item j.

Task difficulty—ρj, d′i, and Ccenter,i vary over items and examinees and can be specified 

as random effects in a mixed effects model. Accordingly, we analyzed the item accuracy 

data using generalized linear mixed modeling (GLMM; see Hox, 2010 for a review of 

multilevel or mixed-effects models) and the lme4 package for R (Bates, Maechler, Bolker, & 

Walker, 2014). To investigate predictors of task difficulty within an SDT scoring framework, 

we added fixed effect predictors of item accuracy to Equation 2. The predictors of interest 

included N-back load, number of word syllables, presentation time, and item count within 

each run (all centered). The effect of item type was also explored, although the effects are 

complex to dissociate. In the SDT model, values of d′, and Ccenter determine the difficulty of 

targets and foils; item difficulty is negatively associated with d′ for both targets and foils, 

and negatively associated with Ccenter for foils but positively associated with Ccenter for 

targets (see Equation 2). In the current approach, the means of the random effects 

determined the difficulty of targets and foils. Lure difficulty was determined the same as foil 

difficulty, except for a dummy-coded “Lure” variable that captured added difficulty due to 

the complexity of lures. Centered and log-transformed word frequency was included as a 

covariate. The combined model had the form:

(3)

where ρj, d′i, and Ccenter,i were all treated as random effects, and all other terms were fixed 

effects with values varying depending on item j. The model does not have an intercept term 

so as to allow the means of d′i and Ccenter,i to be non-zero (as they should be).

Measurement precision—In the GLMM approach d′ and Ccenter are modeled as random 

effects, which are equivalent to latent abilities in IRT (de Boeck et al., 2011). Individual 

values of d′ and Ccenter for all examinees were derived using maximum a posteriori (MAP) 

estimates. To quantify measurement error for these estimates, we extracted their posterior 

standard deviations (PSDs). Both MAPs and PSDs are produced by the lme4 R package. 

PSD, which is interpreted similarly to standard error of estimate, provides an index of 

measurement (im)precision based on the observed data. Measurement precision based on the 

model and fitted parameter estimates was quantified using information functions for 
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multidimensional item response theory models (Reckase, 2009). Information, the inverse of 

squared standard error, is a statistic that reflects precision in ability estimates. We produced 

information functions for all combinations of item type by N-back factor levels focusing 

only on d′ while holding Ccenter to the mean value in the sample.

Effect size—Finally, we simulated data that would allow us to obtain estimates of the 

expected attenuation in group difference effect size (Cohen’s d) given different combinations 

of N-back load conditions. This consisted of the following steps: Step 1) we simulated 

normally distributed d′ and Ccenter values hypothetically obtained from samples of non-

impaired and impaired individuals with d′ means fixed to 0.0 and 0.8 SDs below the overall 

sample mean in the current study respectively (i.e., corresponding to a Cohen’s d value of 

0.8 [large effect]); Step 2) we created a pool of N-back items based on specific combinations 

of task difficulty factors (see below); Step 3) we calculated d′ for each participant in the 

simulated data using conventional formulas (Snodgrass & Corwin, 1988); Step 4) we 

calculated Spearman-Brown-corrected split-half reliability (Rel.S.B.) and Cohen’s d 
statistics; and Step 5) repeated Steps 2 through 4 for the following N-back load conditions: 

all 1-back, all 2-back, all 3-back, mix of 1-and 2-back, mix of 1- and 3-back, mix of 2- and 

3-back, and mix of 1-, 2-, and 3-back. Importantly, the same total number of item responses 

were assumed in each simulation (240) hypothetically corresponding to 12 minutes of 

testing. To improve efficiency, each run had a distribution of 60% foils, 20% targets, and 

20% lures. The mean for the non-impaired simulation group was fixed to the unweighted 

grand mean of the sample, as opposed to the sample mean of controls, in order to account 

for any demographic mismatch between outpatients and community controls in the current 

study (see below). We used the Spearman-Brown-corrected split-half reliability so that our 

results would be consistent with studies of N-back reliability reported in the literature (e.g., 

Jaeggi et al., 2010). The simulation was programmed in R.

Results Demographic Characteristics—We compared the samples on key 

characteristics to determine demographic similarity. Because undergraduates are not 

expected to be demographically similar to patients or community controls, comparisons 

were restricted only to the latter groups. The samples did not significantly differ with respect 

to age (F(2,72) = 3.12, ns, η2 =.08) or gender (χ2(2; N = 75) = 1.80; ns; φc = .16). Moreover, 

although the groups differed in terms of education (F(2,72) = 19.01, p < .001, η2 = .35), they 

did not significantly differ in terms of mean level of parent education (F(2,46) = 2.79, ns, η2 

= .11).

Descriptive Accuracy Results—Figure 3 shows mean accuracy results (i.e., the 

proportion of correct answers) broken down by N-back load, item type, and group. It is 

notable that accuracies were generally well over 50% and many were above 75%. 

Undergraduates generally performed better than community controls, followed by 

outpatients, and then inpatients. Foils were the easiest item type, and lures were the most 

difficult. Items became consistently harder as N-back load increased.

Ability and Task Difficulty—GLMM parameter estimates are reported in Table 2. The 

mean empirical estimate of discriminability (d′) was 4.20 in the sample, suggesting that the 
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N-back task was moderately easy overall. The mean empirical estimate of bias (Ccenter) was 

0.78, suggesting that foils were much easier—more often responded to correctly—than 

targets. The lure effect was significantly negative, indicating that lures were much more 

difficult than foils. Increasing N-back load, word syllables, and item count, as well as 

decreasing presentation time all predicted significantly worse accuracy. The effect of word 

frequency was not statistically significant. Interestingly, the standard deviation of 

empirically estimated item easiness (ρ) was small, suggesting that N-back difficulty was 

dominated by task rather than individual item features.

Measurement precision—Table 3 reports mean estimates (MAPs) of d′ and Ccenter as 

well as measurement errors (PSDs) within each sample. (Note that these results do not 

attempt to control for demographic covariates.) Ability and measurement precision varied 

over populations. Figure 4 shows estimates of d′ plotted against the errors of those estimates 

for undergraduates, community controls, and outpatients (inpatients were omitted from the 

figure because, due to being administered fewer items [see methods], PSDs associated with 

inpatients’ ability estimates are higher than other groups). The figure also shows 

approximate values of reliability corresponding to each PSD level.3 Error appears to be a 

nonlinear function of ability level; PSDs were generally lower for examinees with low 

versus high values of d′. The PSDs generally suggest good or even excellent measurement 

precision in the sample; this is mainly due to the high number of N-back runs administered.

To further explore measurement precision we created information functions for 

combinations of N-back load and item type, holding all other task factors at their median 

values. The results are shown in Figure 5. For interpretability, the information functions 

(represented by solid, dashed, and dotted lines corresponding to 1, 2, and 3-back loads, 

respectively) are superimposed over the implied distributions of d′ for undergraduates, 

community controls, outpatients, and inpatients. As can be seen, the information functions 

generally peak at d′ values that are lower than the mean of each distribution of ability; this 

is particularly true of foils and all 1-back conditions. The results suggest that the N-back 

task was too easy to provide precise, or at least efficient, estimates of d′ for participants 

with average to above average ability. Moreover, foils provided almost no useful information 

about ability. Targets at 3-back and lures at 2 and 3-back were the most informative across 

all groups.

Effect Size—Results of the effect size simulation are reported in Table 4. Reliability was 

consistently worse for the non-impaired group. Reliability overall was closely tied to N-back 

difficulty. The simulations that used all 1-back conditions and a combination of both 1- and 

2-back conditions both produced unacceptably low reliabilities, and Cohen’s d effect size 

values were severely attenuated for these simulations dropping by 0.37 (46%) and 0.30 

(37%) respectively (i.e., from large to small and medium effects). The two best performing 

simulations were those that used all 3-back conditions and a mix of 2- and 3-back 

3It has been noted by several authors that, given the classical test theory definition that standard error of measurement equals the 
standard deviation of scores times the square root of one minus reliability, the average standard error of estimate needed in order to 
achieve adequate, good, or excellent reliability can be calculated.
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conditions. Both produced moderate reliabilities (0.75 and 0.70 respectively), and the 

simulated attenuations in Cohen’s d were 0.18 (22%) and 0.21 (26%) respectively.

Discussion

The results of this study demonstrate that reliability and measured group differences are both 

attenuated when cognitive tasks are not well matched to ability within the samples under 

investigation. These problems were demonstrated using a task commonly used to study 

working memory deficits in schizophrenia: the N-back task. We found that N-back load and 

item type were the two primary determinants of task difficulty. Difficulty increased along 

with N-back load, and lures and targets were both much harder than foils. Task conditions 

were maximally informative within the low average to highly impaired spectrum of ability. 

In a simulation study, we found that N-back tasks composed entirely of low load conditions 

(i.e., 1- and 2-back) were highly unreliable, and may reduce the observed effect size by half.

Strengths and Limitations

Strengths of the study include its novel statistical methodology, the heterogeneous sample, 

and the use of an experimental design to study task features on the N-back. However, results 

should be interpreted in light of several limitations. First, our sample and design did not 

provide data that would be sufficient to examine the dimensionality and construct validity of 

the N-back task. This topic is discussed in detail below. Second, it is common in 

psychometrics to examine detailed fit statistics in order to determine how well the theoretical 

model matches the observed data (Swaminathan, Hambleton, & Rogers, 2007). Although 

general markers of model fit were good (see supplemental material), we lacked appropriate 

data to examine item-level fit statistics (i.e., too few responses per item). Third, although 

common in the literature, we did not include a 0-back load condition, which is sometimes 

used to form contrast measures which, in theory, control for variance that is irrelevant to the 

target construct (e.g., attention and motivation). This was because we felt that the 0-back 

condition—where examinees are typically asked to respond anytime a key word is shown—

may differ not just quantitatively, but also qualitatively from load conditions that require 

both active maintenance and continuous updating of newly encoded information. Fourth, 

although patients and community controls did not significantly differ in terms of age and 

gender, controls reported higher education. The difference in education is a common finding 

that almost certain reflects, at least in part, a consequence of mental illness. The groups 

were, however, matched on parental education, which may be a better indicator of premorbid 

demographic similarity. Nonetheless, to the extent that demographic factors exaggerated 

differences in working memory between groups, unequal reliability as well as attenuation in 

effect size between groups may have been overestimated. Finally, although our goal was to 

illustrate a general measurement concern, some results may be specific to characteristics of 

the current study. However, we purposely collected data from four separate populations and 

chose a variety of task manipulations in order to increase the range of ability and difficulty 

under investigation. As a practical guide, researchers may wish to compare their samples’ 

accuracy statistics to our results (Figure 3).
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Significance and Implications

An N-back task with an appropriate number of items, that also includes 2- and 3-back 

conditions, as well as targets, lures, and foils, is expected to provide reliable, moderately 

efficient estimates of working memory ability in chronic patients with schizophrenia; the 

same task, however, is expected to provide less reliable estimates of ability in healthy 

controls. Because validity coefficients are attenuated by unreliability, associations between 

N-back scores and outcomes (or predictors) of cognitive impairment can appear weaker in 

healthy controls when compared to patients with schizophrenia simply due to this 

measurement artifact. Moreover, the dependence of reliability upon ability has been shown 

to bring potential confounds in studies of differential deficit (i.e., differences in cognitive 

abilities between groups; Chapman & Chapman, 1973; Strauss, 2001).

Within the framework of IRT, precision is maximized when predictable variance is 

maximized. Item information is greatest when the probability of a correct response is 0.50 

for dichotomous item responses with no guessing. The common use of SDT to score N-back 

data in the literature implicitly assumes that examinees do not guess, but rather that response 

behavior is driven entirely by discriminability (d′) and bias (Ccenter). Thus, the simple 

observation that the majority of examinees performed far better than 50% on most N-back 

items (see Figure 3) suggests that the test does not produce optimally precise or efficient 

estimates of ability.

The pattern of measurement error (Figure 4) was consistent across samples, suggesting that 

measurement error was a function of ability but not population. It is reasonable to ask, then, 

how N-back task manipulations might be altered in such a way to improve the match 

between ability in difficulty across groups. Our results suggest that researchers should 

consider using more difficult versions of the N-back task in cognitive studies meant to 

precisely measure a wide range of individual differences in working memory ability. This is 

especially true in clinical studies that include healthy controls as a comparison group, or in 

studies meant to evaluate change over time. Considering the samples as a whole, our results 

(e.g., Figure 5) suggest that some examinees with below average ability, most examinees 

with average ability, and nearly all examinees with above average ability might be measured 

more efficiently and precisely with additional 4- and possibly even 5-back load conditions. 

Alternative possibilities for increasing item difficulty without increasing N-back load should 

also be considered. This might include the use of non-word stimuli, a greater proportion of 

lures, or dual N-back tasks (Jaeggi et al., 2003). The use of pseudowords (pronounceable 

word-like letter strings) has particular appeal given that pseudowords tend to have a more 

pronounced word syllable effect (Valdois et al., 2006) and produce higher false-alarm rates 

(Greene, 2004) relative to words.

There are, however, two major cautions to consider when evaluating these recommendations. 

First, efficient measurement, as is expected to result from administering more difficult items, 

could come at the cost of tolerability. Parenthetically, we have observed that participants’ 

reports of mental workload during the N-back task tend to be high even when performance is 

very good. Four- and especially 5-back runs may cause participants to prematurely 

discontinue testing, and thus tolerability must be weighed against the benefits of efficient 

measurement. Second, and perhaps more challenging, manipulating stimulus factors, 
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especially factors other than N-back load, might fundamentally change the task in a way that 

threatens construct validity.

Indeed, there is a longstanding debate regarding the relative merits of manipulating task 

difficulty in order to improve the precision of cognitive measures (see Strauss, 2001). 

Changing task difficulty to improve reliability could come at the expense of validity. There 

are likely several overlapping cognitive processes engaged by the N-back: (1) processes 

meant to maintain goal and task relevant information without passive/external support – e.g., 

encoding, storage, and rehearsal; (2) processes meant to manipulate information so as to 

meet task demands – e.g., updating, ordering, and matching; and (3) processes involved in 

response execution – e.g., bias and inhibition (Cohen et al., 1994; Cohen et al., 1997; 

Jonides et al., 1997; Kane et al., 2007; Lezak et al., 2012; Oberauer, 2005; Wager & Smith, 

2003). Because N-back scores likely reflect a weighted composite of these processes, and 

because manipulating task difficulty could upset this weighting, the dimensionality of 

observed scores might vary over conditions (but see Reise, Moore, & Haviland, 2010). From 

this perspective, it might be argued that task difficulty should only be manipulated if the 

dimensionality and construct validity of measures can be preserved across conditions.

Researchers interested in investigating, and dissociating, specific deficits using experimental 

cognitive approaches (see MacDonald & Carter, 2002), may prefer to compare performance 

scores produced by task conditions that are thought to isolate specific cognitive processes 

(e.g., Ragland et al., 2002). Unfortunately, under such circumstances—where difficulty is 

held constant within, but might differ between, experimental conditions—the amount of 

non-error or informative variance in test scores that is directly related to impaired 

neurocognitive processes might vary over conditions, thus leading to the presently detailed 

reliability and effect size confounds. As noted by MacDonald and Carter (2002, pp. 880–

81), “The challenge for researchers from the experimental cognitive approach is to ensure 

that their measures of cognitive processes produce an adequate amount of variance so that 

they are sensitive to the presence of an impairment…”

There are two general solutions to this problem. First, researchers can explicitly seek to 

create process-pure or process-isolating tasks that nonetheless have a wide range of 

difficulty. Second, researchers can develop mathematical cognitive and psychometric 

measurement models that link manipulations of item difficulty to specific cognitive 

processes (e.g., Brown, Patt, Sawyer, & Thomas, 2016; Brown, Turner, Mano, Bolden, & 

Thomas, 2013; Embretson, 1984), thereby allowing for the optimization of measurement 

precision through difficulty manipulations while also accounting for the changing 

dimensionality of observed test scores. To this end, further work is needed to determine how 

best to manipulate task difficulty and model response processes on the N-back and other 

experimental cognitive measures being used in studies of abnormal cognition in 

schizophrenia (e.g., Barch & Smith, 2008).

Conclusion

This study has demonstrated how task difficulty affects both reliability and effect size 

measures of group differences. Although concerns related to mismatched ability and 
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difficulty have been known in the psychometric literature for many years—and 

acknowledged using classical psychometric methods in schizophrenia research (Chapman & 

Chapman, 1973)—this study is among the first to show the practical, negative consequences 

of mismatched ability and difficulty using modern psychometric methods. The problems can 

be overcome, in part, by administering tasks that include a wide range of difficulty in order 

to avoid psychometric floor and ceiling effects. However, researchers must also consider 

how changes to task difficulty affect tolerability as well as both the dimensionality and the 

construct validity of measures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

This appendix provides the derivations of the general linear model used in all analyses. 

Equal variance SDT (DeCarlo, 1998; Snodgrass & Corwin, 1988) first assumes that the 

distributions of familiarity for targets and foils (or lures) can modeled by two normal 

distributions (mean μT and μF, respectively) with equal variance (see Figure 2). The 

discrimination parameter d′ represents the distance between the two distributions:

(1)

The decision criterion, C, represents the threshold at which individuals may judge that an 

item looks familiar enough to respond. C can be centered with respect to the mid-point 

between the two distributions:

(2)

The probability of responding given that a target was presented, P(U = 1|Target), 

corresponds mathematically to the area under the target distribution that is to the right of the 

criterion:

(3)
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where Φ−1 is the inverse cumulative distribution function for the normal distribution. 

Similarly, the probability of responding given that a foil (or lure) was presented, P(U = 1|

Foil), corresponds mathematically to the area under the foil distribution that is to the right of 

the criterion:

(4)

Using binary variable Z = 1 if the test item is a target and Z = −1 if the test item is a foil (or 

lure), Equations 3 and 4 can be combined into the formula that appears in Appendix A of 

DeCarlo (1998):

(5)

In order to align the approach with IRT, the model can also be formulated to predict the 

probably of a correct response. A new binary variable X was thus introduced so that X = 1 

for a correct response and X = 0 for an incorrect response. Using the property that Φ−1(1-P) 

= -Φ−1(P), and knowing that responding is correct when a target is presented whereas non-

responding is correct when a foil is presented, Equation 5 yielded

(6)

These equations were combined, leading to:

(7)

To account for item differences in easiness (over j of J items) and person differences in 

ability (over i of N people), as in IRT, we added the term ρ as well as subscripts to each 

parameter to arrive at our final equation:

(8)

In this form, the model is functionally equivalent to a multidimensional IRT model, but 

appears superficially distinct due to the use of notation this is common in SDT but not IRT 

(see Thomas et al., 2016).
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General Scientific Summary

Patients’ cognitive deficits can appear smaller than they truly are due to measurement 

artifacts. This study suggests that a measure commonly used to assess working memory 

deficits in schizophrenia can produce unreliable and attenuated estimates of ability 

because most items are too easy. The methodology presented is general, and can be used 

by investigators to determine whether cognitive tasks used in research are appropriately 

calibrated for the samples under investigation.
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Figure 1. 
Equal variance, signal detection theory model. μT = mean of the distribution of familiarity 

for targets; μF = mean of the distribution of familiarity for foils; d′ = μT minus μF 

(discrimination); C = criterion; Ccenter = value of the criterion relative the midpoint between 

μT and μF (bias).
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Figure 2. 
Example of a 2-back run from the N-back task. Examinees are asked to respond whenever a 

word is repeated from 2 words before. Items repeated from 2-back are targets, items that are 

repeated, but not from 2-back are referred to as lures, and non-repeated items are referred to 

as foils.
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Figure 3. 
Item accuracy by group, item type, and N-back. n refers to the number of observed item 

responses.
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Figure 4. 
Estimates of discriminability (d′) against the measurement error (PSD) of each estimate. 

PSD = posterior standard deviation. Data for inpatients were omitted because, due to being 

administered fewer items by design (see methods), PSDs associated with inpatients’ ability 

estimates are higher than other groups
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Figure 5. 
Information functions for all combinations of N-back load by item type holding all other 

task factors at their median values. For interpretability, the information functions 

(represented by solid, dashed, and dotted lines corresponding to 1, 2, and 3-back loads) are 

superimposed over the implied distributions of discriminability (d′) in undergraduates, 

community controls, outpatients, and inpatients.
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Table 1

Demographic and Clinical Characteristics

Undergraduates Community
Controls

Outpatients Inpatients

N 42 25 33 17

Age (SD) 21.07 (2.11) 38.24 (12.39) 44.94 (11.63) 37.88 (11.13)

Male 16 (38%) 10 (40%) 19 (58%) 9 (53%)

Female 26 (62%) 15 (60%) 14 (42%) 8 (47%)

Hispanic 12 (29%) 2 (8%) 9 (27%) 4 (24%)

Race

  White 13 (32%) 13 (52%) 16 (48%) 12 (71%)

  Black 0 (0%) 4 (16%) 4 (12%) 0 (0%)

  Asian 18 (45%) 4 (16%) 0 (0%) 2 (12%)

  American Indian 0 (0%) 0 (0%) 0 (0%) 1 (6%)

  Multiracial 2 (5%) 4 (16%) 13 (39%) 2 (12%)

  Other 7 (18%) 0 (0%) 0 (0%) 0 (0%)

Education (SD) 15 (1.18) 15.12 (2.15) 12.09 (2.26) 11.47 (2.03)

Parental Education (SD)a -- 13.88 (1.81) 12.46 (2.52) 14.10 (2.16)

Std. WRAT -- 106.38 (8.06) 93.53 (12.38) 93.5 (13.49)

Age of Onset -- -- 22.06 (7.2) 19.62 (5.32)

Hospitalizationsb -- -- 9.62 (10.18) 16.71 (9.52)

GAF -- -- 41.34 (4.23) 28.24 (4.98)

SAPS Total -- -- 6.34 (3.73) 6.44 (5.19)

SANS Total -- -- 14.66 (4.12) 5.88 (3.54) c

Note: Two undergraduates declined to report their race.

SAPS = Scale for the Assessment of Positive Symptoms; SANS = Scale for the Assessment of Negative Symptoms.

a
Based on average of mother and father.

b
Based on self-report.

c
Avolition-Apathy and Anhedonia-Asociality Scores for inpatients were based on work, social, and recreational participation within the inpatient 

facility, and thus are likely smaller (better) than would be observed in the community.

“--” implies that data were not collected.
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Table 3

Mean Estimates and Error for Discriminability (d′) and Bias (Ccenter) by Group

Undergraduates Community
Controls

Outpatients Inpatients

Discriminability (d′)

  Estimate 4.78 4.61 3.72 3.14

  Error (PSD) 0.44 0.45 0.34 0.48

Bias (Ccenter)

  Estimate 0.71 0.86 0.72 0.94

  Error (PSD) 0.20 0.20 0.16 0.21

Note: PSD = posterior standard deviation.

J Abnorm Psychol. Author manuscript; available in PMC 2018 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Thomas et al. Page 29

Ta
b

le
 4

Si
m

ul
at

io
n 

R
es

ul
ts

N
-b

ac
k 

L
oa

d
A

ll
R

el
. S

.B
.

N
on

-I
m

pa
ir

ed
R

el
. S

.B
.s

Im
pa

ir
ed

R
el

. S
.B

.

Si
m

ul
at

ed
C

oh
en

’s
 d

M
ea

su
re

d
C

oh
en

’s
 d

A
tt

en
ua

ti
on

 in
C

oh
en

’s
 d

A
ll 

1-
ba

ck
0.

41
0.

30
0.

42
0.

80
0.

43
0.

37

A
ll 

2-
ba

ck
0.

61
0.

50
0.

62
0.

80
0.

54
0.

26

A
ll 

3-
ba

ck
0.

75
0.

68
0.

75
0.

80
0.

62
0.

18

M
ix

 o
f 

1-
 &

 2
-b

ac
k

0.
53

0.
42

0.
54

0.
80

0.
50

0.
30

M
ix

 o
f 

1-
 &

 3
-b

ac
k

0.
64

0.
55

0.
64

0.
80

0.
58

0.
22

M
ix

 o
f 

2-
 &

 3
-b

ac
k

0.
70

0.
61

0.
70

0.
80

0.
59

0.
21

M
ix

 o
f 

1-
, 2

-,
 &

 3
-b

ac
k

0.
64

0.
53

0.
64

0.
80

0.
56

0.
24

N
ot

e:
 R

el
. S

.B
. =

 S
pe

ar
m

an
-B

ro
w

n 
co

rr
ec

te
d 

sp
lit

-h
al

f 
re

lia
bi

lit
y.

J Abnorm Psychol. Author manuscript; available in PMC 2018 April 01.


	Abstract
	Item Difficulty and Measurement Error
	Measurement Approach
	Working Memory Deficits in Schizophrenia
	Current Study
	Method
	Participants
	Cognitive Task
	Analyses
	Model
	Task difficulty
	Measurement precision
	Effect size
	Results Demographic Characteristics
	Descriptive Accuracy Results
	Ability and Task Difficulty
	Measurement precision
	Effect Size


	Discussion
	Strengths and Limitations
	Significance and Implications

	Conclusion
	References
	Appendix
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1
	Table 2
	Table 3
	Table 4



