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ABSTRACT OF THE DISSERTATION

Essays on Banking and Monetary Economics

by

Mengbo Zhang

Doctor of Philosophy in Economics

University of California, Los Angeles, 2021

Professor Pierre-Olivier Weill, Chair

This dissertation consists of three chapters on banking and monetary economics. In Chapter

1, I study whether monetary policy is less effective in a low interest-rate environment. To

answer this question, I examine how the passthrough of monetary policy to banks’ deposit

rates has changed, during the secular decline in interest rates in the U.S. over the last

decades. In the data, the passthrough increased for about one third of banks, and decreased

for the rest. Moreover, the deposit-weighted bank-average passthrough increased under a

lower interest rate. I explain this observation in a model where banks have market power

over loans and face capital constraints. In the model, when interest rates are low, the

passthrough falls as policy rates fall, only in markets where loan competition is high. Hence,

the overall passthrough depends on the distribution of loan market power. I confirm the

model’s prediction using branch-level data of U.S. banks. This channel also impacts the

transmission of monetary policy to bank lending under low interest rates.

In Chapter 2 (joint with Tsz-Nga Wong), we document a new channel mediating the

effects of monetary policy and regulation, the disintermediation channel. When the interest

rate on excess reserves (IOER) increases, fewer banks are intermediating in the Fed funds

ii



market, and they intermediate less. Thus, the total Fed funds traded decreases. Similarly,

disintermediation happens after the balance sheet cost rises, e.g. the introduction of Basel III

regulations. The disintermediation channel is significant and supported by empirical evidence

on U.S. banks. To explain this channel, we develop a continuous-time search-and-bargaining

model of divisible funds and endogenous search intensity that includes the matching model

(e.g. Afonso and Lagos, 2015b) and the transaction cost model (e.g. Hamilton, 1996) as

special cases. We solve the equilibrium in closed form, derive the dynamic distributions

of trades and Fed fund rates, and the stopping times of entry and exit from the Fed fund

market. IOER reduces the spread of marginal value of holding reserves, and hence the gain of

intermediation. In general, the equilibrium is constrained inefficient, as banks intermediate

too much.

In Chapter 3 (joint with Saki Bigio and Eduardo Zilberman), we compare the advantages

of lump-sum transfers versus a credit policy in response to the Covid-19 crisis. The Covid-19

crisis has lead to a reduction in the demand and supply of sectors that produce goods that

need social interaction to be produced or consumed. We interpret the Covid-19 shock as

a shock that reduces utility stemming from “social” goods in a two-sector economy with

incomplete markets. For the same path of government debt, transfers are preferable when

debt limits are tight, whereas credit policy is preferable when they are slack. A credit policy

has the advantage of targeting fiscal resources toward agents that matter most for stabilizing

demand. We illustrate this result with a calibrated model. We discuss various shortcomings

and possible extensions to the model.
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CHAPTER 1

Loan Market Power and Monetary Policy Passthrough

under Low Interest Rates

1.1 Introduction

In recent decades, advanced economies have experienced a secular decline in nominal interest

rates. It is thought that this environment will persist as policy makers renew their efforts to

stimulate these economies. However, previous research has observed that bank profitability

may fall in a low-interest-rate environment (e.g., Jackson, 2015; Bech and Malkhozov, 2016;

Claessens et al., 2018). This observation is a source of concern because it is thought that

low bank profitability may actually impair banks’ intermediation between deposits and loans

(Bindseil, 2018). This impact can further weaken the transmission of monetary policy, which

is usually measured as a lower passthrough from monetary policy rates to bank deposit rates,

i.e., the extent to which commercial banks increase deposit rates in response to an increase

in the monetary policy rate.1 Motivated by this concern, this paper provides an empirical

and theoretical investigation on how the passthrough of monetary policy rates to deposit

rates changes as economies transition to a low-interest-rate environment.

On the empirical front, I study how the monetary policy passthrough changed for individ-

ual banks. I measure passthrough as the regression coefficient of the change in bank deposit

rate on the monetary policy shocks. I document that as the U.S. transitioned to a low inter-

1For related discussion, see Brunnermeier and Koby (2018), Wang (2018), Balloch and Koby (2019), and
Ulate (2021).
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est rate environment, the monetary policy passthrough changed for most banks. However,

the direction of change is not the same for every bank. For some banks the passthrough in-

creased, whereas for others it decreased. This observation is important because it showcases

that the concern that the overall passthrough of monetary policy will decline with lower

rates depends on the distribution of individual bank’s passthrough sensitivity to interest

rate. Moreover, by taking into account the heterogeneous change in the passthrough across

banks, I find that the aggregate passthrough to deposit rates is slightly higher under a lower

interest rate in the U.S..

On the theoretical front, I build a model of bank competition to explain why the passthrough

for banks changes differently as an economy transitions to a low-interest-rate environment.

The model has the following features: First, the economy consists of a finite number of

banks that raise deposits and invest the funds, together with equity, in loans and fixed-

income bonds. Second, in both loan and deposit markets, banks engage in monopolistic

competition by setting loan rates over loans, and deposit rates over deposits. For loan and

deposit demand schedules, the elasticities of substitution across individual banks are both

greater than one and the aggregate deposit demand has unit elasticity. Third, both banks

and depositors can invest in bonds and earn a competitive rate of return set by the central

bank, i.e., the Fed funds rate. The Fed funds rate thus also represents the nominal interest

rate and equals the marginal cost of bank loans, and the difference between the Fed funds

rate and deposit rate—the deposit spread—represents the cost of holding deposits. Finally,

each bank is subject to a capital constraint, which is that a bank’s deposit liabilities cannot

exceed a multiple of bank profits. With these elements, I find that the change of a bank’s

passthrough under a lower interest rate depends on the degree of loan market concentration.

As the interest rate falls, the monetary policy passthrough increases for banks located in

concentrated loan markets, but decreases for banks located in competitive loan markets.

The model’s mechanism works as follows. First, since banks can invest in bonds, the

optimization on loans is independent of the deposit market, and the loan profit is a function
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of the nominal interest rate and the number of banks in the loan market. Specifically, the

loan profit is decreasing in the nominal rate, due to loan demand elasticity larger than one,

and also decreasing in the number of banks in the loan market. More importantly, the loan

profit decreases more in the nominal rate if the loan market is more concentrated, i.e., the

loan market has fewer banks. On the other hand, the return on bonds is increasing in the

nominal rate. This implies that a bank’s profits on assets are non-monotonic in the nominal

interest rate: the profit on loans is decreasing in the nominal interest rate, and the return

on bonds is increasing in the nominal interest rate. Moreover, the decreasing effect on loan

profits is stronger if the loan market is more concentrated.

Second, the non-monotonic effect of the nominal interest rate on asset profits is passed

to the deposit side through the capital constraint. Due to the unit-elastic aggregate deposit

demand, the capital constraint is always binding. This results in an equilibrium deposit

spread that depends on a bank’s profits on assets: When the nominal interest rate is low,

for banks in concentrated loan markets, a lower interest rate induces a large increase in

loan profits, which actually expands bank profits on assets. This allows banks to take more

deposits at lower deposit spreads, thereby improving the passthrough. However, for banks

in competitive loan markets, the profits on loans are not sensitive to the nominal rate. With

a lower nominal rate, the profits on assets decrease due to the decline of return on bonds.

As a consequence, banks have to take less deposits at higher deposit spreads, which weakens

the passthrough.

The theoretical model has the following testable predictions. First, when the nominal

interest rate is below (above) a threshold, the passthrough of monetary policy rates to

deposit rates is increasing (decreasing) in the bank’s loan market concentration. Second,

as the interest rate falls, the passthrough increases if the bank’s loan market concentration

is sufficiently high, and decreases otherwise. The third testable prediction states that the

threshold value of the nominal interest rate, which is mentioned in the first prediction, is

decreasing in bank equity.
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I test the model predictions using a panel dataset of U.S. bank branches. The main iden-

tification issue is that banks’ lending and deposit opportunities simultaneously affect their

decisions on deposit rates. In order to ensure that banks face similar deposit opportunities,

I compare the deposit rates and deposit growth across branches within the same county,

but belonging to different parent banks. This within-county estimation has two identifying

assumptions. First, a bank can raise deposits at one branch and lend them at another,

which implies that the impact of loan competition on a bank’s deposit rates is determined

by the average loan concentration of its branches. Second, bank competition over deposits

and loans is localized in a banking market, and county is taken to be the unit of the banking

market. As a result, the branches within the same county, but belonging to different banks,

are faced with similar deposit opportunities and different loan market concentration.2

Moreover, the measurement of key variables is as follows. First, to account for the term

premia, the measure of the nominal interest rate, which follows Wang (2018), is the yield

rate of a treasury portfolio that replicates the repricing maturity of banks’ loan portfolio.

Second, the proxy for a bank’s loan market concentration is the average Herfindahl index

of home mortgage loans in counties, weighted by the bank’s home mortgage lending across

counties. Third, the proxy for a bank’s equity is the ratio of total equity to total assets.

The empirical results support the theoretical predictions. First, when the nominal interest

rate is zero and the Fed funds rate increases by 100 bps, banks that make loans in a monopoly

market increase their deposit rates by 282 bps more than banks that make loans in a perfectly

competitive market. At the same time, the corresponding growth of deposits is 266 bps larger

at the banks that make loans in a monopoly market. This differential effect shrinks as the

interest rate rises, and vanishes to zero when the nominal interest rate reaches a threshold.

Second, as the interest rate falls, the passthrough to deposit rates increases if a bank’s

Herfindahl index of loans is higher than 0.21. Third, the threshold value of the nominal

2This identification assumption has been used in related empirical analysis on bank market power and
passthrough, such as Drechsler et al. (2017), Drechsler et al. (2019), and Li et al. (2019).
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interest rate, below which the passthrough increases in banks’ loan market concentration, is

decreasing in a bank’s equity-assets ratio. For banks with average equity-assets ratio, the

threshold value is between 2.5% and 3.0%, depending on the deposit product in regression.

I conduct several robustness tests of my findings. First, the results are robust if I control

different fixed effects and bank characteristics. Second, the results are robust for large banks.

Third, the results are robust for alternative measures of nominal interest rate, such as the

Fed funds rate and 1-year Treasury yield rate. Fourth, I re-run the regressions with data

before the global financial crisis of 2008, and obtain similar estimation results.

Next, I explore how this passthrough channel affects the response of banks’ balance sheets

to monetary policy. First, I verify that all of the branch-level regression results hold at the

bank level using Call Reports data for U.S. banks. Second, I find that at a low interest rate,

the impact of loan market power on monetary policy transmission to deposit growth also

transmits to other balance sheet components: when the interest rate is low, an increase in

the monetary policy rate induces higher growth of loans, securities, and assets, for banks

with higher loan market concentration.

The above theoretical and empirical analysis shows that the level of nominal interest

rates affects the monetary policy passthrough to deposit rates. However, my empirical anal-

ysis only identifies loan market competition as one determinant, but omits other potential

determinants. To estimate the effects of a nominal interest rate on the passthrough com-

prehensively, I propose a new measure of monetary policy passthrough using Call Reports

data. This measure is a pair of betas: zero beta and slope beta. For deposit rates, zero

beta measures the passthrough of monetary policy rates to deposit rates when the nominal

interest rate is zero; slope beta measures the change in the passthrough when the nominal

rate increases by 100 bps. Hence, a negative (positive) slope beta means the passthrough

increases (decreases) with a lower nominal interest rate.

The estimates suggest that the betas differ substantially across banks. First, the two

betas are also highly negative correlated. This implies that banks with a high zero beta,
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i.e., a high passthrough to deposit rates at a zero nominal rate, experience a decline in the

passthrough as the nominal rate increases. However, for banks with a low zero beta at a

zero nominal rate, passthrough actually increases with the nominal rates. This is consistent

with the theoretical predictions. Second, the share of banks with a negative slope beta is

24.6%, implying that a low interest rate improves the passthrough for about about a quarter

of banks in the sample. The share is even larger, 32.4%, for the largest 5% banks by assets.

These numbers imply that whether the overall passthrough decreases with a lower interest

rate depends on the distribution of market power. By weighting the slope betas by bank

assets, I find that the average slope beta is about zero, implying that the overall passthrough

does not significantly decrease with a lower interest rate. This is in contrast with the findings

in the previous literature, which finds, by using models of representative banks, that a lower

interest rate weakens passthrough.

To evaluate how the new measure of passthrough accounts for the impact of a nominal

interest rate on monetary policy transmission, I estimate the analogous pair of betas for the

growth of individual bank deposits, loans, securities, and assets. These betas measure the

bank balance sheet’s sensitivity to the policy rate at a zero nominal rate and the change of

the sensitivity when the nominal rate increases by 100 bps. I find that the betas of deposit

rates are significantly positive correlated with the betas of balance sheet growth. This implies

that the impact of nominal rates on the passthrough to deposit rates can explain the effects

of nominal interest rates on monetary policy transmission to bank balance sheets.

Related literature. This paper contributes to the literature on monetary policy trans-

mission through banks.3 Specifically, my paper highlights the role of bank market power

3Conventionally there is a large body of literaure on monetary policy transmssion through banks. The
literature mostly focuses on two channels: the bank reserve channel and bank capital channel. In the bank
reserve channel, monetary policy controls the size of bank reserves, which determines the size of bank deposits
and hence bank lending. The related literature includes Bernanke (1983), Bernanke and Blinder (1988),
Bernanke and Blinder (1992), Kashyap et al. (1993), Kashyap and Stein (1994), Kashyap and Stein (1995)
Kashyap and Stein (2000), and Jiménez et al. (2014). The bank capital channel argues that a surprise rise
in interest rate reduces bank assets by more than liabilities due to maturity mismatch, thus decreasing bank
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as in Drechsler et al. (2017) and Scharfstein and Sunderam (2016), where Drechsler et al.

(2017) demonstrate the role of deposits market power, and Scharfstein and Sunderam (2016)

document the role of market power in loan markets. Unlike the previous literature, my

work considers market power over deposits and loans simultaneously, and shows that the

interplay between them reveals a new channel which impacts the response of bank deposits

to monetary policy. In a recent paper, Wang et al. (2020) also study bank market power

over deposits and loans jointly. But their paper focuses on comparing the quantitative effect

of market power on monetary transmission versus the traditional channels, and does not

discuss the theoretical implications of the interplay between deposit and loan competition.

Second, this paper relates to the recent literature on the effects of low interest rates

(Krugman et al., 1998; Eggertsson and Woodford, 2006; Brunnermeier and Koby, 2018; Bal-

loch and Koby, 2019; Ulate, 2021; Wang, 2018; Eggertsson et al., 2019; Bigio and Sannikov,

2021).4 They argue that the usual transmission channels of monetary policy will be weakened

or break down under very low interest rates, and short-run interest rate cuts or long-run low

interest rate policy could be contractionary for aggregate bank lending. My paper differs

from this research by focusing on the heterogeneous effects of low interest rates on the cross

section of banks. I find that low interest rates impact banks heterogeneously: while a lower

interest rate weakens the monetary policy passthrough for some banks, it can actually im-

prove the passthrough for others. Moreover, a key determinant of the heterogeneity is banks’

market power. This implies that the aggregate effect of low interest rates on monetary policy

transmission really depends on the distribution of bank market power. In a related paper, Sá

and Jorge (2019) investigate the validity of the deposit market power channel of monetary

policy under low interest rates. They find that a low interest rate environment may turn

capital and compressing their lending capacity. The related literature includes Bemanke and Gertler (1989),
Kiyotaki and Moore (1997), Gertler and Kiyotaki (2010), He and Krishnamurthy (2013), Brunnermeier and
Sannikov (2014), Brunnermeier and Koby (2018), Van den Heuvel (2002), Bolton and Freixas (2000), and
Brunnermeier and Sannikov (2016).

4Early research in this strand of literature focuses on the effects of a zero lower bound, while recent
literature studies primarily the effects of negative interest rates.
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this channel off.

Third, this paper is related to the literature studying the passthrough efficiency of mon-

etary policy rates to deposit rates (Berger and Hannan, 1989; Hannan and Berger, 1991;

Diebold and Sharpe, 1990; Neumark and Sharpe, 1992; Driscoll and Judson, 2013; Yankov,

2014; Drechsler et al., 2017; and Duffie and Krishnamurthy, 2016). This literature shows the

adjustment of deposit rate to interest rate changes is slow and asymmetric, and interprets it

as evidence of price rigidities or deposit market power. My work contributes to this literature

by showing that the passthrough efficiency depends on the level of the nominal interest rate,

and is heteregeneous across banks.

Finally, this paper contributes to the literature on the economic consequences of banking

sector concentration. The effects of imperfect competition and market power in the banking

sector, which arises from rising bank concentration, has been an active strand of research

during past decades. Several papers find that the markups in the global and U.S. banking

industry have risen greatly during the past four decades (De Loecker et al., 2020; Diez et al.,

2018). Others provide quantitative analysis on the economic consequences of rising bank

concentration and related regulations (Corbae and D’Erasmo, forthcoming). There are also

papers that focus on the theoretical interactions between competition, financial fragility, and

monetary policy (Corbae and Levine, 2019). My paper focuses on the role of loan market

concentration on monetary policy passthrough, and provides new insights on how rising bank

concentration would affect the real effects of monetary policy.

Outline. The remainder of the paper is as follows. Section 1.2 describes the motivating

evidence. Section 1.3 presents the static model that rationalizes the motivating facts, as well

as illustrates the key mechanism at play. Section 1.4 describes the data. Section 1.5 presents

the empirical results that support the theoretical predictions, and proposes the new measure

of monetary policy passthrough. The final section, 1.6, concludes the paper.
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1.2 Motivating evidence

This section presents the empirical facts that motivate this paper. I find that for U.S.

banks, a lower interest rate can change the passthrough to deposit rates heterogeneously.

Specifically, when the interest rate is lower, some banks have a declined passthrough to

deposit rates, while others have an increased passthrough to deposit rates.5 Moreover, the

aggregate passthrough to deposit rates is higher under a lower interest rate.

I start with the analysis by estimating the passthrough to a bank’s deposit rate. Following

Drechsler et al. (forthcoming), I use the balance sheet data for U.S. banks from the Call

Reports between 2000Q1 and 2019Q4,6 and run the following time-series regression for each

bank j:

∆Deposit Ratej,t = αj+
3∑

τ=0

δj,τ×∆it−τ+
3∑

τ=0

βj,τ×it−1−τ×∆it−τ+θjControlsj,t−1+εj,t, (1.1)

where t is a quarter, ∆Deposit Ratej,t is the change in bank j’s deposit rate from period

t − 1 to t, ∆it is the monetary shock in period t, it is the level of interest rate in period

t, and αj are bank fixed effects. The deposit rate is the total quarterly interest expenses

on domestic deposits divided by total domestic deposits and then annualized. It measures

the average rate of interest expenses on deposits cumulated from the existing deposits. The

monetary shock is the Fed funds rate shock from Nakamura and Steinsson (2018) cumulated

at the quarterly level, and normalized to have a +100 bps impact on the interest rate it.

I measure the interest rate it by the effective Fed funds rate in our baseline results. For

5As documented in previous literature, the aggregate passthrough of policy interest rates to deposit rates
is incomplete in advanced economies (e.g. Drechsler et al., 2017, Wang, 2018, Balloch and Koby, 2019).
That is, a 100 bps increase in the policy interest rate leads to less than 100 bps increase in aggregate bank
deposit rate. As suggested by Drechsler et al. (2017), bank market power in the retail markets is a key
driving force. In the presence of market power, an increase in the policy interest rate allows banks to raise
the markups between the policy interest rate and deposit rate, since the opportunity cost of holding cash is
higher.

6The details of data description are in Section 1.4.
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robustness, I also use the shadow Fed funds rate from Wu and Xia (2016) as the alternative

measure of it. I add three quarter lags of ∆it and it−1×∆it to capture the cumulative effect

of monetary policy shocks over one year. The variable Controlsj,t−1 represents the vector of

control variables at bank level and aggregate level.7

Note that the total impact of ∆it−τ on ∆Deposit Ratej,t is δj,τ + βj,τ × it−1−τ . It means

that the passthrough to deposit rates is a linear function in the level of interest rate, and

the sign of coefficient βj,τ determines whether the passthrough is increasing or decreasing in

the level of interest rate it−1−τ . In this linear regression, I measure the passthrough of policy

rates to bank deposit rates by
∑3

τ=0 δj,τ +
∑3

τ=0 βj,τ × it−1−τ , and measure the sensitivity of

the passthrough to interest rate by βj ≡
∑3

τ=0 βj,τ . The sensitivity estimate βj represents

the units of change in the passthrough if the interest rate is 1% higher over the past one

year. The banks included are required to have at least 60 quarters of data in our sample

period, which yields 4,596 banks.

Figure 1.1 shows the distribution of passthrough sensitivity βj for all the banks. The left

panel presents the distribution of estimates using the effective Fed funds rate as the measure

of it. The right panel presents the distribution of estimates using the shadow Fed funds rate as

the measure of it. The distribution of β estimates reports the following key messages. First,

the estimates of passthrough sensitivity have a large variation across banks. For instance,

in the left panel, about one third of banks have a negative passthrough sensitivity β, while

the others have a positive β. A negative β means the passthrough to deposit rates increases

under a lower interest rate, while a positive β means the passthrough decreases under a

lower interest rate. Second, I measure the aggregate passthrough sensitivity by the average

passthrough sensitivity β weighted by banks quarterly average inflation-adjusted deposits. I

find that the average passthrough sensitivity is -0.006 if we use the effective Fed funds rate

as the interest rate, and -0.04 if we use the shadow Fed funds rate as the interest rate. This

7The list of control variables include: four quarter lags of it, unemployment rate, real GDP growth rate,
linear and quadratic time trend and a vector of bank-level controls. The bank-level controls include log
assets, the share of core deposits in bank liabilities, loan-assets ratio and equity-assets ratio.
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Figure 1.1: Distribution of passthrouth sensitivity β

(a) Effective Fed funds rate (b) Shadow Fed funds rate

Notes: This figure plots the histogram of passthrough sensitivity β. The passthrough sensitivity β is es-

timated in equation (1.1). The left panel reports the estimates using the effective Fed funds rate as the

measure of interest rate. The right panel reports the estimates using the shadow Fed funds rate from Wu

and Xia (2016) as the measure of interest rate. Only banks with at least 60 quarterly observations are

included. The estimates are winsorized at the 1% level. The underlying data are from FRED, the Call

Reports and Nakamura and Steinsson (2018). The sample period is from 2000Q1 to 2019Q4.

implies that by taking into account the heterogeneous sensitivity across banks, the overall

sensitivity of passthrough is slightly negative. In other words, the aggregate passthrough is

slightly higher under a lower interest rate. This estimation result is opposite to the existing

concern.

1.3 Baseline model

In this section I build a partial equilibrium model to study the impact of bank market power

on the passthrough of Fed funds rates to deposit rates. The model is simplified to capture

only the main economic force and allows for an analytical solution.

The economy lasts for one period and consists of three types of agents: (i) a unit mass of

representative savers that demand deposits for transaction services; (ii) a mass µ of repre-
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sentative borrowers that demand loans for consuming final goods; (iii) N banks of mass 1/N

that engage in monopolistic competition over loans and deposits by setting the loan rates

and deposit rates.8 At the same time, the savers and banks can invest in or borrow from

a class of fixed-income assets, which are called bonds. The bonds do not provide liquidity

convenience and are traded in a competitive market with a common rate of return, which is

exogenous and set by the central bank monetary policy. I refer to the rate of return as the

Fed funds rate and denote it by i.9 Moreover, I set the final goods consumed by borrowers

as the numeraire. The deposits, loans and bonds are all measured in the units of final goods.

1.3.1 Demand for deposits

The demand for deposits is derived from the savers’ utility maximization problem. The

representative saver’s utility function is

us (y,D) = y + θd · ln (D) , (1.2)

where y is the consumption of final goods and D is the aggregate deposits that represents

transaction services from deposit holdings.10 The deposit aggregate D is a CES aggregate

8Assuming the mass of a bank to be 1/N is to guarantee that increasing the number of banks does
not affect the equilibrium outcomes by mechanically increasing the total volume of loans and deposits, but
through the extent of bank competition. This setup follows Drechsler et al. (2017) and Li et al. (2019).

9The maturity structure is not important for our main theoretical results. Thus we can think of the
bonds as the Fed funds plus 3-month treasury bills, and the rate of return as the Fed funds rate that is used
by the Federal Reserve to influence bank lending and deposit creation.

10See Section 1.3.4 for the interpretation of demand for deposits.
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of bank deposits Dj from bank j ∈ {1, 2, ..., N} with elasticity of substitution σd > 1:11

D =

(
1

N

N∑
j=1

D
σd−1

σd
j

) σd
σd−1

. (1.3)

I denote the deposit interest rate paid by bank j as idj and let sdj ≡ i − idj be the spread

between the Fed funds rate and the deposit rate. Since the household can invest in bonds,

deposit spread is the opportunity cost of holding deposits.

The representative household is initially endowed with final goods y0. It chooses the

deposit holdings {Dj}Nj=1 to maximize the utility function (1.2) subject to the budget con-

straint

y = (1 + i)

(
y0 −

1

N

N∑
j=1

Dj

)
+

1

N

N∑
j=1

(
1 + idj

)
Dj = (1 + i) y0 −

1

N

N∑
j=1

sdjDj, (1.4)

where I replace idj with i− sdj in the second equality. Thus the deposit spread sdj is the price

of bank j’s deposits in the budget constraint.

Note that the household’s problem is equivalent to the following two-step problem. First,

since the CES aggregator of deposits (1.3) is constant returns to scale, the household selects

the deposit holdings across banks to minimize the unit cost of aggregate deposits. The

11Note that Dj formally represents the amount of deposits when the mass of bank j is scaled to one. Since
the mass of a bank is 1/N , the real amount of bank j’s deposits held by the household is 1

NDj . In the rest
part of the model, the amounts of loans, bonds and equity of an individual bank are defined in an analogous
way.
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minimized unit cost is the average deposit spread given by12

sd ≡ min
{Dj}Nj=1

1

N

N∑
j=1

sdjDj s.t. D
(
{Dj}Nj=1

)
= 1 (1.5)

=

[
1

N

N∑
j=1

(
sdj
)1−σd

] 1
1−σd

, (1.6)

where D
(
{Dj}Nj=1

)
denotes the deposit aggregator (1.3). Second, the representative house-

hold maximizes the utility over consumption and aggregate deposits according to the follow-

ing problem:

max
D,y

y + θd · ln (D) (1.7)

subject to

y = (1 + i) y0 − sd ·D. (1.8)

Solving the above problem (1.5) and (1.7), I obtain that the demand for aggregate deposits

is a function of the average deposit spread:

D
(
sd
)

=
θd
sd
, (1.9)

and the demand for bank j’s deposits is

Dj

(
sdj ; s

d
−j
)

=

(
sd

sdj

)σd

D
(
sd
)
, (1.10)

where sd−j denotes the deposit spread of all banks except j. Note that the competitors’

deposit spread determines bank j’s deposit demand since the average deposit spread sd,

which is given by (1.6), is a function of
{
sdj
}N
j=1

. Thus a change in sdj affects not only the

individual demand Dj, but also the aggregate demand D through changing sd. Moreover,

12The derivations for the baseline model are provided in the Appendix 1.A.1.
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the demand elasticity for individual bank deposits is:

εdj = −∂ log (Dj)

∂ log
(
sdj
) = σd +

1

N
(1− σd)

(
sdj
sd

)1−σd

. (1.11)

Note that the individual demand elasticity is increasing in N due to σd > 1. This implies

that the individual deposit demand is more elastic if there are more banks in the deposit

market. Moreover, if all the banks set the same deposit rate, the individual deposit spread sdj

is equal to the average deposit spread sd. Then the demand for individual deposits becomes

identical, i.e. Dj = D
(
sd
)
, and the individual demand elasticity becomes a constant, i.e.

εdj = εd (N) ≡ σd + 1
N

(1− σd) > 1.

1.3.2 Demand for loans

The demand for loans is derived from the borrowers’ utility maximization problem. The

representative borrowers have a quasi-linear utility over final goods consumption and labor

supply:

ub
(
cb, h

)
=

(
cb
)1−ν − 1

1− ν
− θh · h, (1.12)

where cb represents the consumption of final goods, h represents the amount of labor supply.

The parameter θh the disutility of labor supply, and ν < 1 is the parameter of CRRA

utility. The borrowers have access to a production technology that produces one unit of

final goods for each unit of labor supply. However, the demand for final goods consumption

arrives before the production, and the borrowers have no initial endowment.13 Then the

consumption demand must be financed by the aggregate bank loans L, which is a CES

13This is a simple way to model the demand for loans. See Section 1.3.4 for detailed discussions of the
assumption.
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aggregate of individual bank loans Lj with the elasticity of substitution σl >
1
ν
:

L =

(
1

N

N∑
j=1

L
σl−1

σl
j

) σl
σl−1

. (1.13)

Thus the representative borrowers’ optimization problem is to maximize (1.12) subject to

(1.13) and

cb ≤ L and
1

N

N∑
j=1

(
1 + ilj

)
Lj ≤ h, (1.14)

where ilj is bank j’s loan interest rate. Similar to the savers’ problem, the borrowers’ problem

can also be solved in two steps. First, since the loan aggregator (1.13) is constant returns

to scale, the borrowers distribute loans across banks to minimize the unit cost of aggregate

loans. The minimized unit cost is the average loan rate il that is given by

1 + il ≡ min
{Lj}Nj=1

1

N

N∑
j=1

(
1 + ilj

)
Lj s.t. L

(
{Lj}Nj=1

)
= 1 (1.15)

=

[
1

N

N∑
j=1

(
1 + ilj

)1−σl

] 1
1−σl

. (1.16)

Second, the buject constraints in (1.14) must be binding at optimum. Thus the borrowers

maximize the utility by solving

max
L

L1−ν − 1

1− ν
− θh ·

(
1 + il

)
L. (1.17)

The optimal solution to the demand for aggregate loans and individual bank loans are given

by

L
(
il
)

= µ · θ−
1
ν

h

(
1 + il

)− 1
ν , (1.18)
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where µ is the mass of borrowers, and

Lj
(
ilj; i

l
−j
)

=

(
1 + il

1 + ilj

)σl

L
(
il
)
. (1.19)

Moreover, the demand elasticity of individual bank loans is

εlj = − ∂ log (Lj)

∂ log
(
1 + ilj

) = σl +
1

N

(
1

ν
− σl

)(
1 + ilj
1 + il

)1−σl

. (1.20)

Note that the demand elasticity is increasing in N due to σl >
1
ν
. With a higher N , the

loan market is more competitive, and the loan demand curve of an individual bank becomes

more elastic. Moreover, if all banks sent the same loan rate, the demand for individual

bank loans is identical, i.e. Lj = L
(
il
)
, and the individual demand elasticity becomes

εlj = εl (N) ≡ σl + 1
N

(
1
ν
− σl

)
> 1.

1.3.3 Bank’s problem

Each bank is endowed with an identical equity E0, which is a constant and independent of

the Fed funds rate.14 The banks raise deposits Dj, and invests the funds in loans Lj and

bonds Aj. Thus the balance sheet identity is given by

Lj + Aj = Dj + E0, (1.21)

and Table 1.1 displays the structure of a bank balance sheet.

Moreover, each bank is subject to a capital constraint that restricts the amount of assets

14We can assume the equity is decreasing in the Fed funds rate due to maturity mismatch. However, our
results do not change as long as |∂E0/∂i| is bounded.
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Table 1.1: Bank balance sheet

Assets Liabilities
Loans (L) Deposits (D)
Bonds (A) Equity (E0)

it can hold on the balance sheet:

ψ (Lj + Aj) ≤ Nj. (1.22)

The parameter ψ is the risk weight and Nj denotes bank j’s net worth at the end of the

period:

Nj =
(
1 + ilj

)
Lj + (1 + i)Aj −

(
1 + idj

)
Dj. (1.23)

Taking the individual demand function for loans and deposits as given, banks simulta-

neously set loan rates and deposit spreads to maximize their own net worth. By using the

balance sheet identity (1.21), we can replace Aj with Dj + E0 − Lj and write an individual

bank’s problem as

max
ilj ,s

d
j

Nj =
(
ilj − i

)
Lj
(
ilj; i

l
−j
)

+ sdjDj

(
sdj ; s

d
−j
)

+ (1 + i)E0 (1.24)

subject to

ψ
[
Dj

(
sdj ; s

d
−j
)

+ E0

]
≤ Nj, (1.25)

where
(
ilj − i

)
Lj is the profit of loans, sdjDj is the profit of deposits, and (1 + i)E0 is the

gross gain of investing equity in bonds.

Two-step problem. An important feature of banks’ problem is that banks’ optimal de-

cisions of loan rates are independent of the deposit market and the capital constraint. To

see this, note that banks can substitute loans for bonds without changing the total amount

of assets. This implies that the marginal funding cost for loans is the Fed funds rate i, even
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though a bank can raise deposits. Therefore, we can solve the equilibrium in two steps.

First, banks simultaneously choose loan rates to maximize their profits on loans:

Πl
j = max

ilj

(
ilj − i

)
Lj
(
ilj; i

l
−j
)

, j = 1, 2, ..., N (1.26)

Without loss of generality we focus on the equilibria where the individual loan rate ilj is

non-negative. The following lemma characterizes the loan problem solution:

Lemma 1.1 There exists a unique equilibrium to the loan problem. In this equilibrium,

banks set identical loan rates

1 + ilj = 1 + il =
εl (N)

εl (N)− 1
(1 + i) , (1.27)

and earn identical loan profits

Πl
j = Πl (i, N) = Cl (N) · (1 + i)−

1−ν
ν , (1.28)

where

Cl (N) ≡ µ · θ−
1
ν

h

[
εl (N)− 1

] 1−ν
ν

[εl (N)]
1
ν

(1.29)

is a decreasing function in N .

This lemma shows that due to the symmetry of individual bank loans in the loan aggrega-

tor (1.13), the symmetric equilibrium is the unique equilibrium of banks’ loan problem. The

equilibrium loan rate is a markup over the Fed funds rate, where the markup is a function

of demand elasticity εl (N). The markup is decreasing in N since εl (N) is increasing in N .

In the loan profit function Πl (i, N), the function Cl (N) is defined as the loan concentration

index, which decreases with the number of banks N and the elasticity of substitution σl.

Thus the loan profit Πl (i, N) also decreases in N . Intuitively, a larger N means a more

competitive loan market, thus banks are less able to charge markup and earn monopolistic
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profits. On the other hand, Πl (i, N) is also decreasing in the interest rate i. This is because

the individual loan demand elasticity is greater than 1, which implies that an increase in the

loan rate induces larger reduction in the loan quantity. Importantly, loan profits decrease

less in i for a higher N . This implies that a bank’s profits on loans is less sensitive to nominal

rate if the loan market is more competitive.

Another important implication of Lemma 1.1 is that bank’s earnings on assets are non-

monotonic in the Fed funds rate: the loan profits Πl (i, N) is decreasing in i, and the return

on bonds (1 + i)Aj is increasing i. The non-monotonicity means that when the Fed funds

rate is low (high), a bank’s earnings on assets is decreasing (increasing) in the Fed funds

rate. Moreover, the non-monotonicity depends on the degree of loan market competition:

when the Fed funds rate is low, an increase in the Fed funds rate induces larger decrease in

a bank’s asset earnings if it locates in a more concentrated loan market. As is shown below,

the non-monotonic effect is then passed to the liability side through the capital constraint,

and explains the pattern of passthrough documented in the data.

The second step is to solve the problem of deposits. Given the equilibrium solution to the

loan problem, banks simultaneously set deposit spreads to maximize their deposit profits:

Πd
j = max

sdj

{
sdjDj

(
sdj ; s

d
−j
)}

(1.30)

subject to

ψDj

(
sdj ; s

d
−j
)
≤ W (i, N) + sdjDj

(
sdj ; s

d
−j
)

(1.31)

where

W (i, N) = Πl (i, N) + (1 + i− ψ)E0. (1.32)

The deposit problem shows that the capital constraint is actually a Kiyotaki-Moore con-

straint: a bank’s liabilities cannot exceed a multiple of future profits to ensure incentive com-

patibility. The future profits consist of two parts: W (i, N) represents the effective profits on
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bank assets, and sdjDj

(
sdj ; s

d
−j
)

represents the profits on deposits. The non-monotonic effect

of nominal interest rate on banks’ asset earnings impacts the equilibrium spread through

changing the shadow cost of the capital constraint. Without loss of generality we focus on

the equilibria with finite deposit spreads. The following lemma summarizes the equilibrium

solution to the deposit spreads.

Lemma 1.2 There exists a unique equilibrium to the deposit problem. In this equilibrium,

the capital constraint is always binding, and banks set identical deposit spreads

sdj = sd (W (i, N)) =
ψθd

Cl (N) · (1 + i)−
1−ν
ν + (1 + i− ψ)E0 + θd

(1.33)

and earn constant and identical deposit profits

Πd
j = θd. (1.34)

Therefore, the bank’s problem (1.24) and (1.25) has a unique equilibrium that is described

by (1.27), (1.28), (1.33) and (1.34).

This lemma has the following results. First, since the aggregate demand of deposits

has a unit elasticity, an equilibrium without capital constraint has zero deposit spreads.

This implies banks’ deposit liabilities are infinite. However, the unit demand elasticity

also implies constant profits on deposits. Hence, the capital constraint must be binding in

equilibrium, and the equilibrium deposit spread is an increasing function in the shadow cost

of the constraint. This means that the aggregate supply of deposits by banks is given by the

binding capital constraint, i.e.

Ds
(
sd
)

=
Cl (N) · (1 + i)−

1−ν
ν + (1 + i− ψ)E0

ψ − sd
, (1.35)

where the average spread sd represents the price of deposits. Then the equilibrium average
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deposit spread is given by the equating the deposit supply and the deposit demand Dd
(
sd
)

=

θd
sd

. Another important implication of this result is that the passthrough is one if the capital

constraint is non-binding, and any incomplete passthrough in this model must come from

the binding constraint.

Second, the equilibrium deposit spreads sd (W (i, N)) is a decreasing function in asset

earnings W (i, N). This is intuitive because a higher W (i, N) makes the capital constraint

less binding, thereby lowers the shadow cost of the capital constraint.

1.3.4 Discussion of model assumptions

Demand for liquidity. Incorporating liquidity services in the utility is the simplest way

to generate a demand for assets with dominated return, such as deposits. An interpretation

of this setup is that transactions are subject to frictions, such as cash in advance or frictions

that arise from anonymous transaction and lack of commitment. Alternative ways would

be to explicitly model these frictions, but models with these frictions produce similar utility

functions as assuming liquidity in utility.15 Moreover, the imperfect substitution between

individual bank deposits captures the heterogeneous proximity, switching costs, tastes, or

asymmetric information for depositors.

In general, modelling liquidity in utility usually incorporates currency and deposits as

two substitutable forms of liquidity through an aggregator (Chetty 1969; Poterba and Rot-

temberg 1987; Nagel 2016; Di Tella and Kurlat forthcoming; Drechsler et al. 2017). However,

the liquidity demand for currency is not necessary in this model. The main trade-off is the

substitution between deposits and bonds, generating a comovement between the Fed funds

rate and deposit rate. Thus in the baselien model I drop currency in utility to eliminate

the impact of deposit competition on passthrough, which allows for an analytic solution for

evaluating the impact of loan competition on passthrough.

15See, for example, Feenstra (1986) and Williamson (2012).
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Demand for loans. In this model, the demand of loans by borrowers arises from the

arrival of consumption demand prior to the time when borrowers earn income. One can

build a richer model with two subperiods. Borrowers prefer to consume more in the first

subperiod, but have more income in the second period. Thus borrowers use bank loans to

smooth the consumption across two subperiods. For individual banks, each bank produces

a differentiated loan product that matures in one period. The heterogeneity of bank loans

is motivated by factors such as geographic location and industry expertise. The maturity of

loans will play no particular role in the qualitative mechanism of this model. Ulate (2021)

provides a microfoundation of loan demand that nests the above characteristics, and it can

also be applied in my model.

A decreasing loan profit in nominal interest rate is the key feature of this model. The

related empirical evidence has been documented in Scharfstein and Sunderam (2016) and

Fuster et al. (2021). This feature generates a non-monotonic effect of interest rate on bank

profitability, which is able to explain the impact of low interest rate on passthrough.

Capital constraint. It is useful to note that the capital constraint arises from multiple

reasons. First, banks are subject to regulatory constraints, such as Basel III, which requires

sufficient bank equity to support lending. Our constraint, which is based on Brunnermeier

and Koby (2018), is a simple form that delivers the same requirement on bank balance

sheet.16 We can also motivate the constraint with multiple microfoundations that reflects

banks’ endogenous risk-taking behavior and agency problems, such as Holmstrom and Tirole

(1997) and Gertler and Kiyotaki (2010). Second, the constraint can be replaced with a

smooth convex leverage cost, such as Piazzesi and Schneider (2018).

To present the simplest model without losing the main mechanism, we do not introduce

any other balance sheet frictions which are commonly used in other banking models, such as

the reserve constraint, liquidity coverage constraint or the cost of non-reservable borrowing.

16For alternative forms of capital constraints, see, for example, Begenau et al. (2020) and Wang (2018).
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These frictions do not change the qualitative results of the model.

1.3.5 Impacts of loan market power on passthrough

This section presents the comparative statics of loan market power and nominal interest

rate on the passthrough of policy rate to deposit rate. Using the results of Lemma 1.2, the

equilibrium deposit rate is given by

id (i, N) = i− sd (W (i, N)) . (1.36)

Hence, the passthrough to deposit rates is defined as

∂id (i, N)

∂i
= 1− ∂sd (W (i, N))

∂i
= 1− ∂sd (W (i, N))

∂W
· ∂W (i, N)

∂i
. (1.37)

Note that when the interest rate is low, the passthrough is incomplete, i.e. ∂id(i,N)
∂i

is less

than one, because ∂sd(W (i,N))
∂W

< 0 and ∂W (i,N)
∂i

< 0. The following proposition describes the

conditions needed for this result.

Proposition 1.1 The passthrough of Fed funds rate to deposit rate ∂id

∂i
is less than one iff

i < i0 (Cl, E0), where

i0 (Cl, E0) ≡
(

1− ν
ν

Cl
E0

)ν
− 1. (1.38)

This proposition states that the passthrough is incomplete when the nominal interest rate

is below a threshold. This is because when the interest rate is low, an increase in interest

rate depletes bank profit, thereby tightens the capital constraint and increases spread. Since

an incomplete passthrough is consistent with the data of U.S. banks, we will focus on i <

i0 (Cl, E0) in the following analysis. This means all the propositions below are based on the

following assumption, which guarantees a positive i0 (Cl, E0):

Assumption 1.1 Cl > ν
1−νE0.
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As described in the following proposition, our first result is about the impact of loan

market concentration on equilibrium deposit rate and passthrough: that, when the interest

rate is sufficiently low, banks with higher market power set higher deposit rates than those

in less concentrated markets.

Proposition 1.2 (i) The equilibrium deposit rate increases in loan market concentration,

i.e.
∂id

∂Cl
> 0. (1.39)

(ii) Given Cl and E0, there exists a unique threshold i1 (Cl, E0), which is smaller than

i0 (Cl, E0), such that the passthrough of Fed funds rate to deposit rate increases with loan

market concentration iff i < i1 (Cl, E0). That is,

∂2id

∂i∂Cl
> (<) 0 iff i < (>) i1 (Cl, E0) . (1.40)

(iii) The threshold i1 (Cl, E0) is increasing in Cl and decreasing in E0. Moreover, it is

positive iff Cl > θd + 1+ν
1−νE0.

It is useful to illustrate the intuition of Proposition 1.2 in graphics, as plotted in Figure

1.2. This figure plots the demand (blue) and supply (red) curves of aggregate deposits for

high loan concentration and low loan concentration. First, the deposit rate is increasing in

loan concentration because the loan profits increases with loan concentration. This increases

bank’s total profit and makes the capital constraint less binding. As a result, banks are able

to take more deposits at lower deposit spreads. The solid red curves in Figure 1.2 show this

result. Second, when the interest rate is sufficiently low, the location of deposit supply curve

is determined by bank’s loan market concentration. In this case, the supply curve of banks

with higher loan concentration interacts with the demand curve in the more elastic part.

As a consequence, when the interest rate increases, the deposit spread increases less with a

higher loan market concentration. Third, the threshold interest rate i1 (Cl, E0) represents the
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Figure 1.2: Graphic Representation of Passthrough under Different Loan Market Concen-
tration

(a) Low loan market concentration

↑ Fed funds rate

Deposits

Deposit spread

(b) High loan market concentration

↑ Fed funds rate

Deposits

Deposit spread

Notes: This figure plots the passthrough of Fed funds rate to deposit rate for banks with low and high loan

market power. The red curves are the supply of deposits, the blue curves are the demand of deposits.

cutoff rate below which the effect of loan concentration on passthrough dominates. A higher

loan concentration implies a stronger effect of loan concentration on passthrough, while a

higher equity implies a stronger effect of bond earnings on passthrough. This implies that

the threshold value i1 (Cl, E0) is increasing in Cl and decreasing in E0.

Next we examine the net effect of low interest rate on passthrough efficiency through

our loan market competition channel. We are interested in whether a lower interest rate

improves or weakens a bank’s passthrough to deposit rate, and its relationship with loan

market power. The literature documents that low interest rate environment weakens the

aggregate passthrough (e.g. Wang (2018)). However, the following proposition shows that

the impact differs across banks. Specifically, a lower interest rate strengthens the deposit

rate passthrough for banks with sufficiently large loan market concentration, but weakens

otherwise.

Proposition 1.3 Suppose ν < 1
2
. (i) Given Cl and E0, there exists a unique thresh-
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old i2 (Cl, E0), which is smaller than i0 (Cl, E0), such that a lower interest rate improves

passthrough if i < i2 (Cl, E0), i.e.

∂2id

∂i2
< 0 if i < i2 (Cl, E0) ,

∂2id

∂i2
> 0 if i ∈ (i2 (Cl, E0) , i0 (Cl, E0)) .

(ii) Given E0, there exists a unique threshold Ĉl (E0) > 0 such that i2 (Cl, E0) is positive

iff Cl > Ĉl (E0).

(iii) The threshold Ĉl (E0) is increasing in E0; the threshold i2 (Cl, E0) is increasing in Cl

and decreasing in E0.

A graphic representation of Proposition 1.3 is plotted in Figure 1.3. The intuition is as fol-

lows. According to Proposition 1.2, a higher loan market concentration improves passthrough

when the interest rate is low. This effect increases with a lower interest rate if and only if

the sensitivity of loan profits to interest rates also increases with lower interest rate. This

requires ν < 1
2

and a sufficiently large Cl. The main implication of this proposition is that

a lower interest rate can improve passthrough for banks with high loan concentration, while

weakens passthrough if the loan market is competitive.

In sum, the above propositions imply the following testable predictions. First, the fol-

lowing equation summarizes the main results of Proposition 1.2:

∂id

∂i
=

(
β1
+

+ β2
−
× i+ β3

−
× E0

)
× loan market concentration + other terms, (1.41)

As predicted by the propositions, we expect that β1 > 0, β2 < 0 and β3 < 0. A positive β1

represents that the passthrough to deposit rates increases in loan concentration under low

interest rate. A negative β2 implies that this relationship reverses under a high nominal rate.

A negative β3 means that with a higher bank equity, it is less likely that the deposit rate

beta increases in bank concentration due to a more relaxed capital constraint. Note that the
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Figure 1.3: Interest Rate Passthrough under Different Loan Market Concentration

Nominal interest rate

Passthrough to deposit rate

High Loan Market Concentration

Low Loan Market Concentration

Notes: This figure plots the theoretical prediction on the relationship between deposit spreads and nominal

interest rates for banks with low loan market concentration (small Cl) and high loan market concentration

(large Cl).

threshold value of interest rate i1 (Cl, E0) = 1
−β2 (β1 + β3 × E0) is decreasing in E0, which is

consistent with Proposition 1.2.

The second testable prediction is derived from Proposition 1.3:

∂id

∂i
=

(
β4
+

+ β5
−
× loan market concentration

)
× i+ other terms, (1.42)

We expect that β4 > 0 and β5 < 0. The signs of coefficients imply that if the loan market

concentration is larger than β4
−β5 , then the passthrough increases with a lower interest rate.

Otherwise, the passthrough decreases with a lower interest rate.

1.4 Data

This section describes the data sources and the construction of main variables.
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1.4.1 Data sources

Branch deposits. The data on branch-level deposit volumes are from the Federal Deposit

Insurance Corporation (FDIC). The data cover the universe of U.S. bank branches at an

annual frequency from June 1994 to June 2019. The information on branch characteristics,

such as the parent bank, address, and geographic location, are also available. I use the FDIC

branch identifier to match the FDIC data with other datasets.

Branch deposit rates. The data on retail interest rates are provided by Ratewatch.

Ratewatch surveys bank branches across the U.S. and collects weekly branch-level deposit

rates by products. I use the sample from January 2001 to December 2019. Compared with

the branch information from the FDIC, the data cover 54% of all U.S. branches as of 2019.

Following Drechsler et al. (2017), I restrict the data sample to the branches that actively set

retail rates, which cover approximately 30% of all unique branches. Moreover, my analysis

focuses on the following deposit products: 25K money market accounts (the money market

deposit accounts with an account size of $25,000) and 10K CDs with 3-month, 6-month and

12-month maturities (the certificates of deposits with an account size of $10,000 and mature

in 3 months, 6 months and 12 months). These products are commonly offered across U.S.

branches, and are representative of savings and time deposit products. The Ratewatch data

also report the FDIC branch identifier, thus I use it to match the Ratewatch data with the

FDIC data.

Bank data. The bank data are from the U.S. Call Reports provided by the Federal Reserve

Bank of Chicago and the Federal Financial Institutions Examination Council (FFIEC). The

data contain quarterly income statements and balance sheets of all U.S. commercial banks.

Our sample is from 1997Q1 to 2019Q4. I use the FDIC bank identifier to merge the bank-level

Call Reports data with the branch-level FDIC and Ratewatch data.
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Home mortgage loans. I collect the administrative data on residential mortgage loans

from the Home Mortgage Disclosure Act (HMDA) dataset. The dataset covers the loan-level

information on residential mortgages originated or purchased by most mortgage lending

institutions in the U.S. at an annual frequency. In particular, it reports the amount of

mortgage loans issued by a financial institution in a given county in a given year. My data

sample goes from 2000 to 2019. In the main sample I remove GSE loans, i.e. the mortgages

subsidized by the Federal Housing Authority, the U.S. Department of Veterans Affairs, or

other government programs. For the bank institutions in this dataset, I use the RSSD

identifier to merge their home mortgage loan data with the Call Reports.17

County data. I collect data on county population, employment, and median household

income from the U.S. Bureau of Labor Statistics, Bereau of Economic Analysis (BEA) and

the Census Bureau. I match the data to other datasets using the county fips code as the iden-

tifier. Information on local business activities such as two-digit-industry level employment

and number of establishments is provided by the County Business Patterns.

Monetary policy data. The quarterly data of effective Fed funds rates and treasury

yield rates are obtained from the Federal Reserve Economic Data (FRED). For identification

issue, I also adopt the series for policy news shocks from Nakamura and Steinsson (2018) and

information shocks from Jarociński and Karadi (2020) as instruments for the Fed funds rate.18

The sample is all regularly scheduled FOMC meetings from January 2000 to December 2019,

excluding the peak of the financial crisis from July 2008 to June 2009. Following Romer and

17The RSSD identifier is provided by Robert Avery from the Federal Housing Finance Agency (available
at https://sites.google.com/site/neilbhutta/data).

18I use the updated series by Acosta and Saia over January 2000 to December 2019. The shock series
is the first principal component across surprise changes of five futures contracts around scheduled policy
announcements: the one with respect to the Fed funds rate immediately following a meeting by the Federal
Open Market Committee (FOMC), the expected federal funds rate immediately following the next FOMC
meeting, and expected three-month eurodollar interest rates at horizons of two, three, and four quarters.
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Romer (2004), I convert the shocks data to quarterly frequency by summing up the shocks

within the same quarter.

1.4.2 Variable definition

This section presents the definition of main variables for the empirical analysis. Table 1.2 in

Appendix 1.C lists the additional variables as well as their summary statistics.

Nominal interest rate. In my theoretical model, the nominal interest rate is the marginal

cost of loans. The model assumes it is equal to (or at least influenced by) the policy rate

set by the central bank. However, since bank loans have longer maturity than wholesale

funding, the marginal cost of loans is not necessarily equal to the policy interest rate in the

data due to term premia. To account for the term premia, I follow Wang et al. (2020) to

construct a Treasury portfolio, which replicates the repricing maturity of the aggregate loan

portfolio of U.S. banks as reported in the Call Reports.19 I use the weighted average yield

rate of this portfolio as banks’ effective nominal interest rate. This yield rate is a better

measure of nominal interest rate than the Fed funds rate, since the Fed funds rate is not

informative on banks’ marginal cost of capital after the 2008 global financial crisis.20

The top panel of Figure 1.4 plots the time series of the yield rate of the aggregate

replicating portfolio. It shows that the yield rate is highly correlated with the effective

19Since banks can also invest deposit funds in the replicating portfolio, we can think of the yield rate of
this portfolio as marginal return of deposits. The repricing and maturity data for loans are reported in the
Memoranda of Schedule RC-C Part I of the Call Reports. The schedule divides a bank’s loan portfolio by
the remaining maturity into six categories: 3 months or less, 3 months to 12 months, 1 to 3 years, 3 to 5
years, 5 to 15 years and over 15 years. I assign to each category the yield rate of treasury that has the closest
maturity, and compute the weighted average of the treasury yield rate. This procedure follows English et al.
(2018). Similar calculation is adopted in Wang (2018), Begenau and Stafford (2019) and Drechsler et al.
(forthcoming).

20Due to the unconventional monetary policy adopted by the Federal Reserve, domestic banks are flushed
with excess reserves after the financial crisis, and the main participants of the Fed funds market are govern-
ment sponsored enterprises and foreign bank organizations. The effective Fed funds rate falls below IOER
due to regulatory arbitrage (e.g. Duffie and Krishnamurthy, 2016; Armenter and Lester, 2017; Afonso et al.,
2019).
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Fed funds rate, for both the periods before and after the global financial crisis. Moreover,

although banks differ in their individual loan portfolio, the yield rate of the replicating

portfolio does not have a large variation across banks. In the bottom panel of Figure 1.4, I

calculate the yield rate of the replicating portfolio for each individual bank based on its loan

maturity structure and plot the time series of quartiles. The difference between the quartiles

is stable and close to 0 over time.

Loan market concentration. In our empirical analysis, the primary proxy for the loan

market concentration is the concentration of residential mortgage loans, which is measured

as the standard Herfindahl index (HHI) of the home mortgage loans from the HMDA data.

It is calculated by summing up the squared loan-market shares of all financial institutions

that originate or purchase home mortgage loans in a given county in a given year. I assign

to each bank branch in a given year the HHI of the county in which it is located, and refer

to it as the Branch-HMDA-HHI. Then for each bank in a given year, I take the weighted

average of Branch-HMDA-HHI across its branches, using branch mortgage loan volume as

weights, and refer to it as the Bank-HMDA-HHI.

The measure of loan market concentration deserves specific discussions. First, the ideal

construction of HHI in local banking markets should use the information on all types of

bank loans. However, only the data of home mortage loans (HMDA) and small business

loans (Community Reinvestment Act, CRA) are publicly available at the bank-county-year

level. I use the mortgage loan data instead of small business loan data for two reasons.

First, mortgages loans account for the most substantial part of bank loans, while the share

of small business loans is small. Mankart et al. (2020) use the 2010 Call Reports data and

find that mortgages account for between 62% and 72% of all bank loans, while the share of

commercial & industrial loans is about 10%. Thus the level of mortgage market concentration

is an important determinant of a bank’s overal loan market concentration. The second reason

is that the number of banks reporting CRA data is much less than that of HMDA reporting
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banks. When matched with the Call Reports data, the fraction of bank-year pairs with

unmissing loan observations is 13% for CRA data, and 39% for HMDA data.21

Second, I define banking markets in this paper to be counties, which are the primary

administrative divisions for most states. Although other market definitions, such as state or

metropolitan statistical area, have been used in some existing empirical research on the U.S.

banking industry, many on bank market power have considered county as their measure of

geographic market (e.g. Drechsler et al., 2017; Chen et al., 2017; Scharfstein and Sunderam,

2016; Aguirregabiria et al., 2019).

Deposit growth. The branch-level deposit growth is obtained from the FDIC data. Since

the data are reported annually, a branch’s deposit growth is equal to the log difference of its

deposit volume in a year. The bank-level deposit growth is obtained from the Call Reports,

which is reported at quarter frequency. A bank’s deposit growth is the log difference of the

bank’s total domestic deposits in a quarter.

Deposit rates. The branch-level and bank-level deposit rates are measured at quarterly

frequency. At branch level, for each deposit product, a branch’s quarterly deposit rate is

equal to the quarterly average of the branch’s weekly deposit rates in Ratewatch. The bank-

level deposit rates are calculated from the Call Reports data. It is equal to the annualized

quarterly interest expenses on domestic deposits divided by total domestic deposits.

21There are some restrictions on loan reporting in both data. Under CRA, all banks with assets greater
than $1 billion (before 2005, it is $250 million) are required to disclose annual tract-level data on the number
and dollar volume of loans originated to businesses with gross annual revenues less than or equal to $1
million. Under HMDA reporting criteria, financial institutions required to disclose are banks, credit unions
and savings associations that have at least $43 million in assets, have a branch office in a metropolitan
statistical area or metropolitan division, originated at least one home purchase loan or refinancing of a home
purchase loan in the preceding calendar year, and are federally insured or regulated. However, as reported
in Greenstone et al. (2020), the CRA data still account for 86% of total lending in the small business loans,
and the HMDA data account for at least 83% of the population lived in an MSA region during the sample
period.
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Bank equity. The measure of bank equity is calculated from the Call Reports data. It

is equal to a bank’s total equity capital divided by total assets in a quarter. This is an

equivalent measure of bank leverage as documented in English et al. (2018).

1.4.3 Summary statistics

Table 1.2 in Appendix 1.C provides the summary statistics of the main variables. It reports

the statistics over the full sample, as well as the subperiods before 2010 (the period before

low interest rate) and after 2010 (low interest rate period). Panel A presents the summary

statistics for the quarterly changes of branch deposit rates. For each deposit product, the

quarterly changes of deposit rates are negative on average, which is due to the long-run

decline of nominal interest rate. Moreover, the deposit rates before 2010 decrease more and

are more volatile than the deposit rates after 2010. This is because the nominal interest rate

is less volatile in the low-interest rate period.

Panel B reports the summary statistics of the annual deposit growth of U.S. branches.

We can observe that the average growth rate is higher before 2010 than after 2010. This is

because the nominal interest rate decreases more on average before 2010 than after 2010.

Panel C presents the summary statistics for the home mortgage loan HHI of counties

with at least one bank branch. The average HHI is low, implying that the home mortgage

loan markets are quite competitive on average. However, the standard deviation is close to

the mean value, which implies a large variation of HHI across counties. These results are

also reflected in Figure 1.5, which plots the map of Branch-HMDA-HHI across counties in

the United States. Moreover, the average HHI of home mortgage loan markets increases

from 0.08 in the first subperiod to 0.12 in the second subperiod, with a slight reduction in

the standard deviation.

Panel D reports the sumamry statistics for bank characteristics. Similar to the summary

statistics of branch deposit rates, the quarterly changes of bank deposit rate is negative
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on average. The bank deposit rates decrease more and are more volatile before 2010 than

after 2010. The bank-level average home mortgage loan HHI (Bank-HMDA-HHI) is smaller

on average and less volatile than the measures at county level. The distribution of bank

equity-assets ratio is concentrated and quite stable across periods. Finally, there is a large

reduction in the number of banks across periods due to the waves of bank failure and mergers

and acquisitions.

Panel E presents the summary statistics of the yield rate on the aggregate replicating

portfolio. Consistent with the trend of Fed funds rate, the yield rate is lower and less volatile

over the years after 2010 than the period before 2010.

1.5 Empirical analysis

This section presents the empirical tests of our model. The analysis starts with branch-level

regressions that identify the theoretical mechanism, and then provides bank-level estimation

that documents the impact of our channel on bank balance sheets.

1.5.1 Branch-level estimation

The branch-level estimation aims to verify the testable predictions (1.41) and (1.42). The

detailed description of identification strategy and empirical results are presented below.

1.5.1.1 Identification assumption

The first part of our empirical analysis is to identify the causal effect of loan market compe-

tition on the passthrough to deposit rates under low interest rate. The main identification

issue is that the changes in deposit rates and volumes depend on the loan and deposit op-

portunities simultaneously. In order to guarantee that banks are faced with similar deposit

opportunities, I compare the deposit rates and deposit volume growth across branches in the
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same county but belong to different parent banks.22 This identification strategy assumes that

banks can raise deposits at one branch and lend them at another to equalize the marginal

returns of lending across branches. It implies that the impact of loan market competition on

a bank’s deposit rate is determined by the average loan market concentration of its branches.

Therefore, the within-county estimation is able to control for the branches’ deposit market

power and identify the effect of loan market competition on the passthrough to deposit rates.

The identifying assumption is empirically justified by Drechsler et al. (2017), who show that

a bank’s lending in a given county is not related to local deposit-market concentration. The

related empirical evidence is also documented in the banking literature, which shows that

banks reallocate deposit fundings to areas with high loan demand (Gilje et al., 2016). More-

over, the within-county estimation allows me to control any other local market characteristics

that can affect the equilibrium deposit rates.

1.5.1.2 Preliminary analysis

The preliminary analysis investigates if the relationship between passthrough and loan mar-

ket concentration is different, when the nominal interest rate is high versus low. To do this,

I split the data sample into two subperiods: the quarters before 2010Q1 and the quarters

after 2010Q1, and run the following regression:

∆yj,t = αj + γb(j) + δc(j),t + β11 {t < 2010Q1} ×HHIb(j),t−1 ×∆it (1.43)

+β21 {t ≥ 2010Q1} ×HHIb(j),t−1 ×∆it + β3HHIb(j),t−1 + γ · xb(j),t−1 + εj,t,

where j denotes a branch, b (j) denotes the parent bank, c (j) denotes the county of branch

j and t is the time index (quarter). I include county-time fixed effect δc(j),t to implement the

within-county estimation, and branch fixed effect αj and bank fixed effect γb(j) to control the

22This identification is similar to the within-county estimation on the impact of deposits concentration on
small business lending in Drechsler et al. (2017).
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unobserved time-invariant characteristics of branches and parent banks.23 The variable yj,t is

either the deposit rate or the log of deposits of branch i in period t, and ∆yj,t is the change of

yj,t from period t− 1 to t. The variable ∆it is the contemporaneous change in the Fed funds

rate. The variable HHIb(j),t is the measure of bank-level loan market concentration, i.e.

Bank-HMDA-HHI. The indicator functions 1 {t < 2010Q1} and 1 {t ≥ 2010Q1} represent

the dummies of two subperiods. The interaction terms capture the heterogeneous impact

of loan market concentration on the deposit rate passthrough.24 I use quarterly data for

deposit rates from Ratewatch and annual data for deposit growth from FDIC. I focus on the

sample of counties with at least two different banks for identifying β1 and β2. In addition to

the fixed effects, the regression also includes a set of bank characteristics xb(j),t−1 to control

the factors potentially correlated with HHIb(j),t.
25

Table 1.3 and 1.4 report the results of preliminary specification (1.43) for deposit rates

and deposit growth, respectively. The deposit rates include savings deposits ($25K money

market account) and time deposits ($10K 3-month, 6-month and 12-month CDs). The

deposit growth is the annual growth rate of a branch’s aggregate deposits. The results

of Table 1.3 show that in the period after 2010Q1, the passthrough of Fed funds rate to

deposit rate is increasing in bank’s loan market HHI. The results are significant for the three

products of time deposits, and also produce the correct signs of coefficients for the savings

deposits. However, in the period before 2010Q1, the passthrough is decreasing in bank’s loan

market HHI. These results are consistent with Proposition 1.2. Moreover, the magnitude of

estimation is also considerable. The estimated coefficients imply that, for example, when

23Some branches change their ownership structure due to merger and acquisitions during the sample
period. I introduce bank fixed effect to control the potential time-invariant effect of this ownership change.

24The results are robust if the term β3HHIb(j),t−1 is replaced with β31 {t < 2010Q1} × HHIb(j),t−1 +
β41 {t ≥ 2010Q1} ×HHIb(j),t−1 to capture the heterogeneous direct effect of loan market concentration on
the changes of deposit rates over two subperiods.

25The controls include one-period lag of bank-level average deposits HHI, its interaction with ∆it, one-
period lag of the deposit rate, and one-period lags of bank characteristics: bank size (log of assets), loan-
assets ratio, share of non-performing loans, repricing maturity, core deposit share, equity-assets ratio and
noninterest net income to assets ratio.
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the Fed funds rate rises by 100 bps after 2010Q1, banks in high-concentration loan markets

(HHI=1) raise deposit rates by 79 bps more than banks in low-concentration loan markets

(HHI=0). Note that the results are robust for various specifications on fixed effects and

bank controls. For the regressions on deposit growth, Table 1.4 confirm that the deposit

growth increases (decreases) in loan market HHI in the period after (before) 2010Q1, when

the Fed funds rate increases. This means that during the period of low interest rate, banks

in high-concentration loan markets experience smaller deposit outflows than banks in low-

concentration loan markets.

Equation (1.43) provides an intuitive split of the data sample to investigate the hetero-

geneous impact of loan market competition on the passthrough to deposit rates. However

the specification is subject to several disadvantages. First, the heterogeneous impact could

be driven by other factors that took place simultaneously with low interest rate. Due to the

global financial crisis, there could be structural changes in banking sector that arise from

changes in the bank regulations. Second, the specification cannot provide an estimate of the

threshold value of nominal interest rate, below which the deposit rate passthrough increases

in loan market concentration. Thus in the following section, I extend the preliminary re-

gression to the baseline regression that explicitly takes into account the effect of nominal

interest rate, as well as tesing the role of bank equity.
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1.5.1.3 Baseline estimation

Our baseline regression, which is designed for testable prediction (1.41), takes on the following

specification:

∆yj,t = αj + γb(j) + δc(j),t + β1HHIb(j),t−1 ×∆it + β2HHIb(j),t−1 × it−1 ×∆it (1.44)

+β3HHIb(j),t−1 × Eb(j),t−1 ×∆it + β4Eb(j),t−1 ×∆it + β5HHIb(j),t−1 × it−1

+β6Eb(j),t−1 × it−1 + β7Eb(j),t−1 ×HHIb(j),t−1 + β8HHIb(j),t−1

+β8Eb(j),t−1 + γ · xb(j),t−1 + εj,t,

where it is the yield rate on the replicating treasury portfolio, and Eb(j),t represents the bank

equity-assets ratio. All the other variables are defined in the same way as in equation (1.43).

Equation (1.44) addresses the disadvantages of (1.43). First, the two-way interaction

HHIb(j),t−1×∆it and the three-way interaction HHIb(j),t−1×it−1×∆it capture that the effect

of loan market concentration on passthrough depends on the level of nominal interest rate.

The coefficient β1 captures the sensitivity of passthrough to loan market concentration when

the interet rate is zero. The coefficient β2 measures the the change of the sensitivity when the

nominal interest rate increases by 100 bps. Moreover, the term HHIb(j),t−1 ×Eb(j),t−1 ×∆it

represents that the effect of loan market concentration on passthrough also depends on the

level of bank equity. As predicted by the model, we expect β1 > 0 and β2, β3 < 0. This

means when the nominal interest rate is sufficiently low (high), the deposit rate passthrough

is increasing (decreasing) in banks’ loan market concentration. The threshold value of it−1

is equal to −β1
β2
− β3

β2
Eb(j),t−1, which is decreasing in bank equity. I also add all the other

two-way interactions among the main regressors, i.e., HHIj(i),t−1, ∆it, it−1, and Ej(i),t−1,

as long as they are not absorbed by fixed effects. The standard errors are clustered at the

county level.

The estimation in first differences performed in the equation (1.44) is preferable to estima-
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tion in levels in our empirical analysis. The main reason is that we focus on the passthrough

of policy rates to deposit rates, which is the sensitivity of deposit rates to policy rate shocks.26

Therefore, regression in first differences is the direct counterpart of Proposition 1.2. Thus I

adopt the first-difference estimation in line with the previous literature.

The estiation results of branch deposit rates are reported in Table 1.5. Column (1),

(4) (7) and (10) only include the two-way interaction HHIb(j),t−1 × ∆it to estimate the

average effect of loan market concentration on the passthrough to deposit rates. All the

four columns report insignificant β1, implying that an insignificant average impact. Column

(2), (5), (8) and (11) reports the baseline specification, which include the interaction terms

HHIb(j),t−1 × ∆it and HHIb(j),t−1 × it−1 × ∆it. Although the estimates in column (2) are

insignificant, column (5), (8) and (11) confirm that the passthrough of Fed funds rate to time

deposit rates is increasing in the loan market concentration, when the nominal interest rate

is low. The differential effect vanishes as the nominal interest rate is higher. For example,

when the nominal interest rate is zero and the Fed funds rate increases by 100 bps, banks in

high-concentration loan markets (HHI=1) raise the deposit rates of 12-month CD accounts

by 201 bps more than banks in low-concentration loan markets (HHI=0). The differential

effect becomes zero when the nominal interest rate increases to 2.95%. Also notice that the

absolute value of β1’s in colum (5), (8) and (11) is larger for products with longer maturity,

meaning that the differential effect at zero nominal rate is stronger for longer-maturity

products. Column (3), (6), (9) and (12) present the results of the full specification. The

estimation demonstrates the role of bank equity. Column (3) reports a significantly positive

β1 and a significantly negative β3, meaning that the differential effect at zero interest rate

also exists for savings deposits, and the effect is weakened by a larger bank-equity ratio.

It also implies that the insignificant coefficients in column (2) are due to omitted variables.

26Another reason of estimating in first differences is documented in Drechsler et al. (2017), which implicitly
assumes that bank retail rates adjust concemporaneously to changes in the Fed funds rate. This is preferable
to estimation in levels from an identification standpoint because it controls for other factors that might vary
with monetary policy over longer periods of time or with a lag.
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Moreover, column (6) and (12) also report an significant and negative β3, which demonstrates

the role of bank equity in generating the differential effect of loan market concentration on

deposit rate passthrough.

Next I present the results that verify testable prediction (1.42). Specifically, I replace the

county×time fixed effects with county fixed effects in equation (1.44), and add ∆it, it−1 and

∆it × it−1 to capture the aggregate effect of low interest rate on deposit rate passthrough. I

also includes a set of controls for robustness of estimation.27 Table 1.12 reports the estimation

results for branch deposit rates. The coefficient of ∆it × it−1 is positive, which implies that

for banks in perfectly competitive loan market, a lower interest rate weakens the deposit

rate passthrough. This is consistent with the empirical result of Wang et al. (2020). On

the other hand, the coefficient of HHIj(i),t−1 × it−1 × ∆it is negative and significant for

time deposit products. Moreover, the absolute value of the coefficient of HHIj(i),t−1 ×

it−1 × ∆it is larger than that of ∆it × it−1. This implies that when a bank’s loan market

concentration is sufficiently large, a lower nominal interest rate actually improves the deposit

rate passthrough. The estimated coefficients reveal that a lower nominal rate can improve

the passthrough of all the time deposit products, if the bank’s loan market HHI is above

0.21. These estimation results show that the impact of low interest rate on passthrough is

heterogeneous and depends on banks’ loan market power.

Table 1.13 presents within-county estimates for deposit volume growth. Column (1) to

(3) verify testable prediction (1.41): when the nominal interest rate is zero, an increase in

the Fed funds rate leads to smaller outflows for the banks in more concentrated loan markets.

The differential effect shrinks at a higher nominal interest rate. Column (3) shows that the

threshold nominal interest rate is decreasing in bank equity-assets ratio. For banks with

average equity-assets ratio, a 100 bps Fed funds rate increase from zero generates 389 bps

27The set of controls includes 4-quarter lags of retail and treasury rates, 4-quarter lags of unemployment
and real GDP growth, one-year lag of Branch-Dep-HHI, county share of population aged 65 or older, log of
county-level population, log of county-level median household income and county share of population with
a college degree. I also add linear and quadratic time trends, and the interactions of these controls with the
monetary shock.
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less deposit outflows if the bank locates at high-concentration loan markets (HHI=1) than

at low-concentration loan markets (HHI=0). Moreover, column (8) reports the results of

testable prediction (1.42). I find that a lower interest rate increases the sensitivity of deposit

growth to Fed funds rate for banks in high-concentration loan markets, but decreases the

sensitivity for banks in low-concentration loan markets.

1.5.1.4 Other determinants of the channel

The theoretical model and empirical results show that the threshold value of nominal interest

rate, below which the deposit rate passthrough increases in loan market concentration, is

decreasing in bank equity-assets ratio. In this section I investigate if other bank characteris-

tics also affect the threshold value of nominal interest rate.28 Specifically, I run the following

regression:

∆yj,t = αj + γb(j) + δc(j),t + β1HHIb(j),t−1 ×∆it + β2HHIb(j),t−1 × it−1 ×∆it (1.45)

+β3HHIb(j),t−1 × it−1 + β4HHIb(j),t−1 + θ1·HHIb(j),t−1 × xb(j),t−1 ×∆it

+θ2·xb(j),t−1 ×∆it + θ3·xb(j),t−1 × it−1 + θ4·xb(j),t−1 ×HHIb(j),t−1

+γ · xb(j),t−1 + εj,t,

where I replace Eb(j),t−1 with a full set of bank characteristics xb(j),t−1. The set of bank

characteristics include equity-assets ratio, log of bank assets, loan-assets ratio, core deposit

share in total liabilities, maturity gap, nonperforming share of loans in total loans, the

share of other assets in total interest-earning assets, the share of other liabilities in total

liabilities. The computation of maturity gap follows English et al. (2018). The variables

“other assets” and “other liabilities” represent the assets and liabilities with no repricing

28The potential determinants reflect other financial frictions that link banks’ loan pricing strategy to
deposits pricing. Such frictions include borrowing cost in wholesale funding market due to asymmetric
information, regulatory requirement on reserves, capital and liquid assets. See Wang et al. (2020) for a
quantitative evaluation on the role of each friction in monetary transmission.
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or maturity information. Including these three variables aims to investigate the impact of

bank’s maturity structure on the threshold value of nominal interest rate.

Table 1.15 reports the estimated vector of coefficients θ1 for branch deposit spreads. Con-

sistent with the baseline estimation, the coefficients of three-way interaction HHIj(i),t−1 ×

Ej(i),t−1 × ∆it are still significant for money market accounts, 3-month CDs and 12-month

CDs in this table. This confirms that our theoretical mechanism through capital constraint

is significant for linking loan market concentration and deposit pricing, and bank equity is

one of the most important determinants for the threshold value of nominal interest rate. The

effects of other bank characteristics are as follows. First, the loan market concentration has

a significantly more pronounced positive impact on larger banks’ deposit rate passthrough,

as evidenced by the large positive coefficient of bank size. This implies that the threshold

value of nominal interest rate is increasing in bank assets. This is possibly due to stronger

regulatory capital constraint on larger banks. Second, as indicated by the positive coef-

ficients of nonperforming loan share, loan market concentration also improves the deposit

passthrough more on banks with a larger share of nonperforming loans. A possible reason

is that higher nonperforming loan share implies higher risk of bank assets, which induces a

more strict capital constraint or higher cost of external financing. Thus the threshold value

of nominal interest rate is also increasing in nonperforming loan share.

1.5.1.5 Robustness checks

This section presents the robustness checks of the empirical results. First, the results are

robust for alternative fixed effects and controls. Table 1.6 and 1.7 report the robustness

checks for deposit rates, and column (4)-(7) in Table 1.13 report the robustness checks for

deposit growth. Second, the results are similar if the measure of nominal interest rate is the

Fed funds rate or the 1-year treasury yield rate. Table 1.8 and 1.9 report the estimation

results for deposit rates, and column (1)-(4) in Table 1.14 report the results for deposit

growth. Third, restricting the data sample to the pre-financial crisis period (until the end of
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2008Q2) produces consistent signs of coefficients, but slightly reduces the significance level.

This is because the nominal interest rate was not extremely low. The results are reported

in Table 1.10 for deposit rates, and column (5) and (6) in Table 1.14 for deposit growth.

Fourth, the robustness tests run the original regressions of (1.44) for banks with the largest

25% banks, which are sorted by the inflation-adjusted annual average assets, and obtain

consistent results. The regression results are reported in Table 1.11 for deposit rates, and

column (7) and (8) in Table 1.14 for deposit growth.All these results are availalbe upon

request.

1.5.2 Bank-level estimation

To deepen the understanding of the economic consequences of low interest rate and bank

market power on the passthrough, I now turn to banks’ income and balance sheet variables.

In particular, I investigate whether the results of branch-level regressions also hold at the

bank level, and how the impact of loan market competition on deposit passthrough affects

the associated dynamics of bank balance sheets.29 This provides a more detailed picture of

how banks with different loan market power respond differently to interest rate changes in

the low-interest environment. The empirical analysis uses the Call Report data over 1997Q1

to 2019Q4.

The analysis studies the impact of loan market concentration on the sensitivity of bank

balance sheet components to monetary policy, under different levels of nominal interest rates.

29I focus on the dynamic responses because the banks’ income and balance sheet reflect income and
expense flows accruing from past assets and liabilities. The impacts of interest rate shocks can be reflected
on the data with lags.
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Formally, I estimate the following bank-quarter regression:

yb,t+h − yb,t−1 = αb,h + ηt,h + β1,hHHIb,t−1 ×∆it + β2,hHHIb,t−1 × it−1 ×∆it (1.46)

+β3,hHHIb,t−1 × Eb,t−1 ×∆it + β4,hEb,t−1 ×∆it

+β5,hHHIb,t−1 × it−1 + β6,hEb,t−1 ×HHIb,t−1

+β7,hHHIb,t−1 + β8,hEb,t−1 + γh · xb,t−1 + εb,t,h,

where h = 0, 1, 2, ..., 8, b represents a bank and t is a quarter. The dependent variable

yb,t+h is an accounting measure of a bank balance sheet variable in quarter t + h. The

bank concentration HHIb,t is the bank-level loan market HHI, i.e. Bank-HMDA-HHI. The

interest rate changes ∆it is the shocks to Fed funds rate. To control the potential endogeneity

between the Fed funds rate changes and the unobserved factors at the bank level, I use two

sequences of monetary policy shocks: the policy news shocks of Nakamura and Steinsson

(2018) and the information shocks of Jarociński and Karadi (2020). The monetary policy

shocks are normalized to generate +100 bps change in the Fed funds rate. I present the

results using each sequence and show the robustness. The nominal interest rate it and bank

equity Eb,t are defined in the same way as before. I control the horizon-specific bank fixed

effect αj,h and time fixed effect ηt,h, as well as bank-level controls xb,t−1.30 The inclusion of

bank controls is intended to absorb non-monetary policy drivers of bank balance sheet. I

cluster standard errors at bank level. The estimation follows the local projection method of

Jordà (2005). I plot the sequence of estimated coefficients
{
β̂1,h, β̂2,h, β̂3,h

}
, h = 0, 1, ..., 8,

which traces out the cumulative response of bank-level variables to a policy-induced change

in the Fed funds rate as a function of bank loan market concentration, level of nominal

interest rate and bank equity.

30The bank controls include the same set of balance sheet variables as in the branch regressions. We also
include two lags of yb,t to control the seasonality of dependent variables. The full results are available upon
request.
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Results on deposit rates. Figure 1.6 plots the estimated responses of average bank

deposit rates using the policy news shocks of Nakamura and Steinsson (2018). The bank

deposit rate is equal to the annualized quarterly interest expenses on domestic deposits

divided by total domestic deposits. Panel (a)-(c) depict the sequences of
{
β̂1,h

}
,
{
β̂2,h

}
and

{
β̂3,h

}
respectively. Consistent with the branch-level estimation, the impact of loan

market concentration and nominal interest rate is significant persistent on the passthrough

to deposit rate at bank level. As shown in panel (a), when there is a +100 bps change in

the nominal interest rate from zero-lower bound, banks which has zero equity and operates

in a high-concentration loan market (HHI=1) increase their deposit rates by an average of

203 bps more than banks which has zero equity and locates in a low-concentration loan

market (HHI=0), during the subsequent four quarters. The estimate is similar in magnitude

to the branch-level estimation of Table 1.5. Panel (b) shows that the differential response

vanishes by an average of 29.6 bps if the level of nominal interest rate increases by 100 bps,

which is slightly smaller than the magnitude estimated in the branch regression. Panel (c)

shows that the differential response vanishes by about 12.9 bps if the bank equity-to-assets

ratio increases by 1%. The estimates imply that the threshold level of nominal interest rate,

below which banks with a higher loan market concentration have more efficient passthrough,

is about 1.89%. The number is lower than the estimate values on time deposits in the

branch regressions, which is because the bank average deposit rates also include savings

and demand deposits. Moreover, when the nominal interest rate is equal to 3.93%, i.e. its

pre-crisis average (over 1997Q1 to 2007Q4), then the banks with average equity-assets ratio

and high loan market concentration (HHI=1) raise deposit rates by an average of 60.4 bps

less than those with average equity-assets ratio and low loan market concentration (HHI=0).

All these numbers imply that the magnitudes of the responses under both normal and low

interest rates are economically meaningful compared to the standard deposits channel.31 All

31For a more reasonable comparison, the banks with average equity-assets ratio raise deposit rates by 6.1
bps more and 1.8 bps less if their loan market HHIs are higher by one standard deviation, when the interest
rate increases by 100 bps from zero and the pre-crisis average, respectively. The corresponding number
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these estimates are significant at least 5% level for a horizon of four quarters, and gradually

shrink to zero over the following quarters. This implies that our channel on the short-run

passthrough lasts about four quarters, which is consistent with the fact that the maturities

of bank deposit products are mostly below 12 months. Moreover, the results are robust and

significant if I use the information shocks from Jarociński and Karadi (2020) as monetary

policy shocks. As show in Figure 1.10, the estimated coefficients of
{
β̂1,h, β̂2,h, β̂3,h

}
are of

the correct signs and significant for the first two quarters.

Results on balance sheet growth and structure. Now I turn to estimate the impact

of our channel on the dynamics of bank balance sheet variables. The analysis focuses on

estimating the responses of the growth of bank deposits, loans, securities and assets, as well

as the loan-security ratio and the core deposit share in total liabilities. For deposits, loans,

securities and assets, which is denoted as Yj,t, I define the dependent variable yj,t+h at horizon

h as the symmetric growth rate of Yj,t between t− 1 and t+ h, i.e. yj,t+h =
Yj,t+h−Yj,t−1

0.5(Yj,t+h,Yj,t−1)
.32

The symmetric growth rate is able to accomodate changes in bank balance sheet variables

from a starting level of zero, and bound the changes between -2 and 2 for all impulse response

horizons and therefore avoids the possibility of extreme outliers. All the other specifications

stay the same with (1.46).

Figure 1.7 reports the estimation results using the monetary policy shocks of Nakamura

and Steinsson (2018). It shows that the our channel has significant impact on the dynamics

of bank balance sheets. As plotted in panel (a), the effects of loan market concentration and

bank equity are both significant and of the correct signs over the second and third quater

after the interest rate shock, and the effect of the level of nominal interest rate is negative

estimtated in Drechsler et al. (2017) is by 1.1 bps less if the banks’ deposit HHIs are one standard deviation
higher.

32The symmetric growth rate is the second-order approximation of the log-difference for growth rates
around zero and has been used in a variety of contexts such as establishment-level employment growth rates
(e.g. Decker et al. (2014)) but also credit growth rates (e.g., Gomez et al., 2021 and Greenwald et al., 2020).
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and significant over the quarter 0 and 1. Panel (b) to (d) show that banks with higher loan

market concentration absorb this expansion by increasing their loans and securities more,

when the nominal interest rate is zero. For the growth of bank loans, the level of nominal

interest rate does not have significant impact on the passthrough. However, the level of

nominal interest rate has a significant impact on the passthrough to assets and security

holdings growth in the contemporaneous quarter when the interest rate shocks take place.

Moreover, the results with the shocks of Jarociński and Karadi (2020) show that the level

of nominal interest rate does have significant impact on the growth of bank balance sheets.

As reported in Figure 1.11, this effect is significant with at least 5% level for the growth of

deposits, assets and securities over two quarters after the interest rate shock, and for the

loan growth over the third and fourth quarter after the interest rate shock. One reason is

that the shocks of Nakamura and Steinsson (2018) rely more on the yield rate curves with

shorter maturity than the shocks of Jarociński and Karadi (2020), thus does not fully reflect

the shocks to the cost of bank capital.

Finally, the composition of bank balance sheet is also impacted by our passthrough

channel. Figure 1.7 and 1.11 report the responses of a bank’s loan-assets ratio and the share

of core deposits in liability. In response to an increase in the Fed funds rate from zero,

banks with higher loan market concentration experience larger increase in both loan-assets

ratio and core deposit share. The differential response of core deposit share is due to the

differential effect of loan market competition on deposit passthrough. Banks with higher

loan market concentration are able to raise more deposits, which gives rise to a higher share

of core deposits. Since the cost of raising core deposits is lower than other funds, these banks

are able to supply loans at lower average and marginal costs. Then they obtain an advantage

of issuing new loans and experience an increase in the share of loans in assets.

Results on profitability. A major concern of low interest rate is that it narrows bank

profitability and thereby reduces bank lending through the leverage constraints.Thus I inves-
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tigate the impact of the reversed deposits channel on the dynamics of the measures of bank

profitability. Specifically, I run the regression of (1.46) on the equity-assets ratio and net

interest margin. The net interest margin is equal to the annualized quarterly interest income

on assets minus quarterly interest expense on liabilities, and then divided by bank assets.

The results are plotted in Figure 1.9 and 1.13. In both figures, the level of nominal interest

rate has negative and persistent effect on the dynamics of bank equity-assets ratio through

loan market competition. For example, in Figure 1.9, at zero nominal interest rate, there is

no significant heterogeneity in the response of equity-assets ratio to interest rate shocks for

banks with different loan market concentration. However, when the nominal interest rate is

equal to 1%, the equity-assets ratio of banks with high loan market concentration (HHI=1)

reduces more than banks with low loan market concentration (HHI=0) to positive interest

rate shocks, and this additional reduction persists and accumulates to 0.03% in two years

after the shock. The magnitude is considerable since the standard deviation of equity-assets

ratio is 0.07%.

Moreover, the differential effect of loan market concentration and nominal interest rate

also exists for the net interest margin. As shown in panel (b) of both figures, banks with

higher loan market concentration experience larger change of net interest margin in response

to interest rate shocks when the nominal rate is zero. The differential response vanishes as

the nominal rate gets higher. This is consistent with the responses of loan-assets ratio and

equity-assets ratio: since the loan-assets ratio increases more for the banks with higher loan

market concentration, these banks gain more interest income on new loans, which offsets the

loss on deposits. This increases the banks’ net interest margin and then the bank equity.

When the interest rate shock takes place at a high level of nominal interest rate, banks

are not able to gain more on loan interest income, thus the contribution of loan market

concentration on profitability is weakenend. This gives rise to a decreasing response of bank

equity and net interest margin over the level of nominal interest rates.
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1.5.3 State-dependent exposure to monetary policy

The above analysis shows that the passthrough of monetary policy to deposit rates depends

on the level of nominal interest rate. The theoretical model shows that this dependence

operate through loan market competition. Yet the dependence could also derive from other

sources. Moreover, the bank-level regressions suggest that this dependence is passed through

to the responses of bank balance sheets upon interest rate shocks. In this section, I propose

a state-dependent measure of passthrough, which comprehensively evaluates the impact of

nominal interest rate on monetary policy transmission through bank balance sheets.

The measure builds on the deposit spread beta in Drechsler et al. (2017). Specifically, I

assume the passthrough of monetary policy to deposit rate is a linear function in the nominal

interest rate. This is done by running the following time series regression for each bank in

the Call Reports data:

∆Deposit Ratebt = αb +
3∑

τ=0

β0,b,τ∆it−τ +
3∑

τ=0

β1,b,τ it−τ−1 ×∆it−τ + εbt, (1.47)

where b denotes a bank, t denotes quarter, ∆Deposit Ratebt is the change in the deposit

rate of bank b from period t − 1 to t, it is the Fed funds rate in period t, ∆it is the

change in the Fed funds rate from period t − 1 to period t.33 Similar to Equation (1.1), I

control 3 lags of interest rate shocks to account for the cumulative effects over a full year.

However, this regression equation differs from the former by adding the interaction terms∑3
τ=0 β1,b,τ it−τ−1×∆it−τ , which takes into account the dependence on the nominal rate. Our

estimate of the passthrough to deposit rates consists of two betas: β0,b =
∑3

τ=0 β0,b,τ and

β1,b =
∑3

τ=0 β1,b,τ . The first beta β0,b measures the passthrough when the nominal rate is

zero, thus I call it “zero beta”. The second beta β1,b measures the change in the passthrough

33Alternatively, one can replace the Fed funds rate changes with the monetary policy shocks, or replace
the lag of Fed funds rate with the lag of the yield rate of replicating portfolio. All the specifications produce
similar results.
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when the nominal rate increases by 100 bps, thus I call it “slope beta”. Since our dependent

variable is the changes in deposit rates, a positive slope beta means the passthrough is lower

at a lower interest rate, and a negative slope beta means the passthrough is higher at a

lower nominal rate. For the robustness of estimation, I focus on the banks which have at

least 60 quarters of data over 1997Q1 to 2019Q4, excluding the periods of global financial

crisis (2008Q3 to 2009Q2), and winsorize the estimated betas at the 10% level to remove the

impact of outliers.

Our estimates suggest that the deposit rate passthrough at zero nominal rate is substan-

tially low and the passthrough is quite sensitive to the nominal interest rate. For all of the

banks included in the estimation, the average values of zero beta and slope beta are 0.259

and 0.030, respectively. That is, on average banks raise deposit rates by 25.9 bps per 100

bps increase in the Fed funds rate, when the initial Fed funds rate is zero. This amount

increases to 37.9 bps per 100 bps in the Fed funds rate if the initial Fed funds rate increases

to 4%. This implies that on average, the passthrough efficiency is lower at lower interest

rate. However, the betas also differ substantially in the cross section. The standard devi-

ations of zero beta and slope beta are 0.140 and 0.038, respectively. The fraction of banks

with a negative slope beta is 24.6% (1203 out of 4885). This means that low interest rate

improves the passthrough efficiency to deposit rates for a quarter of banks in our sample.

For comparison, the 10th and 90th percentiles of the slope beta distribution are -0.032 and

0.090. This implies a large cross-sectional heterogeneity in the change of passthrough: when

the initial Fed funds rate reduces from 4% to 0, the banks at the 10th percentile are able to

raise deposit rates by 36 bps more per 100 bps increase in the Fed funds rate, while those

at the 90th percentile are able to raise deposit rates by 12.8 bps less. A more striking result

is that the size-weighted average slope beta, with the size equal to average bank assets, is

about 0. This implies that the aggregate effect of nominal interest rate on passthrough is

actually zero, if we take into account the heterogeneity of bank passthrough.

Moreover, I also relate the deposit rate slope beta to deposit zero beta. Panel (a) of
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Figure 1.14 reports the bin scatter plots, which sort banks into 100 bins by their zero betas

and plot the average slope beta within each bin. The slope between two betas is significantly

negative. This is consistent with our channel of loan market competition, which argues that

banks with lower passthrough at high nominal rate is expected to have a higher passthrough

at zero nominal rate.

Cross-sectional effects on bank balance sheets. Next I show that the zero beta and

slope beta of deposit rates are related to the sensitivity of bank balance sheets to monetary

policy. I measure the sensitivity by re-running regression (1.47) with the symmetric growth

rates of deposits, assets, securities, and loans as dependent variables. The corresponding

betas are called flow zero betas and flow slope betas. I present the relationship by first

showing the bin scatter plots of flow zero beta vs deposit rate zero beta and flow slope beta

vs deposit rate slope beta, respectively, for the growth of deposits and loans. The slope

of this relationship measures the impact of increased sensitivity of deposit rates to policy

rates on the various components of bank balance sheets. The results are reported in Figure

1.15. All the panels show a strong positive relationship between the deposit rate betas and

the flow betas. In particular, the effect of nominal interest rate on the exposure of bank

balance sheet components through deposit rate passthrough is large: when the initial level

of Fed funds rate reduces from 4% to 0, the banks at the 10th percentile of the deposit rate

slope beta distribution are predicted to have a 114 bps less outflow of deposits for every 100

bps increase in the Fed funds rate; however, banks at the 90th percentile are predicted to

have a 320 bps more outflow of deposits the same amount increase in the Fed funds rate.

The effects are similar for total assets, securities, and loans.34 Panel A and B of Table 1.16

report the formal estimates from cross-sectional regressions of flow betas on deposit rate

betas for all the banks in our sample. The estimates are significant with large magnitudes.

34The corresponding numbers for total assets are 88 bps less at 10th percentile and 248 bps more at 90th
percentile; for securities, the numbers are 160 bps less at 10th percentile and 450 bps more at 90th percentile;
for loans, the numbers are 60 bps less at 10th percentile and 169 bps more at 90th percentile.
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The estimates of zero beta can be interpreted as the semi-elasticities of bank balance sheet

components to deposit rates at zero nominal rate, while the estimates of slope beta can be

interpreted as the sensitivity of semi-elasticities to the nominal interest rate. These results

show that the impact of nominal rate on deposit rate passthrough strongly influences the

sensitivity of bank balance sheets to monetary policy.

Aggregate effects. I use the estimation on large banks to calculate the aggregate impact

of nominal interest rate on the deposit rate passthrough over the cross section of banks,

and the corresponding impact on bank balance sheets. Our analysis focus on the largest 5%

banks by assets. The summary statistics of zero beta and slope beta for deposit rates are

similar to the full sample. For these banks, the averages of zero beta and slope beta of deposit

rates are 0.334 and 0.022, respectively. Their standard deviations are 0.198 and 0.053, and

the fraction of large banks with a negative slope beta is 32.4% (79 out of 244). This implies

that even for the large banks, a lower interest rate improves the deposit rate passthrough

for a significant fraction of banks, but weakens the group on average. Panel (b) of Figure

1.14 show that the two betas are still negatively correlated for the large banks. Moreover,

Figure 1.16 report the bin scatter plots between flow betas and deposit spread betas for the

growth of deposits and assets of large banks. All the panels confirm a positive relationship.

Panel C and D of Table 1.16 report the formal estimates of this positive relationship from

cross-sectional regressions of flow betas on deposit rate betas for large banks. The estimates

are all significant and have overally larger magnitudes than the estimates for full sample.

Thus the passthrough to deposit rates and its dependence on the level of nominal interest

rate have stronger impacts on the exposure of bank balance sheets to monetary policy, which

implies a strong aggregate effect since the large banks represent most of assets, deposits and

loans in the U.S. banking sector.
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1.6 Conclusion

This paper documents that the level of nominal interest rate affects the passthrough of

monetary policy rates to deposit rates heterogeneously across banks: with a lower nominal

interest rate, the deposit rate passthrough is higher (lower) if a bank starts with a low (high)

passthrough. I argue that this relationship is due to banks’ loan market power and capital

constraints. With market power on loans, a bank’s loan profit is decreasing in nominal

interest rate, and its total profit is a U-shape function in nominal interest rate. The capital

constraint says a bank’s deposit liabilities cannot exceed its total profits. Therefore, when

the nominal interest rate is low, for banks in concentrated loan markets, a lower interest

rate induces larg increase in bank profits. This allows banks to take more deposits at lower

deposit spreads, thereby improves the passthrough. However, for banks in competitive loan

markets, a lower interest rate still depletes bank profits, which weakens the passthrough.

I test the empirical evidence of this theoretical channel using branch-level data of U.S.

banks. I control for the impacts of banks’ deposit market characteristics by comparing

branches of different banks located in the same local banking market. I find that when the

nominal interest rate is sufficiently low, branches of banks located in more concentrated loan

markets raise their deposit rates by more, and experience less deposit outflows in response

to increases in policy interest rates.

Since deposits are the main source of stable funding for banks, I show that this channel

also affects the response of bank balance sheet components to interest rate shocks under low

interest rate. Specifically, when the nominal rate is low enough, banks in more concentrated

loan markets contract their balance sheet components, such as assets, securities and lendings,

by less in response to policy rate increases. Moreover, these banks also experience relative

increase in profitability measured by net interest margin.

Finally I extend this channel to construct a general measure of monetary policy passthrough

to deposit rates, taking into account the dependence on the level of interest rate. My
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estimates suggest that nominal interest rate impacts banks’ passthrough heterogeneously.

Specifically, a lower interest rate improves the passthrough efficiency to deposit rates for a

signficant share of banks, while weakens the passthrough for the others. Further estimation

shows that the dependence of passthrough efficiency on nominal interest rates can account

for the effects of nominal interest rates on the monetary policy transmission through bank

balance sheets.
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1.A Appendix: Proofs and derivations

1.A.1 Derivations of the model

1.A.1.1 Deposit demand block

Given banks’ deposit spreads
{
sdj
}N
j=1

, the average deposit spread is defined as

sd ≡ min
{Dj}Nj=1

1

N

N∑
j=1

sdjDj s.t.

(
1

N

N∑
j=1

D
σd−1

σd
j

) σd
σd−1

= 1.

To solve this problem, we write the following Lagrangian

L =
1

N

N∑
j=1

sdjDj + λ

1−

(
1

N

N∑
j=1

D
σd−1

σd
j

) σd
σd−1


The first-order condition with respect to Dj is

∂L
∂Dj

=
1

N
sdj − λ

1

N

(
1

Dj

) 1
σd

= 0⇒ Dj =

(
λ

sdj

)σd

,

where I apply

(
1
N

∑N
j=1D

σd−1

σd
j

) 1
σd−1

= 1. Plugging the solution to Dj into the budget

constraint implies

λ =

[
1

N

N∑
j=1

(
sdj
)1−σd

] 1
1−σd

.

Therefore, plugging the solution of Dj and λ into the objective function, we obtain

sd =
1

N

N∑
j=1

sdjDj =
1

N

N∑
j=1

sdj

(
λ

sdj

)σd

= λ =

[
1

N

N∑
j=1

(
sdj
)1−σd

] 1
1−σd

,
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Moreover, since the deposit aggregator is constant returns to scale, the individual deposit

demand is proportional to aggregate deposit demand:

Dj =

(
sd

sdj

)σd

D.

For the aggreate deposit demand, it is given by

max
D

θd · ln (D)− sd ·D

The first-order condition implies that the solution is

D
(
sd
)

=
θd
sd
.

Finally, the demand elasticity of individual deposits is

εdj = −∂ ln (Dj)

∂ ln
(
sdj
) = σd + (1− σd)

∂ ln
(
sd
)

∂ ln
(
sdj
) = σd +

1− σd
N

(
sdj
sd

)1−σd

.

Q.E.D.

1.A.1.2 Loan demand block

The derivations of the average loan rate il and individual loan demand have the same steps

as those of average deposit spread by relabelling. The aggregate loan demand is given by

the following problem:

max
cb,h,l

(
cb
)1−ν − 1

1− ν
− θh · h

subject to

cb ≤ l and
(
1 + il

)
l ≤ h.
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The budget constraints are both binding at optimum, thus we have cb = l ahd h =
(
1 + il

)
l.

Then the first-order condition for l is

l−ν = θh ·
(
1 + il

)
,

which implies

l =
[
θh ·

(
1 + il

)]− 1
ν .

The aggregate loan demand is

L
(
il
)

= µ · l = µ
[
θh ·

(
1 + il

)]− 1
ν .

Q.E.D.

1.A.2 Proof of Lemma 1.1

First we derive the optimal response function of a bank’s loan rate. This is given by maxi-

mizing a bank’s profit on loans:

max
ilj

(
ilj − i

)
Lj
(
ilj; i

l
−j, i

)
The first-order condition implies that

1 =

(
1− 1 + i

1 + ilj

)σl +
1

N

(
1

ν
− σl

)(
1 + ilj
1 + il

)1−σl
 .

Denote x ≡
(
1 + il

)
/ (1 + i) and xj ≡

(
1 + ilj

)
/ (1 + i). Since we focus on the equilibria with

non-negative loan rates, the first-order condition implies that xj > 1. Then the first-order
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condition can be written as

xσlj
xj − 1

− σlxσl−1
j =

1

N

(
1

ν
− σl

)
xσl−1.

Denote the left-hand side of the above equation as F (xj). By taking first-order derivative

we can get

F ′ (xj) = xσl−2
j

[
σl

xj
xj − 1

−
(

xj
xj − 1

)2

− σl (σl − 1)

]
.

Note that xj > 1 implies
xj
xj−1

≥ 1. Since σl > 1, one can show that the function g (y) =

σl · y − y2 − σl (σl − 1) < 0 for any y > 1. To show this, note that g (y) is maximized at

y = σl
2

, and g
(
σl
2

)
= 3

4
σl
(

4
3
− σl

)
. Moreover, we have g (1) = − (σl − 1)2 < 0. If σl < 2,

then g (y) < 0 for any y ≥ 1. If σl > 2, then g
(
σl
2

)
< 0, which also implies g (y) < 0

for any y ≥ 1. Therefore, we must have F ′ (xj) < 0 for any xj > 1, which implies that

F (xj) is decreasing in xj. Moreover, note that F (1) = +∞ and F (+∞) = −∞, thus there

exists a unique solution of xj to the first-order condition. This solution is identical for any

j, which implies that banks must set the same loan rate in equilibrium. By replacing ilj with

il in the first-order condition, we obtain the equilibrium loan rate stated in the lemma. The

corresponding profit function is calculated by plugging the equilibrium loan rate into the

objective function of loan problem. Q.E.D.

1.A.3 Proof of Lemma 1.2

First we show that the capital constraint must be binding in a symmetric equilibrium.

Suppose there is a symmetric equilibrium where the constraint is not binding, then the

first-order condition for individual deposit spread is

Dj + sdjD
′
j = Dj

[
1− εdj

]
= 0
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which implies that

sdj = N
1

1−σd sd.

Thus all banks set the same deposit spread. In this case, the equilibrium deposit spread

must be zero. Otherwise, by the definition of sd, we have

sd =

[
1

N

N∑
j=1

(
sdj
)1−σd

] 1
1−σd

= N
1

1−σd sd ⇒ sd = 0,

which is a contradiction. This implies that in a symmetric equilibrium with non-binding

constraint, banks set zero deposit spreads, and the individual loan demand is θd
0

= +∞.

However, the deposit profit is a constant θd due to unit elastic aggregate demand. This

violates the capital constraint, thus the constraint must be binding in equilibrium.

Therefore, the equilibrium deposit spread is given by the binding capital constraint, which

gives the solution described in the lemma. Q.E.D.

1.A.4 Proof of Proposition 1.1

Taking the first-order derivative of sd with respect to i, we have

∂sd

∂i
=

ψθd[
Cl (1 + i)−

1−ν
ν + θd + (1 + i)E0

]2

{
1− ν
ν
Cl (1 + i)−

1
ν − E0

}
.

This implies that ∂sd

∂i
> 0 if and only if 1−ν

ν
Cl (1 + i)−

1
ν − E0 > 0, which is equivalent to

i < i0 (Cl, E0) ≡
[

1−ν
ν
Cl(N)
E0

]ν
− 1. Q.E.D.

1.A.5 Proof of Proposition 1.2

For the first part of the proposition, note that id = i − sd and sd is decreasing in Cl. It is

straightforward that id is increasing in Cl. For the second part of the proposition, take the
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second-order cross derivative of sd with respect to i and Cl:

∂2sd

∂i∂Cl
=

ψθd[
Cl (1 + i)−

1−ν
ν + θd + (1 + i)E0

]2

1− ν
ν

(1 + i)−
1
ν

− 2ψθd[
Cl (1 + i)−

1−ν
ν + θd + (1 + i)E0

]3

{
1− ν
ν
Cl (1 + i)−

1
ν − E0

}
(1 + i)−

1−ν
ν .

For ∂2id

∂i∂Cl
> 0 it is equivalent to prove ∂2sd

∂i∂Cl
< 0. This condition holds if and only if

(1− ν) θd + (1 + i)E0 (1 + ν) < (1− ν) Cl (1 + i)−
1−ν
ν ⇔ i < i1 (Cl, E0) . (1.48)

Note that the left-hand side of (1.48) is increasing in i and increases to infinity, and the

right-hand side is decreasing in i and decreases to 0, then there exists a unique value

i1 (Cl, E0) below which the above inequality holds. The threshold value i1 (Cl, E0) has fol-

lowing properties. First, it is smaller than i0 (Cl, E0), since ∂2sd

∂i∂Cl

∣∣∣
i=i0(Cl,E0)

> 0. Second, if

(1− ν) θd + E0 (1 + ν) < (1− ν) Cl, then i1 (Cl, E0) is greater than zero. Third, since the

right-hand side of (1.48) is increasing in Cl, and the left-hand side is increasing in E0, by

implicit function theorem we can get that i1 (Cl, E0) increases in Cl and decreases in E0.

Q.E.D.

1.A.6 Proof of Proposition 1.3

The second-order derivative of sd with respect to i is

∂2sd

∂i2
=

ψθd[
Cl (1 + i)−

1−ν
ν + θd + (1 + i− ψ)E0

]2

{
−(1− ν) Cl

ν2
(1 + i)−

1
ν
−1

}

+
2ψθd[

Cl (1 + i)−
1−ν
ν + θd + (1 + i− ψ)E0

]3

{
1− ν
ν
Cl (1 + i)−

1
ν − E0

}2

.
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It implies that ∂2sd

∂i2
> 0 if and only if function G (i; Cl, E0) > 0, where

G (i; Cl, E0) ≡ (1− ν) (1− 2ν)

ν2

Cl
(1 + i)

1
ν

+ 2E2
0

(1 + i)
1
ν

Cl
− 1− ν

ν2

[
θd − ψE0

1 + i
+ (1 + 4ν)E0

]
.

The function G (i) has following properties. First, we have G (i0 (Cl, E0) ; Cl, E0) < 0. This

is directly proved from that ∂2sd

∂i2

∣∣∣
i=i0(Cl,E0)

< 0. Second, G (i; Cl, E0) is a U-shape function

over i ≥ −1. This is proved by taking first-order derivative of G with respect to i. One can

show that the first-order derivative is positive if and only if

2E2
0

νCl
(1 + i)

1
ν

+1 +
1− ν
ν2

(θd − ψE0) >
(1− ν) (1− 2ν)

ν3
Cl (1 + i)−

1−ν
ν .

In this inequality, the left-hand side is increasing in i and is positive at i = −1. Since ν < 1
2
,

the right-hand side decreases from infinite to zero as i increases from −1 to infinite. Thus

there exists a unique value of i below (above) which G is decreasing (increasing) in i.

Third, G (i; Cl, E0) is increasing Cl for any i <
(
Cl
νE0

)ν [
(1−ν)(1−2ν)

2

] ν
2 − 1. The threshold

value is given by taking the first-order derivative of G with respect to Cl and letting the

derivative to be positive. Moreover, the value of G at this threshold is negative, i.e.

G

(
i =

(
Cl
νE0

)ν [
(1− ν) (1− 2ν)

2

] ν
2

− 1; Cl, E0

)

=
2E0

ν

√
2 (1− ν) (1− 2ν)− (1− ν) (1 + 4ν)

ν2
E0 −

1− ν
ν2

θd − ψE0

1 + i

<
(1− ν)E0

ν

[
2

√
2

1− 2ν

1− ν
− 1 + 4ν

ν

]
<

(1− ν)E0

ν

(
2
√

2− 4
)
< 0.

This implies that (i) when Cl ≤ νE0

[
2

(1−ν)(1−2ν)

] 1
2
, G (i; Cl, E0) is negative for any i ∈

[0, i0 (Cl, E0)]; (ii) when Cl > νE0

[
2

(1−ν)(1−2ν)

] 1
2
, G (0; Cl, E0) is increasing in Cl. It implies

that there exists a unique threshold value Ĉl (E0), which is larger than νE0

[
2

(1−ν)(1−2ν)

] 1
2
,

such that G (0; Cl, E0) > 0 if and only if Cl > Ĉl (E0). The threshold value Ĉl (E0) is increasing
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in E0, because G (0; Cl, E0) is decreasing in E0 for any Cl > νE0

[
2

(1−ν)(1−2ν)

] 1
2
.

Finally, since G is a U-shape function in i, then there exists a unique threshold value

i2 (Cl, E0), which is smaller than i0 (Cl, E0), such that G (i; Cl, E0) > 0 if i < i2 (Cl, E0), and

G (i; Cl, E0) < 0 if i ∈ (i2 (Cl, E0) , i0 (Cl, E0)). The threshold value i2 (Cl, E0) is positive if

and only if Cl > Ĉl (E0). Moreover, whenever positive, i2 (Cl, E0) is decreasing in E0 and

increasing in Cl and ψ, due to Cl > νE0

[
2

(1−ν)(1−2ν)

] 1
2
. Q.E.D.
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1.B Appendix: Figures

Figure 1.4: Replicating Portfolio

(a) Aggregate time series
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(b) Distribution of bank series
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Note: This figure plots the time series of the yield rate on the replicating treasury portfolio. This portfolio

replicates the repricing maturity structure of U.S. banks using the Call Reports data. Panel (a) plots the

sequence of the aggregate replicating portfolio yield rate and the contemporaneous effective Fed funds rate.

Panel (b) plots the quartiles of the yield rates on individual bank’s replicating portfolio. The underlying

data are from FRED and the Call Reports. The sample period is 1997Q1 to 2019Q4.

64



Figure 1.5: Home Mortgage Loan HHI in Local Banking Markets
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[0.158,1.000]

Notes: This figure plots the yearly average Herfindahl index (HHI) of home mortgage loans by U.S. county.

The HHI is calculated each year using the home mortgage loan market shares of all financial institutions

that issue or purchase home mortgage loans in a given county, and then averaged over the period from 2000

to 2019. The underlying data are from the HMDA. The threshold values of colorbar in each panel are the

quintiles of the HHI distribution.
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Figure 1.6: Cumulative response of deposit spread at Bank
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Notes: This figure plots the dynamic responses of bank deposit rates to interest rate shocks through the

impact of loan market concentration and nominal interest rate. The blue line plots the estimated coefficients

{β1,h, β2,h, β3,h} of equation (1.46) for horizon h = 0, 1, 2, ..., 8 (quarters). The estimation uses the local

projection method of Jordà (2005). 95 and 90 percent confidence intervals are plotted using the standard

errors clustered by banks. The left panel plots the sequence of β1,h, the middle panel plots the sequence of

β2,h, and the right panel plots the sequence of β3,h. The underlying data are from the Call Reports, HMDA,

FRED, and Nakamura and Steinsson (2018). The sample period is from 1997Q1 to 2019Q4,
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Figure 1.7: Cumulative response of bank balance sheet components

(a) Deposits growth
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(b) Loan growth
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Figure 1.7: Cumulative response of bank balance sheet components (Cont.)

(c) Assets growth
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(d) Securities growth
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Notes: This figure plots the dynamic responses of the growth bank balance sheet components to interest

rate shocks through the impact of loan market concentration and nominal interest rate. The blue line plots

the estimated coefficients {β1,h, β2,h, β3,h} of equation (1.46) for horizon h = 0, 1, 2, ..., 8 (quarters). The

estimation uses the local projection method of Jordà (2005). 95 and 90 percent confidence intervals are

plotted using the standard errors clustered by banks. In each panel, the left figure plots the sequence of β1,h,

the middle figure plots the sequence of β2,h, and the right figure plots the sequence of β3,h. The underlying

data are from the Call Reports, HMDA, FRED, and Nakamura and Steinsson (2018). The sample period is

from 1997Q1 to 2019Q4,
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Figure 1.8: Cumulative response of bank balance sheet structure

(a) Loan-Assets Ratio
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(b) Core Deposits Share
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Notes: This figure plots the dynamic responses of bank balance sheet structure to interest rate shocks

through the impact of loan market concentration and nominal interest rate. The blue line plots the estimated

coefficients {β1,h, β2,h, β3,h} of equation (1.46) for horizon h = 0, 1, 2, ..., 8 (quarters). The estimation uses

the local projection method of Jordà (2005). 95 and 90 percent confidence intervals are plotted using the

standard errors clustered by banks. In each panel, the left figure plots the sequence of β1,h, the middle figure

plots the sequence of β2,h, and the right figure plots the sequence of β3,h. The underlying data are from the

Call Reports, HMDA, FRED, and Nakamura and Steinsson (2018). The sample period is from 1997Q1 to

2019Q4,
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Figure 1.9: Cumulative response of bank profitability

(a) Equity-assets ratio
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(b) Net interest margin
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Notes: This figure plots the dynamic responses of bank profitability measures to interest rate shocks through

the impact of loan market concentration and nominal interest rate. The blue line plots the estimated

coefficients {β1,h, β2,h, β3,h} of equation (1.46) for horizon h = 0, 1, 2, ..., 8 (quarters). The estimation uses

the local projection method of Jordà (2005). 95 and 90 percent confidence intervals are plotted using the

standard errors clustered by banks. In each panel, the left figure plots the sequence of β1,h, the middle figure

plots the sequence of β2,h, and the right figure plots the sequence of β3,h. The underlying data are from the

Call Reports, HMDA, FRED, and Nakamura and Steinsson (2018). The sample period is from 1997Q1 to

2019Q4,
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Figure 1.10: Cumulative response of deposit spread at Bank
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Notes: This figure plots the dynamic responses of bank deposit rates to interest rate shocks through the

impact of loan market concentration and nominal interest rates. The blue line plots the estimated coefficients

{β1,h, β2,h, β3,h} of equation (1.46) for horizon h = 0, 1, 2, ..., 8 (quarters). The estimation uses the local

projection method of Jordà (2005). 95 and 90 percent confidence intervals are plotted using the standard

errors clustered by banks. The left panel plots the sequence of β1,h, the middle panel plots the sequence of

β2,h, and the right panel plots the sequence of β3,h. The underlying data are from the Call Reports, HMDA,

FRED, and Jarociński and Karadi (2020). The sample period is from 1997Q1 to 2019Q4,
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Figure 1.11: Cumulative response of bank balance sheet components

(a) Deposits growth
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(b) Loan growth
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Figure 1.11: Cumulative response of bank balance sheet components (Cont.)

(c) Assets growth
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(d) Securities growth
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Notes: This figure plots the dynamic responses of the growth bank balance sheet components to interest

rate shocks through the impact of loan market concentration and nominal interest rate. The blue line plots

the estimated coefficients {β1,h, β2,h, β3,h} of equation (1.46) for horizon h = 0, 1, 2, ..., 8 (quarters). The

estimation uses the local projection method of Jordà (2005). 95 and 90 percent confidence intervals are

plotted using the standard errors clustered by banks. In each panel, the left figure plots the sequence of β1,h,

the middle figure plots the sequence of β2,h, and the right figure plots the sequence of β3,h. The underlying

data are from the Call Reports, HMDA, FRED, and Jarociński and Karadi (2020). The sample period is

from 1997Q1 to 2019Q4,
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Figure 1.12: Cumulative response of bank balance sheet structure

(a) Loan-Assets Ratio
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(b) Core Deposits Share
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Notes: This figure plots the dynamic responses of bank balance sheet structure to interest rate shocks

through the impact of loan market concentration and nominal interest rate. The blue line plots the estimated

coefficients {β1,h, β2,h, β3,h} of equation (1.46) for horizon h = 0, 1, 2, ..., 8 (quarters). The estimation uses

the local projection method of Jordà (2005). 95 and 90 percent confidence intervals are plotted using the

standard errors clustered by banks. In each panel, the left figure plots the sequence of β1,h, the middle figure

plots the sequence of β2,h, and the right figure plots the sequence of β3,h. The underlying data are from

the Call Reports, HMDA, FRED, and Jarociński and Karadi (2020). The sample period is from 1997Q1 to

2019Q4,
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Figure 1.13: Cumulative response of bank profitability

(a) Equity-assets ratio
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Notes: This figure plots the dynamic responses of bank profitability measures to interest rate shocks through

the impact of loan market concentration and nominal interest rate. The blue line plots the estimated

coefficients {β1,h, β2,h, β3,h} of equation (1.46) for horizon h = 0, 1, 2, ..., 8 (quarters). The estimation uses

the local projection method of Jordà (2005). 95 and 90 percent confidence intervals are plotted using the

standard errors clustered by banks. In each panel, the left figure plots the sequence of β1,h, the middle figure

plots the sequence of β2,h, and the right figure plots the sequence of β3,h. The underlying data are from

the Call Reports, HMDA, FRED, and Jarociński and Karadi (2020). The sample period is from 1997Q1 to

2019Q4,
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Figure 1.14: General deposit spread betas

(a) All banks
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Notes: This figure shows scatter plots of average deposit rate slope betas over 100 bins of deposit rate zero

beta. The zero beta measures the passthrough of Fed funds rate to individual bank’s deposit rate when

the Fed funds rate is zero. The slope beta measures the change in the passthrough when the Fed funds

rate increases by 100 bps. Only banks with at least 60 quarterly observations are included. Both betas are

winsorized at 10%. The left panel plots the results for all banks, and the right panel plots the results for

largest 5% banks by assets. The sample is from 1997Q1 to 2019Q4.
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Figure 1.15: Flow betas vs deposit rate betas (all banks)

(a) Deposits, Zero beta
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Notes: This figure shows scatter plots of average flow betas over 100 bins of deposit rate betas. Panel (a) is

the bin scatter plot of deposit growth zero beta versus deposit rate zero beta. Panel (b) is the bin scatter

plot of deposit growth slope beta versus deposit rate slope beta. Panel (c) is the bin scatter plot of loan

growth zero beta versus deposit rate zero beta. Panel (d) is the bin scatter plot of loan growth slope beta

versus deposit rate slope beta. The deposit rate zero beta measures the passthrough of Fed funds rate to a

bank’s deposit rate when the Fed funds rate is zero. The deposit rate slope beta measures the change in the

passthrough when the Fed funds rate increases by 100 bps. The deposit (loan) growth zero beta measures

the sensitivity of a bank’s log deposits (loans) to the Fed funds rate when the Fed funds rate is zero. The

deposit (loan) growth slope beta measures the change in the sensitivity when the Fed funds rate increases

by 100 bps. Only banks with at least 60 quarterly observations are included. Both betas are winsorized at

10%. The panels plot the results for all banks. The sample is from 1997Q1 to 2019Q4.
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Figure 1.16: Flow betas vs deposit rate betas (large banks)

(a) Deposits, Zero beta
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Notes: This figure shows scatter plots of average flow betas over 100 bins of deposit rate betas. Panel (a) is

the bin scatter plot of deposit growth zero beta versus deposit rate zero beta. Panel (b) is the bin scatter

plot of deposit growth slope beta versus deposit rate slope beta. Panel (c) is the bin scatter plot of loan

growth zero beta versus deposit rate zero beta. Panel (d) is the bin scatter plot of loan growth slope beta

versus deposit rate slope beta. The deposit rate zero beta measures the passthrough of Fed funds rate to a

bank’s deposit rate when the Fed funds rate is zero. The deposit rate slope beta measures the change in the

passthrough when the Fed funds rate increases by 100 bps. The deposit (loan) growth zero beta measures

the sensitivity of a bank’s log deposits (loans) to the Fed funds rate when the Fed funds rate is zero. The

deposit (loan) growth slope beta measures the change in the sensitivity when the Fed funds rate increases

by 100 bps. Only banks with at least 60 quarterly observations are included. Both betas are winsorized at

10%. The panels plot the results for largest 5% banks by assets. The sample is from 1997Q1 to 2019Q4.
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1.C Appendix: Tables

Table 1.2: Summary statistics

All < 2010 ≥ 2010
Mean Std. dev. Mean Std. dev. Mean Std. dev.

Panel A: Branch Deposit Rates (Ratewacth)

∆Rate (MM, %) -0.04 0.21 -0.07 0.30 -0.01 0.07

∆Rate (3M CD, %) -0.05 0.27 -0.09 0.38 -0.02 0.08

∆Rate (6M CD, %) -0.05 0.30 -0.09 0.42 -0.02 0.11

∆Rate (12M CD, %) -0.05 0.31 -0.09 0.42 -0.02 0.14

Obs. (product×branch×quarter) 2,883,416 1,381,701 1,501,715

Panel B: Branch deposits (FDIC)

Deposit growth (%) 7.66 26.66 8.94 29.54 6.09 22.57

Obs. (branch×year) 1,944,437 1,068,767 875,670

Panel C: County characterstics (FDIC and HMDA)

Branch-HMDA-HHI 0.10 0.11 0.08 0.11 0.12 0.10

Obs. (counties) 3,225 3,219 3,216

Panel D: Bank characteristics (Call Reports)

Rate (deposits, %) -0.04 0.32 -0.05 0.39 -0.02 0.14

Net interest margin (%) 3.69 0.85 3.84 0.85 3.44 0.77

Equity (%) 11.40 0.07 11.23 0.07 11.71 0.06

Assets (mill. $) 1,503 29,235 967 17,640 2,448 42,558

Bank-HMDA-HHI 0.06 0.03 0.04 0.03 0.07 0.03

# of banks 12,950 12,263 7,808

Obs. (bank×quarter) 699,744 446,418 253,326

Panel E: Aggregate series

Replicating portfolio yield rate (%) 2.70 1.78 3.83 1.56 1.25 0.59

Obs. (quarter) 91 51 40

Notes: This table provides summary statistics at the branch, bank, county and aggregate levels. All panels

provide a breakdown by subperiods over the quarters up to 2009Q4 and after 2010Q1. Panel A presents data

on the quarterly changes of branch-level deposit rates of four deposit products. “MM” represents the 25K

Money Market account. “3M CD”, “6M CD” and “12M CD” represent the 10K CD accounts with 3-month,

6-month and 12-month maturity. The underlying data are from Ratewatch from January 2001 to December

2019. Panel B presents data on the annual growth of branch deposit volumes. The underlying data are from

FDIC from 1994 to 2019. Panel C presents data on a county’s Herfindahl index of home mortgage loans.

The underlying data are from HMDA from 2000 to 2019. Panel D presents data on bank characteristics.

The underlying data are from the Call Reports from 1997Q1 to 2019 Q4. Panel E presents data on the

yield rate of the aggregate replicating treasury portfolio. The underlying data are from the Call Reports

and FRED from 1997Q1 to 2019Q4.
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Notes: This table presents the estimation of equation (1.43) for branch deposit rates. The dependent

variable is the quarterly change of a branch’s deposit rate on a deposit product. For the independent variables

listed in the table, 1{t < 2010Q1} and 1{t ≥ 2010Q1} are the indicators of whether the observation is before

2010Q1 or after 2010Q1. HHI is the bank-level average Herfindahl index of home mortgage loans across

counties (Bank-HMDA-HHI). ∆i is the quarterly change in the Fed funds rate. The sample consists of all

U.S. counties with branches of at least two different banks for identification. The deposit products include

25K money market accounts (Money Market Account) and 10K CD accounts with 3-month, 6-month and

12-month maturity (3M CD, 6M CD, 12M CD). The underlying data are from Ratewatch, Call Reports,

HMDA and FRED. The sample period is from 2001Q1 to 2019Q4. Fixed effects are denoted at the bottom

of the table. Standard errors clustered by county are reported in parentheses. *** p<0.01, ** p<0.05, *

p<0.1.
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Table 1.4: Identification of the channel: preliminary results on deposit growth

Dependent Variable ∆ log (Branch Deposits, Annual)
Loan market power Bank-HMDA-HHI

(1) (2) (3) (4)

1 {t < 2010Q1}×HHI ×∆i -0.070*** -0.075*** -0.005 0.002

(0.026) (0.026) (0.017) (0.017)

1 {t ≥ 2010Q1}×HHI ×∆i 2.674*** 2.093*** -0.407 -0.354

(0.761) (0.779) (0.652) (0.637)

Obs 1,284,427 1,284,427 1,284,427 1,284,427

Adj R2 0.264 0.262 0.230 0.067

Controls (all panels):

Branch FE Y Y Y N

Bank FE Y Y Y N

County N N Y Y

Time FE N N Y Y

County×time FE Y Y N N

Bank controls Y N Y Y

Notes: This table presents the estimation of equation (1.43) for branch deposit growth. The dependent

variable is the annual log difference of a branch’s total deposit volumes. For the independent variables listed

in the table, 1{t < 2010Q1} and 1{t ≥ 2010Q1} are the indicators of whether the observation is before

2010Q1 or after 2010Q1. HHI is the bank-level average Herfindahl index of home mortgage loans across

counties (Bank-HMDA-HHI). ∆i is the quarterly change in the Fed funds rate. The sample consists of all

U.S. counties with branches of at least two different banks for identification. The underlying data are from

FDIC, Call Reports, HMDA and FRED. The sample period is from 1997 to 2019. Fixed effects are denoted

at the bottom of the table. Standard errors clustered by county are reported in parentheses. *** p<0.01, **

p<0.05, * p<0.1.
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Table 1.5: Identification of the channel: baseline results for deposit rates

Dependent Variable: ∆branch deposit rate (quarterly)

Loan market power: Bank-HMDA-HHI

Deposit product: Money Market Account 3M CD

(1) (2) (3) (4) (5) (6)

β1: HHI ×∆i 0.120 -0.198 2.220*** -0.174 1.375*** 2.736***

(0.226) (0.477) (0.753) (0.218) (0.464) (0.887)

β2: HHI × i×∆i 0.103 -0.130 -0.489*** -0.520***

(0.146) (0.206) (0.171) (0.170)

β3: HHI × E ×∆i -19.041*** -12.441*

(6.525) (6.813)

Obs 204,674 204,674 204,674 194,101 194,101 194,101

Adj R2 0.988 0.988 0.988 0.973 0.973 0.973

Deposit product: 6M CD 12M CD

(7) (8) (9) (10) (11) (12)

β1: HHI ×∆i -0.325 1.826*** 2.308*** -0.269 2.010*** 2.824***

(0.201) (0.441) (0.695) (0.190) (0.452) (0.635)

β2: HHI × i×∆i -0.658*** -0.677*** -0.682*** -0.705***

(0.149) (0.147) (0.146) (0.144)

β3: HHI × E ×∆i -4.188 -7.116*

(5.158) (4.125)

Obs 212,418 212,418 212,418 212,824 212,824 212,824

Adj R2 0.966 0.966 0.966 0.965 0.965 0.965

Controls (all panels):

Branch FE Y Y Y Y Y Y

Bank FE Y Y Y Y Y Y

County×time FE Y Y Y Y Y Y

Bank controls Y Y Y Y Y Y

Notes: This table presents the estimation of equation (1.44) for branch deposit rates. The dependent variable

is the quarterly change of a branch’s deposit rate on a deposit product. For the independent variables listed

in the table, HHI is the bank-level average Herfindahl index of home mortgage loans across counties (Bank-

HMDA-HHI). i is the nominal interest rate. E is the bank equity-assets ratio. ∆i is the quarterly change in

the Fed funds rate. The sample consists of all U.S. counties with branches of at least two different banks for

identification. The deposit products include 25K money market accounts (Money Market Account) and 10K

CD accounts with 3-month, 6-month and 12-month maturity (3M CD, 6M CD, 12M CD). The underlying

data are from Ratewatch, Call Reports, HMDA and FRED. The sample period is from 2001Q1 to 2019Q4.

Fixed effects are denoted at the bottom of the table. Standard errors clustered by county are reported in

parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Notes: This table presents the estimation of equation (1.44) for branch deposit rates with alternative

fixed effects and bank controls. In the estimation the interaction terms with bank equity-assets ratio are not

included. The dependent variable is the quarterly change of a branch’s deposit rate on a deposit product.

For the independent variables listed in the table, HHI is the bank-level average Herfindahl index of home

mortgage loans across counties (Bank-HMDA-HHI). i is the nominal interest rate. ∆i is the quarterly change

in the Fed funds rate. The sample consists of all U.S. counties with branches of at least two different banks

for identification. The deposit products include 25K money market accounts and 10K CD accounts with

3-month, 6-month and 12-month maturity. The underlying data are from Ratewatch, Call Reports, HMDA

and FRED. The sample period is from 2001Q1 to 2019Q4. Fixed effects are denoted at the bottom of the

table. Standard errors clustered by county are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Notes: This table presents the estimation of equation (1.44) for branch deposit rates with alternative

fixed effects and bank controls. In the estimation the interaction terms with bank equity-assets ratio are

included. The dependent variable is the quarterly change of a branch’s deposit rate on a deposit product.

For the independent variables listed in the table, HHI is the bank-level average Herfindahl index of home

mortgage loans across counties (Bank-HMDA-HHI). i is the nominal interest rate. E is the bank equity-

assets ratio. ∆i is the quarterly change in the Fed funds rate. The sample consists of all U.S. counties

with branches of at least two different banks for identification. The deposit products include 25K money

market accounts and 10K CD accounts with 3-month, 6-month and 12-month maturity. The underlying

data are from Ratewatch, Call Reports, HMDA and FRED. The sample period is from 2001Q1 to 2019Q4.

Fixed effects are denoted at the bottom of the table. Standard errors clustered by county are reported in

parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 1.12: Net effects of the channel: branch deposit rates

Dependent Variable: ∆branch deposit rate (quarterly)

Loan market power: Bank-HMDA-HHI

Deposit product: MM 3M CD 6M CD 12M CD

(1) (2) (3) (4)

HHI ×∆i 0.541*** 2.330*** 2.637*** 2.681***

(0.185) (0.244) (0.222) (0.227)

HHI × i×∆i -0.071 -0.702*** -0.789*** -0.855***

(0.074) (0.092) (0.083) (0.084)

i×∆i 0.061*** 0.149*** 0.170*** 0.183***

(0.005) (0.006) (0.006) (0.006)

Obs 251,477 240,852 259,087 259,793

Adj R2 0.988 0.973 0.965 0.963

Controls (all panels):

Branch FE Y Y Y Y

Bank FE Y Y Y Y

County FE Y Y Y Y

Bank controls Y Y Y Y

Notes: This table presents the estimated net effects of loan market concentration and nominal interest rate

on deposit rate passthrough using equation (1.44). The dependent variable is the quarterly change of a

branch’s deposit rate on a deposit product. For the independent variables listed in the table, HHI is the

bank-level average Herfindahl index of home mortgage loans across counties (Bank-HMDA-HHI). i is the

nominal interest rate. E is the bank equity-assets ratio. ∆i is the quarterly change in the Fed funds rate.

The sample consists of all U.S. counties with branches of at least two different banks for identification. The

deposit products include 25K money market accounts (MM) and 10K CD accounts with 3-month, 6-month

and 12-month maturity (3M CD, 6M CD, 12M CD). The underlying data are from Ratewatch, Call Reports,

HMDA and FRED. The sample period is from 2001Q1 to 2019Q4. Fixed effects are denoted at the bottom

of the table. Standard errors clustered by county are reported in parentheses. *** p<0.01, ** p<0.05, *

p<0.1.
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Table 1.15: Determinants of the threshold nominal interest rate

Dependent Variable: ∆branch deposit rate (quarterly)

Deposit product: MM 3M CD 6M CD 12M CD

Regressor x of HHI × x×∆i (1) (2) (3) (4)

Equity/assets -20.282*** -13.426** -3.949 -6.379*

(7.077) (6.438) (4.921) (3.844)

Bank size (log assets) 0.274*** 0.345*** 0.079 0.398***

(0.086) (0.094) (0.100) (0.085)

Loan/assets 0.067 -0.609 -1.098 0.965

(1.222) (1.310) (1.354) (1.200)

Core deposits/liabilities 4.769** -2.215 -5.174** -3.961**

(2.271) (2.001) (2.082) (1.819)

Maturity gap -0.054 -0.102 -0.047 0.086

(0.084) (0.089) (0.079) (0.076)

Nonperforming loan share 18.133** 17.135 20.769** 24.602***

(8.576) (10.684) (8.295) (7.652)

Other assets -0.284 2.132 -0.579 1.174

(1.748) (2.061) (2.225) (1.845)

Other liabilities 0.672 -0.729 -1.203 -2.348***

(0.892) (1.067) (0.934) (0.854)

Obs 204,674 194,101 212,148 212,824

Adj R2 0.988 0.974 0.966 0.966

All FEs Y Y Y Y

Bank controls Y Y Y Y

Notes: This table reports the effects of bank characteristics on the threshold value of nominal interest

rate, below which the passthrough monetary policy rate to deposit rate increases in a bank’s loan market

concentration. The vector of coefficients of HHI × x×∆i are reported in the table, where x represents the

following bank characteristics: equity-assets ratio, log of total assets, loan-assets ratio, core deposits share

in total liabilities, maturity gap, the share of nonperforming loans in total loans, the share of other assets in

total interest-earning assets, the share of other liabilities in total liabilities. The underlying data are from

HMDA, Ratewatch, FRED and Call Reports. The sample period is 2001Q1 to 2019Q4. Standard errors

clustered by county are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 1.16: Regression on the state-dependent passthrough

Balance sheet component Deposits Assets Securities Loans RE loans C&I loans

(1) (2) (3) (4) (5) (6)

Panel A: Zero beta, all banks

Deposit rate 0.059*** 0.049*** 0.096*** 0.026*** 0.018 0.025**

(0.008) (0.007) (0.015) (0.009) (0.020) (0.011)

Obsevations 4,885 4,885 4,885 4,885 4,885 4,885

R2 0.015 0.013 0.010 0.002 0.000 0.002

Panel B: Slope beta, all banks

Deposit rate 0.089*** 0.069*** 0.125*** 0.047*** 0.059*** 0.054***

(0.005) (0.005) (0.011) (0.006) (0.014) (0.007)

Observations 4,885 4,885 4,885 4,885 4,885 4,885

R2 0.072 0.055 0.033 0.018 0.004 0.015

Panel C: Zero beta, large banks

Deposit rate 0.105*** 0.076*** 0.056* 0.087*** 0.116*** 0.098***

(0.022) (0.020) (0.034) (0.021) (0.031) (0.026)

Obsevations 244 244 244 244 244 244

R2 0.088 0.061 0.012 0.066 0.056 0.063

Panel D: Slope beta, large banks

Deposit rate 0.106*** 0.081*** 0.088*** 0.086*** 0.120*** 0.100***

(0.021) (0.019) (0.033) (0.019) (0.032) (0.024)

Obsevations 244 244 244 244 244 244

R2 0.100 0.079 0.031 0.078 0.057 0.077

Notes: This table reports the relationship between the state-dependent passthrough of monetary policy

rates to bank deposit rates and the state-dependent transmission of monetary policy rates to bank balance

sheet components. The analysis covers all U.S. commercial banks in the Call Reports data with at least 60

quarters observations from 1997Q1 to 2019Q4, excluding the periods of global financial crisis (2008Q3 to

2009Q2). Panel A and B report the resutsl for all banks, Panel C and D report the results for the largest

5% of banks by assets. The passthrough of monetary policy rates to bank deposit rates is measured as the

deposit rate zero beta and slope beta. The zero beta measures the sensitivity of a bank’s deposit rate to

the Fed funds rate when the Fed funds rate is zero. The slope beta measures the change in the sensitivity

when the Fed funds rate increases by 100 bps. The state-dependent transmission of monetary policy rates to

bank balance sheet components include the analogous zero betas and slope betas for the quarterly growth of

a bank’s deposits (column (1)), assets (column (2)), securities (column (3)), loans (column (4)), real estate

loans (column (5)) and commercial and industrial loans (column (6)). Panel A and C report the coefficient

of regressing a balance sheet component’s zero beta on deposit rate zero beta. Panel B and D report the

coefficient of regressing a balance sheet component’s slope beta on deposit rate slope beta. All the betas are

winsorized at 5%. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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CHAPTER 2

Disintermediating the Federal Funds Market

with Tsz-Nga Wong

2.1 Introduction

This paper endogenizes the search intensity in the random matching model of Federal funds

market in Afonso and Lagos (2015b). This model features a novel disintermediation chan-

nel: when the unconventional monetary policy like the interest of excess reserves (IOER)

or the balance sheet cost like the liquidity requirement of Basel III or the FDIC assess-

ment fee increases, banks cease to intermediating Federal funds for the efficient use. This

disintermediation channel is missing in the random matching model of Afonso and Lagos

(2015b). In particular, the latter predicts changes in the IOER and balance sheet cost have

no effect, and the equilibrium is always constrained efficient. In a general environment of

costly search, we establish the analytical properties like supermodularity and constrained

inefficiency. In a particular environment, we solve both the equilibrium and constrained

optimum in closed forms, which allow us to characterize the comparative dynamics on the

trading volume, Federal fund rates, and the reserves distribution, as well as to identify the

sources of inefficiency.

Our model is motivated by the following empirical evidence. A Federal funds trade is

intermediated if the purchasing bank is also selling Federal funds on the same day, i.e., the

bank borrows reserves from one bank to lend reserves to other banks. Since the forth quarter

of 2008, the trade volume in the Federal funds market has been shrinking sharply, which is
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largely driven by the decline in intermediated trades, as illustrated in Figure 2.3. The decline

happened in both the level of intermediated trades and the number of intermediating banks.

We refer this disappearance of intermediated trades as the disintermediation of the Federal

funds market. We notice that the timing of the disintermediation coincides with a series

of unconventional monetary policies, which start with the introduction of IOER, followed

by three rounds of quantitative easing (QE) as well as the changes in regulation, such as

the introduction of Basel III and widening of the basis of the FDIC’s deposit insurance

assessment fee. The latter increases the balance sheet cost of holding reserves. To identify

the effects of these policies on the Federal funds trades and intermediated trades, we perform

a series of instrumental variable regressions on a panel dataset of bank-level Federal funds

trade volume. The dataset is collected from various sources, such as FFIEC Call Reports,

Form FR-Y9C and SEC 10-Qs and 10-Ks. We find that the unconventional monetary policies

significantly lower the level of intermediated trades on both extensive and intensive margin,

and also impede the allocation of Federal funds from net lenders to net borrowers. These

findings are robust to alternative specifications.

However, according to the standard random matching model, any changes in the inter-

est on excess reserves or balance sheet cost of holding reserves do not affect the level of

intermediation – all the effects are absorbed in the changes of the Federal funds rates. Fur-

thermore, the random matching model predicts that the vast increase of reserves injected

by QEs should have increased the level of intermediation instead. The reason is that, since

matching is costless in Afonso and Lagos (2015b), banks always search for counterparties in

the market, and they always trade to split their reserve holdings equally once they match

with each other. Therefore, the level of trades, along both the extensive and intensive mar-

gins, does not change even though the introduction of IOER or balance sheet cost changes

the marginal value of holding reserves, as long as it is diminishing. It also implies that banks

should trade more reserves when their average holding of reserves increases proportionally,

ceteris paribus. Cost-free search means in the constrained efficient allocation, banks should
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always search and share the reserve holdings equally, coinciding with the equilibrium allo-

cation. We show that these features no longer hold when putting search intensity becomes

costly.

While the disintermediation effect of transaction costs may seem straightforward, the

disintermediation effect of the unconventional monetary policy calls for an explanation. It

is puzzling since it is commonly thought that government sponsored enterprises (GSE) like

Feddie Mae and Federal Home Loan Banks are not entitled to the IOER. It implies that there

should be more Federal funds trades between GSEs and non-GSEs, and intermediated loans

in general, to earn the abitrage of the IOER. Our theory is that unconventional monetary

policy also amplifies the disintermediation effect of transaction costs. To illustrate this, we

build a continuous-time costly search and bargaining model of the over-the-counter unsecured

loan market. The baseline model admits a closed-form solution, which allows for sharp

comparative statics. In this case, the IOER reduces the volume of intermediated loans,

raises the average level of the Fed fund rates but reduces their dispersion. Balance sheet

cost and regulation cost reduce the volume but have ambiguous effects on the level and

dispersion of the Fed fund rates. Also, with costly endogenous search, theoretically there

could be multiple equilibria; in particular, no trading is always an equilibrium. We propose

a refinement that always selects the most “liquid” equilibrium and prove its existence and

uniqueness in the general model.

We further calibrate our theoretical model with the empirical data via simulated method

of moments, and conduct counterfactual analysis to evaluate the magnitudes of unconven-

tional monetary policies and regulations on the disintermediation. We find that the disin-

termediation is mostly driven by IOER and the rising transaction cost, while the effect of

excess reserve balances is small. In particular, in the year of 2018, the share of intermediation

volume in total Federal funds volume doubles if we decrease IOER to its 2006 level (which

is zero), and the share increases by four times if we decrease the estimated transaction costs

to the 2006 level.
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Literature. Our paper relates to several strands of literature. First, starting with Poole

(1968), there has been a series of researches on the Federal funds market in partial equilib-

rium or general equilibrium models. Hamilton (1996) provides a partial equilibrium model

to study the effects of transaction costs on the daily dynamics of the Federal funds rates.

More recently, some studies focus on the monetary policy implementation and passthrough

efficiency in the environment of excess reserves, such as Duffie and Krishnamurthy (2016),

Bech and Keister (2017). In the meantime, other papers discuss the role of interbank mar-

kets and unconventional monetary policies on the aggregate outcome and welfare, such as

Kashyap and Stein (2012), Ennis (2018), Williamson (2019), Bigio and Sannikov (2021) and

Bianchi and Bigio (forthcoming).

Another strand of literature focuses on capturing the over-the-counter (OTC) nature of

the Federal funds markets and its implications. On the one hand, some reserches develop

two-sided matching models to capture the search and matching frictions between lenders

and borrowers, such as Berentsen and Monnet (2008), Bech and Monnet (2016), Afonso

et al. (2019) and Chiu et al. (2020). These models are able to fit a number of aggregate

empirical moments of the interbank markets in the U.S. and Europe and provide fruitful

policy implications. However, the intermediation trades, which are important features of

OTC markets, are missing in those models. On the other hand, people use continuous-time

one-sided matching models to capture the intermediation feature of OTC markets. The

one-sided matching models are pioneered by the seminal works of Afonso and Lagos (2015b)

and Afonso and Lagos (2015a). Our model endogenizes the time-varying search intensity to

study the disintermediation trades. The related papers include Duffie et al. (2005), Lagos

and Rocheteau (2009), Trejos and Wright (2016), Farboodi et al. (2017), Lagos and Zhang

(2019), Üslü (2019), Hugonnier et al. (2020) and Liu (2020).

There have been other papers that use network approach to study the interbank markets.

For example, Bech and Atalay (2010) explores the network topology of the Federal funds

market, and Gofman (2017) builds a network-based model of the interbank lending market
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and quantifies the efficiency-stability trade-offs of regulating large banks. Chang and Zhang

(2018) develops a dynamic model that allows agents to endogenously choose counterpar-

ties and form network structure. They find that some agents specialize in market making

and become the core of the financial network, with the purpose of eliminating information

frictions.

Outline. The remainder of the paper is as follows. Section 2.2 describes the institutional

background and the aggregate empirical facts that motivate our paper. Section 2.3 doc-

uments the empirical evidence on the disintermediation effect of unconventional monetary

policies at the individual bank level. Section 2.4 presents the theoretical framework for our

analysis. Section 2.5 provides a class of models that allows for closed-form solutions and com-

parative statics. Section 2.6 structurally estimates the analytical model and quantitatively

decomposes the effects of unconventional monetary policies on Federal funds intermediation.

The final section, 2.7, concludes the paper.

2.2 The landscape of the Federal funds market

This section introduces the institutional features, the policy and regulatory environment and

the aggregate trade dynamics in the Federal funds market to motivate our estimation and

theoretical model in the following sections. We will focus on the change of the landscape

of this market before and after the Great Recession as the market has changed drastically

since then. To measure the aggregate and composition of the Fed funds trade activity,

we aggregate the data from a set of regulatory filings, including the quarterly Consolidated

Report of Condition and Income for U.S. banks and branches (Call reports), the Consolidated

Financial Statements (Form FR Y-9C) for bank holding companies (BHC) and SEC 10-Ks

and 10-Qs for other eligible entities.
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2.2.1 Institutional background

The Federal funds market is a market for unsecured loans of dollar reserves held at the

Federal Reserve Banks. The market interest rates on these loans are commonly referred

to as the Federal funds rates. Most of the Federal funds transactions are overnight (99%).

Financial institutions (FIs) rely on the Fed funds market for short-term liquidity needs: First,

the Federal funds is not considered as the deposits to the borrower bank under Regulation

D, thus it is useful for borrower banks to satisfy their reserve requirements and payments

needs. Second, the lender FIs can lend excess reserves and earn overnight Fed funds rate.

Regarding the market structure, the Federal funds market is an over-the-counter (OTC)

market without centralized exchange. A borrower bank (Federal funds purchased) and a

lender bank (Federal funds sold) meet and trade bilaterally, and the transfer of funds is

completed through the Fed’s reserve accounts.

The market of Federal Funds has been the epicenter where monetary policies are im-

plemented. Before the Great Recession, the Federal Reserve adjusted the supply of reserve

balances, by the purchase and sale of securities in the open market, so as to keep the Fed

fund rates around the target of monetary policy. Since the Great Recession, the landscape of

the market has changed drastically due to a series of unconventional monetary policies and

regulations. Figure 2.1 plots the timeline of these changes, which start with the introductin

of interest on excess reserves (IOER), followed by three rounds of quantitative easing (QE)

as well as changes in regulation, such as the widening of the basis for FDIC assessment fee

and the introduction of Basel III regulations.

Due to the changes in policy and regulations, the Fed funds market has entered a stage

with excess reserves, and the Federal Reserve relies on two new policy tools to implement its

desired target range for the Federal funds rate: the IOER, which it offers to eligible depository

institutions, is set at the top of the target ranges; and the rate of return at the overnight

reverse repurchase (ON RRP) facility, which is available to an expanded set of counterparties
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Figure 2.1: Timeline of unconventional monetary policy and regulation

IOER

200810

QE1

200811

QE2

201011

Widening of FDIC

assessment base

201104

QE3

201209

Leverage ratio

requirement

201301

Liquidity

coverage ratio

201501

Notes: This figure plots the timeline of unconventional monetary policies and regulations since the Great

Recession. The numbers on the timeline represents the date (year-month) when the policy or regulation is

introduced.

including government-sponsored enterprises (GSEs) and some money market funds, is set at

the bottom of the rage. Figure 2.2 shows the time series of the unconventional monetary

policies. Panel (a) plots the path of IOER, which has been steadily increasing between

2008Q4 and 2018Q4. Panel (b) plots the mean and standard deviation of individual excess

reserve balances in the same period , which has grown drastically since the Great Recession.

Figure 2.2: IOER and Excess Reserves

(a) IOER (b) Excess reserves

Notes: This figure plots the sequences of IOER, the mean and standard deviation of individual excess reserve

balances from 2006Q1 to 2018Q4. Data source: FRED, Call reports, FR Y-9C.
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2.2.2 (Dis)intermediation in the Federal funds market

Due to the over-the-counter structure, the Fed funds trades involve a significant share of

intermediation trading. A group of banks act as intermediaries by borrowing reserves from

the lender banks and lending them to others on the same day. We find that the intermediary

banks are responsible for most of the decline in Fed funds volume. Specifically, by consol-

idating the individual balance sheet data, we decompose the total Fed funds volume into

three groups: intermediary banks, non-intermediary banks and government-sponsored enter-

prises (GSEs). As illustrated in Panel (a) of Figure 2.3, the decline of Fed funds purchased

(borrowing) is entirely driven by intermediary banks, whose volume of borrowing sharply

declined from the peak of $195 billion in 2007Q2 to an average of $22 billion in 2018. At the

same time, the volume of borrowing by other groups stayed stable over time. Panel (b) of

Figure 2.3 suggests that, on the supply side, the depository institutions account for most of

the decline of Fed funds lending. In particular, the lendings by intermediary banks was more

than $60 billion on average before 2008, but decreased sharply to almost zero right after

the Great Recession. The non-intermediary banks accounted for about $50 billion lending

before the Great Recession, and shrank gradually to less than $5 billion over time in 2018.

The decline of borrowing and lending by intermediaries imply the decline of Fed funds

reallocation. We find that this decline occurs on both extensive and intensive margin. As

plotted in Panel (a) of Figure 2.4, a significant share (more than 15%) of Fed funds volume is

traded for intermediating purposes. However, since the financial crisis has declined by more

than two thirds to less than 5%. Moreover, Panel (b) of Figure 2.4 shows that the number of

intermediary banks has also decreased from 600 in 2006 to less than 100 at the end of 2018.

Why did disintermediation happen? Certainly, the Federal funds market has been going

through a transition from the Great Recession, but it is worth noting that the timing of

the disintermediation coincides with the changes in the monetary policies and regulations,

as plotted in Figure 2.1. All these changes closely relate to banks’ incentive to trade Fed
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Figure 2.3: Decomposition of Federal funds volume

(a) Federal funds purchased (b) Federal funds sold

Notes: This figure plots the decomposition of the aggregate Federal funds purchased and sold by groups

from 2006Q1 to 2018Q4. Data source: Call reports, FR Y-9C, SEC 10-K and 10-Q.

funds. For example, the introduction of IOER raises the return of holding reserves, which

lowers banks’ lending incentives and raises their borrowing incentives. The QEs have left

banks flush with excess reserves. As a result, the demand for borrowing reserves to meet

the reserve requirement and payment needs has become rare. The regulation changes The

widening of FDIC assessment base and Basel III regulations increase the balance sheet cost

of holding reserves. For example, FDIC insurance premium is now charged according to

the size of FI’s assets (instead of the size of deposit), which is increasing in the Federal

Funds borrowed. Furthermore, Basel III now imposes a cap on the FI’s leverage ratio and a

floor of the holding of liquid (and usually low-return) asset to cover potential cash outflow,

increasing the regulation cost.

Our empirical facts about the disintermediation coincide with the existing literature. For

example, Keating and Macchiavelli (2017) find that the proportion of intermediated funds

declined sharply after the financial crisis. On the daily level, the domestic banks keep more

than 99% percent of Fed funds borrowed and foreign banks keep more than 80%. These

evidence document the importance of intermediation to the substantial decline of Fed funds
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Figure 2.4: Aggregate Fed funds intermediation

(a) Intermediation volume share (b) Number of intermediary banks

Notes: This figure plots the intermediation volume share and number of intermediary banks. Data source:

Call reports, FR Y-9C.

volume. We will focus on examining banks’ incentive to intermediate and its implications

for the monetary policy implementation.

2.3 Empirical evidence

In this section, we document the empirical relationship of Federal funds intermediation trades

and the unconventional monetary policies. Our focus is to test the following hypotheses using

U.S. bank-level data described in Section 2.3.1.1:

Hypothesis 1 The number of intermediary banks and the individual bank’s volume of

Federal funds intermediation decrease in IOER and the aggregate excess reserves.

Based on the facts shown in Figure 2.4, the first hypothesis tests the causal effect of IOER

and the aggregate excess reserves on the intermediation trading in Federal funds market. We

examine the impact on both extensive margin and intensive margin. In addition to testing

the impact on intermediation trades, we also investigate whether the disintermediation effect
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of IOER and aggregate excess reserves affect the allocation of reserves between the reserve

net lenders and net borrowers.

Hypothesis 2 A higher IOER and aggregate excess reserves lower the net Federal funds

purchased by net borrowers (banks that have net borrowing of Federal funds) and the

net Federal funds lent by net lenders (banks that have net lending of Federal funds).

This hypothesis examines whether borrower banks are less able to find lenders if the

intermediation trades decrease. The following sections describe the data and estimation

results.

2.3.1 Data

2.3.1.1 Bank-level data

The bank-level financial data are collected from various sources. We use the quarterly

Consolidated Report of Condition and Income for U.S. banks and branches (commonly

known as “Call reports”) and Consolidated Fiancial Statemennts (Form FR Y-9C) for Bank

Holding Companies (BHCs).1 The call reports and Form FR Y-9C are quarterly filed with

the Federal Reserve by all U.S. banks and branches, and form FR Y-9C is filed by all U.S.

holding companies with total consolidated assets of $1 billion or more (prior to 2015, this

threshold was $500 million. Since September 2018, this number changes to $3 billion). These

files report the balance sheet data of US banks at the end of each quarter, including the

Federal funds purchased (Fed funds borrowing), Federal funds sold (Fed funds lending) and

other balance sheet characteristics. Given the Fed funds are mostly overnight, the volume

of Fed funds trade reported in these files measures banks’ Fed funds borrowing and lending

on the last business day of each quarter. Our data covers the period going from 2003Q1 to

1Appendix 2.A describes the detailed data source and construction process.
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2018Q4.2 We measure each variable at the consolidated top holder level. Aggregating the

variables to the top holder level not only avoids double counting, but also eliminates the

bilateral trades between subsidiaries of a bank holding company that are not implemented

in the Fed funds market.

For each top holder in each quarter, we construct the following variables: (1) Net volume

of Fed funds purchased normalized by total assets (ffnet assets), i.e.

ffnet assets =
Fed funds purchased− Fed funds sold

total assets
.

It measures a bank’s net borrowing of Fed funds as a share of bank assets. (2) Volume of

Fed funds reallocation normalized by total assets (ffreallo assets), i.e.

ffreallo assets =
Fed funds purchased + Fed funds sold

total assets
− |ffnet assets| .

This variable follows the definition of Fed funds reallocation in Afonso and Lagos (2015b),

which is equal to the Fed funds trade in excess of the net borrowing. (3) Excess reserve

balances before Federal funds trade normalized by total assets before Fed funds trade, i.e.

exres assets =
excess reserve balances before Federal funds trade

total assets
.

The excess reserve balances before Federal funds trade represent a bank’s holdings of Federal

reserves balances in excess of its reserve requirement when it enters the Federal funds market.

It captures individual heterogeneity of trade incentives in the Fed funds market. It is equal

to a bank’s excess reserve balances recorded in the bank balance sheets minus the net Federal

funds purchased (Federal federal funds purchased minus Federal funds sold). Moreover, for

individual controls, we include the following balance-sheet variables: (1) logged value of

total assets (log assets); (2) total loans normalized by total assets (loan assets); (3) total

2We also use the data in 2002Q4 as the lagged values of variables in 2003Q1.
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nonperforming loans normalized by total assets (npl assets); (4) total high-quality liquid

assets normalized by total assets (hqla assets); (5) total equity normalized by total assets

(equi assets); (6) tier-1 leverage ratio (tier1 lev ratio); (7) ROA (roa); (8) dummies of top

holders’ entity types (entity type).

2.3.1.2 Aggregate-level data

We use two sets of aggregate variables. The first set includes Interest Rate on Reserves (ioer),

Primary Credit Rate(dw), quarterly real GDP growth rate (rgdpg), quarterly unemployment

rate (unemp), standard deviation of the Fed’s general treasury account in a quarter. All these

variables are measured at the end of a quarter. The interest rate on excess reserves and

primary credit rate are the main regressors of monetary policy. They represent the outside

return of holding reserves by lender banks and borrower banks at the end of a trading session,

respectively. The other variables are the aggregate controls in regressions.

The second set of aggregate-level variables are obtained from bank-level data. For the

cross section of top holders in each quarter, we construct the moments of excess reserve distri-

bution: (1) aggregate excess reserves normalized by aggregate bank assets (agg exres assets);

(2) standard deviation of excess reserve balances normalized by the mean (sd exres norm =S.D.

of excess reserves/Mean of excess reserves);3 (3) skewness of excess reserve distribution

(sk exres). The aggregate excess reserves agg exres assets is the third main regressor of

monetary policy. It captures the effect of the Fed’s total reserve balances on Fed funds trade.

Meanwhile, we control the standard deviation and skewness to capture the effect of reserve

distribution.

3Using standard deviation of excess reserves normalized by average assets produces similar results.
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2.3.2 Effects on intermediation trade

Our first specification explores the impact of IOER and aggregate reserves on banks’ inter-

mediation trading. Note that in the data sample, only a fraction of banks are intermediaries,

and the measure of individual bank’s intermediation, ffreallo assets, is non-negative. Thus

we study how IOER and aggregate reserves impact both the probability of intermediation

trades (extensive margin) and the volume of intermediation (intensive margin). In particu-

lar, we run probit and tobit regressions on the following specification on the sample of banks

that hold positive total reserves at the Fed account and intermediate Federal funds at least

once in the data sample:

yi,t = fixed effects+ β0exres assetsi,t + β1ioert + β2ioert × exres assetsi,t

+β3agg exres assetst + β4agg exres assetst × exres assetsi,t

+β5dwt + β6dwt × exres assetsi,t + γ · controlsi,t + εi,t, (2.1)

where yi,t = 1 {ffreallo assetsi,t > 0} in probit regression, and yi,t = ffreallo assetsi,t in

tobit regressions. The term fixed effects represents the fixed effects on bank entity type,

Fed district, and the time dummies for 2008 financial crisis and post-crisis periods. By adding

the interaction between the policy variables and individual excess reserve balances, we also

investigate the potential heterogeneous effects of the unconventional monetary policies across

banks.

The probit and tobit estimation assumes exogeneity of the regressors. However, the

Fed funds trade volume could depend on unobserved factors that correlate with the main

regressors. For example, a bank’s Federal funds trade volume and excess reserve balances

could be driven by some common unobserved factors, e.g. sophistication of balance sheet

management. Moreover, a bank’s incentive to trade Federal funds could be driven by some

unobserved aggregate shocks that are correlated with the changes in IOER, primary credit

rate and aggregate excess reserves. Thus we augment the estimation with instrumental-

110



variable probit and tobit regressions to examine the potential endogeneity of excess reserves,

aggregate policies and Federal funds trades. First, the instruments for IOER and primary

credit rate are the cumulative monetary policy shocks (policy news shocks and Federal

funds rate shocks) over past 4 quarters, which are obtained from Nakamura and Steinsson

(2018).4 Second, the instrument for the aggregate excess reserves is the one-period lag of

4-quarter change in aggregate excess reserves to aggregate bank assets ratio. Third, the

instrument for individual excess reserves is one-period lag of individual excess reserves. For

the instruments of interaction terms, we use the interactions between the corresponding

instruments mentioned above.

The results of probit regressions are shown in Table 2.3, where we report three groups of

estmation: column (1) and (2) reports the standard Probit estimation, Column (3) and (4)

report the estimation of a random effects panel probit model, and column (5) and (6) report

the estimation of the instrumental-variable probit model. In all columns, the probability of

intermediation trade decreases in IOER and the aggregate excess reserves. The coefficients

are significant and robust. The primary credit rate also negatively impacts the probability of

intermediation trade, and the coefficient is significant in the random effect estimator and IV

tobit estimator. This implies that the unconventional monetary policies have strong disinter-

mediation effect on the intensive margin. Moreover, by adding the interaction terms, we find

that the impact of IOER and aggregate excess reserves on the probability of intermediation

trade can be heterogeneous across banks, but the signs of the coefficients for the interaction

terms are not consistent and robust across the columns.

The results of tobit regressions are reported in Table 2.4, where we also have three groups

of estimation. The main results of tobit regressions are similar to those of probit regressions.

On average, under a higher value of IOER, aggregate excess reserves and primary credit rate,

banks are less likely to do intermediation tradeS. The coefficients are significantly negative

4The original sample period of the policy shocks end in 2014, and Acosta and Saia (2020) update the
shocks to 2019. We use the later in our estimation.
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and robust across columns. In summary, the estimation results of probit and tobit regressions

imply significantly and consistently negative effect of unconventional monetary policies on

intermediation trade, which reveals a strong disintermediation channel.

2.3.3 Effects on net borrowing of Federal Funds

Our second specification relates the net Fed funds borrowing to a bank’s excess reserve

balances, IOER and aggregate reserve balances. We estimate the following equation on the

sample of banks that hold positive total reserves at the Fed account and trade Federal funds

at least once in the data sample:

ffnet assetsi,t = αi + ηyr(t) + β0exres assetsi,t + β1ioert + β2ioert × exres assetsi,t

+β3agg exres assetst + β4agg exres assetst × exres assetsi,t

+β5dwt + β6dwt × exres assetsi,t + γ · controlsi,t + εi,t, (2.2)

where i represents a bank and t denotes the last business day of a quarter. The parameters

αi and ηyr(t) represent the bank fixed effects and year fixed effects. The control variables

controlsi,t include both the bank-level controls and the aggregate controls mentioned above.

This regression examines how the level of IOR and aggregate excess reserves impact individ-

ual banks’ net Fed funds borrowing. By adding the interaction between the policy variables

and individual excess reserve balances, we also investigate the potential heterogeneous effects

of the monetary policies across banks.

Colums (1) to (3) of Table 2.5 report the results of OLS estimation. Column (1) does

not include the interaction terms, thus estimates the average effect of the monetary policies

on banks’ net Fed funds borrowing. Column (2) reports the estimation of our baseline

specification (2.2), while Column (3) additionally controls the quarter fixed effects. We have

the following findings. First, the coefficient of individual excess reserves, β0, is significantly

negative across all the columns. It implies that banks with more excess reserves borrow
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less Fed funds. Second, the OLS estimation shows significant and robust heterogeneous

effects of monetary policies on net Fed funds borrowing. In particular, the coefficients of the

interaction between IOR and individual excess reserves, β2, and the interaction between the

aggregate excess reserves and individual excess reserves, β4, are both positive. Moreover,

the coefficient of the interaction between primary credit rate and individual excess reserves,

β6, is negative. It means that for banks with sufficiently high reserve balances, their net

borrowing increases in IOR and the aggregate excess reserves, and decreases in primary

credit rate. On the other hand, for banks with sufficiently low reserve balances, their net

borrowing decreases in IOR and aggregate excess reserves, and increases in primary credit

rate. Since banks with high (low) excess reserves are more likely to be net Fed funds lenders

(borrowers), the estimation results imply that a higher IOER and aggregate excess reserves

impede the reallocation of Fed funds from lender banks to borrower banks. On the other

hand, a higher primary credit rate enhances the reallocation of Fed funds.

Column (4) to (6) of Table 2.5 report the results of 2SLS estimation, where the specifi-

cation of each column corresponds to Column (1) to (3). The results are consistent with the

OLS estimation. In Column (4), we find that banks net Fed funds borrowing decreases in

IOER, primary credit rate and aggregate excess reserves on average. In Column (5) and (6),

the coefficients of all interaction terms are significant and consistent with the OLS estima-

tion. Thus our estimation documents robust negative effect of IOER and aggregate excess

reserves as well as positive effect of primary credit rate on Federal funds allocation. This

verifies our second hypothesis.

2.4 A search model of Federal funds market

Overview. In this section we propose a theoretical framework for our analysis. The timing

and preferences of the framework follow Afonso and Lagos (2015b), but we endogenize the
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banks’ search intensity.5 A Federal funds market runs continuously from time 0 to T . A

unit-measure of banks starts the Federal funds market with idiosyncratic level of reserve

balances, k0 ∈ K = [kmin, kmax] ⊂ R, following a cummulative distribution F0. There is also

a numéraire good, where banks can consume and produce linearly at time T + ∆. Why do

banks trade reserve balances? Holding reserve balances kt at t yields a flow payoff u (kt)

continuously from time 0 to T , and also a terminal payoff U (kT ) at time T , which is affected

by (unconventional) monetary policy and reserve requirement, as we will see in the next

section. Thus, banks with a higher maringal value of reserves want to purchase reserves

balances (Federal funds) and settle in numéraire later at time T + ∆.6 However, trading

in the Federal funds market is subject to search frictions. In particular, it takes time for a

bank to find but a random counterparty such that the evolution of reserve balances follows

a jump process:

kt = k0 +
∑
tn≤t

qtn , (2.3)

where tn is the Poisson time of finding the n-th counterparty, from whom the bank purchases

qtn (sells if negative) units of reserves balances. As we will see, the search friction is essential

to generate the dispersion of Federal funds rates, slow trades, and intermediation we observe

in practice.

Search. Time-varying contact rate is an important feature of the Federal funds market.

Before the Great Recession, most of the Federal funds trades happened in the late afternoon,

which suggests that search intensity is higher when t is close to T . Time-varying search

intensity also suggests that Federal funds market could be vulnerable to gridlock, which is

captured by the search externality of the matching function.

In the model, a pair of banks is matched at the Poisson arrival rate m (εt, ε
′
t) at t, where

5We also allow reserve balances being divisible rather than discrete.

6Following the terminology in Call Reports, we use the terms Federal funds purchased (sold) and reserve
balances borrowed (lent) interchangeably.
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εt and ε′t are their search intensities.7 We normalize that ε ∈ [0, 1] with m (0, 0) = λ0,

m (1, 0) = λ1, and m (1, 1) = λ. We assume that the matching function is symmetric,

increasing, supermodular, and additive in counterparty’s search intensity such that

m [ε, αε′ + (1− α) ε′′] = αm (ε, ε′) + (1− α)m (ε, ε′′) . (2.4)

Define the search profile of all k-banks as εt = {εt (k)}k∈K. By additivity, a bank with seach

intensity εt matches some counterparties at the rate m (εt, ε̄t), where ε̄t ≡
∫
εt (k′) dFt (k′)

is the average search intensity of banks at t. It captures the search complementarity effect.

Our leading examples are m (ε, ε′) = λ0 + (λ− λ0) (ε+ ε′) /2 and m (ε, ε′) = λ0 +

(λ− λ0) εε′.8 Some matches are “free”, which arrive at the rate λ0. Both examples cap-

ture the fact that a bank can search for a bank or be found by others. The former assumes

that the likelihoods of finding a bank and being found are independent, each proportional

to the bank’s and the counterparty’s search intensity, respectively. The latter assumes that

the likelihoods of finding a bank and being found are the same, which are proportional to

both the bank’s and the counterparty’s search intensity.

7For readers not familar with the Poisson model, the probabality that a bank exerting a contingent plan
of search intensity {εt}Tt=0 until its next trade will find a counterparty bank within τ units of time is

Pr {t1 ≤ τ} = 1− exp

{
−
∫ τ

0

∫
j∈[0,1]

m
(
εt, ε

j
t

)
djdt

}
.

8The general form of the matching function is

m (ε, ε′) = (λ− 2λ1 + λ0) εε′ + (λ1 − λ0) (ε+ ε′) + λ0.

See Appendix 2.C.1 for derivations.
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Preferences. The individual bank’s problem is given by

max
ε

Eε
{∫ T

0

e−rtu (kt) dt+ e−rTU (kT )−
∑

n=1,2,...

[
e−rtnχ (εtn , qtn) + e−r(T+∆)Rtn

]}
, s.t. (2.3).

(2.5)

The terms in the brackets of (2.5) are the expected discounted payoff flow from holding

reserves, the discounted terminal payoff of holding reserves at time T , the discounted cost

of trading qtn units of Federal funds at search intensity εtn with the n-th counterparty at

tn, and the repayment Rtn in numéraire to settle these trades. The dynamics of reserve

balances (kt) is given by (2.3). The amount of Federal funds traded and its repayment are

determined by Nash bargaining protocol when the bank finds its n-th counterparty at tn.

The bank’s problem is to choose a contingent plan of search intensity (ε) to maximize the

expected discounted payoff (2.5).

The payoff functions, u and U , are positive, continuously differentiable, increasing, con-

cave and at least one of them is strictly concave. The cost function χ (ε, q) is positive,

continuously differentiable in both arguments, convex in q, complementary in ε and q, and

satisfies Inada condition in q. We normalize that χ (0, q) = χ (ε, 0) = 0, and assume symme-

try over q, i.e. χ (ε, q) = χ (ε,−q). Note that Afonso and Lagos (2015b) is the special case

of χ (ε, q) = 0. The cost function captures the fact that it is increasingly costly to trade fast

and large in the Federal funds market. Notice that the cost is incurred when the match and

trade happen. As we will see later, this feature generates a tension between cost shifting

and seach complementarity.

Bargaining. Once a bank meets a counterparty, the terms of trade (qt, Rt) are negotiated

according to the Nash bargaining protocol. Denote Vt (k) as the maximal attainable contin-
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uation value of a bank holding k units of reserve balances at t.9 For this bank, the trade

surplus of purchasing q units of reserve balances with R units of numéraire repayment from

its counterparty at t is

Bt (k, q, R, ε) ≡ Vt (k + q)− e−r(T−t+∆)R− χ (ε, q)− Vt (k) .

By symmetry, dentoe Bt (k′,−q,−R, ε′) as the trade surplus of its counterparty whose re-

serves balance before trade is k′. The terms of trade solve the following Nash bargaining

problem:

max
q,R∈R

k+q,k′−q∈K

Bt (k, q, R, ε)Bt (k′,−q,−R, ε′) . (2.6)

Denote the solution as qt = qt (k, k′, ε, ε′) and Rt = Rt (k, k′, ε, ε′). Thus, for all k ∈ K and

t ∈ [0, T ], the value function is given by

Vt (k) = Eε



∫ min{t+1,T}−t
0

e−rτu (k) dτ + 1t+1>T e
−r(T−t)U (k)

+1t+1≤T e
−r(t+1−t)

∫


Vt+1

[
k + qt+1

[
k, k′, εt+1 , εt+1 (k′)

]]
−χ
[
εt+1 , qt+1

[
k, k′, εt+1 , εt+1 (k′)

]]
−e−r(T+∆−t+1)Rt+1

[
k, k′, εt+1 , εt+1 (k′)

]


×m[εt+1 ,εt+1 (k′)]
m(εt+1 ,ε̄t+1)

dFt+1 (k′)


, (2.7)

9While the terminology is standard, to be precise, the value function is defined as

Vt (k) ≡ ert max
ε

Eεt


∫ T

t

e−rzu (kz) dz + e−rTU (kT )−
∑
tn≥t

[
e−rtnχ (εtn , qtn) + e−r(T+∆)Rtn

] given kt = k.
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where

qt (k, k′, ε, ε′) = arg max
q
{Vt (k + q) + Vt (k′ − q)− χ (ε, q)− χ (ε′, q)} ,

e−r(T+∆−t)Rt (k, k′, ε, ε′) =
1

2

 Vt [k + qt (k, k′, ε, ε′)]− Vt (k)− χ [ε, qt (k, k′, ε, ε′)]

Vt (k′)− Vt [k′ − qt (k, k′, ε, ε′)] + χ [ε′,−qt (k, k′, ε, ε′)]

 ,

and t+1 is the random time of matching the next counterparty, arriving at the rate m (εt, ε̄t) .

The costs of search intensities, χ (ε, q) and χ (ε′, q), are shared in the bargaining; it creates

the cost shifting effect.

Define the Federal funds rate as ρt (k, k′, ε, ε′) ≡ Rt (k, k′, ε, ε′) /qt (k, k′, ε, ε′) − 1. Note

that the bargaining solution is symmetric, i.e.,

qt (k, k′, ε, ε′) = −qt (k′, k, ε, ε′) = −qt (k′, k, ε′, ε) = qt (k′, k, ε′, ε) ,

and ρt (k, k′, ε, ε′) = ρt (k′, k, ε′, ε). Denote the joint surplus as

St (k, k′, ε, ε′) ≡ Vt [k + qt (k, k′, ε, ε′)]− Vt (k)− χ [ε, qt (k, k′, ε, ε′)]

+Vt [k′ − qt (k, k′, ε, ε′)]− Vt (k′)− χ [ε′,−qt (k, k′, ε, ε′)] .

Due to the linear preferences in R, banks split the joint surplus evenly such that

Bt [k, qt (k, k′, ε, ε′) , Rt (k, k′, ε, ε′) , ε] = Bt [k′,−qt (k, k′, ε, ε′) ,−Rt (k, k′, ε, ε′) , ε′]

= 0.5St (k, k′, ε, ε′) .

Given the assumption on the cost function χ, the following lemma characterizes the property

of the bargaining solution.10

10The proofs of all the propositions and lemmas are provided in Appendix 2.C.
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Lemma 2.1 (i). St (k, k′, ε, ε′) and |qt (k, k′, ε, ε′)| are both decreasing in ε and ε′. Moreover,

suppose Vt (k) is weakly concave and twice differentiable, then St (k, k′, ε, ε′) is supermodular

in ε and ε′.

(ii). If Vt (k) is (strictly) concave, then St (k, k, ε, ε′) = 0, and St (k, k′, ε, ε′) is (strictly)

decreasing in k for all k < k′ and (strictly) increasing in k for all k > k′. We have

qt (k, k′, ε, ε′) > 0 and is decreasing in k and increasing in k′.

Value and distribution. Given the search profile of banks and the trade surplus function,

the value function, Vt (k), of (2.7) can be recursively expressed as the solution the following

Hamiltonian-Jacob-Bellman (HJB) equation11

rVt (k) = V̇t (k) + u (k) + max
εt∈[0,1]

∫
1

2
St [k, k′, εt, εt (k′)]m [εt, εt (k′)] dFt (k′) , (2.8)

where VT (k) = U (k). The initial value V0 (k0) equals (2.5).

Given the search profile and the bargaining solution, by counting the inflow and outflow,

the balance distribution satisfies the following Kolmogorov forward equation (KFE)12

Ḟt (kw) =


∫
k>kw

∫
m [εt (k) , εt (k′)] 1 {k + qt (k, k′) ≤ kw} dFt (k′) dFt (k)

−
∫
k≤kw

∫
m [εt (k) , εt (k′)] 1 {k + qt (k, k′) > kw} dFt (k′) dFt (k)

 , (2.9)

given F0 (kw). The intuition of the KFE is as follows. Consider two groups of banks: those

holding not greater than kw units of reserve balances I− (kw) and the rest I+ (kw), so the

measure of I− (kw) at t is Ft (kw). The first line of (2.9) is the inflow rate to I− (kw) post-trade

from I+ (kw) pre-trade; the second line of (2.9) is the outflow rate from I− (kw) pre-trade to

11For readers not familiar with the HJB equation, we derive (2.8) in the online Appendix 2.C.3. The
discretized version of (2.8) without search cost or transaction cost is Proposition 1 of Afonso and Lagos
(2015b).

12For readers not familiar with the KFE, we derive (2.9) in the online Appendix 2.C.3. When k is discrete,
Ft (k) is probability mass function shown in Proposition 2 of Afonso and Lagos (2015b).
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I+ (kw) post-trade.

2.4.1 Equilibria

The terms of trade and choices of search intensity interact with the dynamics of reserve

distribution in the Federal funds market. The feedback mechanism is summarized by the

system of forward-looking value functions, Vt, and backward-looking distribution functions,

Ft. We define a symmetric subgame perfect equilibrium as follows.

Definition 2.1 An equilibrium consists of {Vt (k) , εt (k) , Ft (k) , qt (k, k′) , ρt (k, k′)}k,k′∈K,t∈[0,T ]

such that,

(a) given {εt (k′) , Ft (k′) , qt (k, k′) , ρt (k, k′)}k,k′∈K,t∈[0,T ], the value function Vt (k) solves

the bank’s maximization problem (2.8) with εt = εt (k) at all t;

(b) given {Vt (k)}k∈K,t∈[0,T ], qt (k, k′) and ρt (k, k′) solve the Nash bargaining problem (2.6);

(c) given {εt (k) , qt (k, k′)}k,k′∈K,t∈[0,T ], the distribution function Ft (k) satisfies (2.9).

Multiplicity. Even the equilibrium exists, yet to prove, there are multiple equilibria for,

at least, three reasons. First, due to the dynamic complementarity, it is well-known that

a system of forward-backward differential equations can have multiple solutions.13 Second,

due to the search complementarity (m is supermodular), the higher search intensities put

by other banks the higher marginal propensity to match. Third, due to the cost shifting (S

13For example, consider a simple system of forward-backward ODEs:

ẏ (t) = −x (t) , where y (2π) = 0,

ẋ (t) = y (t) , where x (0) = 0,

which has a continuum of solutions {x (t) = A sin t, y (t) = A cos t}. In macroeconomics, the literature of
equilibrium indeterminacy after the seminar work of Benhabib and Farmer (1994) has illustrated various
possibilities of multiplicity in standard neo-classical growth models consisting of, typically, a system of
forward-looking (the capital accumulation) and backward-looking differential equations (the Euler equation).
Here our economy deals with a more complex system of partial different equations: the state variable is the
distribution of reserves, instead of capital, thus the dimension is infinite, instead of one.
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is supermodular), the higher search cost shared by other banks the lower the marginal cost

of search intensity, as less Federal funds are traded. To see it, using (2.8), the equilibrium

search profile is a fixed point function to the following functional:

Γt (εt) (k) ≡ arg max
ε∈{0,1}

{∫
St [k, k′, ε, εt (k′)]m [ε, εt (k′)] dFt (k′)

}
. (2.10)

Denote the set of fixed points to Γt as Ω (St, Ft) ⊆ [0, 1]K, i.e., εt (k) = Γt (εt) (k) for all

εt ∈ Ω (St, Ft). To proceed we need some notions of lattice theory. Consider two search

profiles ε (k) and ε′ (k). Define a partial order �s such that ε �s ε′ if ε (k) > ε′ (k) for all

k ∈ K. A lattice {L,�s} is complete if for any ε, ε′ ∈ L ⊆ [0, 1]K, we have either ε �′s ε or

ε′ �s ε. Suppose St satisfies the conditions for supermodularity in (ε, ε′) as in Lemma 2.1.

The following proposition provides a sufficiently condition for complete lattice.

Proposition 2.1 Ω (St, Ft) is non-empty. Suppose the cost function χ (ε, q) is separable,

i.e. χ (ε, q) = κ (ε) χ̃ (q). Define θκ (ε) ≡ κ′ (ε) ε/κ (ε), θm (ε) ≡ m12 (ε, ε′) ε/m2 (ε, ε′) and

X (k, k′, ε, ε′) ≡ St (k, k′, ε, ε′) / {(κ (ε) + κ (ε′)) χ̃ [qt (k, k′, ε, ε′)]}.

Given St and Ft,{Ω (St, Ft) ,�s} is a complete lattice if X (k, k′, ε, ε′) ≥ 1 and

θκ (ε) ≤ θm (ε) .

In other words, for any two equilibrium search profiles ε and ε′, they can always be

ranked by Proposition 2.1 such that it is either εt (k) ≥ ε′t (k) for all k, or εt (k) ≤ ε′t (k)

for all k. Define the largest equilibrium profile of Ω (St, Ft) as εt (k) if εt (k) �s ε′t (k) for

all ε′t (k) ∈ Ω (St, Ft). Notice that no-search equilibrium exists even when there is no search

cost (χ = 0), as a result of coordination failure. Although the cardinality of Ω (St, Ft)

is potentially large, the supermodularity of the search game implies a lattice structure to

classifiy the equilibria for analysis. To deal with multiplicity, most of time we will focus on

the following equilibrium refinement.
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Definition 2.2 An equilibrium satisfies the defreezing refinement if there is no other equi-

librium with a strictly higher average search intensity of banks. If Ω (St, Ft) is a complete

lattice, then an equilibrium satisfies the defreezing refinement is also the largest equilibrium

profile of Ω (St, Ft) for all t ∈ [0, T ].

The defreezing refinement addresses the multiplicity due to matching complementarity.

No-search equilibrium is always eliminated by the defreezing refinement if other equilibria

exist. Although the uniqueness of the equilibrium is not guaranteed under the defreezing

refinement due to the forward-backward differential equation system, we show in Section 2.5

that under the defreezing refinement, we are able to obtain a class of models with closed-form

solutions. The closed-form model allows for comparative statics that are consistent with the

empirical evidence.

2.4.2 Efficiency

The equilibrium is not necessarily efficient, even the one that satisfies the defreezing refine-

ment. Consider a social planner that dictates search decision {εpt (k)} and bilateral exchange

of reserve balances {qpt (k, k′)} to maximize the discounted sum of the utility flows of banks

with equal weights, taking as given the search frictions and transaction costs.

Definition 2.3 A constrained efficient allocation consists of {εpt (k) , F p
t (k) , qpt (k, k′)}k,k′∈K,t∈[0,T ]

that solves

W = max


∫ T

0
e−rt

∫
u (k) dF p

t (k) dt+ e−rT
∫
U (k) dF p

T (k)

−
∫ T

0

∫ ∫
e−rtχ [εpt (k) , qpt (k, k′)]m [εpt (k) , εpt (k′)] dF p

t (k′) dF p
t (k) dt

 (2.11)

subject to the law of motion of reserves

Ḟ p
t (kw) =


∫
k>kw

∫
m [εpt (k) , εpt (k′)] 1 {k + qpt (k, k′) ≤ kw} dF p

t (k′) dF p
t (k)

−
∫
k≤kw

∫
m [εpt (k) , εpt (k′)] 1 {k + qpt (k, k′) > kw} dF p

t (k′) dF p
t (k)

 , (2.12)
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where F p
0 (kw) = F0 (kw).

The constrained efficient allocation {εpt (k) , qpt (k, k′)} maximizes the Hamiltonian. De-

note V p
t (k) as the co-state to dF p

t (k), the Hamiltonian is given by

Hp
t ≡

∫
u (k) dF p

t (k)−
∫ ∫

χ [εpt (k) , qpt (k, k′)]m [εpt (k) , εpt (k′)] dF p
t (k′) dF p

t (k)(2.13)

+

∫ ∫
m [εpt (k) , εpt (k′)] {V p

t [k + qpt (k, k′)]− V p
t (k)} dF p

t (k′) dF p
t (k)

+

∫ ∫
ηt (k, k′) [qpt (k, k′)− qpt (k′, k)] dF p

t (k′) dF p
t (k) ,

where ηt (k, k′) is the multiplier to the bilateral trade constraint qpt (k, k′) + qpt (k′, k) = 0.

The evolution of the co-state solves14

rV p
t (k) = V̇ p

t (k) + u (k) (2.14)

+

∫  V p
t [k + qpt (k, k′)] + V p

t [k′ − qpt (k, k′)]− V p
t (k)

−V p
t (k′)− χ [εpt (k) , qpt (k, k′)]− χ [εpt (k′) ,−qpt (k, k′)]


×m [εpt (k) , εpt (k′)] dF p

t (k′) ,

with V p
T (k) = U (k). The optimal allocation {qpt (k, k′)}k,k′∈K satisfies

qpt (k, k′) = arg max
q
{V p

t (k + q) + V p
t (k′ − q)− χ (εpt (k) , q)− χ (εpt (k′) ,−q)}

and the optimal search profile {εpt (k)}k∈K is a fixed point function to

εpt (k) = Γpt (εpt ) (k) ≡ arg max
ε∈[0,1]

{∫
Spt (k, k′, ε, εpt (k′))m (ε, εpt (k′)) dF p

t (k′)

}
,

14We derive (2.14) in the Appendix 2.C.5.
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where

Spt (k, k′, ε, ε′) = max
q

 V p
t (k + q)− V p

t (k)− χ (ε, q)

+V p
t (k′ − q)− V p

t (k′)− χ (ε′,−q)

 .

Note that the equilibrium HJB (2.8) for Vt (k) differs from the co-state HJB (2.14) since

the gains from bilateral trade in the co-state HJB is double of that in the equilibrium HJB.

The following proposition shows that in general the equilibrium allocation is not constrained

optimal – the welfare theorem is violated.

Proposition 2.2 (Inefficiency) Equilibrium is not generically constrained optimal. Equi-

librium is constrained optimal if χ = 0.

Afonso and Lagos (2015b) show that the welfare theorem holds when banks are homoge-

neous (beyond initial balances); Proposition 2.2 shows it is no longer the case when there is

search cost or transaction cost. Üslü (2019) shows that the welfare theorem does not hold

when banks are ex-ante heterogeneous in, for example, payoff functions and contact rates,

because of the composition externality. Proposition 2.2 shows that even banks are ex-ante

homogeneous, the welfare theorem still does not hold when banks can choose their contact

rates or when Federal funds trades are subject to transaction cost.

2.4.3 Walrasian benckmark

To see the role of search intensity, consider the Walrasian benchmark where there is no search

fricton (λ0 =∞) and trades are organized in a competitive market. Banks are free to trade

at any t ∈ [0, T ], taking the competitive Federal funds rates ρwt as given. It will be useful

to express the bank’s problem in term of its value of reserve balances, at ≡ (1 + ρwt ) kt. The

evolution of at is thus given by

dat =
ρ̇wt

1 + ρwt
atdt+ dδt, (2.15)
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where the first term is the appreciation of the reserve value due to the appreciation of Federal

funds rate and the second term, δt, is the value of Federal fund purchased up to t. Notice

that we allow dδt to be infinitesimal or lumpy. At T +∆ the bank will settle the accumulated

Federal funds purchased, which is δT . Similar to (2.5), given the path of competitive Federal

funds rates {ρwt }, the bank problem is given by

max
{δt}

E
{∫ T

0

e−rtu

(
at

1 + ρwt

)
dt+ e−rTU

(
aT

1 + ρwT

)
− e−r(T+∆)δT

}
, s.t. (2.15). (2.16)

Denote δt (a0) as the solution chosen at t by a bank that holds a0 units of reserve value at

t = 0. In the competitive equilibrium, ρwt clears the market clearing such that for all t

0 =

∫
δt [(1 + ρw0 ) k] dF0 (k) . (2.17)

Proposition 2.3 In the competitive equilibrium, we have

(a) ρwt = er∆
{
U ′ (K) +

[
er(T−t) − 1

]
u′(K)
r

}
− 1;

(b) δt (a) = (1 + ρw0 )K − a for all t ∈ [0, T ] .

In the Walrasian benchmark, banks trade instantaneously at t = 0 such that every

bank maintains K units of reserve balances throughtout the horizon. In the competitive

equilibrium, the Federal funds rate is decreasing over time, in order to compensate for the

utility from holding reserve. Also, notice that the Walrasian benchmark is the first-best

allocation.

2.5 A class of closed-form models

This section develops a closed-form model based on the theoretical framework. This model

provides comparative statics that are consistent with our empirical evidence.

125



Preferences, monetary policy and regulation. We assume quadratic payoff functions,

which are given by

u (k) = −a2k
2 + a1k,

U (k) = −A2k
2 + A1k.

The matching function is given by

m (ε, ε′) = (λ− λ0) εε′ + λ0.

The cost function is given by

χ (ε, q) = κεq2.

The parameter κ captures various balance sheet costs of purchasing Federal funds in prac-

tice. For instance, κ captures the regulatory cost of purchasing Federal funds by reducing

the leverage ratio and liquidity coverage ratio, as required by the Basel III regulation. More-

over, Dodd-Frank act mandates FDIC to widen the assessment base of its deposit insurance

premium to bank’s consolidated total assets (previously, the assessment base consisted of

the domestic deposit only). For the reserves lenders (q < 0), selling Federal funds will not

the size of their total assets (substituting the liability of Federal Reserve Banks with the lia-

bility of other banks). For the reserve borrowers (q > 0), purchasing Federal funds increases

the size of their total assets (in term of reserves balances) so they pay additional deposit

insurance premium.

Unconventional monetary policy in practice consists of paying IOER and central bank

liquidity facility like primary dealer credit and, traditionally, discount window. Basel III

regulation also encourages the holdings of HQLA like reserves. To model these, we assume

that there are k+K, k−K ∈ K such that U ′ (k+K) = 1+ iER+γ and U ′ (k−K) = 1+ iDW +γ,

where iER the interest rate on excess reserve and, iDW , where iDW > iER, is the interest
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rate of the liquidity facility, and γ is the regulatory benefit of holding reserve balances. In

practice, k+K is the level of reserves sufficiently excess the reserve requirement to collect the

IOER; k−, where k− < k+, is the level of reserves sufficiently below the reserve requirement

such that the bank is penalized by, for example, the discount window rate. The simplest

differentiable specification capturing the above is given by

A2 ≡
iDW − iER

2K (k+ − k−)
, A1 ≡ 1 +

k+i
DW − k−iER

k+ − k−
+ γ.

Under the above specification, we first guess (and verify later) that the value function

admits a closed-form solution, which is quadratic in k but with time-varying coefficients.

Bargaining solution. Given a quadratic value function, the bargaining solution is given

by

qt (k, k′, ε, ε′) =

1−
[
1− V ′′t (k) + V ′′t (k′)

2κ (ε+ ε′)

]
︸ ︷︷ ︸

precaution-speed trade-off

−1


k′ − k

2︸ ︷︷ ︸
efficient bilateral trade

, (2.18)

1 + ρt (k, k′, ε, ε′) = er(T+∆−t)︸ ︷︷ ︸
time cost

 V ′t (k) + V ′t (k′)

2︸ ︷︷ ︸
sharing marginal valuation

+ κ
ε′ − ε

2
qt (k, k′, ε, ε′)︸ ︷︷ ︸

speed premium (discount)

 .(2.19)

In Afonso and Lagos (2015b), the meeting banks exchange the efficient trade size k′−k
2

and leave with the same post-trade reserve balances. Moreover, due to the equal bargaining

power, they trade at the price equal to the average of their marginal valuations of reserves.

However, in the existence of transaction cost and endogenous search intensity, the bilateral

trade size is less than the efficient level. The trade size is decreasing in κ and the meeting

banks’ search intensity ε and ε′, since a higher κ, ε and ε′ imply higher marginal cost of

transaction. The effect of search intensity on trade size captures the precaution-speed trade-
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off. With a higher search intensity, banks are able to find counterparties faster and also more

costly. Thus they respond by covering orders with smaller size in each transaction.

At the same time, the endogenous search intensity also induces a speed premium or

discount of the bilateral Fed funds rate, which is similar to Üslü (2019). The premium

is proportional to the trade size and the difference in the search intensities between the

counterparties. In the meetings with k′ > k and ε′ > ε, or k′ < k and ε′ < ε, the seller

bank searches faster than the buyer bank. This generates a positive speed externality for

the buyer while the seller pays a higher cost. The Nash bargaining creates a cost shifting

from seller to buyer and the bilateral Fed funds rate is charged at a premium. On the other

hand, in the meetings with k′ > k and ε′ < ε, or k′ < k and ε′ > ε, the buyer bank searches

faster than the seller bank, creating a speed discount to the bilateral Federal funds rate.

Search intensity. Given a quadratic value function, the equilibrium search intensity is

the fixed point of

Γt (εt) (k) ≡ arg max
ε∈[0,1]


∫ [

k′ − k
2

V ′′t (k)

]2
m (ε, εt (k′))

κ [ε+ εt (k′)]︸ ︷︷ ︸
search efficiency

[
1− V ′′t (k) + V ′′t (k′)

2κ [ε+ εt (k′)]

]
︸ ︷︷ ︸

precaution-speed trade-off

−1

dFt (k′)

 ,

(2.20)

Using Proposition 2.1, {Ω (St, Ft) ,�s} is a complete lattice since

X (k, k′, ε, ε′) = 1− V ′′t (k) + V ′′t (k′)

2κ (ε+ ε′)
≥ 1,

and

θκ (ε) = θm (ε) = 1.

Thus, the equilibrium search profile can be ranked.

Proposition 2.4 (Multiplicity) εt (k) = 0 ∀k is always an equilibrium search profile. Also,
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given Vt and Ft, the number of equilibrium search profiles at t, i.e., |Ω (St, Ft)|, is greater

than or equal to 1. When |Ω (St, Ft)| > 1, εt (k) = 1 ∀k is the largest equilibrium search

profiles.

We refer the smallest equilibrium search profile εt (k) = 0 as the frozen equilibrium.

Similarly, we refer the largest equilibrium search profile, εt (k) = 1, if exists, as the most

liquid equilibrium.

Verification. The following proposition verifies that the value function must be quadratic.

Proposition 2.5 (Closed form) The value function of the largest equilibrium search profle

admits a unique specification Vt (k) = −Htk
2 + Etk +Dt, where

Ḣt = rHt − a2 +
1

4

H2
t

κεt +Ht

[
(λ− λ0) ε2

t + λ0

]
, where HT = A2; (2.21)

Ėt = rEt − a1 +
K

2

H2
t

κεt +Ht

[
(λ− λ0) ε2

t + λ0

]
, where ET = A1; (2.22)

Ḋt = rDt −
1

4

H2
t

κεt +Ht

[
(λ− λ0) ε2

t + λ0

] ∫
k′2dFt (k′) , where DT = 0. (2.23)

The largest equilibrium search profile is εt (k) = εt ∈ {0, 1}. The Federal funds purchased

qt (k, k′, ε, ε′) and the Federal funds rate ρt (k, k′, ε, ε′) are given by

qt (k, k′, ε, ε′) =
Ht (k′ − k)

κ (ε+ ε′) + 2Ht

, (2.24)

1 + ρt (k, k′, ε, ε′) = er(T+∆−t)
[
Et −Ht (k + k′)− κ (ε− ε′)

2
qt (k, k′, ε, ε′)

]
. (2.25)

2.5.1 The most liquid equilibrium

In the rest of this section, we focus on the largest equilibrium, which is referred as the most

liquid equilibrium.
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Proposition 2.6 Define

η ≡ κ

[
λ

2 (λ− λ0)
− 1

]
.

The equilibrium search profile in the most active equilibrium is given by

εt (k) =

 1, if V ′′t (k) ≤ −2η;

0, otherwise.
(2.26)

Given Proposition 2.6, the following lemma solves the path of equilibrium search profile

in the most liquid equilibrium.

Lemma 2.2 Define

µ1 ≡
1

2r + λ
2

{
− (κr − a2)−

[
(κr − a2)2 + a2κ (4r + λ)

]0.5}
,

µ2 ≡
1

2r + λ
2

{
− (κr − a2) +

[
(κr − a2)2 + a2κ (4r + λ)

]0.5}
,

τ1 (H;A, u) ≡ u−
(κ+ µ1) log

(
A−µ1
H−µ1

)
− (κ+ µ2) log

(
A−µ2
H−µ2

)
(
r + λ

4

)
(µ1 − µ2)

,

J (t;A, u) ≡ a2

r + λ0
4

+

(
A− a2

r + λ0
4

)
e−(r+λ0

4 )(u−t),

τ2 (H;A, u) ≡ u+
1

r + λ0
4

log

1− H − A
a2

r+
λ0
4

− A

 .

(a). Suppose A2 ≥ η.

(a-i). If a2 <
(
r − λ

4
+ λ0

2

)
η and τ1 (η;A2, T ) > 0, then we have

εt =

 1, if t ≥ τ1 (η;A2, T ) ;

0, otherwise.
(2.27)
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Ht =

 τ−1
1 (t;A2, T ) , if t ≥ τ1 (η;A2, T ) ;

J [t; η, τ1 (η;A2, T )] , otherwise.
(2.28)

(a-ii). Otherwise, we have εt = 1 for all t ∈ [0, T ] and Ht = τ−1
1 (t;A2, T ).

(b). Suppose A2 < η.

(b-i). If a2 >
(
r + λ0

4

)
η and τ2 (η;A2, T ) > 0, then we have

εt =

 0, if t > τ2 (η;A2, T ) ;

1, otherwise.
(2.29)

Ht =

 J (t;A2, T ) , if t ≥ τ2 (η;A2, T ) ;

τ−1
1 (t; η, τ2 (η;A2, T )) , otherwise.

(2.30)

(b-ii). Otherwise, we have εt = 0 for all t ∈ [0, T ] and Ht = J (t;A2, T ).

The above lemma shows that the path of equilibrium search intensity depends on the

boundary valueA2, which is a function of the unconventional monetary policies
{
iER, iDW , K

}
.

The Federal funds market is not frozen (εt = 1) when A2 is sufficiently large.

Having solved the time path of Ht, we are able to characterize the path of equilibrium

reserve distribution as in the following lemma.

Lemma 2.3 Given Ht, the reserve distribution under the largest equilibrium search profiles

solves the following PDE:

Ḟt (k) = m (εt, εt)

[∫
Ft

[
2

(
1 +

κεt
Ht

)
k −

(
1 +

2κεt
Ht

)
k′
]
dFt (k′)− Ft (k)

]
, (2.31)

given the initial condition F0 (k). Denote the n-th moment of the reserve distribution at time
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t as Mn,t ≡
∫
kndFt (k). The moment function is given by the following ODE:

Ṁn,t = m (εt, εt)

[
n∑
i=0

Ci
n

(Ht)
n−i (Ht + 2κεt)

i

2n (Ht + κεt)
n Mn−i,tMi,t −Mn,t

]
, (2.32)

with M0,t = 1, M1,t = K and

M2,t = K2 +
(
M2,0 −K2

)
exp

[
−
∫ t

0

m (εz, εz)
Hz (Hz + 2κεz)

2 (Hz + κεz)
2 dz

]
. (2.33)

Thanks to Fourier transform, the model allows for an analytical expression for the paths of

moments of the reserve distribution. In particular, equation (2.33) implies that the variance

of the reserve distribution converges to zero at the speed of m (εt, εt)
Ht(Ht+2κεt)

2(Ht+κεt)
2 , which is

endogenously determined. In particular, a higher Ht implies a faster speed of convergence.

2.5.2 Positive implications on liquidity

The closed-form solution allows us to obtain a set of measures on liquidity in analytical form.

We list these measures in this section for possible quantitative analysis. The derivations of

all the measures are provided in the Appendix .

Price impact. The price impact of a trade measures how much the Federal fund rate

changes in response to a given Federal fund purchased. The higher the price impact, the

more expensive to borrow reserve balances, reflecting lower liquidity. In the Walrasian

benchmark, the price impact is always zero. Substituting the equilibrium search intensity in

our model, the Federal fund rate can be log-linearized as

ρt (k, q) ∼= r (T + ∆− t)︸ ︷︷ ︸
time effect

+ log V ′t (k)︸ ︷︷ ︸
bank fixed effect

− θV,t (k)

1− ωt︸ ︷︷ ︸
price impact

q

k
, (2.34)
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where θV,t (k) is the elasticity of value function and ωt is the equilibrium precaution-speed

trade-off:

θV,t (k) ≡ −V
′′
t (k) k

V ′t (k)
,

ωt ≡
(

1− V̄ ′′t
κεt

)−1

.

The price impact depends on the ratio between the elasticity of value function and the

precaution-speed trade-off.

Return reversal. If the Federal funds market is liquid, the price impact is transistory and

the Federal fund rate will swiftly reverse to the mean. The return reversal measures how

swift the Federal fund rate stablizes disturbances. In the Walrasian benchmark, the return

reversal is always infinity. In our model, the dynamics of the Federal fund rate is given by

d

dt
[ρt (k, k′)− %t] = −

[
a2

Ht

− 1

4

Ht

κεt +Ht

[
(λ− λ0) ε2

t + λ0

]]
︸ ︷︷ ︸

return reversal

[ρt (k, q)− %t] ,

where %t is the average Federal funds rate defined by %t ≡
∫ ∫

ρt (k, k′) dFt (k′) dFt (k). Note

that the value of V ′′t (k) and the search intensity both control the speed of return reversal.

Price dispersion. The law of one price tends to apply when the Federal fund market

is extremely liquid. The price dispersion measures the prevalence of arbitrage opportunity

arise of the search friction. In the Walrasian benchmark, the price dispersion is always zero.

In our model, the price dispersion is given by

σρ,t
σk,t︸︷︷︸

price dispersion

=
√

2er(T+∆−t)Ht,
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where σρ,t is the standard deviation of Federal fund rate and σk,t is the standard deviation

of reserve balances. Since the Federal fund rates are more dispersed when banks hold more

dispersed reserve balances, we normalize the price dispersion with the standard deviation of

reserve balances.

Intermediation markup. Recall that banks intermediate by purchasing Federal funds to

sell. Intermediation is not risk-free as the bank exposes itself to the risk of selling Federal

funds at a lower price than the purchasing price. The rate spread is the between the expected

Federal fund rate of the selling leg and the realized Federal fund rate of the purchasing leg:

∆ρ,t (k, q) ≡
∫
ρt (k + q, k′) dFt (k′)− ρt (k, q) .

The intermediation markup measures the change in the rate spread in response to the size

of the intermediation trade. In our model, the intermediation markup is given by

∂∆ρ,t (k, q)

∂q︸ ︷︷ ︸
intermediation markup

= er(T+∆−t) (2κεt +Ht) .

Utilization rate of trade opportunities. The total trade opportunities in this economy

is

TOt =

∫
k

∫
k′≥k

k′ − k
2

dFt (k′) dFt (k) .

The utilitzation rate of trade opportunities measure how fast the trade opportunities are

realized. In Afonso and Lagos (2012), the utilization rate is the exogeneous matching rate.

In our model, the utilization rate is

URt =

∫
k

∫
k′≥km (εt, εt) qt (k, k′, εt, εt) dFt (k′) dFt (k)

TOt

=
Ht [(λ− λ0) ε2

t + λ0]

κεt +Ht

.
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Peak of trades. According to Proposition 2.5, the search decision is summarized by

whether or not the condition Ht ≥ η is satisfied.

Extensive margins. The measure of intermediating banks and the amount of intermedi-

ated reserves are characterized by ODEs. Denote

P b
t (k) ≡ Pr {qz (kz, k

′
z, εz, εz) > 0|kt = k, z ≥ t} ,

P s
t (k) ≡ Pr {qz (kz, k

′
z, εz, εz) < 0|kt = k, z ≥ t} ,

P tr
t (k) ≡ Pr {qz (kz, k

′
z, εz, εz) 6= 0|kt = k, z ≥ t} ,

P int
t (k) ≡ Pr {qz (kz, k

′
z, εz, εz) > 0, qz′ (kz′ , k

′
z′ , εz′ , εz′) < 0|kt = k, z ≥ t, z′ ≥ t} ,

where P b
t (k) is the probability that a k-bank will borrow reserves during the remaining time

[t, T ], and similiarly P s
t (k) is the corresponding probability of lending reserves, P tr

t (k) the

corresponding probability of trading reserves, and P int
t (k) the corresponding probability of

intermediating reserves. By the law of large number, P b ≡
∫
P b

0 (k) dF (k) is the measure

of banks that borrow in the Federal funds market. Similarly, P s ≡
∫
P s

0 (k) dF (k) is the

measure of lending banks, P tr ≡
∫
P tr

0 (k) dF (k) is the measure of trading banks, and

P int ≡
∫
P int

0 (k) dF (k) is the measure of intermediating banks. By definition we have

P int = P b + P s − P tr.

The laws of motion for the measures of trading banks, lending banks, borrowing banks,
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and intermediating banks are given by

0 = Ṗ tr
t (k) +mt

[
1− P tr

t (k)
]
,

0 = Ṗ b
t (k) +mt [1− Ft (k)]

[
1− P b

t (k)
]

+mt

∫
k′≤k

[
P b
t [k + qt (k, k′)]− P b

t (k)
]
dFt (k′) ,

0 = Ṗ s
t (k) +mtFt (k) [1− P s

t (k)] +mt

∫
k′≥k

[P s
t [k + qt (k, k′)]− P s

t (k)] dFt (k′) ,

0 = Ṗ int
t (k) +mt

∫
k′≤k

[
P b
t [k + qt (k, k′)]− P int

t (k)
]
dFt (k′)

+mt

∫
k′≥k

[
P s
t [k + qt (k, k′)]− P int

t (k)
]
dFt (k′) ,

where the boundary condition is given by P tr
T (k) = P b

T (k) = P s
T (k) = 0. Note that only

P tr
t (k) has a closed-form solution:

P tr
t (k) = 1− exp

[
−
∫ T

t

m (εz, εz) dz

]
. (2.35)

Intensive margins. We define two measures of intensive margins for trade. The first

measure is the cumulated amount of absolute trade volume from time t to T for a bank with

k units of reserve balances at time t:

Qt (k) ≡ E
∑
ti∈[t,T ]

|qti (kti , k
′)| s.t. kt = k. (2.36)

The individual absolute trades follows

Q̇t (k) = −m (εt, εt)

[∫
k′
|qt (k, k′)| dFt (k′) +

∫
k′
Qt (k + qt (k, k′)) dFt (k′)−Qt (k)

]
. (2.37)

By summing up Qt (k) we can obtain the aggregate volume of absolute trades

Qt ≡
∫
Qt (k) dFt (k) .
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The aggregate absolute trades follows the following ODE:

Q̇t = −m (εt, εt)
Ht

κεt +Ht

∫ ∫
|k′ − k|

2
dFt (k′) dFt (k) .

Thus the total trade volume is

Q =

∫ T

0

m (εt, εt)Ht

2 (κεt +Ht)

(∫ ∫
|k′ − k| dFt (k′) dFt (k)

)
dt.

The second measure is the net trade volume, i.e. the net Federal funds purchased. We

define the expected amount of net trades from time t to T of a bank holding k units of

reserve balances at time t as

Lt (k) ≡ E
∑
ti∈[t,T ]

qti (kti , k
′) s.t. kt = k.

The aggregate absolute net trade is defined as

L ≡
∫
|L0 (k)| dF0 (k) .

Note that the individual net trade admits a closed-form solution:

Lt (k) =

{
1− exp

[
−
∫ T

t

m (εz, εz)Hz

2 (κεz +Hz)
dz

]}
(K − k) . (2.38)

We can think of Lt (k) as the net trade volume of bank k who contacts bank K at intensity

m (εt, εt). Thanks to the closed-form solution, we also derive the comparative statics of Lt (k)

on policy parameters in Section 2.5.3. Given the individual net trade volume, the aggregate

volume of the absolute net trade is

L ≡
∫
|L0 (k)| dF0 (k) =

{
1− exp

[
−
∫ T

0

m (εt, εt)Ht

2 (κεt +Ht)
dt

]}∫
|K − k| dF0 (k) .
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Given the aggregate volume of absolute trade and net trade, we define the level of interme-

diation and fraction of intermediation as

Int = Q− L,

IntR =
Q− L
Q

.

Federal fund rate. The average Federal fund rate at τ is given by

1 + %t =

∫ ∫
[1 + ρt (k, k′)] dFt (k′) dFt (k) = er(T+∆−t) [Et − 2HtK]

= er∆
[
1 + γ + iER +

k+ − 1

k+ − k−
∆i

]
− 2a2K − a1

r

[
er(T+∆−t) − er∆

]
,

where ∆i = iDW − iER is the policy rate spread. The range of the Federal funds rates is

given by 1 + ρt (k, k′) ∈
[
1 + ρmin

t , 1 + ρmax
t

]
, where

1 + ρmin
t = er(T+∆−t) [Et − 2Htkmax] ,

1 + ρmax
t = er(T+∆−t) [Et − 2Htkmin] .

2.5.3 Comparative statics

This section provides the comparative statics of the closed-form solutions to policy and

technology parameters. We focus on the comparative statics where T is sufficiently small,

corresponding to the fact that the Federal funds market is usually active during the last 2.5

hrs of a trading session. Based on the characterization of equilibrium paths in Lemma 2.2,

we discuss the comparative statics of two cases. The first case is that banks search at the

beginning of the trading session, and the second case is that banks search when the time gets

close to the end of trading session. The following Proposition summarizes the comparative

statics for the first case.
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Proposition 2.7 Suppose A2 < η, a2 >
(
r + λ0

4

)
η, τ2 (η;A2, T ) > 0, and T is sufficiently

small. The comparative statics of the length of search, τ2 (η;A2, T ), the amount of Federal

funds purchased, qt (k, k′), net Federal funds purchase, L0 (k) and its derivative L′0 (k), and

the bilateral Federal fund rates, ρt (k, k′), with respect to iER, iDW , κ, λ0, λ and K, are given

by the following table

τ2 |qt| L0 (k) L′0 (k) ρt (k, k′)

iER − − sgn(K − k) − + (−) for k + k′ > (<) K̂t (k−)

iDW + + sgn(k −K) + + (−) for k + k′ < (>) K̂t (k+)

K − − + (−) for small (large) k − + (−) for k + k′ > (<) K̂t (ζt)

κ − − sgn(K − k) − + (−) for k + k′ < (>) 2K

λ0 − − sgn(K − k) − + (−) for k + k′ > (<) 2K

λ + + sgn(k −K) + + (−) for k + k′ < (>) 2K

where

ζt =

∫ T

t

er(T−s)
[(λ− λ0) ε2

s + λ0]H2
s

4A2 (κεs +Hs)
ds,

K̂t (kw) = 2K ×
kw − 1 + exp

[
−λ0

4

(
T − t− (τ2 (η;A2, T )− t)+)]−M (

(τ2 (η;A2, T )− t)+) exp (rT )

exp
[
−λ0

4

(
T − t− (τ2 (η;A2, T )− t)+)]−M (

(τ2 (η;A2, T )− t)+) exp (rT )
,

and

M (u) =
∂τ2 (η;A2, T )

∂A2

∫ τ2(η;A2,T )

τ2(η;A2,T )−u
e−rs

{(
r +

λ

4

)[
1− (κ+ µ1) (κ+ µ2)

(κ+Hs)
2

]}(
−Ḣs

)
ds,

and (x)+ ≡ max {x, 0}.

The following proposition summarizes the comparative statics for the second case.

Proposition 2.8 Suppose A2 ≥ η, a2 <
(
r − λ

4
+ λ0

2

)
η, τ1 (η;A2, T ) > 0 and λ, λ0/λ and

T are sufficiently small. The comparative statics of the length of search, T − τ1 (η;A2, T ),
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the amount of Federal funds purchased, qt (k, k′), net Federal funds purchase, L0 (k) and its

derivative L′0 (k), and the Federal fund rates, ρt (k, k′), with respect to iER, iDW , κ, λ0, λ

and K, are given by the following table

T − τ1 |qt| L0 (k) L′0 (k) ρt (k, k′)

iER − − sgn(k −K) + + (−) for k + k′ > (<) K̃t (k−)

iDW + + sgn(K − k) − + (−) for k + k′ < (>) K̃t (k+)

K − − + (−) for large (small) k + + (−) for k + k′ > (<) K̃t (ζt)

κ − − sgn(k −K) + + (−) for k + k′ < (>) 2K

λ0 − 0 sgn(K − k) − + (−) for k + k′ > (<) 2K

λ + − sgn(K − k) − + (−) for k + k′ > (<) 2K

where

ζt =

∫ T

t

er(T−s)
[(λ− λ0) ε2

s + λ0]H2
s

4A2 (κεs +Hs)
ds,

K̃t (kw) = 2K ·
kw − M̃

(
T − τ1 − (t− τ1)+) exp (rT )− 1 {t < τ1} er(T−τ1) (λ−λ0)η

4
∂τ1
∂A2

1− M̃
(
T − τ1 − (t− τ1)+) exp (rT )− 1 {t < τ1} er(T−τ1) (λ−λ0)η

4
∂τ1
∂A2

,

and

M̃ (u) =
λ

4

∂τ1 (η;A2, T )

∂A2

∫ T

T−u
e−rs

Hs (2κ+Hs)

(κ+Hs)
2

(
−Ḣs

)
ds,

and (x)+ ≡ max {x, 0}.

The above propositions show that the comparative statics may differ in different cases

and depend on parameters. In particular, the comparative statics on the length of search are

consistent for the two cases. The length of search decreases in IOER and aggregate excess

reserves, implying the disintermediation effect on the extensive margin. However, there is a

trade-off at the intensive margin. The bilateral trade size when the search intensity is one is

always smaller than the trade size when the search intensity is zero. Thus a shorter length of

search does not necessarily imply a lower volume of transaction. The disintermediation effect

on the intensive margin occurs only if the reduction in trade size when the search intensity
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is one dominates. This is the case in Proposition 2.8. Note that in this case, banks’ search

intensity is one when the time is close to the end of the market. This is consistent with

the empirical observation that the daily Federal funds market is usually active during 4pm

to 6:30pm. Moreover, Proposition 2.8 also produces the comparative statics of net Federal

funds purchase that are consistent with the empirical evidence.

2.5.4 Constrained efficiency

In this section we discuss the constrained efficiency of the closed-form model. The following

proposition characterizes the necessary conditions for the planner’s problem.

Proposition 2.9 A solution to the planner’s problem is a path for the distribution balances,

F p
t (k), a path for the continuum of co-states associated with the law of motion for the dis-

tribution of balances, Vp
t = {V p

t (k)}k∈K, a path for the individual search intensity profile

{εpt (k)}k∈K, and a path for the bilateral reallocation volume, {qpt (k, k′)}k,k′∈K. The necessary

conditions for optimality are

rV p
t (k) (2.39)

= V̇ p
t (k) + u (k)

+ max
ε∈[0,1]

∫
k′

max
q∈R

k+q,k′−q∈K

 V p
t (k + q)− V p

t (k)− χ (ε, q)

+V p
t (k′ − q)− V p

t (k)− χ (εpt (k′) ,−q)

m (ε, εpt (k′)) dF p
t (k′)

for all (k, t) ∈ K× [0, T ], with

V p
T (k) = U (k) for all k ∈ K, (2.40)
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with the path for F p
t (k) given by

Ḟ p
t (kw) =


∫
k>kw

∫
m [εpt (k) , εpt (k′)] 1 {k + qpt (k, k′) ≤ kw} dF p

t (k′) dF p
t (k)

−
∫
k≤kw

∫
m [εpt (k) , εpt (k′)] 1 {k + qpt (k, k′) > kw} dF p

t (k′) dF p
t (k)

 , (2.41)

where F p
0 (kw) = F0 (kw).

Note that the maximization problem in the planner’s HJB (2.39) is different from the

counterpart in the equilibrium, creating the inefficiency of the equilibrium allocation. The

difference is due to a composition externality typical of ex post bargaining environments,

as discussed by Afonso and Lagos (2015b). An individual bank internalizes only half the

surpluses that her trades create. As a result, she does not internalize fully the social benefit

as well as social cost that arise from the fact that having her in the current reserve holding

k increases the meeting intensity of all other banks with a bank of reserve k. Different from

Afonso and Lagos (2015b), the post trading reserve holdings of a bank k and a bank k′ is

a weighted average of k and k′ due to the endogenous transaction costs, and the weight is

dependent on the composition externality.

Following the method we use in the equilibrium analysis, we guess and verify that

V p
t (k) = −Hp

t k
2 + Ep

t k +Dp
t . (2.42)

If the optimal reallocation rule qpt (k, k′) is non-zero, it satisfies

qpt (k, k′) =
Hp
t (k′ − k)

2Hp
t + κ [εpt (k) + εpt (k′)]

. (2.43)

The bilateral surplus is

Spt (k, k′) =
[Hp

t (k′ − k)]2

2Hp
t + κ [εpt (k) + εpt (k′)]

. (2.44)
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The optimal search intensity satisfies

Γpt (εpt ) (k) ≡ arg max
ε∈[0,1]

∫
k′
Spt (k, k′, ε, εpt (k′))m (ε, εpt (k′)) dF p

t (k′) (2.45)

Therefore the HJB (2.39) simplifies to

rV p
t (k) = V̇ p

t (k) + u (k) +
(Hp

t )2

2

(λ− λ0) (ε̄pt )
2 + λ0

κε̄pt +Hp
t

∫
k′

(k − k′)2
dF p

t (k′) . (2.46)

Matching coefficients yields

Ḣp
t = rHp

t − a2 +
(Hp

t )2

2

(λ− λ0) (ε̄pt )
2 + λ0

κε̄pt +Hp
t

, with Hp
T = A2. (2.47)

Ėp
t = rEp

t − a1 +K (Hp
t )2 (λ− λ0) (ε̄pt )

2 + λ0

κε̄pt +Hp
t

, with Ep
T = A1. (2.48)

Ḋp
t = rDp

t −
(Hp

t )2

2

(λ− λ0) (ε̄pt )
2 + λ0

κε̄pt +Hp
t

∫
k′

(k′)
2
dF p

t (k′) , with Dp
T = 0. (2.49)

Note that the initial-value problem (2.47) of Hp
t has the same functional form as that of Ht,

except that the parameters in the former are all doubled compared to the latter. Therefore,

Lemma 1 and 2 also apply to Hp
t , and we can get the property of time path of reallocation

that is similar to Proposition 8. In particular, we define

ηp = κ

[
λ

2 (λ− λ0)
− 1

]
= η.

This implies that the switching point of the time path of reallocation has the same cutoff

value of H, but the cutoff time τ can be different since the “search intensity” is higher.
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Lemma 2.4 Define

µp1 ≡
1

2r + λ

{
− (κr − a2)−

[
(κr − a2)2 + a2κ (4r + 2λ)

]0.5}
,

µp2 ≡
1

2r + λ

{
− (κr − a2) +

[
(κr − a2)2 + a2κ (4r + 2λ)

]0.5}
,

τ p1 (H;A, u) ≡ u−
(κ+ µp1) log

(
A−µp1
H−µp1

)
− (κ+ µp2) log

(
A−µp2
H−µp2

)
(
r + λ

2

)
(µp1 − µ

p
2)

,

Jp (t;A, u) ≡ a2

r + λ0
2

+

(
A− a2

r + λ0
2

)
e−(r+λ0

2 )(u−t),

τ p2 (H;A, u) ≡ u+
1

r + λ0
2

log

1− H − A
a2

r+
λ0
2

− A

 .

(a) Suppose A2 ≥ ηp.

(a-i). If a2 <
(
r − λ

2
+ λ0

)
η and τ p1 (ηp;A2, T ) > 0, then we have

εpt =

 1, if t ≥ τ p1 (η;A2, T ) ;

0, otherwise.
(2.50)

Hp
t =

 (τ p1 )−1 (t;A2, T ) , if t ≥ τ p1 (η;A2, T ) ;

Jp [t; η, τ p1 (η;A2, T )] , otherwise.
(2.51)

(a-ii). Otherwise, we have εpt = 1 for all t ∈ [0, T ] and Ht = (τ p1 )−1 (t;A2, T ).

(b). Suppose A2 < ηp.

(b-i). If a2 >
(
r + λ0

2

)
η and τ p2 (ηp;A, T ) > 0, then we have

εpt =

 0, if t > τ p2 (η;A, T ) ;

1, otherwise.
(2.52)
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Hp
t =

 Jp (t;A2, T ) , if t ≥ τ p2 (η;A, T ) ;

(τ p1 )−1 (t; η, τ p2 (η;A, T )) , otherwise.
(2.53)

(b-ii). Otherwise, we have εpt = 0 for all t ∈ [0, T ] and Ht = Jp (t;A2, T ).

This proposition implies that during the trading session, part of inefficiency can come

from extensive margin, i.e. the timing and time length of reallocation, and the rest can

com from intensive margin, i.e. the size of reserve reallocation. The following proposition

characterizes this result for both cases in the above proposition.

Proposition 2.10 For case (a-i) and (b-i) in Lemma 2.4, there are both inefficiencies on

extensive and intensive margin. The active reallocation time length is shorter than equilib-

rium solution, and the reallocation size is smaller in the constrained efficiency solution.

For case (a-ii) and (b-ii) in Lemma 2.4, there is no efficiency loss on extensive margin,

but the reallocation size in a meeting is smaller in the constrained efficinecy solution.

Although the matching function implies complementarity between banks’ search, banks

are not supposed to under-search due to the positive externality. Instead, banks are actually

trading too much, in terms of extensive and intensive margins, in the equilibrium than the

constrained optimuml. Here is the reason. In the Federal funds market banks rely on bilateral

trades to achieve their target levels of reserve holding. But trades in the OTC market is

opportunistic, thanks to the search frictions, so banks tend to over-trade whenever they

have a chance. Similarly, banks tend to search longer to compensate the search frictions. In

sum, banks are trading too much in the equilibrium because of the precautionary motive,

amplified by the search friction.

In the equilibrium, banks want to trade to the middle of the distribution - it is clear in

the k ∈ {0, 1, 2} model. In the constrained optimum, being the ”middle bank” is not that

good to the economy. The contribution from both ends of the distribution is much higher

than the middle, as they create more trade surplus to their counterparties, which is not
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internalized. To the individual bank and the planner, the motivation of trade is to narrow

the dispersion of reserves, but the dispersion is more costly to the individual bank than to

the planner. Therefore, banks have more incentive to trade to the middle than the planner.

It results in over-search and over-intermediation in the equilibrium.

Our results are novel in the literature. Farboodi et al. (2017) obtains the similar argu-

ment, but the matching function in their model exhibits negative congestion externality, so

agents oversearch in a steady state equilibrium. Our model has no congestion externality:

matching function is increasing returns to scale, and the trading game is supermodular.

We can also obtain similar comparative statics of the constrained efficiency allocation as

the equilibrium solution. The following proposition summarizes the results.

Proposition 2.11 (1) Suppose A2 < ηp, a2 >
(
r + λ0

4

)
ηp, τ p2 (ηp;A2, T ) > 0, and T is

sufficiently small. The comparative statics of the length of search, τ p2 (ηp;A2, T ), the amount

of Federal funds purchased, qpt (k, k′), net Federal funds purchase, Lp0 (k) and its derivative

Lp′0 (k), and the bilateral Federal fund rates, ρpt (k, k′), with respect to iER, iDW , κ, λ0, λ and

K, are given by the following table

τ p2 |qpt | Lp0 (k) Lp′0 (k) ρpt (k, k′)

iER − − sgn(K − k) − + (−) for k + k′ > (<) K̂p
t (k−)

iDW + + sgn(k −K) + + (−) for k + k′ < (>) K̂p
t (k+)

K − − + (−) for small (large) k − + (−) for k + k′ > (<) K̂p
t (ζt)

κ − − sgn(K − k) − + (−) for k + k′ < (>) 2K

λ0 − − sgn(K − k) − + (−) for k + k′ > (<) 2K

λ + + sgn(k −K) + + (−) for k + k′ < (>) 2K

where

ζpt =

∫ T

t

er(T−s)
[(λ− λ0) ε2

s + λ0] (Hp
s )2

2A2 (κεps +Hp
s )

ds,
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K̂p
t (kw) = 2K ×

kw − 1 + exp
[
−λ0

2

(
T − t− (τ2 (η;A2, T )− t)+)]−Mp

(
(τ p2 (ηp;A2, T )− t)+) exp (rT )

exp
[
−λ0

2

(
T − t− (τ2 (η;A2, T )− t)+)]−Mp

(
(τ p2 (ηp;A2, T )− t)+) exp (rT )

,

and

Mp (u) =
∂τ p2 (ηp;A2, T )

∂A2

∫ τp2 (ηp;A2,T )

τp2 (ηp;A2,T )−u
e−rs

{(
r +

λ

4

)[
1− (κ+ µp1) (κ+ µp2)

(κ+Hp
s )2

]}(
−Ḣp

s

)
ds,

and (x)+ ≡ max {x, 0}.

(2) Suppose A2 ≥ ηp, a2 <
(
r − λ

4
+ λ0

2

)
ηp, τ p1 (ηp;A2, T ) > 0 and λ, λ0/λ and T are

sufficiently small. The comparative statics are given by the following table

T − τ p1 |qpt | Lp0 (k) Lp′0 (k) ρpt (k, k′)

iER − − sgn(k −K) + + (−) for k + k′ > (<) K̃p
t (k−)

iDW + + sgn(K − k) − + (−) for k + k′ < (>) K̃p
t (k+)

K − − + (−) for large (small) k + + (−) for k + k′ > (<) K̃p
t (ζpt )

κ − − sgn(k −K) + + (−) for k + k′ < (>) 2K

λ0 − 0 sgn(K − k) − + (−) for k + k′ > (<) 2K

λ + − sgn(K − k) − + (−) for k + k′ > (<) 2K

where

K̃p
t (kw) = 2K ·

kw − M̃p
(
T − τ p1 − (t− τ p1 )+) exp (rT )− 1 {t < τ p1 } e

r(T−τp1 ) (λ−λ0)ηp

2

∂τp1
∂A2

1− M̃p
(
T − τ p1 − (t− τ p1 )+) exp (rT )− 1 {t < τ p1 } e

r(T−τp1 ) (λ−λ0)ηp

2

∂τp1
∂A2

,

and

M̃p (u) =
λ

2

∂τ p1 (ηp;A2, T )

∂A2

∫ T

T−u
e−rs

Hp
s (2κ+Hp

s )

(κ+Hp
s )2

(
−Ḣp

s

)
ds.
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2.5.5 Model extensions

Our closed-form model has focused on homogeneous banks except initial reserve balance

so far. However, it allows for a set of extensions, in which we are still able to get closed-

form solutions and conduct comparative statics analysis. In the appendix, we introduce four

pieces of extensions separately to discuss the effects of other Federal funds market factors

on the trade dynamics. Our main extension is a heterogeneous-agent model, where we add

peripheral traders, e.g. government-sponsored enterprises and other financial institutions

without Fed Reserve accounts, to the existing group of banks. We assume the peripheral

traders contact banks at a constant search intensity, and obtain closed-form solutions. In-

stead of conducting comparative statics, we estimate this extended model via simulated

method of moments and evaluate the quantitative importance of the disintermediation ef-

fect of unconventional monetary policy. Section 2.6 describes the model setup and presents

the quantitative analysis, while Appendix 2.D provides the derivations for the closed-form

solutions.

We also provide other extensions in the appendix. Appendix 2.E introduces Federal funds

brokerage to the market to study how the unconventional monetary policies affect the size

of brokerage. We assume the brokers compete for matchmaking services via free entry with

non-zero entry cost. Thus the size of brokerage is endogenously determined. In particular,

IOER has disintermediation effect on brokerage by lowering the equilibrium size of active

brokers in the market. Appendix 2.F considers the effects of payment shocks on the market

trade dynamics. We introduce both lumpy and continuous shocks to payment flows. In

particular, we find that the payment shocks do not impact the equilibrium length of search

and bilateral transaction size. Appendix 2.G discusses the effects of counterparty risk on

the Federal funds trade. By counterparty risk, we assume both counterparties of a meeting

could default on the trade independently with some constant probabilities. We find that the

effects of higher counterparty risk are isomorphic to the effects of higher transaction costs

or lower search intensity.
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2.6 Quantitative analysis

This section provides a quantitative evaluation for the effects of unconventional monetary

policy on disintermediation. The evaluation is based on an extended model that captures the

main institutional features of the Federal funds market. The setup is as follows. There are

two groups of agents: a unit continuum of banks as in the baseline model, and a continuum of

peripheral traders that have no Federal reserve accounts. The peripheral traders represent

government-sponsored enterprises and other financial institutions that participate in the

Federal funds market but have no access to IOER. The mass of peripheral traders is ϑ. We

assume a peripheral trader only contacts banks at a constant arrival rate ϕ. Moreover, the

banks choose search intensity ε in the contact with other banks, at an arrival rate m (ε, ε′).

The bargaining power of banks in the meeting with peripheral traders is θ ∈ (0, 1). Each

peripheral trader is endowed with some reserve balances k̃, and we denote the distribution of

peripheral traders’ reserve balances as F̃t

(
k̃
)

, with F̃0

(
k̃
)

given.15 We assume the peripheral

traders have no flow payoff of reserve holdings, but only enjoy the end-of-period payoff from

the overnigh reverse repurchase facility (ON RRP), i.e. Ũ
(
k̃
)

=
(
1 + iRRP

)
k̃.

For quantitative motivation, we assume the transaction cost of a bank in a meeting is

χ (ε, q) = (κ0 + κ1ε) q
2. The peripheral traders are not subject to balance sheet regulations,

thus their transaction cost is assumed to be 0. Since banks do not choose search intensity in

contacting peripheral traders, their transaction costs in such contacts is κ0q
2. This extended

model has closed-form solutions and Appendix 2.D presents the derivations. In particular, we

find the banks’ value functions are still quadratic and the peripheral traders’ value functions

are linear in their reserve balances.

To capture the change in the regulatory requirement on bank balance sheet and the

opportunity cost of liquidity, we allow for time-varying transaction cost and liquidity benefits.

15As is shown in Appendix 2.D, the distribution F̃t

(
k̃
)

is redundant in equilibrium.
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Specifically, we assume κ0 and γ change over years in the following form:

κ0,yr = κ0,2006 × exp [gκ0 (yr − 2006)] ,

γyr = γ2006 × exp [gγ (yr − 2006)] ,

where yr denotes a year and takes values from 2006 to 2018. In our estimation, we set 2006

as the first year and 2018 as the last year of the sample. Therefore, instead of estimating

gκ0 and gγ, we estimate κ0,2018 and γ2018.

2.6.1 Estimation

Instead of calibrating the deterministic theoretical model, we conduct a simulated method of

moments estimation on a discretized version of the model to pin down the parameters. In the

discretized version, we assume the reserve distribution is atomic (so there is a finite number of

banks) and given by the empirical distribution of reserve balances in the data. The outcome

of the discretized model is random since each bank faces idiosyncratic random meetings.

We estimate the model parameters via simulated method of moments. The Appendix 2.H

describes the algorithm of simulation and estimation.

In the current version of estimation, we first normalize r = a1 = a2 = 0, and set

T = 2.5/24 to represent the 2.5 hr trading session of the daily Federal funds market. Second,

we normalize the size of peripheral traders ϑ = 1 since it cannot be identified separately from

the contact rate ϕ. Third, the individual excess reserves are the quarterly bank-level data

(Call reports and Form FR Y9-C) of individual excess reserves before Federal funds trade

divided by bank assets. The data of IOER, primary credit rate and ON RRP are obtained

from FRED. We conduct the simulated method of moments based on the data over 2006Q1-

2018Q4 to estimate the following parameters

{λ, λ0, k+, k−, γ2006, γ2018, θ, ϕ, κ1, κ0,2006, κ0,2018} ,
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and the moments for estimation are (1) the regression coefficients of iER×k and K×k in the

Federal funds net purchase regressions 2.2. (2) the banks’ aggregate share of intermediation

volume in 2006 and 2018; (3) the aggregate Fed funds sold by intermediaries normalized by

aggregate bank assets in 2006 and 2018; (4) the aggregate Fed funds purchased by interme-

diaries normalized by aggregate bank assets in 2006 and 2018; (5) the aggregate fraction of

trading banks in 2006 and 2018; (6) the average effective Fed funds rates in 2006 and 2018.

The parameter estimation results are listed in Table 2.6. The simulated moments are listed

in Table 2.7 and 2.8.

We find that the estimated transaction cost κ0 increases from 2006 to 2008, while the

liquidity benefit γ decreases in the same period. This implies the rise of bank balance sheet

cost due to stronger regulations, and the declined liquidity benefit due to the increasing

aggregate excess reserves. The moments produced by our estimation are close to the tar-

gets. In particular, the simulated regression coefficients have the correct signs and similar

magnitudes, and the fraction of trading banks and effective Federal funds rates are almost

exactly calibrated.

2.6.2 Counterfactual analysis

Given the estimation we conduct counterfactual analysis to evaluate the quantitative impor-

tance of unconventional monetary policies and regulations to the disintermediation channel.

In particular, we consider the following exercises and examine how the level of intermedia-

tion in 2018 changes: (1) Change the paths of IOER, primary credit rate and ON RRP in

2018 to the paths in 2006. This exercise investigates how the level of intermediation changes

in 2018 if the Federal Reserve recovers the policy rates in 2006. (2) Proportionally change

individual banks’ reserve balances in 2018, such that the average individual reserve balances

are equal to the levels in 2006. This exercise examines the effect of aggregate excess reserves

on disintermediation. (3) Change κ0,2018 to κ0,2006. This exercise evaluates the impact of

rising transaction cost on disintermediation.
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Table 2.9 reports the results of counterfactuals. We find that eliminating IOER doubles

the intermediation volume share in 2018, while reducing the transaction cost can increase

the level of intermediation by about 4 times. However, the effect of aggregate excess reserves

on disintermediation is small, since the intermediation share almost doesn’t change in the

counterfactual analysis.

2.7 Conclusion

This paper proposes a new channel of monetary policy and regulation on the monetary policy

implementation, the disintermediation channel. When the interest rate on excess reserves

(IOER) increases or the balance sheet cost rises, the intermediation trades by banks de-

cline in the Federal funds market. We rationalize this channel in a continuous-time search-

and-bargaining model of divisible funds and endogenous search intensity, which nests the

matching model of Afonso and Lagos (2015b) and the transaction model of Hamilton (1996).

IOER decreases the spread of marginal value of reserves, and balance sheet cost increases the

marginal cost of holding reserves, both of which lower the gains of intermediation. We find

that the equilibrium is constrained inefficient as banks trade too frequently. The disinterme-

diation channel is both empirically and quantitatively important. Empirically, it significantly

impede the reallocation of reserves from lender banks to borrower banks. Quantitatively,

eliminating IOER and reducing the balance sheet cost can greatly raise the level of interme-

diation during the period after the Great Recession. For further research, we will focus on

the investigating how the disintermediation channel impacts the effects of current monetary

policy framework on the Federal funds rate and real economy, as well as calculating the

optimal monetary policy and regulation via quantitative analysis.
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2.A Appendix: Details of data and measurement

In this section, we describe how we collect the data and construct various measurement we

used for the summary statistics and estimation.

2.A.1 Sources

Financial data of the Federal funds market participants come from the following:

• Call Reports. This is the source of the subsidiary-level data. In particular, we use

form FFIEC 031 for banks with both domestic and foreign offices, form FFIEC 041 for

banks with domestic offices only, and form FFIEC 002 for U.S. branches and agencies of

foreign banks (FBO). These forms are available for download at the Federal Financial

Institutions Examination Council (FFIEC).16

• FR Y-9C. This is the source of the consolidated data at the level of holding companies

(for bank holding companies, savings and loan holding companies, and intermediate

holding companies) with total consolidated assets of $1 billion or more (prior to 2015,

this threshold was just $500 million). This is available for download at the Federal

Reserve Bank of Chicago.17

• Attributes, relationships, and transformations tables. This is the source of the

ownership structure of holding companies upon their subsidiaries. They are available

for download at National Information Center (NIC).18

• 10Q and 10K. This is the source of government sponsored enterprises (GSE) data.

These forms are available for download at the Security Examination Commission

16https://cdr.ffiec.gov/public/

17https://www.chicagofed.org/banking/financial-institution-reports/bhc-data

18https://www.ffiec.gov/npw/FinancialReport/DataDownload
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(SEC).19 The GSE data is fully available since 2006Q1.

• H.4.1. This is the source of the balance sheet of the Federal Reserve System and factors

affecting reserve balances of depository institutions. This is available for download at

the Board of Governors of the Federal Reserve System.20

• Time series of the economy. It is available for download at the Federal Reserve

Bank of St Louis (FRED).21

2.A.2 Consolidated sample

Whenever possible, we always measure variables at the holding-company level. We think

that holding companies are desirable sample unit because first, usually the subsidiaries’

reserves, which are not directly observable in the Call reports, are corresponded by their

holding company’s master accounts in the Federal Reserve Banks, which are observable.

Second, sometimes the decision of Federal Funds trading is delegated to the holding company.

Third, it avoids double-counting the intra-holding-company Federal Funds trades, which are

different from those normal interbank transactions.

Consolidation is done by referring to items filed in FR Y-9C. For the holding companies

not eligible to file FR Y-9C, or items not available from FR Y-9C, we directly consolidate

the Call report items from the subsidiary level up to the topmost holding-company level,

based on the relationships table from NIC. In this appendix, we always refer i as the index

for holding companies and j as the index for i’s subsidiaries. We focus on banks that have

positive amounts of asset and total reserve balances, and trade at least once in the Federal

funds market in the data sample.

19https://www.sec.gov/edgar/searchedgar/companysearch.html

20https://www.federalreserve.gov/releases/h41/

21https://fred.stlouisfed.org/
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2.A.3 Excess reserves

The formula to measure excess reserves bank i holds at the Federal Reserve account at the

end of quarter t is given by

Excess Reserves it = Total Reserves it -
{∑

j
Required Reservesjt - Vault Cash it

}
+

.

Total Reserves it is measured by item RCFD0090 in FR Y-9C (“Balances due from Federal

Reserve Banks”). Vault Cash it is approximated by item RCON0080 in FR Y-9C (“Currency

and coin”). The formula to calculate Required Reservesjt is based on subsidiary j’s net

transaction accounts. For example, the formula of reserve requirement in 2010 is given by

the following table:

Table 2.1: Reserve requirement in 2010

Net transaction accounts % required
$0 to $10.7 million 0
More than $0.7 million to $55.2 million 3
More than $55.2 million 10

The table is updated every year.22 To estimate net transaction acccounts, we substract

item RCON 2215 of j’s Call Report (“Total Transaction Accounts”) from the sum of item

RCFD 0083 (“Balances due from depository institutions in the U.S.: U.S. branches and

agencies of foreign banks (including their IBFs)”), item RCFD 0085 (“Balances due from

depository institutions in the U.S.: Other depository institutions in the U.S. (including their

IBFs)”) and item RCON 0020 (“Cash items in process of collection and unposted debit”).

Then we apply the historical reserve requirement formulas on net trans accounts to calculate

Required Reservesjt.

22The historical reserve requirement can be found on https://www.federalreserve.gov/

monetarypolicy/reservereq.htm
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To measure the excess reserves bank i holds before entering the Federal funds market, we

subtract the net Federal funds purchase from Excess Reserves it. Thus the pre-trade excess

reserves is given by

Excess Reserves pre-trade it = Excess Reserves it - Federal funds purchased it

+ Federal funds sold it.

By dividing the pre-trade excess reserves by bank assets, we obtain the measure exres assets

in the regressions.

2.A.4 Federal funds trades and intermediation

We compute the net Federal funds borrowed by substracting item BHDM B993 in FR Y-9C

(“Federal funds purchased in domestic offices”) from item BHDM B987 (“Federal funds sold

in domestic offices”). We measure bank’s intermediation by Reallocated Funds it:

Reallocated Funds it = Federal funds purchased it + Federal funds sold it

- |Federal funds purchased it - Federal funds sold it| .

By dividing the net Federal funds borrowed and Reallocated Funds by bank assets respec-

tively, we obtain the measure ffnet assets and ffreallo assets in the regressions.

2.A.5 Bank-level controls

We use the following items from Call report to measure various attributes of banks.

• Size and scope

– logarithm of assets (item RCFD 2170 “Total assets”).

– bank equity (item RCFD 3210 “Total bank equity capital”) over bank assets.
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• Marginal benefit of liquidity

– ROA

– High-quality liquid assets (HQLA) over total assets (Ihrig et al., 2019)

• Risk

– ratio of non-performing loan (sum of items 1 through 8.b of Column B and C in

Schedule RC-N) over bank assets, as in Afonso et al. (2011)

– ratio of loan (item RCFD 2122 “Total loans and leases held for investment and

held for sale”) over bank assets

• Regulation

– Tier-1 leverage ratio (item RCFA 7204 “Tier 1 leverage ratio”)

• Other indicators

– bank entity type (in the NIC attributes table)

– Fed District dummy (in the NIC attributes table)

2.A.6 Economy-wide controls

• quarterly real GDP growth rate (available from FRED)

• quarterly unemployment rate (available from FRED)

• standard deviation of the Fed’s general treasury account in a quarter (available from

H.4.1)
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2.B Appendix: Tables

2.B.1 Summary statistics

Table 2.2: Summary statistics

Variable Obs Mean Std. Dev. Min Max
Net Fed funds purchase/Assets 107,959 -0.0074 0.0554 -0.9690 0.9608
Ex. res. pre-trade/Assets 107,959 0.0434 0.1015 -0.9062 4.1827
log (Assets) 107,959 13.7981 1.4571 4.6728 21.6874
Dummy: reallocation 52,778 0.2174 0.4125 0 1
Fed funds reallocation/Assets 52,778 0.0021 0.0072 0 0.0388
IOER (%) 64 0.3602 0.5470 0 2.4
Primary credit rate (%) 64 2.0781 0.1804 0.5 6.25
Agg. ex. res./Agg. assets 64 0.0428 0.0410 -0.0084 0.1070

Notes: This table presents the summary statistics of key variables. The observations for the first 5 variables

are bank-quarter. “Net Fed funds purchase/Assets” is a bank’s net Federal funds purchase divided by bank

assets. “Ex. res. pre-trade/Assets” is a bank’s excess reserve balances before Federal funds trade divided

by bank assets. “log(Assets)” is the log value of bank assets. “Dummy: reallocation” is equal to 1 if a bank

intermediates Federal funds on a day, and equal to 0 otherwise. “Fed funds reallocation/Assets” is a bank’s

volume of Federal funds reallocation divided by bank assets. “Agg. ex. res/Agg. assets” is the aggregate

excess reserve balances before Federal funds trade divided by the aggregate bank assets. The sample consists

of U.S. banks that hold positive total reserves at the Fed account and trade Federal funds at least once in

the data sample. The sample period is from 2003Q1 to 2018Q4.
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2.B.2 Regression results
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Table 2.3: Probit on Reallocation

Dep. Var. Dummy: Reallocation

Probit (Pooled) Panel Probit (RE) IV Probit

(1) (2) (3) (4) (5) (6)

IOER -0.182*** -0.179*** -0.320*** -0.318*** -0.639*** -0.721***

(0.033) (0.037) (0.051) (0.055) (0.085) (0.100)

IOER×Ind. ex res 1.250 0.397 5.352***

(0.986) (1.162) (1.450)

Agg ex res -3.400*** -4.312*** -5.871*** -5.843*** -3.183*** -3.686***

(0.616) (0.759) (0.935) (1.006) (0.752) (0.969)

Agg ex res×Ind. ex res 46.293** -2.055 23.063

(17.992) (21.176) (24.490)

Prim. credit rate -0.003 -0.002 -0.025 -0.021 -0.050*** -0.051***

(0.011) (0.012) (0.016) (0.017) (0.019) (0.019)

Prim. credit rate -0.480* -0.625 -0.634

×Ind. ex res (0.260) (0.388) (0.485)

Ind. ex res -4.596*** -6.275*** -10.270*** -9.046*** -3.426*** -5.256***

(0.911) (0.981) (1.223) (1.624) (0.210) (1.891)

All Fixed Effects Y Y Y Y Y Y

Bank controls Y Y Y Y Y Y

Agg. controls Y Y Y Y Y Y

Specification tests

Wald test of exogeneity

χ2 stat 60.72 53.09

p-value [0.000] [0.000]

Weak instrument test

χ2 stat 962.82 1093.15

p-value [0.000] [0.000]

Hansen J test

χ2 stat 2.188

p-value [0.335]

Pseudo R2 0.174 0.174

Number of observations 44,048 44,048 44,048 44,048 39,674 39,674

Number of banks 1,122 1,122 1,122 1,122 1,121 1,121

Notes: This table presents the estimation results on the Probit regression of Federal funds intermediation

(2.1). The sample consists of U.S. banks that hold positive total reserves at the Fed account and intermediate

Federal funds at least once in the data sample. The sample period is from 2003Q1 to 2018Q4. Standard

errors clustered by banks are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 2.4: Tobit on Reallocation

Dep. Var. FF Reallocation/Assets

Tobit (Pooled) Panel Tobit (RE) IV Tobit

(1) (2) (3) (4) (5) (6)

IOER -0.002*** -0.002*** -0.002*** -0.002*** -0.009*** -0.010***

(0.000) (0.001) (0.000) (0.000) (0.001) (0.001)

IOER×Ind. ex res 0.008 -0.001 0.087***

(0.021) (0.004) (0.020)

Agg ex res -0.058*** -0.074*** -0.059*** -0.055*** -0.057*** -0.066***

(0.009) (0.012) (0.007) (0.007) (0.011) (0.013)

Agg ex res×Ind. ex res 0.846*** -0.185*** 0.424

(0.257) (0.061) (0.298)

Prim. credit rate -0.000 -0.000 -0.000*** -0.000*** -0.001*** -0.001***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Prim. credit rate -0.000 0.001 -0.001

×Ind. ex res (0.003) (0.001) (0.005)

Ind. ex res -0.070*** -0.097*** -0.042*** -0.040*** -0.058*** -0.086***

(0.012) (0.012) (0.002) (0.004) (0.003) (0.021)

All Fixed Effects Y Y Y Y Y Y

Bank controls Y Y Y Y Y Y

Agg. controls Y Y Y Y Y Y

Specification tests

Wald test of exogeneity

χ2 stat 14.52 37.88

p-value [0.006] [0.000]

Weak instrument test

χ2 stat 1098.27 1468.42

p-value [0.000] [0.000]

Hansen J test

χ2 stat 5.439

p-value [0.066]

Pseudo R2 -0.298 -0.312

Number of observations 44,097 44,097 44,097 44,097 39,691 39,691

Number of banks 1,127 1,127 1,127 1,127 1,122 1,122

Notes: This table presents the estimation results on the Tobit regression of Federal funds intermediation

(2.1). The sample consists of U.S. banks that hold positive total reserves at the Fed account and intermediate

Federal funds at least once in the data sample. The sample period is from 2003Q1 to 2018Q4. Standard

errors clustered by banks are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 2.5: Effects of IOER and aggregate excess reserves on net Federal funds purchased

Dep. Var. ffnet assets

OLS 2SLS

(1) (2) (3) (4) (5) (6)

IOER 0.001 0.002*** -0.073*** -0.006

(0.001) (0.001) (0.011) (0.024)

IOER×Ind. ex res 0.102*** 0.102*** 0.300*** 0.301***

(0.011) (0.011) (0.062) (0.069)

Agg ex res -0.025*** -0.077*** -0.426*** -0.226*

(0.010) (0.013) (0.056) (0.116)

Agg ex res×Ind. ex res 2.893*** 2.910*** 4.221*** 4.252***

(0.288) (0.291) (0.834) (0.830)

Prim. credit rate -0.001*** 0.000 -0.018*** -0.001

(0.000) (0.000) (0.002) (0.005)

Prim. credit rate -0.071*** -0.071*** -0.059*** -0.059***

×Ind. ex res (0.009) (0.009) (0.018) (0.018)

Ind. ex res -0.361*** -0.434*** -0.435*** -0.310*** -0.591*** -0.595***

(0.021) (0.037) (0.037) (0.0037) (0.077) (0.076)

Bank FE Y Y Y Y Y Y

Quarter FE N N Y N N Y

Year FE Y Y N Y Y N

Bank controls Y Y Y Y Y Y

Agg. controls Y Y Y Y Y Y

Specification tests

Underidentification test

χ2 stat 291.4 251.8 73.8

p-value [0.000] [0.000] [0.000]

Weak Instrument test

F stat 70.31 31.68 10.08

10% relative bias (p-val) [0.000] [0.000] [0.000]

30% relative bias (p-val) [0.000] [0.000] [0.000]

Hansen J test

χ2 stat 0.0787 0.0497

p-value [0.779] [0.824]

Adj. R2 0.810 0.865 0.866 0.305 0.504 0.498

Number of observations 104,291 104,291 104,291 85,141 85,141 85,141

Number of banks 3,506 3,506 3,506 2,909 2,909 2,909

Notes: This table presents the estimation results on the net Federal funds purchased regression (2.2). The

sample consists of U.S. banks that hold positive total reserves at the Fed account and trade Federal funds at

least once in the data sample. The sample period is from 2003Q1 to 2018Q4. The fixed effects of Bank×Crisis

and Bank×Post-Crisis are also controlled. Standard errors clustered by banks are reported in parentheses.

*** p<0.01, ** p<0.05, * p<0.1. 162



2.B.3 Tables in quantitative analysis

Table 2.6: Parameter estimation

Parameter λ λ0/λ0 k+ k− θ ρ
Estimated Value 20.1987 0.5605 2.9480 −0.0596 0.7005 0.2000
Standard deviation 0.0007 3.6× 10−5 0.0038 0.0048 0.0043 1.3× 10−5

Parameter κ1 κ0,2006 κ0,2018 γ2006 γ2018

Estimated Value 0.00568 0.00001 0.000705 0.00035 0.00028
Standard deviation 0.0054 0.0038 0.0024 0.0062 0.0019

Notes: This table lists the estimated values and standard deviations of the model parameters from simulated

method of moments.

Table 2.7: Simulated regression coefficients

Moments Target Simulation 95% CI
Coef of ind. ex. res. -0.595 -0.199 [-0.252,-0.151]
Coef of ind. ex. res×ioer† 0.301 0.0540 [0.044,0.067]
Coef of ind. ex. res×dw -0.059 -0.0084 [-0.015,-0.003]
Coef of ind. ex. res×agg. ex. res.† 4.252 2.2829 [1.548,3.069]

Notes: This table presents the simulated coefficients of Federal funds net purchase regressions under the

estimated parameters. The column “Target” lists the estimated coefficients from the original regressions.

The column “Simulation” lists the simulated coefficients. The column “95% CI” lists the 95% confidence

interval of the simulated coefficients. The sign † represents the target is used in estimation. “ind. ex. res.” is

the individual excess reserves divided by individual bank assets. “ioer” is the interest rate on excess reserves.

“dw” is the primary credit rate. “agg. ex. res.” is the aggregate excess reserves divided by aggregate bank

assets.
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Table 2.8: Simulated moments

Year 2006 2018
Target Simulation Target Simulation

Intermediation volume share 0.2150 0.1715 0.0663 0.0726
FF sold by intermediary 0.0045 0.0034 0.0002 0.0009
FF purchased by intermediary 0.0107 0.0062 0.0013 0.0031
Fraction of trading banks 0.8894 0.8805 0.6896 0.6985
Effective Federal funds rate 0.0514 0.0511 0.0204 0.0207

Notes: This table presents the simulated moments under the estimated parameters. The column “Target”

lists the moments from the data. The column “Simulation” lists the simulated moments. All the targets are

used in estimation. “Intermediation volume share” is the share of Federal funds reallocation in total Federal

funds volume. “FF sold by intermediary” is the volume of Federal funds sold by intermediary banks as a

share of aggregate bank assets. “FF purchased by intermediary” is the volume of Federal funds purchased

by intermediary banks as a share of aggregate bank assets. “Fraction of trading banks” is the fraction of

banks that trade in the total number of banks. All the moments are average values across quarters within

each year.

Table 2.9: Counterfactual analysis

Counterfactual analysis
(1) (2) (3)

Moments in 2018 Target Simulation IOER Agg ex res Transct cost
Intermediation Volume Share 0.0663 0.0726 0.1328 0.0654 0.3025
FF sold by intermediary 0.0002 0.0009 0.0019 0.0006 0.0166
FF purchased by intermediary 0.0013 0.0031 0.0041 0.0029 0.0382
Fraction of trading banks 0.6896 0.6985 0.8802 0.6985 0.6985
Effective Federal funds rate 0.0204 0.0207 0.0318 0.0203 0.0331

Notes: This table presents the simulated counterfactual analysis under the estimated parameters. The

column “Target” lists the moments from the data. The column “Simulation” lists the simulated moments

of the estimated model. The columns under “Counterfactual analysis” lists the simulated moments. under

the corresponding counterfactual exercise. “IOER” represents the exercise that changes the values of IOER,

primary credit rate and ON RRP from 2018 to 2006. “Agg ex res” represents the exercise that changes the

aggregate excess reserves from 2018 to 2006 by proportionaly scaling individual excess reserves. “Transct

cost” represents the exercise that changes the transaction parameter κ0 from the 2018 value to 2006 value.

“Intermediation volume share” is the share of Federal funds reallocation in total Federal funds volume. “FF

sold by intermediary” is the volume of Federal funds sold by intermediary banks as a share of aggregate bank

assets. “FF purchased by intermediary” is the volume of Federal funds purchased by intermediary banks as

a share of aggregate bank assets. “Fraction of trading banks” is the fraction of banks that trade in the total

number of banks. All the moments are average values across quarters within each year.
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2.C Appendix: Proofs and derivations

2.C.1 Derivation of the general form of m (ε, ε′)

For any ε, ε′ ∈ [0, 1], equation (2.4) implies that

m (ε, ε′) = ε′m (ε, 1) + (1− ε′)m (ε, 0)

= [m (ε, 1)−m (ε, 0)] ε′ +m (ε, 0) .

By symmetry we have

m (ε, 1) = m (1, ε) = [m (1, 1)−m (1, 0)] ε+m (1, 0) ,

m (ε, 0) = m (0, ε) = [m (0, 1)−m (0, 0)] ε+m (0, 0) .

Thus we can get

m (ε, ε′) = [m (ε, 1)−m (ε, 0)] ε′ +m (ε, 0)

= {[m (1, 1)−m (1, 0)] ε+m (1, 0)− [m (0, 1)−m (0, 0)] ε−m (0, 0)} ε′

+ [m (0, 1)−m (0, 0)] ε+m (0, 0)

= [m (1, 1)−m (1, 0)−m (0, 1) +m (0, 0)] εε′ + [m (0, 1)−m (0, 0)] ε

+ [m (1, 0)−m (0, 0)] ε′ +m (0, 0)

= (λ− 2λ1 + λ0) εε′ + (λ1 − λ0) (ε+ ε′) + λ0.
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2.C.2 Proof of Lemma 2.1

Proof. (i). [St decreases in ε and ε′]: Pick any ε, ε̃ s.t. ε̃ > ε,

St (k, k′, ε, ε′) = Vt [k + qt (k, k′, ε, ε′)]− Vt (k)− χ [ε, qt (k, k′, ε, ε′)]

+Vt [k′ − qt (k, k′, ε, ε′)]− Vt (k′)− χ [ε′,−qt (k, k′, ε, ε′)]

≥ Vt [k + qt (k, k′, ε̃, ε′)]− Vt (k)− χ [ε, qt (k, k′, ε̃, ε′)]

+Vt [k′ − qt (k, k′, ε̃, ε′)]− Vt (k′)− χ [ε′,−qt (k, k′, ε̃, ε′)]

≥ Vt [k + qt (k, k′, ε̃, ε′)]− Vt (k)− χ [ε̃, qt (k, k′, ε̃, ε′)]

+Vt [k′ − qt (k, k′, ε̃, ε′)]− Vt (k′)− χ [ε′,−qt (k, k′, ε̃, ε′)]

= St (k, k′, ε̃, ε′) .

Since St is symmetric in ε and ε′, then St also decreases in ε′.

[|qt| decreases in ε and ε′]: Since χ (ε, q) is complementary in ε and q, then for any ε′, ε,

q′, q such that ε′ > ε and q′ > q ≥ 0, we have

χ (ε′, q′)− χ (ε′, q) ≥ χ (ε, q′)− χ (ε, q) .

This means the function h (ε; q′, q) := χ (ε, q′)− χ (ε, q) is a single crossing function for any

ε and q′ > q ≥ 0. By Milgrom and Shannon (1994),

qt (k, k′, ε, ε′) = arg max
q
{Vt (k + q) + Vt (k′ − q)− χ (ε, q)− χ (ε′, q)} (2.54)

is decreasing in ε if qt (k, k′, ε, ε′) > 0, and increasing in ε if qt (k, k′, ε, ε′) < 0. Similarly, we

can prove |qt (k, k′, ε, ε′)| is decreasing in ε′.

[St supermodular]: Suppose Vt (k) is weakly concave and twice differentiable, then the

optimal trade size qt (k, k′, ε, ε′) is interior and differentiable by the implicit function theorem.

Without loss of generality we assume qt (k, k′, ε, ε′) > 0. Then by the envelope theorem we
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have
∂St (k, k′, ε, ε′)

∂ε
= −χε (ε, qt (k, k′, ε, ε′)) ,

and
∂2St (k, k′, ε, ε′)

∂ε∂ε′
= −χεq (ε, qt (k, k′, ε, ε′))

∂qt (k, k′, ε, ε′)

∂ε′
> 0,

where we apply χεq > 0 and ∂qt(k,k′,ε,ε′)
∂ε′

< 0.

(ii). [St (k, k, ε, ε′) = 0] If Vt (k) is concave, then

St (k, k, ε, ε′) ≡ max
q
{Vt (k + q) + Vt (k − q)− Vt (k)− Vt (k)− χ (ε, q)− χ (ε′,−q)}

≤ max
q
{2Vt (k)− Vt (k)− Vt (k)− χ (ε, q)− χ (ε′,−q)}

= max
q
{−χ (ε, q)− χ (ε′, q)} = 0.

[Monotonicity of St (k, k′, ε, ε′) and qt (k, k′, ε, ε′) in k] Note that for a concave functio

f (x), where x is a scalar, we must have that for any x′ > x and ∆ > 0,

f (x) + f (x′) = f

(
x′ − x+ ∆

x′ − x+ 2∆
(x−∆) +

∆

x′ − x+ 2∆
(x′ + ∆)

)
+f

(
∆

x′ − x+ 2∆
(x−∆) +

x′ − x+ ∆

x′ − x+ 2∆
(x′ −∆)

)
≥ x′ − x+ ∆

x′ − x+ 2∆
f (x−∆) +

∆

x′ − x+ 2∆
f (x′ + ∆)

+
∆

x′ − x+ 2∆
f (x−∆) +

x′ − x+ ∆

x′ − x+ 2∆
f (x′ + ∆)

= f (x−∆) + f (x′ + ∆) . (2.55)

Thus for any k′ > k and q < 0:

Vt (k + q) + Vt (k′ − q)− χ (ε, q)− χ (ε′,−q)

< Vt (k) + Vt (k′)− χ (ε, 0)− χ (ε′, 0) ,
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which implies that qt (k, k′, ε, ε′) ≥ 0 for any k′ > k, with strict inequality if Vt is strictly

concave. Moreover, for any k̃ > k and q̃ > q, the inequality (2.55) implies that

Vt (k + q̃) + Vt

(
k̃ + q

)
≥ Vt (k + q̃ − (q̃ − q)) + Vt

(
k̃ + q + (q̃ − q)

)
= Vt (k + q) + Vt

(
k̃ + q̃

)
.

Therefore, the function Vt (k + q) has increasing differences over (−k, q). This implies that

for any k′ > k̃ > k, and any ε and ε′,

St (k, k′, ε, ε′)

= Vt (k + qt (k, k′, ε, ε′)) + Vt (k′ − qt (k, k′, ε, ε′))− Vt (k)− Vt (k′)

−χ (ε, qt (k, k′, ε, ε′))− χ (ε′,−qt (k, k′, ε, ε′))

≥ Vt

(
k + qt

(
k̃, k′, ε, ε′

))
− Vt (k) + Vt

(
k′ − qt

(
k̃, k′, ε, ε′

))
− Vt (k′)

−χ
(
ε, qt

(
k̃, k′, ε, ε′

))
− χ

(
ε′,−qt

(
k̃, k′, ε, ε′

))
≥ Vt

(
k̃ + qt

(
k̃, k′, ε, ε′

))
− Vt

(
k̃
)

+ Vt

(
k′ − qt

(
k̃, k′, ε, ε′

))
− Vt (k′)

−χ
(
ε, qt

(
k̃, k′, ε, ε′

))
− χ

(
ε′,−qt

(
k̃, k′, ε, ε′

))
= St

(
k̃, k′, ε, ε′

)
,

where the inequality in the fourth line is due to the increasing differences property of

Vt (k + q) over (−k, q). The inequality is strict if Vt is strictly concave. Similarly, we can prove

St (k, k′, ε, ε′) is (strictly) increasing in k for all k > k′. Moreover, by Milgrom and Shannon

(1994), the increasing differences property also implies that for any k′ > k, qt (k, k′, ε, ε′) is

decreasing in k and increasing in k′. Q.E.D.
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2.C.3 Derivation of HJB (2.8) and KFE (2.9)

By the property of Poisson process, the equation (2.7) for value function Vt (k) can be

rewritten as

Vt (k) =

max
{εz}z∈[t,T ]∈[0,1][t,T ]



∫ T
t
e−

∫ z
t [r+m(εs,ε̄s)]ds



u (k) +

∫
k′


Vz [k + qz (k, k′, εz, εz (k′))]

−χ [εz, qz (k, k′, εz, εz (k′))]

−e−r(T+∆−z)Rz (k, k′, εz, εz (k′))


×m (εz, εz (k′)) dFz (k′)


dz

+e−
∫ T
t [r+m(εs,ε̄s)]dsU (k)


Denote ε∗t (k) as one equilibrium search profile. By taking the first-order derivative of Vt (k)

w.r.t. t and plugging in the solution to e−r(T+∆−z)Rz (k, k′, εz, εz (k′)), we can obtain

rVt (k) = V̇t (k) + u (k) +

∫
1

2
St [k, k′, ε∗t (k) , ε∗t (k′)]m [ε∗t (k) , ε∗t (k′)] dFt (k′) .

To derive the optimality condition for ε∗t (k), let B denote the space of bounded real-valued

functions defined on K× [0, T ]. Define a mapping M on B as follows:

(Mw) (k, t) =

max
{εz}z∈[t,T ]∈[0,1][t,T ]



∫ T
t
e−

∫ z
t [r+m(εs,ε̄s)]ds



u (k) +

∫
k′


w [k + bz (k, k′, εz, εz (k′)) , z]

−χ [εz, bz (k, k′, εz, εz (k′))]

−e−r(T+∆−z)Yz (k, k′, εz, εz (k′))


×m (εz, εz (k′)) dFz (k′)


dz

+e−
∫ T
t [r+m(εs,ε̄s)]dsU (k)


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where

bt (k, k′, ε, ε′) ∈ arg max
b

 w (k + b, t)− w (k, t)− χ (ε, b)

+w (k′ − b, t)− w (k′, t)− χ (ε′,−b)


and

e−r(T+∆−t)Yt (k, k′, ε, ε′) =
1

2

 w (k + bt (k, k′, ε, ε′) , t)− w (k, t)− χ (ε, bt (k, k′, ε, ε′))

+w (k′, t)− w (k′ − bt (k, k′, ε, ε′) , t) + χ (ε′,−bt (k, k′, ε, ε′))

 .

It is clear that the solution Vt (k) to the HJB (2.8) is a fixed point of the mapping M.

Therefore, ε∗t (k) must be the solution to the right-hand side of (Mw) (k, t) if we replace w

with V . Note that since the time variable t is continuous, we have a continuum of control

variables. We follow the heuristic approach in Van Imhoff (1982) to derive the condition

for ε∗t (k). This approach relies on interpreting the integral in (Mw) (k, t) as a summation

of discrete variables over intervals with widths dz and dt. Then the Lebesgue dominated

convergence theorem guarantees that the summation converges to the original integral as

the widths of intervals approach 0. Then the terms in (Mw) (k, t) which are related to εt (k)

can be written as

e−
∫ t+dt
t [r+m(εt(k),ε̄t)]ds


u (k) +

∫
k′


w [k + bt (k, k′, εt (k) , εt (k′)) , t]

−χ [εt (k) , bt (k, k′, εt (k) , εt (k′))]

−e−r(T+∆−t)Yt (k, k′, εt (k) , εt (k′))


×m (εt (k) , εt (k′)) dFt (k′)


dt

+e−
∫ t+dt
t [r+m(εt(k),ε̄t)]dsw (k, t− dt)

= (1− rdt)w (k, t− dt) + o (|dt|) +



u (k) +

∫
k′



w [k + bt (k, k′, εt (k) , εt (k′)) , t]

−w (k, t− dt)

−χ [εt, bt (k, k′, εt (k) , εt (k′))]

−e−r(T+∆−t)Yt (k, k′, εt (k) , εt (k′))


×m (εt (k) , εt (k′)) dFt (k′)


dt.
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Thus the maximizer of εt (k) to the above equation when dt→ 0 is given by

εt (k) ∈ arg max
ε∈[0,1]



∫
k′

1
2


w [k + bt (k, k′, ε, εt (k′)) , t]− w (k, t)

−χ [εt, bt (k, k′, ε, εt (k′))]

+w [k′ − bt (k, k′, ε, εt (k′)) , t]− w (k′, t)

−χ [εt (k′) ,−bt (k, k′, ε, εt (k′))]


×m (εt (k) , εt (k′)) dFt (k′)


where we plug in the solution to e−r(T+∆−t)Yt (k, k′, ε, εt (k′)). This gives the HJB (2.8).

Next we take a heuristic approach to derive the KFE. Let ∆ be a small time interval

that is close to 0. Then by definition of Ft (k), we have

Ft+∆ (kw) = [1−∆ ·m (εt (k) , ε̄t)]Ft (kw)

+

∫
k≤kw

∫
k′

∆ ·m (εt (k) , εt (k′)) 1 {k + qt (k, k′) ≤ kw} dFt (k′) dFt (k)

+

∫
k>kw

∫
k′

∆ ·m (εt (k) , εt (k′)) 1 {k + qt (k, k′) ≤ kw} dFt (k′) dFt (k) .

On the right-hand side, the first term represents the mass of banks that do not meet coun-

terparties during [t, t+ ∆]. The second term represents the banks that have meetings during

[t, t+ ∆] and hold reserves no more than kw both before and after the meeting. The third

term represents the banks that have meetings during [t, t+ ∆] and hold reserves more than

kw before meeting and no more than kw after the meeting. By rearranging terms, we can

get

Ft+∆ (kw)− Ft (kw)

∆
= −

∫
k≤kw

∫
k′
m (εt (k) , εt (k′)) 1 {k + qt (k, k′) > kw} dFt (k′) dFt (k)

+

∫
k>kw

∫
k′
m (εt (k) , εt (k′)) 1 {k + qt (k, k′) ≤ kw} dFt (k′) dFt (k) ,
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where we expand m (εt (k) , ε̄t)Ft (kw) to

∫
k≤kw

∫
k′
m (εt (k) , εt (k′)) dFt (k′) dFt (k) ,

and combine it with
∫
k≤kw

∫
k′
m (εt (k) , εt (k′)) 1 {k + qt (k, k′) ≤ kw} dFt (k′) dFt (k). Then

we can take ∆→ 0 and obtain the KFE (2.9).

2.C.4 Proof of Proposition 2.1

Proof. To prove {Ω (St, Ft) ,�s} is a complete lattice, it is sufficient to show St (k, k′, ε, ε′)m (ε, ε′)

is supermodular in ε and ε′. Appendix 2.C.1 implies that θm (ε) = (λ−2λ1+λ0)ε
(λ−2λ1+λ0)ε+λ1−λ0 only

depends on ε, and

m1 (ε, ε′) = m2 (ε′, ε) =
m12 (ε′, ε) ε′

θm (ε′)
=
m12 (ε, ε′) ε′

θm (ε′)
.

Of course, the product of supermodular functions is not necessary supermodular. Notice

that

∂2 [St (k, k′, ε, ε′)m (ε, ε′)]

∂ε∂ε′

= m (ε, ε′)
∂2St
∂ε∂ε′

+
∂St
∂ε

m2 (ε, ε′) +
∂St
∂ε′

m1 (ε, ε′) + Stm12 (ε, ε′)

= m (ε, ε′)
∂2St
∂ε∂ε′

− κ′ (ε) χ̃ (q)m2 (ε, ε′)− κ′ (ε′) χ̃ (q)m1 (ε, ε′) + Stm12 (ε, ε′)

= m (ε, ε′)
∂2St
∂ε∂ε′

− θκ (ε)κ (ε)

ε
χ̃ (q)

m12 (ε, ε′) ε

θm (ε)
− θκ (ε′)κ (ε′)

ε′
χ̃ (q)

m12 (ε, ε′) ε′

θm (ε′)

+ Stm12 (ε, ε′)

≥ m (ε, ε′)
∂2St
∂ε∂ε′

+ [St − κ (ε)χ (q)− κ (ε′) χ̃ (q)]m12 (ε, ε′)

≥ 0

where the last second inequality applies θκ (ε) ≤ θm (ε), and the last inequality applies

∂2St
∂ε∂ε′

≥ 0 and St − κ (ε)χ (q)− κ (ε′) χ̃ (q) ≥ 0. Q.E.D.
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2.C.5 Derivation of Equation (2.14)

Following Üslü (2019), the planner’s current-value Hamiltonian can be written as

Hp
t ≡

∫
u (k) dF p

t (k)−
∫ ∫

χ [εpt (k) , qpt (k, k′)]m [εpt (k) , εpt (k′)] dF p
t (k′) dF p

t (k)

+

∫ ∫
m [εpt (k) , εpt (k′)] {V p

t [k + qpt (k, k′)]− V p
t (k)} dF p

t (k′) dF p
t (k)

+

∫ ∫
ηt (k, k′) [qpt (k, k′) + qpt (k′, k)] dF p

t (k′) dF p
t (k) . (2.56)

First-order conditions. First, take any optimal qet and

q̂t (k, k′) = qet (k, k′) + αq1 {V e
t (k) > V e

t (k′)} − αq1 {V e
t (k) < V e

t (k′)}

= qet (k, k′) + αq∆t (k, k′) ,

where αq is an arbitrary scalar. Second, take any optimal εet (k), an arbitrary admissible

deviation δt (k) and a scalar αε, let ε̂t (k) = εet (k)+αε ·δt (k). For small αq and αε, we obtain

up to second-order terms:

Hp
t (ε̂t, q̂t)−Hp

t (εet , q
e
t )

= −αε
∫ ∫ 

χ1 [εet (k) , qet (k, k′)]m [εet (k) , εet (k′)] δt (k)

+χ [εet (k) , qet (k, k′)]m1 [εet (k) , εet (k′)] δt (k)

+χ [εet (k) , qet (k, k′)]m2 [εet (k) , εet (k′)] δt (k′)

 dF p
t (k′) dF p

t (k)

+αε

∫ ∫  m1 [εet (k) , εet (k′)] δt (k)

+m2 [εet (k) , εet (k′)] δt (k′)

 {V p
t [k + qet (k, k′)]− V p

t (k)} dF p
t (k′) dF p

t (k)

−αq
∫ ∫

χ2 [εet (k) , qet (k, k′)]m [εet (k) , εet (k′)] ∆t (k, k′) dF p
t (k′) dF p

t (k)

+αq

∫ ∫
m [εet (k) , εet (k′)]V p′

t [k + qet (k, k′)] ∆t (k, k′) dF p
t (k′) dF p

t (k)

+αq

∫ ∫
ηt (k, k′) [∆t (k, k′) + ∆t (k′, k)] dF p

t (k′) dF p
t (k) .
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We can rewrite the above equation as

Hp
t (ε̂t, q̂t)−Hp

t (εet , q
e
t )

= αε

∫ ∫


m1 [εet (k) , εet (k′)] {V p
t [k + qet (k, k′)]− V p

t (k)}

+m2 [εet (k′) , εet (k)] {V p
t [k′ − qet (k, k′)]− V p

t (k′)}

−χ1 [εet (k) , qet (k, k′)]m [εet (k) , εet (k′)]

−χ [εet (k) , qet (k, k′)]m1 [εet (k) , εet (k′)]

−χ [εet (k′) ,−qet (k, k′)]m2 [εet (k′) , εet (k)]


δt (k) dF p

t (k′) dF p
t (k)

+
αq
2

∫ ∫
m [εet (k) , εet (k′)]

{
V p′
t [k + qet (k, k′)]− χ2 [εet (k) , qet (k, k′)]

}
∆t (k, k′)

×dF p
t (k′) dF p

t (k)

+
αq
2

∫ ∫
m [εet (k) , εet (k′)]

{
V p′
t [k′ + qet (k′, k)]− χ2 [εet (k′) , qet (k′, k)]

}
∆t (k′, k)

×dF p
t (k′) dF p

t (k)

= αε

∫ ∫


m1 [εet (k) , εet (k′)] {V p
t [k + qpt (k, k′)]− V p

t (k)}

+m1 [εet (k) , εet (k′)] {V p
t [k′ − qpt (k, k′)]− V p

t (k′)}

−χ1 [εet (k) , qpt (k, k′)]m [εet (k) , εet (k′)]

−χ [εet (k) , qpt (k, k′)]m1 [εet (k) , εet (k′)]

−χ [εet (k′) ,−qpt (k, k′)]m1 [εet (k) , εet (k′)]


δt (k) dF p

t (k′) dF p
t (k)

+
αq
2

∫ ∫
m [εet (k) , εet (k′)]

 V p′
t [k + qet (k, k′)]− V p′

t [k′ − qet (k, k′)]

−χ2 [εet (k) , qet (k, k′)] + χ2 [εet (k′) ,−qet (k, k′)]


×∆t (k, k′) dF p

t (k′) dF p
t (k) ,

where we apply ∆t (k, k′) + ∆t (k′, k) = 0 in the first and second equality and qet (k, k′) +

qet (k′, k) = 0 in the second equality.

If {εet , qet } is optimal, the above equation must be negative. Thus the integrand in the

second term must be zero everywhere. Then the FOC for qet (k, k′) becomes

V p′
t [k + qet (k, k′)]− V p′

t [k′ − qet (k, k′)]− χ2 [εet (k) , qet (k, k′)] + χ2 [εet (k′) ,−qet (k, k′)] = 0.
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In other words, qpt (k, k′) is the solution to

qpt (k, k′) = arg max
q
{V p

t (k + q) + V p
t (k′ − q)− χ (εet (k) , q)− χ (εet (k′) ,−q)} .

Moreover, for the FOC of εet , since δt (k) is an arbitrary admissible deviation, we must have

m1 [εet (k) , εet (k′)]

 V p
t [k + qpt (k, k′)]− V p

t (k)− χ [εet (k) , qpt (k, k′)]

+V p
t [k′ − qpt (k, k′)]− V p

t (k′)− χ [εet (k′) ,−qpt (k, k′)]


−χ1 [εet (k) , qpt (k, k′)]m [εet (k) , εet (k′)]
≤ 0, if εet (k) = 0,

= 0, if εet (k) ∈ (0, 1) ,

≥ 0, if εet (k) = 1.

,

Thus the constrained efficiency solution of εpt must satisfy

Γpt (εpt ) (k) ≡ arg max
ε∈[0,1]

{∫
Spt (k, k′, ε, εpt (k′))m [ε, εpt (k′)] dFt (k′)

}
,

where

Spt (k, k′, ε, ε′) = V p
t [k + qpt (k, k′)]− V p

t (k)− χ [ε, qpt (k, k′)]

+V p
t [k′ − qpt (k, k′)]− V p

t (k′)− χ [ε′,−qpt (k, k′)] .

2.C.6 Proof of Proposition 2.3

Proof. Denote vwt as the co-state to at, the Hamiltonian is thus given by

Hw
t ≡ u

(
at

1 + ρwt

)
− e−r(T+∆−t)dδt + vwt

(
ρ̇wt

1 + ρwt
at + dδt

)
. (2.57)
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The evolution of costate is given by rvwt − v̇wt =
∂Hwt
∂at

, i.e.

v̇wt = rvwt −
1

1 + ρwt
u′
(

at
1 + ρwt

)
− vwt

ρ̇wt
1 + ρwt

. (2.58)

The first order condition with respect to dδt is

vwt = e−r(T+∆−t). (2.59)

Since the first order condition is independent to at and δt, all banks must have the same

value of costate. But since the evolution of costate, 2.58, depends on at, the only possibility

is that all banks have the same at for all t > 0. This implies δt (a) is given by result (b), such

that they hold K units of reserve balance for all t > 0. Substituting (2.59) to the evolution

of costate, (2.58), we have

ρ̇wt = −er(T+∆−t)u′ (K) .

The solution to the above ODE is

ρwt = ρwT + er∆
[
er(T−t) − 1

] u′ (K)

r
.

Notice that at T the bank problem is

max
qT

{
U (k + qT )− e−r∆ (1 + ρwT ) qT

}
.

To yield k + qT = K, we have

ρwT = er∆U ′ (K)− 1.

Q.E.D.
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2.C.7 Proof of Proposition 2.4

Proof. [εt (k) = 0 is always an equilibrium] For any k and ε, if all the other banks choose

zero search intensity, then

∂
∫
St (k, k′, ε, 0)m (ε, 0) dFt (k′)

∂ε
=

∫
−κλ0 [(k′ − k)V ′′t (k)]2

4
[
κ (ε)− 1

2
(V ′′t (k) + V ′′t (k′))

]2dFt (k′) < 0.

This implies that the bank k’s optimal response is ε = 0. Thus εt (k) = 0 ∀k is a self-fulfilling

equilibrium.

[Possibility of multiple equilibria] To show that it is possible to have multiple equilibria

under some parameter conditions, we provide a necessary and sufficient condition for εt (k) =

1 ∀k to be an equilibrium. Suppose all the other banks choose search intensity εt = 1. Then

for any k and ε, we have

∂
∫
St (k, k′, ε, 1)m (ε, 1) dFt (k′)

∂ε

=

∫ [
k′ − k

2
V ′′t (k)

]2 (λ− λ0)κ− λ−λ0
2

[V ′′t (k) + V ′′t (k′)]− κλ0[
κ (ε+ 1)− 1

2
(V ′′t (k) + V ′′t (k′))

]2 dFt (k′)

=
(λ− λ0)κ− (λ− λ0)V ′′t (k)− κλ0

[κ (ε+ 1)− V ′′t (k)]2

(
V ′′t (k)

2

)2 ∫
(k′ − k)

2
dFt (k′) ,

where the second equality is because V ′′t (k) is a constant in k. Thus the sufficient and

necessary condition for εt (k) = 1 ∀k to be an equilibrium is that V ′′t (k) ≤ λ−2λ0
λ−λ0 κ.

[The largest equilibrium is either εt (k) = 0 ∀k or εt (k) = 1 ∀k] Let εmax
t (k) be the largest

equilibrium search profile. Denote ε̄t = supk {εmax
t (k)} and εt = infk {εmax

t (k)}. We first

prove ε̄t = εt by contradiction. Suppose ε̄t > εt, then ∂2St(k,k′,ε,ε′)m(ε,ε′)
∂ε∂ε′

> 0 implies

∂
∫
St (k, k′, εmax

t (k) , ε̄t)m (εmax
t (k) , ε̄t) dFt (k′)

∂ε
(2.60)

≥
∂
∫
St (k, k′, εmax

t (k) , εmax
t (k′))m (εmax

t (k) , εmax
t (k′)) dFt (k′)

∂ε
≥ 0
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for any k such that εmax
t (k) > 0. Note that for any k and ε,

∂
∫
St (k, k′, ε, ε̄t)m (ε, ε̄t) dFt (k′)

∂ε

=

∫ [
k′ − k

2
V ′′t (k)

]2 (λ− λ0)κ (ε̄t)
2 − λ−λ0

2
ε̄t [V ′′t (k) + V ′′t (k′)]− κλ0[

κ (ε+ ε̄t)− 1
2

(V ′′t (k) + V ′′t (k′))
]2 dFt (k′)

=
(λ− λ0)κ (ε̄t)

2 − (λ− λ0) ε̄tV
′′
t (k)− κλ0

[κ (ε+ ε̄t)− V ′′t (k)]2

(
V ′′t (k)

2

)2 ∫
(k′ − k)

2
dFt (k′) .

Since V ′′t (k) is negative and constant over k, and ε̄t ∈ [0, 1], then equation (2.60) implies

that 0 ≤ (λ− λ0)κ (ε̄t)
2 − (λ− λ0) ε̄tV

′′
t (k) − κλ0 ≤ (λ− λ0)κ − (λ− λ0)V ′′t (k) − κλ0 for

any k. Then we have

∂
∫
St (k, k′, ε, 1)m (ε, 1) dFt (k′)

∂ε
≥ 0 for any k and ε.

Thus there exists an equilibrium search profile where εt (k) ≡ 1. Apparently this search

profile dominates εmax
t (k), which is a contradiction.

Next we prove ε̄t = 0 or 1 by contradiction. Suppose not, i.e. ε̄t = εt = ε̂ ∈ (0, 1). Then

∂2St(k,k′,ε,ε′)m(ε,ε′)
∂ε∂ε′

> 0 implies that for any k, ε,

∂
∫
St (k, k′, ε, 1)m (ε, 1) dFt (k′)

∂ε

>
∂
∫
St (k, k′, ε, ε̂)m (ε, ε̂) dFt (k′)

∂ε
∝
∂
∫
St (k, k′, ε̂, ε̂)m (ε, ε̂) dFt (k′)

∂ε
= 0.

Thus there exists an equilibrium search profile where εt (k) ≡ 1, which is a contradiction.

Q.E.D.
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2.C.8 Proof of Proposition 2.5

Proof. Given {Ft}, the value function satisfying (2.8) is unique. Guess that

Vt (k) = −Htk
2 + Etk +Dt. (2.61)

Then we have

Vt (k + q)− Vt (k)− χ (ε, q) = [Et − 2Htk − (Ht + κε) q] q.

The bargaining solution thus solves

qt (k, k′, ε, ε′) = arg max
q
{Vt (k + q) + Vt (k′ − q)− χ (ε, q)− χ (ε′, q)} ,

= arg max
q

{
−Ht (k + q)2 −Ht (k′ − q)2 − κ (ε+ ε′) q2

}
,

=
Ht (k′ − k)

κ (ε+ ε′) + 2Ht

,

and

e−r(T+∆−t)Rt (k, k′, ε, ε′) =
1

2

 Vt [k + qt (k, k′, ε, ε′)]− Vt (k)− χ [ε, qt (k, k′, ε, ε′)]

Vt (k′)− Vt [k′ − qt (k, k′, ε, ε′)] + χ [ε′,−qt (k, k′, ε, ε′)]


=

1

2

 Et − 2Htk − (Ht + κε) qt (k, k′, ε, ε′)

+Et − 2Htk
′ + (Ht + κε′) qt (k, k′, ε, ε′)

 qt (k, k′, ε, ε′)

=

[
Et −Ht (k + k′)− κ (ε− ε′)

2
qt (k, k′, ε, ε′)

]
qt (k, k′, ε, ε′) .

Thus the bilateral Federal funds rate is

1 + ρt (k, k′, ε, ε′) =
Rt (k, k′, ε, ε′)

qt (k, k′, ε, ε′)
= er(T+∆−t)

[
Et −Ht (k + k′)− κ (ε− ε′)

2
qt (k, k′, ε, ε′)

]
.
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The trade surplus is given by

St (k, k′, ε, ε′) ≡ Vt [k + qt (k, k′, ε, ε′)]− Vt (k)− χ [ε, qt (k, k′, ε, ε′)]

+Vt [k′ − qt (k, k′, ε, ε′)]− Vt (k′)− χ [ε′,−qt (k, k′, ε, ε′)] ,

= −Ht

{[
k +

Ht (k′ − k)

κ (ε+ ε′) + 2Ht

]2

+

[
k′ − Ht (k′ − k)

κ (ε+ ε′) + 2Ht

]2

− k2 − k′2
}

−κ (ε+ ε′)

[
Ht (k′ − k)

κ (ε+ ε′) + 2Ht

]2

,

=
[Ht (k′ − k)]2

κ (ε+ ε′) + 2Ht

.

The equilibrium search profile is a fixed point function to the following functional:

Γt (εt) (k) ≡ arg max
ε∈[0,1]

{∫
St [k, k′, ε, εt (k′)]m [ε, εt (k′)] dFt (k′)

}
(2.62)

= arg max
ε∈[0,1]

{∫
[Ht (k′ − k)]2

κ [ε+ εt (k′)] + 2Ht

[(λ− λ0) εεt (k′) + λ0] dFt (k′)

}

= arg max
ε∈[0,1]

{
(Ht)

2

κ (ε+ εt) + 2Ht

[(λ− λ0) εεt + λ0]

∫
(k′ − k)

2
dFt (k′)

}

which only depends on Ht and Ft and, is independent of k and k′. The last equality is

guaranteed by Proposition 2.4. Thus, we write Γt (ε) (k) = Γ (ε;Ht), where the latter is

given by (2.20). The equilibrium search intensity at t is the fixed point of Γ (εt;Ht), which

is any element of Ω (h). The HJB equation becomes

r
[
−Htk

2 + Etk +Dt

]
= −Ḣtk

2 + Ėtk + Ḋt − a2k
2 + a1k

+
1

4

H2
t

κεt +Ht

[
(λ− λ0) ε2

t + λ0

] ∫
(k′ − k)

2
dFt (k′) .
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Matching the coefficients, we have

rHt = Ḣt + a2 −
1

4

H2
t

κεt +Ht

[
(λ− λ0) ε2

t + λ0

]
,

rEt = Ėt + a1 −
1

2

H2
tK

κεt +Ht

[
(λ− λ0) ε2

t + λ0

]
,

rDt = Ḋt +
1

4

H2
t

κεt +Ht

[
(λ− λ0) ε2

t + λ0

] ∫
k′2dFt (k′) ,

where the fact that VT (k) = −A2k
2 + A1k implies the terminal conditions

HT = A2, ET = A1, DT = 0.

Q.E.D.

2.C.9 Proof of Proposition 2.6

Proof. Notice that the first-order condition of bank k’s search intensity is

∂
∫
St (k, k′, ε, εt)m (ε, εt) dFt (k′)

∂ε

=
(λ− λ0)κ (εt)

2 + 2 (λ− λ0) εtHt − κλ0

[κ (ε+ ε̄t) + 2Ht]
2 (Ht)

2

∫
(k′ − k)

2
dFt (k′) .

Thus ε = 1 if (λ− λ0)κ (εt)
2 + 2 (λ− λ0) εtHt − κλ0 > 0. It implies that the largest

equilibrium satisfies

Γt (εt) (k)

 = 1, if Ht >
[λ0−(λ−λ0)]κ

2(λ−λ0)
;

0, otherwise.

By rearranging the terms, we obtain the proposition. Q.E.D.
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2.C.10 Proof of Lemma 2.2

Proof. We first derive the expressions of µ1, µ2, τ1 (H;A, u), J (t;A, u), and τ2 (H;A, u) by

solving the ODEs of Ht with a terminal value Hu = A under εt = 1 and εt = 0. Then we

characterize the equilibrium dynamics.

[Solve the ODE of Ht under εt = 1] If εt = 1, the law of motion of Ht is

Ḣt = rHt − a2 +
λ

4

H2
t

κ+Ht

=
(4r + λ)H2

t + 4 (κr − a2)Ht − 4κa2

4 (κ+Ht)

=
4r + λ

4 (κ+Ht)
(Ht − µ1) (Ht − µ2) , (2.63)

where µ1 and µ2 are the zero point of formula (4r + λ)H2
t + 4 (κr − a2)Ht − 4κa2 = 0, and

they are given by

µ1 ≡
1

2r + λ
2

{
− (κr − a2)−

[
(κr − a2)2 + a2κ (4r + λ)

]0.5}
,

µ2 ≡
1

2r + λ
2

{
− (κr − a2) +

[
(κr − a2)2 + a2κ (4r + λ)

]0.5}
.

Equation (2.63) can be written as

4r + λ

4
dt =

κ+Ht

(Ht − µ1) (Ht − µ2)
dHt

=
κ+ µ1

µ1 − µ2

· 1

Ht − µ1

dHt −
κ+ µ2

µ1 − µ2

· 1

Ht − µ2

dHt

Given a terminal value condition Hu = A, then Ht satisfies

(
r +

λ

4

)
(u− t) =

κ+ µ1

µ1 − µ2

· log

(
A− µ1

Ht − µ1

)
− κ+ µ2

µ1 − µ2

· log

(
A− µ2

Ht − µ2

)
.
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By rearraning the terms, we can write t as a function of Ht:

t = τ1 (Ht;A, u) = u−
(κ+ µ1) log

(
A−µ1
Ht−µ1

)
− (κ+ µ2) log

(
A−µ2
Ht−µ2

)
(
r + λ

4

)
(µ1 − µ2)

.

[Solve the ODE of Ht under εt = 0] If εt = 0, the law of motion of Ht is

Ḣt = rHt − a2 +
λ0

4
Ht =

(
r +

λ0

4

)
Ht − a2. (2.64)

Given a terminal value condition Hu = A, the solution to Ht is

Ht = J (t;A, u) =
a2

r + λ0
4

+

(
A− a2

r + λ0
4

)
e−(r+λ0

4 )(u−t).

Note that J (t;A, u) is monotone in t. Thus we can get the inverse function:

t = τ2 (H;A, u) = u− 1

r + λ0
4

log

A− a2
r+

λ0
4

H − a2
r+

λ0
4

 = u+
1

r + λ0
4

log

1− H − A
a2

r+
λ0
4

− A

 .

[Characterize the dynamics of εt and Ht] Since the terminal value of HT is fixed, we

characterize the time paths of εt and Ht inversely from T to 0. The characterization is

divided into the following cases.

Case 1.1: A2 ≥ η, Ḣt

∣∣∣
Ht=η,εt=1

> 0, Ḣt

∣∣∣
Ht=η,εt=0

> 0 and τ1 (Ht;A, u) > 0. In this

case, as t decreases from T , the equilibrium solution of εt and Ht is given by εt = 1 and

t = τ1 (Ht;A2, T ). Moreover, according to equation (2.63), Ḣt

∣∣∣
Ht=η,εt=1

> 0 guarantees

that Ht is decreasing as t goes from T to 0 before hitting η. According to the definition

of τ1 (Ht;A, u), the time of Ht hitting η is τ1 (η;A2, T ). A positive τ1 (η;A2, T ) means that

Ht decreases to η before time 0. The condition Ḣt

∣∣∣
Ht=η,εt=0

> 0 guarantees that after Ht

hits η, Ht continues to decrease as t goes to 0 and εt = 0 for t < τ1 (η;A2, T ). Note that
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the necessary and sufficient parameter conditions for Ḣt

∣∣∣
Ht=η,εt=1

> 0 and Ḣt

∣∣∣
Ht=η,εt=0

> 0

are a2 < rη + λ
4
η2

κ+η
=
(
r − λ

4
+ λ0

2

)
η and a2 <

(
r + λ0

4

)
η, respectively. Since a2 ≥ 0, then

we have
(
r + λ0

4

)
η >

(
r − λ

4
+ λ0

2

)
η. Therefore, when A2 ≥ η, a2 <

(
r − λ

4
+ λ0

2

)
η and

τ1 (η;A2, T ) > 0, the paths of εt and Ht are

εt =

 1, if t ≥ τ1 (η;A2, T ) ;

0, otherwise.

Ht =

 τ−1
1 (t;A2, T ) , if t ≥ τ1 (η;A2, T ) ;

J [t; η, τ1 (η;A2, T )] , otherwise.

Case 1.2: A2 ≥ η, Ḣt

∣∣∣
Ht=η,εt=1

> 0, Ḣt

∣∣∣
Ht=η,εt=0

≤ 0 and τ1 (Ht;A, u) > 0. In this case,

when hitting η at τ1 (η;A2, T ), Ht will stay at η until time 0. This is because when Ht < η,

Ḣt

∣∣∣
εt=0

< Ḣt

∣∣∣
Ht=η,εt=0

≤ 0. Therefore, when A2 ≥ η, a2 ∈
[(
r + λ0

4

)
η,
(
r − λ

4
+ λ0

2

)
η
)

and

τ1 (η;A2, T ) > 0, the paths of εt and Ht are εt = 1 for all t ∈ [0, T ] and

Ht =

 τ−1
1 (t;A2, T ) , if t ≥ τ1 (η;A2, T ) ;

η, otherwise.

However, this case doesn’t exist due to the following reason. If η > 0, then we have(
r + λ0

4

)
η >

(
r − λ

4
+ λ0

2

)
η, which implies that the condition a2 ∈

[(
r + λ0

4

)
η,
(
r − λ

4
+ λ0

2

)
η
)

is an empty set. If η ≤ 0, then the equilibrium path contradicts with that Ht > 0. Combining

Case 1.1 and 1.2, we obtain Case (a-i) of the lemma.

Case 1.3: (1) A2 ≥ η; (2) Ḣt

∣∣∣
Ht=η,εt=1

≤ 0 or τ1 (η;A2, T ) ≤ 0. This is the counterpart

of Case 1.1 and 1.2. If τ1 (η;A2, T ) ≤ 0, then Ht will never hit η before the time goes to

zero. If Ḣt

∣∣∣
Ht=η,εt=1

≤ 0, then µ2 ≥ η and Ht monotonically converges to µ2 before hitting η.

Both conditions imply that εt = 1 for all t ∈ [0, T ] and Ht = τ−1
1 (t;A2, T ). This establishes

Case (a-ii) in the lemma.
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Case 2.1: A2 < η, Ḣt

∣∣∣
Ht=η,εt=0

< 0, Ḣt

∣∣∣
Ht=η,εt=1

< 0 and τ2 (η;A2, T ) > 0. In this case,

as t decreases from T , the equilibrium solution of εt and Ht is εt = 0 and Ht = J (t;A2, T ).

Moreover, according to equation (2.64), Ḣt

∣∣∣
Ht=η,εt=0

< 0 guarantees that Ht is increasing as

t goes from T to 0 before hitting η. According to the definition of τ2 (Ht;A, u), the time of Ht

hitting η is τ2 (η;A2, T ). A positive τ2 (η;A2, T ) means that Ht increases to η before time 0.

The condition Ḣt

∣∣∣
Ht=η,εt=1

< 0 guarantees that after Ht hits η, Ht continues to increase as t

goes to 0 and εt = 1 for t ≤ τ2 (η;A2, T ). The necessary and sufficient parameter conditions

for Ḣt

∣∣∣
Ht=η,εt=0

< 0 and Ḣt

∣∣∣
Ht=η,εt=1

< 0 are a2 >
(
r + λ0

4

)
η and a2 >

(
r − λ

4
+ λ0

2

)
η,

respectively. Since λ > λ0 and η > A2 > 0, we have
(
r + λ0

4

)
η >

(
r − λ

4
+ λ0

2

)
η. Therefore,

when A2 < η, a2 >
(
r + λ0

4

)
η and τ2 (η;A2, T ) > 0, the paths of εt and Ht are

εt =

 0, if t > τ2 (η;A2, T ) ;

1, otherwise.

Ht =

 J (t;A2, T ) , if t ≥ τ2 (η;A2, T ) ;

τ−1
1 (t; η, τ2 (η;A2, T )) , otherwise.

Case 2.2: A2 < η, Ḣt

∣∣∣
Ht=η,εt=0

< 0, Ḣt

∣∣∣
Ht=η,εt=1

≥ 0 and τ2 (η;A2, T ) > 0. In this case,

when hitting η at τ2 (η;A2, T ), Ht will stay at η until time 0. This is because when Ht > η,

Ḣt

∣∣∣
εt=1

> Ḣt

∣∣∣
Ht=η,εt=1

≥ 0. Therefore, when A2 < η, a2 ∈
((
r + λ0

4

)
η,
(
r − λ

4
+ λ0

2

)
η
]

and

τ2 (η;A2, T ) > 0, the paths of εt and Ht are

εt =

 0, if t > τ2 (η;A2, T ) ;

1, otherwise.

Ht =

 J (t;A2, T ) , if t ≥ τ2 (η;A2, T ) ;

η, otherwise.
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However, since
(
r + λ0

4

)
η >

(
r − λ

4
+ λ0

2

)
η, this case doesn’t exist. Combining Case 2.1 and

2.2, we obtain Case (b-i) of the lemma.

Case 2.3: (1) A2 < η; (2) Ḣt

∣∣∣
Ht=η,εt=0

≥ 0 or τ2 (η;A2, T ) ≤ 0. This is the counterpart

of Case 2.1 and 2.2. If τ2 (η;A2, T ) ≤ 0, then Ht will never hit η before the time goes to zero.

If Ḣt

∣∣∣
Ht=η,εt=0

≥ 0, then a2
r+

λ0
4

≤ η and Ht monotonically converges to a2
r+

λ0
4

before hitting η.

Both conditions imply that εt = 0 for all t ∈ [0, T ] and Ht = J (t;A2, T ). This establishes

Case (b-ii) of the lemma. Q.E.D.

2.C.11 Proof of Lemma 2.3

Proof. Plug the closed-form solution (2.24) and εt (k) ≡ εt into the KFE (2.9), we can get

Ḟt (kw) = m (εt, εt)


∫
k>kw

∫
1
{
k + Ht(k′−k)

2κε+2Ht
≤ kw

}
dFt (k′) dFt (k)

−
∫
k≤kw

∫
1
{
k + Ht(k′−k)

2κε+2Ht
> kw

}
dFt (k′) dFt (k)


= m (εt, εt)


∫
k>kw

Ft

[
2
(

1 + κεt
Ht

)
kw −

(
1 + 2κεt

Ht

)
k
]
dFt (k)

−
∫
k≤kw

[
1− Ft

[
2
(

1 + κεt
Ht

)
kw −

(
1 + 2κεt

Ht

)
k
]]
dFt (k)


= m (εt, εt)

[∫
Ft

[
2

(
1 +

κεt
Ht

)
k −

(
1 +

2κεt
Ht

)
k′
]
dFt (k′)− Ft (k)

]
.

Then the probability density function solves the following PDE:

ḟt (k) = m (εt, εt)

[
2

(
1 +

κεt
Ht

)∫
ft

[
2

(
1 +

κεt
Ht

)
k −

(
1 +

2κεt
Ht

)
k′
]
ft (k′) dk′ − ft (k)

]
.

(2.65)

To characterize the dynamics of moment function, we take advantage of the Fourier trans-

form. We follow the definition of Bracewell (2000) for the Fourier transform:

h∗ (ν) =

∫
e−i2πνxh (x) dx,
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where h∗ (·) is the Fourier transform of the function h (·).

Let f ∗t (·) be the Fourier transform of the equilibrium pdf ft (·). Then the Fourier trans-

form of equation (2.65) is

ḟ ∗t (ν) = m (εt, εt)

[
f ∗t

(
Ht

2 (Ht + κεt)
ν

)
f ∗t

(
Ht + 2κεt

2 (Ht + κεt)
ν

)
− f ∗t (ν)

]
. (2.66)

The PDE (2.66) cannot be solved in closed form. However, it facilitates the calculation fo

the moment function which is the derivative of the transform, with respect to ν, at ν = 0.

Let us denote f
∗(n)
t (ν) be the n-th derivative of f ∗t (ν) with respect to ν. By taking n-th

derivative with respect to ν to both sides of (2.66), we can obtain

ḟ
∗(n)
t (ν) (2.67)

= m (εt, εt)

 ∑n
i=0C

i
n

(Ht)
n−i(Ht+2κεt)

i

2n(Ht+κεt)
n f

∗(n−i)
t

(
Ht

2(Ht+κεt)
ν
)
f
∗(i)
t

(
Ht+2κεt

2(Ht+κεt)
ν
)

−f ∗(n)
t (ν)

 .
Evaluating the above equation at ν = 0, we can get

Ṁn,t = m (εt, εt)

[
n∑
i=0

Ci
n

(Ht)
n−i (Ht + 2κεt)

i

2n (Ht + κεt)
n Mn−i,tMi,t −Mn,t

]
.

In particular, by definition we have M0,t =
∫
ft (k) dk = 1 and M1,t =

∫
kft (k) dk = K.

Moreover, the second moment of reserve distribution satisfies

Ṁ2,t = m (εt, εt)

[
−Ht (Ht + 2κεt)

2 (Ht + κεt)
2 M2,t +

Ht (Ht + 2κεt)

2 (Ht + κεt)
2 K2

]
.

Solving this first-order ODE gives rise to the solution (2.33). Q.E.D.
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2.C.12 Derivations of positive measures of liquidity

Price impact. Note that the terms of trade between k and k′ are

1 + ρt (k, k′) = er(T+∆−t) [Et −Ht (k + k′)] ,

qt (k, k′) =
Ht (k′ − k)

2 (κεt +Ht)
⇒ k′ = k +

2 (κεt +Ht)

Ht

qt (k, k′) .

Therefore, given k and q, we can infer the reserve holding of the counterparty k′ (k, q). Thus

the Federal funds rate of a bank k that trades reserves q is given by

log (1 + ρt (k, q)) = r (T + ∆− t) + log [Et −Ht (k + k′ (k, q))]

= r (T + ∆− t) + log [Et − 2kHt] + log

[
1− 2 (κεt +Ht)

Et − 2kHt

q

]
≈ r (T + ∆− t) + log [V ′t (k)]− 2 (κεt +Ht)

V ′t (k)
q

= r (T + ∆− t) + log [V ′t (k)]− 2 (κεt +Ht)

−2Ht

q

k

kV ′′t (k)

V ′t (k)

= r (T + ∆− t) + log [V ′t (k)] +
kV ′′t (k)

V ′t (k)
· q
k
· 1

1−
(

1− V̄ ′′

2κεt

)−1

Denote θV,t (k) ≡ −kV ′′t (k)

V ′t (k)
and ωt ≡

(
1− V̄ ′′

2κεt

)−1

, we get equation (2.34).

Return reversal. The average Federal funds rate is

1 + %t = er(T+∆−t) [Et − 2HtK] , (2.68)

then the difference between individual Federal funds rate and the average Federal funds rate

is

ρt (k, k′)− %t = er(T+∆−t) (2K − k − k′)Ht.
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Differentiating the rates with respect to time:

%̇t = er(T+∆−t)
(
Ėt − 2KḢt

)
− r (1 + %t) = er(T+∆−t) (2a2K − a1) , (2.69)

ρ̇t (k, k′) = er(T+∆−t)
[
Ėt − Ḣt (k + k′)

]
− r (1 + ρt (k, k′))

= er(T+∆−t)
[
−a1 + (k + k′) a2 +

2K − k − k′

4

H2
t

κεt +Ht

[
(λ− λ0) ε2

t + λ0

]]
.

This implies

d

dt
[ρt (k, k′)− %t] = er(T+∆−t) (2K − k − k′)

[
−a2 +

1

4

H2
t

κεt +Ht

[
(λ− λ0) ε2

t + λ0

]]
= −

[
a2

Ht

− 1

4

Ht

κεt +Ht

[
(λ− λ0) ε2

t + λ0

]]
[ρt (k, k′)− %t] .

Price dispersion. The standard deviation of the bilateral Federal funds rates is

σρ,t =

{∫ ∫
[ρt (k, k′)− %t]2 dFt (k′) dFt (k)

}1/2

= er(T+∆−t)Ht

[∫ ∫
(2K − k − k′)2

dFt (k′) dFt (k)

]1/2

= er(T+∆−t)Ht

{∫ ∫ [
(K − k)2 + (K − k′)2

+ 2 (K − k) (K − k′)
]
dFt (k′) dFt (k)

}1/2

= er(T+∆−t)Ht ·
√

2σk,t.

This gives our measure of price dispersion.
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Intermediation markup. By definition, the rate spread is

∆ρ,t (k, q)

≡
∫
ρt (k + q, k′) dFt (k′)− ρt (k, q)

=

∫
er(T+∆−t) [Et −Ht (k + q + k′)] dFt (k′)− er(T+∆−t)

[
Et −Ht

(
k + k +

2 (κεt +Ht)

Ht

q

)]
= er(T+∆−t) [−Ht (k + q +K) + 2kHt + 2 (κεt +Ht) q]

= er(T+∆−t) [−Ht (K − k) + (2κεt +Ht) q] .

Thus the intermediation markup is given by taking ∆ρ,t (k, q) differentiation with respect

to q.

Unilization rate of trade opportunities. By definition,

URt =

∫
k

∫
k′≥km (εt, εt) qt (k, k′) dFt (k′) dFt (k)

TOt

=

∫
k

∫
k′≥k

Ht(k′−k)
2(κεt+Ht)

[(λ− λ0) ε2
t + λ0] dFt (k′) dFt (k)

TOt

=
Ht [(λ− λ0) ε2

t + λ0]

2 (κεt +Ht)

∫
k

∫
k′≥k (k′ − k) dFt (k′) dFt (k)

TOt

=
Ht [(λ− λ0) ε2

t + λ0]

κεt +Ht

.

Extensive margins. We provide a heuristic approach to derive the dynamics of the ex-

tensive margins. Let ∆ be a small time length, and denote mt ≡ m (εt, εt) as the equilibrium

matching rate. Then by definition,

1− P tr
t (k) = (1−∆ ·mt)

[
1− P tr

t+∆ (k)
]

+ ∆ ·mt · 0,

where 1−P tr
t (k) denotes the probability of no trade over [t, T ] conditional on kt = k, 1−∆·mt

represents the probability of no meetings during [t, t+ ∆], and 0 means the probability of

190



no trade is 0 given a meeting arrives at t. Take ∆→ 0, we can obtain

Ṗ tr
t (k) = lim

∆→0

P tr
t+∆ (k)− P tr

t (k)

∆
= −mt

[
1− P tr

t (k)
]
.

The evolution of P b
t (k) and P s

t (k) can be derived similarly as follows.

1− P b
t (k) = (1−∆ ·mt)

[
1− P b

t+∆ (k)
]

+ ∆ ·mt

∫
k′≤k

[
1− P b

t+∆ (k + qt (k, k′))
]
dFt (k′) ,

1− P s
t (k) = (1−∆ ·mt)

[
1− P s

t+∆ (k)
]

+ ∆ ·mt

∫
k′≥k

[
1− P s

t+∆ (k + qt (k, k′))
]
dFt (k′) .

Take ∆→ 0 gives

Ṗ b
t (k) = −mt [1− Ft (k)]

[
1− P b

t (k)
]
−mt

∫
k′≤k

[
P b
t (k + qt (k, k′))− P b

t (k)
]
dFt (k′) ,

Ṗ s
t (k) = −mtFt (k) [1− P s

t (k)]−mt

∫
k′≥k

[P s
t (k + qt (k, k′))− P s

t (k)] dFt (k′) .

Then the evolution of P int
t (k) is

Ṗ int
t (k) = Ṗ b

t (k) + Ṗ s
t (k)− Ṗ tr

t (k)

= −mt

∫
k′≤k

[
P b
t (k + qt (k, k′))− P int

t (k)
]
dFt (k′)

−mt

∫
k′≥k

[
P s
t (k + qt (k, k′))− P int

t (k)
]
dFt (k′) .

Intensive margins. We provide an heuristic derivation of the absolute trades and net

rades. First, for the individual absolute trades, let ∆ be an infinitesimal time period. Then

by the property of Poisson process,

Qt (k) = ∆ ·m (εt, εt) ·
[∫

k′
|qt (k, k′)| dFt (k′) +

∫
k′
Qt+∆ (k + qt (k, k′)) dFt (k′)

]
+ [1−∆ ·m (εt, εt)]Qt+∆ (k) .
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Thus the aggregate absolute trades is given by

Qt =

∫
Qt (k) dFt (k)

= ∆ ·m (εt, εt) ·
∫
k

∫
k′
|qt (k, k′)| dFt (k′) dFt (k)

+

∫
k

{
∆ ·m (εt, εt) ·

∫
k′
Qt+∆ (k + qt (k, k′)) dFt (k′) + [1−∆ ·m (εt, εt)]Qt+∆ (k)

}
×dFt (k)

= ∆ ·m (εt, εt) ·
∫
k

∫
k′
|qt (k, k′)| dFt (k′) dFt (k) +Qt+∆,

where the last equality is given by the definition of Qt (k) and Qt. Taking ∆ → 0, we can

obtain the following ODEs for Qt (k) and Qt:

Q̇t (k) = lim
∆→0

Qt+∆ (k)−Qt (k)

∆

= −m (εt, εt) ·
[∫

k′
|qt (k, k′)| dFt (k′) +

∫
k′
Qt+∆ (k + qt (k, k′)) dFt (k′)

]
+m (εt, εt)Qt (k) ,

and

Q̇t = lim
∆→0

Qt+∆ −Qt

∆

= −m (εt, εt) ·
∫
k

∫
k′
|qt (k, k′)| dFt (k′) dFt (k)

= −m (εt, εt)
Ht

2 (κεt +Ht)

∫
k

∫
k′
|k′ − k| dFt (k′) dFt (k) .

This implies

Q =

∫ T

0

m (εt, εt)
Ht

2 (κεt +Ht)

(∫
k

∫
k′
|k′ − k| dFt (k′) dFt (k)

)
dt. (2.70)
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Second, for the individual net Federal funds purchase, it satisfies

Lt (k) = ∆ ·mt

∫
Ht (k′ − k)

2 (κεt +Ht)
dFt (k′) + ∆ ·mt

∫
Lt+∆ (k + qt (k, k′)) dFt (k′)

+ (1−∆ ·mt)Lt+∆ (k)

= ∆ ·mt
Ht (K − k)

2 (κεt +Ht)
+ ∆ ·mt

∫
Lt+∆ (k + qt (k, k′)) dFt (k′)

+ (1−∆ ·mt)Lt+∆ (k) .

We guess and verify that Lt (k) = Θ1,t−Θ2,tk. Plugging the guessed formula into the above

equation and matching the coefficients, we can get

Θ̇1,t

K
= Θ̇2,t =

mtHt

2 (κεt +Ht)
(Θ2,t − 1) .

With terminal condition Θ1,T = Θ2,T = 0, we have the following closed-form solution:

Θ2,t = 1− exp

[
−
∫ T

t

mzHz

2 (κεz +Hz)
dz

]
,

Θ1,t = K ·Θ2,t.

Thus the individual net trades is given by

Lt (k) =

{
1− exp

[
−
∫ T

t

mzHz

2 (κεz +Hz)
dz

]}
(K − k) ,

and the aggregate net trades is

L =

∫
|L0 (k)| dF0 (k) =

{
1− exp

[
−
∫ T

0

mzHz

2 (κεz +Hz)
dz

]}∫
|K − k| dF0 (k) . (2.71)

Federal funds rate. The average Federal funds rate at t is given by equation (2.68). It

satisfies the ODE (2.69) with terminal condition 1 + %T = er∆ [A1 − 2A2K], which has the
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following closed-form solution:

1 + %t = er∆ (A1 − 2A2K)− 2a2K − a1

r

[
er(T+∆−t) − er∆

]
= er∆

[
1 + γ +

(k+ − 1) iDW − (k− − 1) iER

k+ − k−

]
− 2a2K − a1

r

[
er(T+∆−t) − er∆

]
= er∆

[
1 + γ + iER +

k+ − 1

k+ − k−
∆i

]
− 2a2K − a1

r

[
er(T+∆−t) − er∆

]
.

2.C.13 Proof of Proposition 2.7

Proof.

Comparative statics for the length of search. Note that the length of search in this

case is given by

τ2 (η;A2, T ) = T +
1

r + λ0
4

log

1− η − A2
a2

r+
λ0
4

− A2

 . (2.72)

Then the first column of table in the proposition is given by differentiating (2.72). That is,

∂τ2 (η;A2, T )

∂iER
=

1

r + λ0
4

1

1− η−A2
a2

r+
λ0
4

−A2

a2
r+

λ0
4

− η(
a2

r+
λ0
4

− A2

)2

[
− 1

2K (k+ − k−)

]
< 0,

∂τ2 (η;A2, T )

∂iDW
=

1

r + λ0
4

1

1− η−A2
a2

r+
λ0
4

−A2

a2
r+

λ0
4

− η(
a2

r+
λ0
4

− A2

)2

[
1

2K (k+ − k−)

]
> 0,

∂τ2 (η;A2, T )

∂K
=

1

r + λ0
4

1

1− η−A2
a2

r+
λ0
4

−A2

a2
r+

λ0
4

− η(
a2

r+
λ0
4

− A2

)2

[
− iDW − iER

2K2 (k+ − k−)

]
< 0,

∂τ2 (η;A2, T )

∂κ
=

1

r + λ0
4

1

1− η−A2
a2

r+
λ0
4

−A2

− 1
a2

r+
λ0
4

− A2

[
λ

2 (λ− λ0)
− 1

] < 0,
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∂τ2 (η;A2, T )

∂λ0

= − 1

4
(
r + λ0

4

)2 log

1− η − A2
a2

r+
λ0
4

− A2



+
1

r + λ0
4

1

1− η−A2
a2

r+
λ0
4

−A2

−
κλ

2(λ−λ0)2

(
a2

r+
λ0
4

− A2

)
+ (η − A2) a2

4(r+λ0
4 )

2(
a2

r+
λ0
4

− A2

)2


< 0,

∂τ2 (η;A2, T )

∂λ
=

1

r + λ0
4

1

1− η−A2
a2

r+
λ0
4

−A2

1
a2

r+
λ0
4

− A2

κλ0

2 (λ− λ0)2 > 0.

Comparative statics of |qt (k, k′)|. Note that |qt (k, k′)| =
∣∣∣ Ht(k′−k)

2(κεt+Ht)

∣∣∣, and qt (k, k′) = k′−k
2

for any t > τ2 (η;A2, T ). Thus we focus on the comparative statics over t < τ2 (η;A2, T ).

The comparative statics with respect to iER, iDW and K are given by differentiating Ht with

respect to the terminal condition HT = A2. Note that Ht is monotonically decreasing in

time in this case, and solving Ht backwards implies that increasing A2 will shift the path of

Ht upward. Since ∂A2

∂iER
< 0, ∂A2

∂iDW
> 0 and ∂A2

∂K
< 0, then we must have ∂Ht

∂iER
< 0, ∂Ht

∂iDW
> 0

and ∂Ht
∂K

< 0, which gives the results in the table.

To obtain the comparative statics of |qt (k, k′)| with respect to κ, denote q̃t ≡ Ht
κεt+Ht

.

When εt = 1,
·
q̃t = q̃t (1− q̃t)

[
r − a2

κ

(
1

q̃t
− 1

)
+
λ

4
q̃t

]
,

with
·
q̃t < 0, ∂

·
q̃t
∂κ

> 0. Moreover, εt = 1 iff q̃t ≥ η
κ+η

= 2λ0
λ
− 1. This implies that over

t ∈ [0, τ2 (η;A2, T )], the path of q̃t decreases slower and reaches 2λ0
λ
− 1 under a larger κ.

Therefore, for any t < τ2 (η;A2, T ), |qt (k, k′)| decreases in κ.

For the comparative statics of |qt (k, k′)| with respect to λ0, note that ∂η
∂λ0

> 0, ∂τ2(η;A2,T )
∂λ0

<

0, ∂J(t;A2,T )
∂λ0

< 0 and
∂ Ḣt|

εt=1

∂Ht
> 0. Moreover, for any Ht ∈ [η, µ2], we have Ḣt

∣∣∣
εt=1

< Ḣt

∣∣∣
εt=0

.

Therefore, when t > τ2 (η;A2, T ), we have ∂Ht
∂λ0

< 0; when t < τ2 (η;A2, T ), Ht decreases

slower and reaches a larger η. Solving the ODE of Ht backwards implies that Ht decreases
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in λ0 for any t < τ2 (η;A2, T ). Thus |qt (k, k′)| also decreases in λ0 for any t < τ2 (η;A2, T ).

For the comparative statics of |qt (k, k′)| with respect to λ, note that when t > τ2 (η;A2, T ),

εt, qt (k, k′) and Ht are all independent of λ. So we focus on the comparative statics on

t < τ2 (η;A2, T ). First, we show that Ht is concave in t on t < τ2 (η;A2, T ). To see this, note

that when εt = 1, ∂Ḣt
∂Ht

> 0 for any Ht ≥ 0. Combining with that the equilibrium Ḣt < 0 for

any t, it follows that Ḧt = ∂Ḣt
∂Ht

Ḣt < 0 on t < τ2 (η;A2, T ).

Next, pick any λ′ > λ and we use x′ to denote the value of an endogenous variable x

under λ′. According to the previous results, we have τ ′2 (η;A2, T ) > τ2 (η;A2, T ) and µ′2 < µ2.

The concavity of Ht in t, and ∂Ḣt
∂λ

> 0 guarantee that Ht|λ′ interacts with Ht|λ at most once

on t < τ ′2 (η;A2, T ).

Next, simple algebra shows that Ḣτ ′2(η;A2,T )−

∣∣∣
λ′
< Ḣτ ′2(η;A2,T )−

∣∣∣
λ
. Since Hτ ′2(η;A2,T )

∣∣
λ′

=

Hτ ′2(η;A2,T )

∣∣
λ
, it follows that Ht|λ′ > Ht|λ in the left neighborhood of τ ′2 (η;A2, T ). Moreover,

limt→−∞ Ht|λ′ = µ′2 < µ2 = limt→−∞ Ht|λ, thus there exists a unique point t̂ < τ ′2 (η;A2, T )

such that Ht|λ′ > Ht|λ for t ∈
(
t̂, τ ′2 (η;A2, T )

)
, and Ht|λ′ < Ht|λ for t < t̂. Since the ODE of

Ḣt is autonomous, then τ ′2 (η;A2, T )− t̂ is independent of T . Since τ ′2 (η;A2, T ) is increasing

in T , it follows that t̂ < 0 if and only if T is smaller than a threshold value T̂ . Given λ and

λ′, we can define T̂ by setting t̂ = 0. The monotonicity of τ ′2 (η;A2, T ) in T guarantees the

uniqueness of T̂ . Therefore, when T is small enough, the bilateral trade size |qt (k, k′)| is

increasing in λ for t < τ2 (η;A2, T ).

Comparative statics of L0 (k) and ∂L0(k)
∂k

. The solution (2.38) to Lt (k) implies that it

suffices to show the comparative statics of Φ ,
∫ T

0
mtHt

2(κεt+Ht)
dt. Note that

Φ =

∫ T

0

mtHt

2 (κεt +Ht)
dt =

λ

2

∫ τ2(η;A2,T )

0

Ht

κ+Ht

dt+
λ0

2
[T − τ2 (η;A2, T )] .
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Thus

∂Φ

∂A2

=

(
λ

2

Hτ2

κ+Hτ2

− λ0

2

)
∂τ2

∂A2

+
λ

2

∫ τ2

0

κ

(κ+Ht)
2

∂Ht

∂A2

dt

= −λ− λ0

2

∂τ2

∂A2

+
λ

2

∫ τ2

0

κ

(κ+Ht)
2

(
− ∂τ2/∂A2

∂τ1 (Ht; η, τ2) /∂Ht

)
dt

= −λ− λ0

2

∂τ2

∂A2

+
λ

2

∂τ2

∂A2

∫ τ2

0

κ

(κ+Ht)
2

(
−Ḣt

)
dt

=

{
−λ− λ0

2
+
λ

2

[
κ

(κ+Hτ2)
− κ

(κ+H0)

]}
∂τ2

∂A2

=

(
λ

2

H0

H0 + κ
− λ0

2

)
∂τ2

∂A2

.

Since ∂τ2
∂A2

> 0, then ∂Φ
∂A2

< 0 if and only if H0 <
λ0

λ−λ0κ. Since HT = A2 < η < λ0
λ−λ0κ, and

Ht is decreasing over t, then ∂Φ
∂A2

< 0 if and only if T is sufficiently small. Since we assume

a small T , we can get that

∂L0 (k)

∂iER
∝ (K − k)

∂Φ

∂A2

∂A2

∂iER
⇒ sgn

(
∂L0 (k)

∂iER

)
= sgn (K − k) ,

∂L0 (k)

∂iDW
∝ (K − k)

∂Φ

∂A2

∂A2

∂iDW
⇒ sgn

(
∂L0 (k)

∂iDW

)
= sgn (k −K) ,

∂2L0 (k)

∂k∂iER
∝ − ∂Φ

∂A2

∂A2

∂iER
< 0,

∂2L0 (k)

∂k∂iDW
∝ − ∂Φ

∂A2

∂A2

∂iDW
> 0.

For the comparative statics of Φ w.r.t. κ, note that

∂Φ

∂κ
=

(
λ

2

Hτ2

κ+Hτ2

− λ0

2

)
∂τ2

∂κ
+
λ

2

∫ τ2

0

∂q̃t
∂κ

dt

= −λ− λ0

2

∂τ2

∂κ
+
λ

2

∫ τ2

0

∂q̃t
∂κ

dt.

The first term is positive and the second term is negative.Since τ2 increases in T , then the
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first term dominates under a small T . Thus when T is small,

∂L0 (k)

∂κ
∝ (K − k)

∂Φ

∂κ
⇒ sgn

(
∂L0 (k)

∂κ

)
= sgn (K − k) ,

∂2L0 (k)

∂k∂κ
∝ −∂Φ

∂κ
< 0.

For the comparative statics of Φ w.r.t. λ0, we have

∂Φ

∂λ0

=

(
λ

2

Hτ2

κ+Hτ2

− λ0

2

)
∂τ2

∂λ0

+
1

2
[T − τ2 (η;A2, T )] +

λ

2

∫ τ2

0

∂q̃t
∂λ0

dt

= −λ− λ0

2

∂τ2

∂λ0

+
1

2
[T − τ2 (η;A2, T )] +

λ

2

∫ τ2

0

∂q̃t
∂λ0

dt,

where the first two terms are positive and the third term is negatve. Thus when T is small,

we have ∂Φ
∂λ0

> 0, which implies

∂L0 (k)

∂λ0

∝ (K − k)
∂Φ

∂λ0

⇒ sgn

(
∂L0 (k)

∂λ0

)
= sgn (K − k) ,

∂2L0 (k)

∂k∂λ0

∝ − ∂Φ

∂λ0

< 0.

For the comparative statics of Φ w.r.t. λ, we have

∂Φ

∂λ
=

(
λ

2

Hτ2

κ+Hτ2

− λ0

2

)
∂τ2

∂λ
+

1

2

∫ τ2

0

Ht

κ+Ht

dt+
λ

2

∫ τ2

0

∂q̃t
∂λ

dt

= −λ− λ0

2

∂τ2

∂λ
+

1

2

∫ τ2

0

Ht

κ+Ht

dt+
λ

2

∫ τ2

0

∂q̃t
∂λ

dt,

where the first term is negative and the last two terms are positive. When T is small, the

first term dominates, thus we have ∂Φ
∂λ
< 0. This implies

∂L0 (k)

∂λ
∝ (K − k)

∂Φ

∂λ
⇒ sgn

(
∂L0 (k)

∂λ

)
= sgn (k −K) ,
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∂2L0 (k)

∂k∂λ
∝ −∂Φ

∂λ
> 0.

For the comparative statics of Φ w.r.t. K, we have ∂Φ
∂K

= ∂Φ
∂A2

∂A2

∂K
> 0, and

∂L0 (k)

∂K
= 1− exp (−Φ) + exp (−Φ)

∂Φ

∂K
(K − k) ,

∂2L0 (k)

∂k∂K
∝ − ∂Φ

∂A2

∂A2

∂K
< 0.

This implies that

∂L0 (k)

∂K

 < 0, if k > K + exp(Φ)−1
∂Φ/∂K

,

> 0, otherwise.

Comparative statics of ρt (k, k′). Using equation (2.21) and (2.22), we have

Et = e−r(T−t)ET +

∫ T

t

e−r(s−t)
{
a1 −

K

2
· H

2
s [(λ− λ0) ε2

s + λ0]

κεs +Hs

}
ds,

Ht = e−r(T−t)HT +

∫ T

t

e−r(s−t)
{
a2 −

1

4
· H

2
s [(λ− λ0) ε2

s + λ0]

κεs +Hs

}
ds.

Then we can write ρt (k, k′) as

ρt (k, k′) = er(T+∆)
{
e−rT [ET − (k + k′)HT ] (2.73)

+

∫ T

t

e−rs
[
a1 − (k + k′) a2 +

k + k′ − 2K

4
· H

2
s [(λ− λ0) ε2

s + λ0]

κεs +Hs

]
ds

}
,

where

ET − (k + k′)HT = 1 +
k+i

DW − k−iER

k+ − k−
+ γ − iDW − iER

2K (k+ − k−)
(k + k′) . (2.74)
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When t > τ2,

∫ T

t

e−rs
λ0

4

∂Hs

∂iDW
ds =

λ0

4

∫ T

t

e−rs−(r+λ0
4 )(T−s)ds

∂A2

∂iDW

= e−rT
[
1− e−

λ0
4

(T−t)
] ∂A2

∂iDW
< e−rT

∂A2

∂iDW

which implies that ∂ρt(k,k′)
∂iDW

< 0 iff

k + k′ > 2K
k+ − 1 + exp

[
−λ0

4
(T − t)

]
exp

[
−λ0

4
(T − t)

] .

For t < τ2, note that t = τ1 (Ht; η, τ2 (η;A2, T )). The implicit function theorem implies that

∂

∂iDW

(
λH2

t

κ+Ht

)
= λ

Ht (2κ+Ht)

(κ+Ht)
2

∂Ht

∂iDW

= λ
Ht (2κ+Ht)

(κ+Ht)
2

(
−Ḣt

) ∂τ2 (η;A2, T )

∂A2

∂A2

∂iDW
.

Since the ODE of Ḣt is autonomous with Hτ2 = η, it implies that for any u > 0, we can

define the following M (u):

M (u) =
λ

4

∂τ2 (η;A2, T )

∂A2

∫ τ2(η;A2,T )

τ2(η;A2,T )−u
e−rs

[
Hs (2κ+Hs)

(κ+Hs)
2

(
−Ḣs

)]
ds.

which is independent of time t. Thus we can rewrite ∂ρt(k,k′)
∂iDW

as

∂ρt (k, k′)

∂iDW
∝ er(T+∆)

 e−rT k+−(k+k′)/2K
k+−k−

+ (k+k′)/2K−1
k+−k−

[
M (τ2 − t) + e−rT

(
1− e−

λ0
4

(T−τ2)
)]
 .

It follows that ∂ρt(k,k′)
∂iDW

< 0 iff

k + k′ > 2K
k+ − 1 + e−

λ0
4

(T−τ2) −M (τ2 − t) erT

e−
λ0
4

(T−τ2) −M (τ2 − t) erT
.
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Note that M (0) = 0 and M (u) is increasing in u, then the above condition holds for

sufficiently small τ2− t. To guarantee the condition holds for all t < τ2, we need a sufficiently

small T .

Similarly, the comparative statics of ρt (k, k′) w.r.t. iER is that when t > τ2, ∂ρt(k,k′)
∂iER

< 0

iff

k + k′ < 2K
k− − 1 + exp

[
−λ0

4
(T − t)

]
exp

[
−λ0

4
(T − t)

] ;

when t < τ2, ∂ρt(k,k′)
∂iER

< 0 iff

k + k′ < 2K
k− − 1 + e−

λ0
4

(T−τ2) −M (τ2 − t) erT

e−
λ0
4

(T−τ2) −M (τ2 − t) erT
.

The comparative statics of ρt (k, k′) w.r.t. K is that when t > τ2, ∂ρt(k,k′)
∂K

< 0 iff

k + k′ < 2K
λ0

4A2

∫ T
t

exp [r (T − s)]Hsds− 1 + exp
[
−λ0

4
(T − t)

]
exp

[
−λ0

4
(T − t)

] ;

when t < τ2, ∂ρt(k,k′)
∂iER

< 0 iff

k + k′ < 2K

∫ T
t
er(T−s)

H2
s [(λ−λ0)ε2s+λ0]
4A2(κεs+Hs)

ds− 1 + e−
λ0
4

(T−τ2) −M (τ2 − t) erT

e−
λ0
4

(T−τ2) −M (τ2 − t) erT
.

The comparative statics of ρt (k, k′) w.r.t. λ, note that ρt (k, k′) is independent of λ on

t > τ2. Thus we focus on t < τ2. In this case,

ρt (k, k′) = er(T+∆)
{
e−rT [ET − (k + k′)HT ]

+

∫ T

τ2

e−rs
[
a1 − (k + k′) a2 +

k + k′ − 2K

4
· λ0Hs

]
ds

+

∫ τ2

t

e−rs
[
a1 − (k + k′) a2 +

k + k′ − 2K

4
· λH2

s

κ+Hs

]
ds

}
,
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and the derivative is

∂ρt (k, k′)

∂λ
= er(T+∆)

{
−e−rτ2

[
a1 − (k + k′) a2 +

k + k′ − 2K

4
· λ0η

]
∂τ2

∂λ

+e−rτ2
[
a1 − (k + k′) a2 +

k + k′ − 2K

4
· λη

2

κ+ η

]
∂τ2

∂λ

+

∫ τ2

t

e−rs
k + k′ − 2K

4
· ∂
∂λ

[
λH2

s

κ+Hs

]
ds

}
=

k + k′ − 2K

4
er(T+∆−τ2)

{∫ τ2

t

er(τ2−s)
∂

∂λ

[
λH2

s

κ+Hs

]
ds− (λ− λ0) η

∂τ2

∂λ

}
.

Note that we have proved ∂
∂λ

[
λH2

s

κ+Hs

]
> 0, ∂τ2

∂λ
> 0. Moreover, for t < τ2, the value of Ht only

depends on η and the time difference τ2− t. This means that
∫ τ2
t
er(τ2−s) ∂

∂λ

[
λH2

s

κ+Hs

]
ds is close

to 0 for t close to τ2. This implies that for T sufficiently small,
∫ τ2
t
er(τ2−s) ∂

∂λ

[
λH2

s

κ+Hs

]
ds −

(λ− λ0) η ∂τ2
∂λ

< 0 for any t < τ2. Then we can get that ∂ρt(k,k′)
∂λ

< (>) 0 iff k + k′ > (<) 2K.

The comparative statics of ρt (k, k′) w.r.t. κ is similar to λ. First, ρt (k, k′) is independent

of λ on t > τ2. Thus we focus on t < τ2. In this case,

∂ρt (k, k′)

∂κ
= er(T+∆)

{
−e−rτ2

[
a1 − (k + k′) a2 +

k + k′ − 2K

4
· λ0η

]
∂τ2

∂κ

+e−rτ2
[
a1 − (k + k′) a2 +

k + k′ − 2K

4
· λη

2

κ+ η

]
∂τ2

∂κ

+

∫ τ2

t

e−rs
k + k′ − 2K

4
· ∂
∂κ

[
λH2

s

κ+Hs

]
ds

}
=

k + k′ − 2K

4
er(T+∆−τ2)

{∫ τ2

t

er(τ2−s)
∂

∂κ

[
λH2

s

κ+Hs

]
ds− (λ− λ0) η

∂τ2

∂κ

}
.

Note that we have proved ∂τ2
∂κ

< 0. Thus if T is sufficiently small, we have

∫ τ2

t

er(τ2−s)
∂

∂κ

[
λH2

s

κ+Hs

]
ds− (λ− λ0) η

∂τ2

∂κ
> 0

for any t < τ2. This implies that ∂ρt(k,k′)
∂κ

< (>) 0 iff k + k′ < (>) 2K.
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The comparative statics of ρt (k, k′) w.r.t. λ0 is as follows. First, when t > τ2, we have

ρt (k, k′) = er(T+∆)
{
e−rT [ET − (k + k′)HT ]

+

∫ T

t

e−rs
[
a1 − (k + k′) a2 +

k + k′ − 2K

4
· λ0Hs

]
ds

}
,

and
∂ρt (k, k′)

∂λ0

=
k + k′ − 2K

4
er(T+∆)

∫ T

t

e−rs · ∂ [λ0Hs]

∂λ0

ds.

Note that ∂[λ0Ht]
∂λ0

= 4
[
∂Ḣt
∂λ0
− r ∂Ht

∂λ0

]
> 0, then we have ∂ρt(k,k′)

∂λ0
< (>) 0 iff k + k′ < (>) 2K.

Second, when t < τ2, we have

∂ρt (k, k′)

∂λ0

= er(T+∆)

{
−e−rτ2

[
a1 − (k + k′) a2 +

k + k′ − 2K

4
· λ0η

]
∂τ2

∂λ0

+e−rτ2
[
a1 − (k + k′) a2 +

k + k′ − 2K

4
· λη

2

κ+ η

]
∂τ2

∂λ0

+

∫ T

τ2

e−rs
k + k′ − 2K

4
· ∂ [λ0Hs]

∂λ0

ds

+

∫ τ2

t

e−rs
k + k′ − 2K

4
· ∂

∂λ0

[
λH2

s

κ+Hs

]
ds

}
=

k + k′ − 2K

4
er(T+∆−τ2) ×{∫ T

τ2

e−r(s−τ2)∂ [λ0Hs]

∂λ0

ds+

∫ τ2

t

er(τ2−s)
∂

∂λ0

[
λH2

s

κ+Hs

]
ds− (λ− λ0) η

∂τ2

∂λ0

}
.

Since we have proved ∂τ2
∂λ0

< 0, ∂[λ0Hs]
∂λ0

> 0, then when T is small, the term in the big brackets

is positive for any t < τ2. This implies that ∂ρt(k,k′)
∂λ0

< (>) 0 iff k + k′ < (>) 2K. Q.E.D.

2.C.14 Proof of Proposition 2.8

Proof.
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Comparative statics of the length of search. The length of search in this case is given

by

T − τ1 (η;A2, T ) =
(κ+ µ1) log

(
A2−µ1
η−µ1

)
− (κ+ µ2) log

(
A2−µ2
η−µ2

)
(
r + λ

4

)
(µ1 − µ2)

. (2.75)

Then the first column of table in the proposition is given by differentiating (2.75). Note that

in this case, we have µ1 < 0 < µ2 < η ≤ A2. Therefore, we obtain

∂ [T − τ1 (η;A2, T )]

∂iER
=

(κ+ A2)(
r + λ

4

)
(A2 − µ1) (A2 − µ2)

[
− 1

2K (k+ − k−)

]
< 0,

∂ [T − τ1 (η;A2, T )]

∂iDW
=

(κ+ A2)(
r + λ

4

)
(A2 − µ1) (A2 − µ2)

[
1

2K (k+ − k−)

]
> 0,

∂ [T − τ1 (η;A2, T )]

∂K
=

(κ+ A2)(
r + λ

4

)
(A2 − µ1) (A2 − µ2)

[
− iDW − iER

2K2 (k+ − k−)

]
< 0,

∂ [T − τ1 (η;A2, T )]

∂λ0

= − κ+ η

(η − µ1) (η − µ2)
(
r + λ

4

) κλ

2 (λ− λ0)2 < 0,

For the comparative statics w.r.t. κ, we define q̃t ≡ Ht
κ+Ht

. Following the derivations in

2.C.13, we have
·
q̃t = (1− q̃t)

[
λ

4
q̃2
t +

(
r +

a2

κ

)
q̃t −

a2

κ

]
,

with
·
q̃t > 0, ∂

·
q̃t
∂κ

> 0. Moreover, εt = 1 iff q̃t ≥ η
κ+η

= 2λ0
λ
− 1. This implies that over

t ∈ [τ1 (η;A2, T ) , T ], when κ is larger, the q̃t increases faster from 2λ0
λ
− 1, and the terminal

value A2

A2+κ
is smaller. Therefore, it takes less time for q̃t to increase from 2λ0

λ
− 1 to A2

A2+κ
,

i.e. T − τ1 (η;A2, T ) decreases in κ.

For the comparative statics w.r.t. λ, we define h̃t ≡ λ (q̃t + 1). Note that h̃t ∈ [2λ0, 2λ].

Then we have

·
h̃t =

(
2λ− h̃t

){ 1

4λ
h̃2
t +

[
1

λ

(
r +

a2

κ

)
− 1

2

]
h̃t +

λ

4
− r − 2a2

κ

}
> 0.
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Moreover, we also have

∂
·
h̃t
∂λ

= 2

{
1

4λ
h̃2
t +

[
1

λ

(
r +

a2

κ

)
− 1

2

]
h̃t +

λ

4
− r − 2a2

κ

}
+
(

2λ− h̃t
)[1

4
− 1

4λ2
h̃2
t −

1

λ2

(
r +

a2

κ

)
h̃t

]
,

∂2
·
h̃t

∂λ∂h̃t
=

3

4λ2
h̃2
t +

2

λ2

(
r +

a2

κ

)
h̃t −

5

4
,

with ∂2
·
h̃t

∂λ∂h̃t

∣∣∣∣
h̃t=2λ

> 0. This implies that

∂
·
h̃t
∂λ

∣∣∣∣∣∣
h̃t=2λ

= 2

(
r +

λ

4

)
> 0,

∂
·
h̃t
∂λ

∣∣∣∣∣∣
h̃t=λ

= −r − 3a2

κ
< 0,

and ∂
·
h̃t
∂λ

has a unique minimum on h̃t ∈ [λ, 2λ], and is maximized at h̃t = 2λ. Since

2λ0 ∈ (λ, 2λ), then ∂
·
h̃t
∂λ

∣∣∣∣
h̃t=2λ0

< 0 iff 2λ0 is below a threshold point h̃∗. Note that

h̃T = λ
(

A2

κ+A2
+ 1
)

increases in λ, and h̃τ1 = 2λ0, then τ1 decreases in λ if h̃τ1 and h̃T

are both below h̃∗. Therefore, T − τ1 (η;A2, T ) increases in λ if λ0 and λ are both sufficiently

small.

Comparative statics of |qt (k, k′)| . We focus on the comparative statics over t > τ1,

during which q is variable. The comparative statics w.r.t. iER, iDW and K are given by

differentiating Ht w.r.t. A2.Similar to the proof in 2.C.13, Ht increases in A2. Then we must

have ∂|qt(k,k′)|
∂iER

< 0, ∂|qt(k,k′)|
∂iDW

> 0 and ∂|qt(k,k′)|
∂K

< 0.

For the comparative statics w.r.t. κ, the proof for the length of search shows that over
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t ∈ [τ1 (η;A2, T ) , T ], when κ is larger, the q̃t increases faster from 2λ0
λ
− 1, and the terminal

value A2

A2+κ
is smaller. Therefore,the path of q̃t over [τ1 (η;A2, T ) , T ] shifts downward under

a larger κ, which implies ∂|qt(k,k′)|
∂κ

< 0.

For the comparative statics w.r.t. λ0, note that Ht is independent of λ0 on t ∈ [τ1, T ].

Thus we have ∂|qt(k,k′)|
∂λ0

= 0.

For the comparative statics w.r.t. λ, note that Ḣt increases in λ. This implies that as

time goes from T to τ1, Ht decreases faster from A2 under a larger λ. Thus we must have

∂|qt(k,k′)|
∂λ

< 0.

Comparative statics of L0 (k) and ∂L0(k)
∂k

. Following the proof in 2.C.13, it suffices to

show the comparative statics of Φ. Note that

Φ =

∫ T

0

mtHt

2 (κεt +Ht)
dt =

λ

2

∫ T

τ1(η;A2,T )

Ht

κ+Ht

dt+
λ0

2
τ1 (η;A2, T ) .

Thus

∂Φ

∂A2

=
λ− λ0

2

∂τ1

∂A2

− λ

2

∂τ1

∂A2

∫ T

τ1

κ

(κ+Ht)
2dHt

=
λ− λ0

2

∂τ1

∂A2

− λ

2

∂τ1

∂A2

(
κ

κ+ η
− κ

κ+ A2

)
=

∂τ1

∂A2

κλ0 − A2 (λ− λ0)

2 (κ+ A2)
.

Since ∂τ1
∂A2

< 0, then ∂Φ
∂A2

> 0 iff κ < λ−λ0
λ0

A2. Thus we assume a sufficiently small κ such that

∂L0 (k)

∂iER
∝ (K − k)

∂Φ

∂A2

∂A2

∂iER
⇒ sgn

(
∂L0 (k)

∂iER

)
= sgn (k −K)

∂L0 (k)

∂iDW
∝ (K − k)

∂Φ

∂A2

∂A2

∂iDW
⇒ sgn

(
∂L0 (k)

∂iDW

)
= sgn (K − k) ,

∂2L0 (k)

∂k∂iER
∝ − ∂Φ

∂A2

∂A2

∂iER
> 0,
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∂2L0 (k)

∂k∂iDW
∝ − ∂Φ

∂A2

∂A2

∂iDW
< 0.

For the comparative statics w.r.t. κ, we have

∂Φ

∂κ
=
λ− λ0

2

∂τ1

∂κ
+
λ

2

∫ T

τ1

∂q̃t
∂κ

dt,

where the first term is positive and the second term is negative. Since we have assumed

η > 0, it requires λ ∈ (λ0, 2λ0). When λ→ λ+
0 , we have τ1 → T− and

lim
λ→λ+0

∂Φ

∂κ
= lim

λ→λ+0

λ− λ0

2

∂τ1

∂κ
= 0+.

When λ→ 2λ−0 , we have τ1 → 0+ and

lim
λ→2λ−0

∂Φ

∂κ
=
λ

2

∫ T

0

∂q̃t
∂κ

dt < 0.

This implies that ∂Φ
∂κ
< 0 when λ is sufficiently large relative to λ0. As a consequence,

∂L0 (k)

∂κ
∝ (K − k)

∂Φ

∂κ
⇒ sgn

(
∂L0 (k)

∂κ

)
= sgn (k −K) ,

∂2L0 (k)

∂k∂κ
∝ −∂Φ

∂κ
> 0.

For the comparative statics w.r.t. λ0, we have

∂Φ

∂λ0

=
λ− λ0

2

∂τ1

∂λ0

+
1

2
τ1 > 0.

It follows that

∂L0 (k)

∂λ0

∝ (K − k)
∂Φ

∂λ0

⇒ sgn

(
∂L0 (k)

∂λ0

)
= sgn (K − k) ,
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∂2L0 (k)

∂k∂λ0

∝ − ∂Φ

∂λ0

< 0.

For the comparative statics of Φ w.r.t. λ, we define ĥt ≡ λq̃t − λ0. Simple algebra

reveals that on t ∈ ĥt ∈ [τ1 (η;A2, T ) , T ], ĥt ∈
[
λ0 − λ, λ A2

κ+A2
− λ0

]
⊂ (−λ0, λ− λ0),

·

ĥt > 0,

∂
·
ĥt
∂λ

∣∣∣∣
ĥt=−λ0

= −a2
κ
< 0, ∂

·
ĥt
∂λ

∣∣∣∣
ĥt=λ−λ0

= r + λ
4
> 0, and ∂

·
ĥt
∂λ

is negative (positive) if ĥt is below

(above) a threshold value ĥ∗ ∈ (−λ0, λ− λ0). It implies that when λ0 − λ and λ A2

κ+A2
− λ0

are both below ĥ∗, or equivalently λ0/λ and λ are both sufficiently small, we must have that

∂ĥt
∂λ

> 0 and ∂τ1
∂λ

< 0. Moreover, we can write Φ as

Φ =
λ

2

∫ T

τ1

q̃tdt+
λ0

2
τ1 (η;A2, T )

=
1

2

∫ T

τ1

(λq̃t − λ0) dt+
λ0

2
T =

1

2

∫ T

τ1

ĥtdt+
λ0

2
T.

Given the above conditions on λ and λ0, we can get ∂Φ
∂λ
> 0. It implies

∂L0 (k)

∂λ
∝ (K − k)

∂Φ

∂λ
⇒ sgn

(
∂L0 (k)

∂λ

)
= sgn (K − k) ,

∂2L0 (k)

∂k∂λ
∝ −∂Φ

∂λ
< 0.

For the comparative statics of Φ w.r.t. K, we have ∂Φ
∂K

= ∂Φ
∂A2

∂A2

∂K
< 0, and

∂L0 (k)

∂K
= 1− exp (−Φ) + exp (−Φ)

∂Φ

∂K
(K − k) ,

∂2L0 (k)

∂k∂K
∝ − ∂Φ

∂A2

∂A2

∂K
> 0.

This implies that

∂L0 (k)

∂K

 < 0, if k < K + exp(Φ)−1
∂Φ/∂K

,

> 0, otherwise.
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Comparative statics of ρt (k, k′). The proof is similar to Section 2.C.13. For the compar-

ative statics of ρt (k, k′) w.r.t. iDW , we can take derivative to 2.73. When t > τ1 (η;A2, T ),

we have

∂ρt (k, k′)

∂iDW
= er(T+∆)

{
e−rT

[
k+

k+ − k−
− k + k′

2K (k+ − k−)

]
+
λ

4
(k + k′ − 2K)

∫ T

t

e−rs
∂

∂iDW

[
H2
s

κ+Hs

]
ds

}
= er(T+∆)

{
e−rT

[
k+

k+ − k−
− k + k′

2K (k+ − k−)

]
+ (k + k′ − 2K)

∂A2

∂iDW
λ

4

∂τ1 (η;A2, T )

∂A2

∫ T

t

e−rs
Hs (2κ+Hs)

(κ+Hs)
2 (−dHs)

}
= er(T+∆)

{
e−rT

[
k+

k+ − k−
− k + k′

2K (k+ − k−)

]
+

(k + k′ − 2K)

2K (k+ − k−)
M̃ (T − t)

}
,

where we define

M̃ (u) ≡ λ

4

∂τ1 (η;A2, T )

∂A2

∫ T

T−u
e−rs

Hs (2κ+Hs)

(κ+Hs)
2 (−dHs) ,

which is positive and independent of t. Then we have ∂ρt(k,k′)
∂iDW

< 0 iff

k + k′ > 2K
k+ − M̃ (T − t) erT

1− M̃ (T − t) erT
.

When t < τ1 (η;A2, T ), we have

ρt (k, k′) = er(T+∆)
{
e−rT [ET − (k + k′)HT ]

+

∫ T

τ1

e−rs
[
a1 − (k + k′) a2 +

k + k′ − 2K

4
· λH2

s

κ+Hs

]
ds

+

∫ τ1

t

e−rs
[
a1 − (k + k′) a2 +

k + k′ − 2K

4
· λ0Hs

]
ds

}
,
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and

∂ρt (k, k′)

∂iDW
= er(T+∆)

{
e−rT

[
k+

k+ − k−
− k + k′

2K (k+ − k−)

]
+

(k + k′ − 2K)

2K (k+ − k−)
M̃ (T − τ1)

−e−rτ1
[
a1 − (k + k′) a2 +

k + k′ − 2K

4
· λη

2

κ+ η

]
∂τ1

∂A2

∂A2

iDW

+e−rτ1
[
a1 − (k + k′) a2 +

k + k′ − 2K

4
· λ0η

]
∂τ1

∂A2

∂A2

iDW

}
= er(T+∆)

{
e−rT

[
k+

k+ − k−
− k + k′

2K (k+ − k−)

]
+

(k + k′ − 2K)

2K (k+ − k−)
M̃ (T − τ1)

+
k + k′ − 2K

2K (k+ − k−)
e−rτ1

(λ− λ0)

4
η
∂τ1

∂A2

}
.

Thus we have ∂ρt(k,k′)
∂iDW

< 0 iff

k + k′ > 2K
k+ − M̃ (T − τ1) erT − er(T−τ1) (λ−λ0)η

4
∂τ1
∂A2

1− M̃ (T − τ1) erT − er(T−τ1) (λ−λ0)η
4

∂τ1
∂A2

.

We can also derive the comparative statics w.r.t. iER in a similar way. The result is that

when t > τ1 (η;A2, T ), ∂ρt(k,k′)
∂iER

< 0 iff

k + k′ < 2K
k− − M̃ (T − t) erT

1− M̃ (T − t) erT
.

When t < τ1 (η;A2, T ), ∂ρt(k,k′)
∂iER

< 0 iff

k + k′ < 2K
k− − M̃ (T − τ1) erT − er(T−τ1) (λ−λ0)η

4
∂τ1
∂A2

1− M̃ (T − τ1) erT − er(T−τ1) (λ−λ0)η
4

∂τ1
∂A2

.
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For the comparative statics w.r.t. K, note that when t > τ1, we have

∂ρt (k, k′)

∂K
= er(T+∆)

{
e−rT

(
iDW − iER

)
(k + k′)

2K2 (k+ − k−)
− λ

2

∫ T

t

e−rs
H2
s

κ+Hs

ds

+
λ

4
(k + k′ − 2K)

∫ T

t

e−rs
∂

∂K

[
H2
s

κ+Hs

]
ds

}
= er(T+∆)

{
e−rT

(
iDW − iER

)
(k + k′)

2K2 (k+ − k−)
− λ

2

∫ T

t

e−rs
H2
s

κ+Hs

ds

−
(
iDW − iER

)
(k + k′ − 2K)

2K2 (k+ − k−)
M̃ (T − t)

}
.

Thus ∂ρt(k,k′)
∂K

< 0 iff

k + k′ < 2K
λ

4A2

∫ T
t
er(T−s) H2

s

κ+Hs
ds− M̃ (T − t) erT

1− M̃ (T − t) erT
.

When t < τ1, we have

∂ρt (k, k′)

∂K
= er(T+∆)

{
e−rT

(
iDW − iER

)
(k + k′)

2K2 (k+ − k−)
− 1

2

∫ T

t

e−rs
[(λ− λ0) ε2

s + λ0]H2
s

κεs +Hs

ds

−
(
iDW − iER

)
(k + k′ − 2K)

2K2 (k+ − k−)
M̃ (T − τ1)

−e−rτ1
[
a1 − (k + k′) a2 +

k + k′ − 2K

4
· λη

2

κ+ η

]
∂τ1

∂A2

∂A2

K

+e−rτ1
[
a1 − (k + k′) a2 +

k + k′ − 2K

4
· λ0η

]
∂τ1

∂A2

∂A2

K

}
= er(T+∆)

{
e−rT

(
iDW − iER

)
(k + k′)

2K2 (k+ − k−)
− 1

2

∫ T

t

e−rs
[(λ− λ0) ε2

s + λ0]H2
s

κεs +Hs

ds

−
(
iDW − iER

)
(k + k′ − 2K)

2K2 (k+ − k−)
M̃ (T − τ1)

−
(
iDW − iER

)
(k + k′ − 2K)

2K2 (k+ − k−)
e−rτ1

(λ− λ0)

4
η
∂τ1

∂A2

}
.
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Thus ∂ρt(k,k′)
∂K

< 0 iff

k + k′ < 2K

∫ T
τ1
er(T−s)

[(λ−λ0)ε2s+λ0]H2
s

4A2(κεs+Hs)
ds− M̃ (T − t) erT − er(T−τ1) (λ−λ0)

4
η ∂τ1
∂A2

1− M̃ (T − t) erT − er(T−τ1) (λ−λ0)
4

η ∂τ1
∂A2

.

For the comparative statics w.r.t. λ, we have that when t > τ1,

ρt (k, k′) = er(T+∆)
{
e−rT [ET − (k + k′)HT ]

+

∫ T

t

e−rs
[
a1 − (k + k′) a2 +

k + k′ − 2K

4
· λH2

s

κ+Hs

]
ds,

and
∂ρt (k, k′)

∂λ
=
k + k′ − 2K

4
er(T+∆)

∫ T

t

e−rs · ∂
∂λ

[
λH2

s

κ+Hs

]
ds.

Note that ∂
∂λ

[
λH2

s

κ+Hs

]
= 4

[
∂Ḣt
∂λ
− r ∂Ht

∂λ

]
> 0. This implies that ∂ρt(k,k′)

∂λ
< 0 iff k + k′ < 2K.

When t < τ1, we have

ρt (k, k′) = er(T+∆)
{
e−rT [ET − (k + k′)HT ]

+

∫ T

τ1

e−rs
[
a1 − (k + k′) a2 +

k + k′ − 2K

4
· λH2

s

κ+Hs

]
ds

+

∫ τ1

t

e−rs
[
a1 − (k + k′) a2 +

k + k′ − 2K

4
· λ0Hs

]
ds

}
,
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and

∂ρt (k, k′)

∂λ
= er(T+∆)

{
−e−rτ1

[
a1 − (k + k′) a2 +

k + k′ − 2K

4
· λη

2

κ+ η

]
∂τ1

∂λ

+e−rτ1
[
a1 − (k + k′) a2 +

k + k′ − 2K

4
· λ0η

]
∂τ1

∂λ

+

∫ T

τ1

e−rs
k + k′ − 2K

4
· ∂
∂λ

[
λH2

s

κ+Hs

]
ds

+

∫ τ1

t

e−rs
k + k′ − 2K

4
· ∂ [λ0Hs]

∂λ
ds

}
=

k + k′ − 2K

4
er(T+∆)

{∫ T

τ1

e−r(s−τ1) ∂

∂λ

[
λH2

s

κ+Hs

]
ds+

∫ τ1

t

er(τ1−s)
∂ [λ0Hs]

∂λ
ds

+ (λ− λ0) η
∂τ1

∂λ

}
,

where in the brackets the first term is positive and the last two terms are negative. When

λ, λ0 and T are sufficiently small, the first term dominates, and we have that ∂ρt(k,k′)
∂λ

< 0 iff

k + k′ < 2K.

For the comparative statics w.r.t. κ, we have that when t > τ1,

∂ρt (k, k′)

∂κ
=
k + k′ − 2K

4
er(T+∆)

∫ T

t

e−rs · ∂
∂κ

[
λH2

s

κ+Hs

]
ds.

Note that ∂
∂κ

[
λH2

s

κ+Hs

]
= 4

[
∂Ḣt
∂κ
− r ∂Ht

∂κ

]
< 0 due to ∂Ḣt

∂κ
< 0 and ∂Ht

∂κ
> 0. This implies that

213



∂ρt(k,k′)
∂κ

< 0 iff k + k′ > 2K. When t < τ1, we have

∂ρt (k, k′)

∂κ
= er(T+∆)

{
−e−rτ1

[
a1 − (k + k′) a2 +

k + k′ − 2K

4
· λη

2

κ+ η

]
∂τ1

∂κ

+e−rτ1
[
a1 − (k + k′) a2 +

k + k′ − 2K

4
· λ0η

]
∂τ1

∂κ

+

∫ T

τ1

e−rs
k + k′ − 2K

4
· ∂
∂κ

[
λH2

s

κ+Hs

]
ds

+

∫ τ1

t

e−rs
k + k′ − 2K

4
· ∂ [λ0Hs]

∂κ
ds

}
=

k + k′ − 2K

4
er(T+∆)

{∫ T

τ1

e−r(s−τ1) ∂

∂κ

[
λH2

s

κ+Hs

]
ds+

∫ τ1

t

er(τ1−s)
∂ [λ0Hs]

∂κ
ds

+ (λ− λ0) η
∂τ1

∂κ

}
,

where the first term is negative and the last two terms are positive. When λ, λ0 and T are

sufficiently small, the first term dominates, and we have that ∂ρt(k,k′)
∂κ

< 0 iff k + k′ > 2K.

For the comparative statics w.r.t. λ0, we have that when t > τ1, ρt (k, k′) is independent

of λ0. When t < τ1, we have

∂ρt (k, k′)

∂λ0

= er(T+∆)

{
−e−rτ1

[
a1 − (k + k′) a2 +

k + k′ − 2K

4
· λη

2

κ+ η

]
∂τ1

∂λ0

+e−rτ1
[
a1 − (k + k′) a2 +

k + k′ − 2K

4
· λ0η

]
∂τ1

∂λ0

+

∫ τ1

t

e−rs
k + k′ − 2K

4
· ∂ [λ0Hs]

∂λ0

ds

}
=

k + k′ − 2K

4
er(T+∆)

{∫ τ1

t

er(τ1−s)
∂ [λ0Hs]

∂λ0

ds+ (λ− λ0) η
∂τ1

∂λ0

}
.

Note that ∂[λ0Ht]
∂λ0

= 4
[
∂Ḣt
∂λ0
− r ∂Ht

∂λ0

]
> 0 and ∂τ1

∂λ0
> 0, we have that ∂ρt(k,k′)

∂λ0
< 0 iff k+k′ < 2K.

Q.E.D.
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2.C.15 Proof of Proposition 2.9

Proof. The proposition is a restatement of equations (2.12) and (2.14). Q.E.D.

2.C.16 Proof of Lemma 2.4

Proof. The proof follows Lemma 2.2. Q.E.D.

2.C.17 Proof of Proposition 2.10

Proof. To prove the inefficiencies on extensive margin, it is straightforward by showing

that τ p1 (η;A2, T ) > τ1 (η;A2, T ) and τ p2 (η;A, T ) < τ2 (η;A, T ). To prove the inefficiencies on

intensive margin, it suffices to show that Ḣp
t > Ḣt for any Hp

t = Ht. To see this, note that

the laws of motion of two variables can be written as

Ḣt = rHt − a2 +
1

4

H2
t [(λ− λ0) · 1 {Ht ≥ η}+ λ0]

κ · 1 {Ht ≥ η}+Ht

,

Ḣp
t = rHp

t − a2 +
1

2

(Hp
t )2 [(λ− λ0) · 1 {Ht ≥ ηp}+ λ0]

κ · 1 {Hp
t ≥ ηp}+Hp

t

.

Since η = ηp, we must have Ḣp
t > Ḣt for any Hp

t = Ht. Then the terminal condition

Hp
T = HT = A2 implies that Hp

t < Ht for any t. Then the size of bilateral reallocation must

satisfy

|qpt (k, k′)| = Hp
t |k′ − k|

2 (Hp
t + κ)

<
Ht |k′ − k|
2 (Ht + κ)

= |qt (k, k′)|

whenever there is active reallocation. Q.E.D.

2.D Appendix: Heterogeneous agents with peripheral traders

We guess and verify the closed-form solutions. First, we guess the banks’ value function is

Vt (k) = −Htk
2 +Etk +Dt, and the peripheral trader’s value function is Ṽt

(
k̃
)

= −H̃tk̃
2 +
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Ẽtk̃ + D̃t. The terms of trade of a meeting between banks is similar to the baseline model,

i.e.

St (k, k′) =
H2
t (k′ − k)2

κ1 (ε+ ε′) + 2κ0 + 2Ht

, (2.76)

qt (k, k′) =
Ht (k′ − k)

κ1 (ε+ ε′) + 2κ0 + 2Ht

. (2.77)

The choice of optimal search intensity is given by equation (2.20). Thus the optimal search

intensity of the most liquid equilibrium is given by

εt =

 1, if Ht ≥ η̃ ≡ κ1

[
λ

2(λ−λ0)
− 1
]
− κ0,

0, otherwise.

For the meetings between a bank and a peripheral trader, they solve

max
R,q

[
Vt (k + q)− e−r(T−t+∆)R− Vt (k)− χ (0, q)

]θ
×
[
Ṽt

(
k̃ − q

)
+ e−r(T−t+∆)R− Ṽt

(
k̃
)]1−θ

.

The maximized surplus and optimal trade size are given by

S̃t

(
k, k̃
)

=

[
Et − Ẽt + 2

(
H̃tk̃ −Htk

)]2

4
[
Ht + H̃t + κ0

] , (2.78)

q̃t

(
k, k̃
)

=
Et − Ẽt + 2

(
H̃tk̃ −Htk

)
2
[
Ht + H̃t + κ0

] . (2.79)

Therefore, the HJB for peripheral traders is

rṼt

(
k̃
)

=
·
Ṽ t

(
k̃
)

+ (1− θ)ϕ
∫
S̃t

(
k, k̃
)
dFt (k) .

216



By matching coefficients we can obtain

·
H̃ t = rH̃t +

(1− θ)ϕH̃2
t

Ht + H̃t + κ0

, with H̃T = 0;

·
Ẽt = rẼt − (1− θ)ϕH̃t

Et − Ẽt − 2HtKt

Ht + H̃t + κ0

, with ẼT = 1 + iRRP ;

·
D̃t = rD̃t − (1− θ)ϕ

∫ [
Et − Ẽt − 2Htk

]2

4
[
Ht + H̃t + κ0

] dFt (k) , with D̃t = 0.

Given H̃T = 0, ẼT = 1 + iRRP , we can get that H̃t ≡ 0 and Ẽt =
(
1 + iRRP

)
e−r(T−t). Thus

the bilateral Federal funds rate in a meeting between bank and peripheral trader is

1 + ρ̃t

(
k, k̃
)

= er(T+∆−t)
[

1− θ
2

(
Et − Ẽt − 2Htk

)
+ Ẽt

]
= er(T+∆−t)

[
(1− θ) (Ht + κ0) q̃t

(
k, k̃
)

+ Ẽt

]

On the other hand, the HJB for banks is

rVt (k) = V̇t (k) + u (k) +

∫
1

2
St (k, k′)m (εt, εt) dFt (k′) + θϕϑ

∫
S̃t

(
k, k̃
)
dF̃t

(
k̃
)
,

which implies

Ḣt = rHt − a2 +
1

4

H2
t

κ1εt + κ0 +Ht

[
(λ− λ0) ε2

t + λ0

]
+
θϕϑH2

t

Ht + κ0

, (2.80)

Ėt = rEt − a1 +
Kt

2

H2
t

κ1εt + κ0 +Ht

[
(λ− λ0) ε2

t + λ0

]
+ θϕϑHt

Et − Ẽt
Ht + κ0

, (2.81)

Dt = rDt −
1

4

H2
t

κ1εt + κ0 +Ht

[
(λ− λ0) ε2

t + λ0

] ∫
k′2dFt (k′)− θϕϑ

[
Et − Ẽt

]2

4 [Ht + κ0]
.(2.82)
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It follows that

d
(
Et − Ẽt

)
dt

=

(
r +

θρϕHt

Ht + κ0

)(
Et − Ẽt

)
− a1 +

Kt

2

H2
t

κ1εt + κ0 +Ht

[
(λ− λ0) ε2

t + λ0

]
,

(2.83)

and

K̇t = ϕϑ

∫ Et − Ẽt + 2
(
H̃tk̃ −Htk

)
2
[
Ht + H̃t + κ0

] dFt (k) = ϕϑ
Et − Ẽt − 2HtKt

2 [Ht + κ0]
, (2.84)

with the boundary condition K0 = K and ET − ẼT = A1 − 1 − iRRP . We focus on the

numerical solution.

The most liquid equilibrium. To characterize the dynamics of the most liquid equilib-

rium, we first define ω1, ω2 and ω3 as the three real roots of H to the equation (the three

real roots must exist by graphic proof)

0 =

(
r +

λ

4
+ θϕϑ

)
H3 +

[
r (2κ0 + κ1)− a2 +

κ0λ

4
+ θϕϑ (κ0 + κ1)

]
H2

+ [rκ0 (κ0 + κ1)− a2 (2κ0 + κ1)]H − a2κ0 (κ0 + κ1) .

Let A ≡ r + λ
4

+ θϕϑ, B ≡ r (2κ0 + κ1) − a2 + κ0λ
4

+ θϕϑ (κ0 + κ1), C ≡ rκ0 (κ0 + κ1) −

a2 (2κ0 + κ1) and D ≡ −a2κ0 (κ0 + κ1), then the solution to ω1, ω2 and ω3 are given by

ω1 =
−B
3A

+
3

√√√√BC

6A2
− B3

27A3
− D

2A
+

√(
BC

6A2
− B3

27A3
− D

2A

)2

+

(
C

3A
− B2

9A2

)3

+
3

√√√√BC

6A2
− B3

27A3
− D

2A
−

√(
BC

6A2
− B3

27A3
− D

2A

)2

+

(
C

3A
− B2

9A2

)3

,
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ω2 =
−B
3A

+
−1 +

√
3i

2

3

√√√√BC

6A2
− B3

27A3
− D

2A
+

√(
BC

6A2
− B3

27A3
− D

2A

)2

+

(
C

3A
− B2

9A2

)3

+
−1−

√
3i

2

3

√√√√BC

6A2
− B3

27A3
− D

2A
−

√(
BC

6A2
− B3

27A3
− D

2A

)2

+

(
C

3A
− B2

9A2

)3

,

ω3 =
−B
3A

+
−1−

√
3i

2

3

√√√√BC

6A2
− B3

27A3
− D

2A
+

√(
BC

6A2
− B3

27A3
− D

2A

)2

+

(
C

3A
− B2

9A2

)3

+
−1 +

√
3i

2

3

√√√√BC

6A2
− B3

27A3
− D

2A
−

√(
BC

6A2
− B3

27A3
− D

2A

)2

+

(
C

3A
− B2

9A2

)3

.

Next, denote β1, β2 and β3 as the solution to the follow linear equation system:


1 1 1

ω2 + ω3 ω1 + ω3 ω1 + ω2

ω2ω3 ω1ω3 ω1ω2



β1

β2

β3

 =


1

− (2κ0 + κ1)

κ0 (κ1 + κ0)

 ,

and define

µ̃1 ≡
1

2r + λ0
2

+ 2θρϕ

{
− (κ0r − a2)−

[
(κ0r − a2)2 + a2κ0 (4r + λ0 + 4θρϕ)

]0.5}
,

µ̃2 ≡
1

2r + λ0
2

+ 2θρϕ

{
− (κ0r − a2) +

[
(κ0r − a2)2 + a2κ0 (4r + λ0 + 4θρϕ)

]0.5}
,

τ̃1 (H;A, u) ≡ u− 1

r + λ
4

+ θρϕ

[
β1 log

(
A− ω1

H − ω1

)
+ β2 log

(
A− ω2

H − ω2

)
+ β3 log

(
A− ω3

H − ω3

)]
,

and

τ̃2 (H;A, u) ≡ u−
(κ0 + µ̃1) log

(
A−µ̃1
H−µ̃1

)
− (κ0 + µ̃2) log

(
A−µ̃2
H−µ̃2

)
(
r + λ0

4
+ θρϕ

)
(µ̃1 − µ̃2)

.

Then the following proposition characterizes the path of equilibrium search prfile in the most

liquid equilibrium.
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Proposition 2.12 (a). Suppose A2 ≥ η̃.

(a-i). If Ḣt

∣∣∣
εt=1,Ht=η̃

> 0 and τ̃1 (η̃;A2, T ) > 0, then we have

εt =

 1, if t ≥ τ̃1 (η̃;A2, T ) ;

0, otherwise.

Ht =

 τ̃−1
1 (t;A2, T ) , if t ≥ τ̃1 (η̃;A2, T ) ;

τ̃−1
2 (t; η̃, τ̃1 (η̃;A2, T )) , otherwise.

(a-ii). Otherwise, we have εt = 1 for all t ∈ [0, T ] and Ht = τ̃−1
1 (t;A2, T ).

(b). Suppose A2 < η̃.

(b-i). If Ḣt

∣∣∣
εt=0,Ht=η̃

< 0 and τ̃2 (η̃;A2, T ) > 0, then we have

εt =

 0, if t > τ̃2 (η̃;A2, T ) ;

1, otherwise.

Ht =

 τ̃−1
2 (t;A2, T ) , if t ≥ τ̃2 (η̃;A2, T ) ;

τ̃−1
1 (t; η̃, τ̃2 (η̃;A2, T )) , otherwise.

(b-ii). Otherwise, we have εt = 0 for all t ∈ [0, T ] and Ht = τ̃−1
2 (t;A2, T ).

Proof. The proof follows Lemma 2.2. Q.E.D.

2.E Appendix: Federal funds brokerage

In this section we model the brokerage of Federal funds following Lagos and Rocheteau

(2007). In practice, Federal funds brokers reach out their banks’ contact for matchmaking.

Consider the following timing of actions. Having secured a pair of banks for potential Federal

funds trading, the broker negotiates with each banks about its brokerage fee. In this stage,
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the broker does not reveal the identities of counterparties but informs the banks about the

reserve balances held by their counterparties (the sufficient information banks need to know

to initiate Federal funds trade in this model). This prevents the side-trading between the

counterparty banks circumventing the broker’s fee. Having determined the brokerage fees,

the identities are revealed and the two banks negotitate the terms of trade like any bilateral

Federal funds trades we described before. The brokerage fee is settled in numéraire at T +∆.

We assume the matching rate between a broker and the bank counterparties is α, thus the

contact rate of banks with a broker is αν, where ν is the measure of active brokers. Brokers

are free entry with entry cost ψ per broker.

We solve the outcome backward. Consider that a broker has identified a k-bank and

a k′-bank at t. Each bank anticipates their trade surplus from trading with the arranged

counterparties as 0.5St (k, k′). Denote Yt (k, k′) as the brokerage fee paid by k-bank for

arranging the match with k′-bank; vice versa for the brokerage fee Yt (k′, k) paid by k′-bank.

To the k-bank, the surplus of brokerage is 0.5St (k, k′)−Yt (k, k′). To the broker, the surplus

of brokeraging the side of k-bank is simply Yt (k, k′). Thus, the brokerage fee solves the

following Nash bargaining problem:

Yt (k, k′) = arg max
y
{y [0.5St (k, k′)− y]} .

Hence the bargaining solution is

Yt (k, k′) = Yt (k′, k) = 0.25St (k, k′) .

The value of the broker, Jt, solves the following HJB equation

rJt = J̇t + α

∫ ∫
[Yt (k, k′) + Yt (k′, k)] dFt (k′) dFt (k) , where JT = 0.

Denote the dependence of Jt on the broker size ν as Jt (ν). In the equilibrium, ν is determined
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by the free-entry condition to the brokers:

ψ = J0 (ν) .

The bank’s HJB is

rVt (k) = V̇t (k) + u (k) + max
εt∈[0,1]

∫
1

2
St (k, k′, εt, εt (k′))m (εt, εt (k′)) dFt (k′)

+αν

∫
1

4
St (k, k′, 0, 0) dFt (k′)

With quadratic utility function, we guess and verify Vt (k) = −Htk
2 +Etk+Dt, the solution

is

rVt (k) = V̇t (k) + u (k) +
1

2

(Ht)
2

κ (ε+ εt) + 2Ht

[(λ− λ0) εεt + λ0]

∫
(k′ − k)

2
dFt (k′)

+
αν

8
Ht

∫
(k′ − k)

2
dFt (k′)

By matching coefficients we obtain

(
r +

αν

8

)
Ht = Ḣt + a2 −

1

4

H2
t

κεt +Ht

[
(λ− λ0) ε2

t + λ0

]
, (2.85)

thus αν changes the discount rate to the banks. The surplus function is

St (k, k′, εt) =
[Ht (k′ − k)]2

2 (κεt +Ht)

and the broker’s HJB is

rJt = J̇t +
α

2

∫ ∫
St (k, k′, 0) dFt (k′) dFt (k) (2.86)

= J̇t +
α

4
Ht

[∫
k2dFt (k)−K2

]
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The solution is

J0 (ν) =
α

4

∫ T

0

e−rtHt

[∫
k2dFt (k)−K2

]
dt, (2.87)

where

∫
k2dFt (k)

= K2 +

[∫
k2dF0 (k)−K2

]
exp

{
−
∫ t

0

m (εz, εz)
Hz (Hz + 2κεz)

2 (Hz + κεz)
2 dz − αν

2
t

}

Thus the solution to J0 (α) can be written as

J0 (ν) =
α

4

[∫
k2dF0 (k)−K2

] ∫ T

0

e−rtHt exp

{
−
∫ t

0

m (εz, εz)
Hz (Hz + 2κεz)

2 (Hz + κεz)
2 dz − αν

2
t

}
dt.

Thus the equilibrium matchmaking is

ψ =
α

4

[∫
k2dF0 (k)−K2

] ∫ T

0

e−rtHt exp

{
−
∫ t

0

m (εz, εz)
Hz (Hz + 2κεz)

2 (Hz + κεz)
2 dz − αν

2
t

}
dt.

(2.88)

The following proposition characterizes the comparative statics of the equilibrium measure

of brokers with respect to policy and technology parameters.

Proposition 2.13 Suppose κ is sufficiently small. The comparative statics of ν are

iER iDW K

ν − + −

Proof. Note that J0 (∞) = 0 and J0 (0) > 0. For the existence of equilibrium we assume

ψ < J0 (0). Due to free entry, we focus on the equilibrium ν∗ with J ′0 (ν∗) < 0. We define

Mt ≡ e−rtHt exp

{
−
∫ t

0

m (εz, εz)
Hz (Hz + 2κεz)

2 (Hz + κεz)
2 dz − αν

2
t

}
,
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which implies

Ṁt

Mt

= −3

8
αν − a2

Ht

− m (εt, εt)

4

Ht

Ht + κεt

(
2κεt

Ht + κεt
+ 1

)
< 0,

and
∂

∂Ht

(
Ṁt

Mt

)
=
a2

Ht

− m (εt, εt)

4

κεt

(Ht + κεt)
2

(
4κεt

Ht + κεt
− 1

)
.

Thus a sufficient condition for ∂
∂Ht

(
Ṁt

Mt

)
> 0 is κεt

Ht+κεt
< 1

4
, which requires a sufficiently small

κ. Given this condition and note that M0 = H0, we can obtain that the path of Mt shifts

upward if the path of Ht shifts upward. Combining with the result that ∂Ht
∂A2

> 0, we can

obtain that
∂J0 (ν)

∂A2

=

∫ T

0

∂J0 (ν)

∂Mt

∂Mt

∂A2

dt > 0.

By implicit function theorem, we can obtain ∂ν∗

∂A2
> 0. Given ∂A2

∂iER
< 0, ∂A2

∂iDW
> 0 and

∂A2

∂K
< 0, this establishes our proposition. Q.E.D.

2.F Appendix: Payment shocks

Since Poole (1968) there has been a long history of analyzing the effects of payment flow on

the Federal funds market. In this extension we study the role of payment on disintermedia-

tion. Suppose that banks are receiving and sending exogenous and stochastic payment flows

of reserve balances. There are two types of payment flows: lumpy or continuous. Lumpy

payments occur occasionally at the arrival rate ζ, with the amount w (negative value means

outflow of reserve balances) drawn from a symmetric distribution G with mean 0 and stan-

dard deviation σL. Continuous payments occur continuously that follows a Brownian motion

with mean µ and volatility σC . Thus the aggregate inflow of reserve balances from payment
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flow is µ. The HJB equation becomes

rVt (k) = V̇t (k) + u (k) + max
ε∈[0,1]

∫
1

2
St (k, k′, ε, εt (k′))m (ε, εt (k′)) dFt (k′) (2.89)

+ζ

∫
[Vt (k + w)− Vt (k)] dG (w) + µ

∂

∂k
Vt (k) +

σ2
C

2

∂2

∂k2
Vt (k) .

Given {Ft}, the value function in an equilibrium is given by

Vt (k) = −Htk
2 + Etk +Dt, (2.90)

where Ht, Et and Dt are given by the solutions to the following initial-value ODE problems

Ḣt = rHt − a2 +
1

4

H2
t [(λ− λ0) ε2

t + λ0]

κεt +Ht

, (2.91)

Ėt = rEt − a1 +
Kt

2

H2
t [(λ− λ0) ε2

t + λ0]

κεt +Ht

+ 2µHt, (2.92)

Ḋt = rDt −
1

4

H2
t [(λ− λ0) ε2

t + λ0]

κεt +Ht

∫
k′2dFt (k′) +

(
ζσ2

L + σ2
C

)
Ht − µEt, (2.93)

where HT = A2, ET = A1 and DT = 0. The equilibrium search profile of Ω (St, Ft) is given

by

εt (k) =

 1, if Ht ≥ η;

0, otherwise.
(2.94)

The Federal funds purchased qt (k, k′) and the Federal funds rate ρt (k, k′) are given by

qt (k, k′) =
Ht (k′ − k)

2 (κεt +Ht)
, (2.95)

ρt (k, k′) = er(T+∆−t) [Et −Ht (k + k′)] . (2.96)

Note that Ht does not depend on the payment shocks, while Et is only affected by µ.

The following Proposition summarize the grid-locking effect of payment shocks.
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Proposition 2.14 The comparative statics of the length of search, τ̄ , the amount of Federal

funds purchased, qt (k, k′) and the Federal fund rates, ρt (k, k′) are given by the following table

τ̄ q (k, k′, τ) ρ (k, k′, τ)

ζ 0 0 0

µ 0 0 −

σ 0 0 0

Proof. Since Ht is independent of the payment shocks, the comparative statics of τ̄ and

qt over payment shock parameters are zero. For ρt, the comparative statics is non-zero only

for µ. Note that a higher µ means a higher Kt and a larger 2µHt. This implies a larger Ėt.

Since ET is given, it means Et decreases in µ. Thus ρt decreases in µ. Q.E.D.

Intuitively, a larger µ means the excess reserves increase faster. This implies a lower

marginal value of holding reserves, leading to lower Federal funds rates.

2.G Appendix: Counterparty risk

Afonso et al. (2011) documents the importance of counterparty risk in explaining the rise

of Federal funds rate and decline Federal funds trade during the crisis. Our model can be

extended to incorporate two kinds of counterparty risk. Consider that there is probability

1− pL that, after the terms of trade is determined, the Federal funds lender cannot deliver

the corresponding reserves to the borrower and the trade has to be cancelled. Also, there is

a probability 1 − pB that the Federal funds borrower cannot repay R when it is due. The

borrower’s surplus is thus given by

pL
[
Vt (k + q)− pBe−r(T+∆−t)R

]
− pLVt (k)− χ (ε, q) .
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The lender’s surplus is given by

pL
[
Vt (k′ − q) + pBe

−r(T+∆−t)R
]
− pLVt (k′)− χ (ε′,−q) .

The solution to Nash bargaining problem becomes

qt (k, k′, ε, ε′) =
Ht (k′ − k)

κ/pL · (ε+ ε′) + 2Ht

, (2.97)

Rt (k, k′, ε, ε′) =
er(T+∆−t)

pB

[
Et −Ht (k + k′)− κ (ε− ε′)

2pL
qt (k, k′, ε, ε′)

]
qt (k, k′, ε, ε′) ,

(2.98)

ρ (k, k′, τ) =
R (k, k′, τ)

q (k, k, τ)
=
er(T+∆−t)

pB

[
Et −Ht (k + k′)− κ (ε− ε′)

2pL
qt (k, k′, ε, ε′)

]
, (2.99)

St (k, k′, ε, ε′) =
pL [Ht (k′ − k)]2

κ/pL · (ε+ ε′) + 2Ht

. (2.100)

The optimal search intensity in the most liquid equilibrium is

εt =

 1, if Ht ≥ κ
pL

[
λ

2(λ−λ0)
− 1
]

;

0, otherwise.

The solution to the value function is that Vt (k) = −Htk
2 + Etk +Dt, where

Ḣt = rHt − a2 +
pL
4

H2
t

κ/pL · εt +Ht

[
(λ− λ0) ε2

t + λ0

]
, where HT = A2; (2.101)

Ėt = rEt − a1 +
KpL

2

H2
t

κ/pL · εt +Ht

[
(λ− λ0) ε2

t + λ0

]
, where ET = A1; (2.102)

Ḋt = rDt −
pL
4

H2
t

κ/pL · εt +Ht

[
(λ− λ0) ε2

t + λ0

] ∫
k′2dFt (k′) , where DT = 0.(2.103)

Overall, the effects of higher counterparty risk (a higer 1 − pL) are isomorphic to the

effects of higher transaction cost κ and lower matching rate λ and λ0.
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2.H Appendix: Algorithm of simulation and estimation

Simulation. Let us denote N as the number of banks, i ∈ {1, 2, ..., N} as the index of

individual banks. Since the size of peripheral traders is redundant for simulation, we assume

there is only one peripheral trader and denote it as i = N + 1. We also denote m ∈ N as the

index for bilateral meetings, where a smaller m means an earlier meeting. Since the number

of banks is finite, the total number of meetings is also finite. Moreover, denote k0 (i) as the

initial reserve balances of bank i before entering the Federal funds market, and km (i) as the

reserve balances of bank i after meeting m takes place. Note that k0 (i) is given by banks’

empirical excess reserves divided by bank assets, and km (i) 6= km−1 (i) only if bank i is one of

the counterparties in meeting m. It is important to note that the mass of an individual bank

is normalized to 1, and the search intensity λ, λ0 and ϕ represent the search intensity for an

individual bank. Thus the total mass of banks is N , and the contact rate for a bank with

another bank is m(εt,εt)
N

. There are N(N−1)
2

pairs of bilateral meetings between banks and N

pairs of bilateral meetings between a bank and a peripheral trader. All these meetings are

independent Poisson process. Thus the sum of all these meetings follows a Poisson process

with intensity N(N−1)
2

m(εt,εt)
N

+Nϕ = N−1
2
m (εt, εt)+Nϕ. We simulate the discretized version

of the model via the following algorithm.

1. Given the model parameters and policy parameters, we numerically solve the paths of

Ht, εt via Proposition 2.12 and solve the paths of Et and Kt via the ODEs (2.83) and

(2.84).

2. Given the path of εt, simulate a Poisson process for bilateral meetings up to time T

via a thinning algorithm:23

(a) Set a sufficiently large λmax (such that λmax > λ). Generate a random integer M̂

distributed as Poisson with mean
(
N−1

2
λmax +Nϕ

)
T . If M̂ = 0 stop.

23See Sigman (2007) for a detailed description and proof of the thinning algorithm.
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(b) Generate M̂ random numbers distributed as i.i.d. uniforms on (0, 1), i.e. U1, ..., UM̂ ,

and reset Um = T · Um, m ∈
{

1, ..., M̂
}

.

(c) Place the Um in ascending order to obtain the order statistics U(1) < U(2) < ... <

U(M̂).

(d) Set t̂m = U(m).

(e) For each t̂m, generate an i.i.d. uniform on (0, 1), Ûm. If

Ûm ≤
N−1

2
m
(
εt̂m , εt̂m

)
+Nϕ

N−1
2
λmax +Nϕ

,

then keep t̂m. Otherwise, drop it.

(f) For each kept t̂m, draw a pair of integers p̂m = {i, j} with 1 ≤ i < j ≤ N + 1 from

the weighted distribution j

Pr (i, j) =


N−1

2
m(εt̂m ,εt̂m)

N−1
2
m(εt̂m ,εt̂m)+Nϕ

2
N(N−1)

, if i, j ≤ N,

Nϕ
N−1

2
m(εt̂m ,εt̂m)+Nϕ

1
N
, if j = N + 1.

(g) For each kept t̂m and p̂m, we relabel them with {tm, pm}Mm=1, where tm < tm+1 and

M is the number of kept t̂m. The sequence of {tm, pm}Mm=1 is the Poisson process

for bilateral meetings for our simulation. and denote the number of kept trade

according to the rule. Update kn (i) and kn (j).

3. Update individual reserve balances and bilateral terms of trade: denote km (i), qm (i)

and ρm as bank i’s reserve balances after meeting m, bank i’s cumulative absolute

Federal funds trade after meeting m, and the bilateral Federal funds rate in meeting

m. We start with the data k0 (i) and set q0 (i) = 0 by definition. For each meeting m,

if i ∈ pm, then update km (i), qm (i) and ρm according to the theoretical formulae. For

any i /∈ pm, do not update km (i) and qm (i).
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4. Use the sequence {km (i) , qm (i) , ρm} to calculate the aggregate moments and regression

coefficients.

Estimation. The simulated method of moments estimation follows a standard two-step

procedure.24 For each quarter, we simulate the model for S = 2, 000 times.

24See Adda and Cooper (2003) for the reference on simulated method of moments.
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CHAPTER 3

Transfers vs Credit Policy: Macroeconomic Policy

Trade-offs during Covid-19

with Saki Bigio and Eduardo Zilberman

3.1 Introduction

The Covid-19 pandemic is a quintessential macroeconomic shock. Large and unexpected,

the shock has escalated so quickly that the self-stabilizing mechanisms of business cycles

are likely not to work. Learning from the recent experiences of the Great Recession, central

banks and fiscal authorities have responded with unprecedented speed and scale. An equally

unprecedented amount of policy recommendations has been produced by the macroeconomics

community, e.g. Brunnermeier et al. (2020), Gourinchas (2020), among many others. Calls

for macroeconomic-stabilization have primarily focused on large scale transfer programs and

central-bank open-market operations that facilitate bank credit. Both programs are geared

toward expanding the amount of social insurance, while acting as a demand stabilizer.

In the case of the US, the combination of the CARES act setup by the US Treasury and

the Main Street Lending Facility of the Federal Reserve offer amount to a combination of

1,902 billion US dollars in direct transfers, unemployment insurance, and credit to firms. A

decomposition of this amount in this subset of programs is presented in Figure 3.1.

Internationally, a recent report by UBS1 claims that 3.7 percent, so far, of global GDP has

1“Global Economic Perspectives. Bubble, Bubble, Toil, and Trouble: which fiscal mix will work against
Covid-19?,” UBS Global Research Team, 21 April 2020.
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Figure 3.1: US Covid-19 Policy Response: Decomposition of Programs Directed to Con-
sumers and Loans

Notes: This figure reports the share of each component of a subset of the CARES act programs and

the Main Street Lending Facility of the Federal Reserve. All figures are presented in current US

Dollars: The Fed’s Main Street Lending Facility amounts to 600 Billion. The CARES act assigns Cash

Transfers for 300 Billion, 260 Billion in Unemployment Benefits and 43.7 Billions in Student Loans

(as part of the Economic Impact Payments to American Households program), 274 Billion in loans

to small business (as part of the Small Business Paycheck Protection Program) and 425 Billion in

Corporate Loans. The figures are interpreted from statements from the U.S. Department of the Treasury:

https://home.treasury.gov/policy-issues/cares/preserving-jobs-for-american-industry,

and the classifications cross-checked with related articles: https://messertodd.github.io/

coronavirus-policy-response/Unconventional-MP.html, and https://www.npr.org/2020/03/

26/821457551/whats-inside-the-senate-s-2-trillion-coronavirus-aid-package.

been put forward in policies that vary in scale and target across countries. There is a striking

difference between the response of developed economies, and other economies. Developed

markets are usings 31 percent of fiscal expenditures on job retention schemes, 15 percent

on business loans and grants, 15 percent on tax reliefs, 12 percent on direct cash payments,

mostly driven by Japan where the share of direct transfers is 57 percent, and 10 percent on
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unemployment insurance. In emerging economies without China,2 the figures on tax reliefs

and unemployment insurance are comparable to those in developed economies, 18 percent

and 10 percent, respectively. Nonetheless, emerging markets are relying more on direct cash

payments (20 percent), but less on job retention schemes (13 percent) and business loans

and grants (4 percent). These figures are subject to revisions and reclassification, and may

change as the crisis evolves.

As policies are being refined on the spot, there is room for simple theories that assist this

analysis. Here is one such environment. The paper presents a simple incomplete markets

economy, which we use to frame the recent discussions regarding the macroeconomic trade-

offs related to the policy responses during the Covid-19 crisis. The model is an extension

of Bigio and Sannikov (2021), with two sectors. The economic forces are similar in spirit to

Guerrieri et al. (2020). One sector produces social goods, which need social interactions to

be consumed, whereas the other produces goods that can be consumed remotely. Households

are subject to an unexpected shock that reduces the utility from consuming social goods.

After the shock is announced, except for the idiosyncratic risk, the economy proceeds in a

deterministic fashion. This reduction in utility is due to the fear of being infected, which

induces a behavioral response of individuals during a pandemic.

The Covid-19 manifests as a discount factor shock in an equivalent representation of the

model with one sector. If the elasticity of substitution between social and remote goods

(ESBG) as well as the elasticity of intertemporal substitution (EIS) are greater than one

(something we assume throughout the paper), the shock can be represented equivalently

as a positive discount factor shock (less discounting). Since we assume labor is supplied

inelastically and there is perfect reallocation of labor input across sectors, under the flexible

prices benchmark, after the shock the remote good sector absorbs the fall in the social good

sector. The unemployment rate remains at its natural level. Once we introduce rigid wages,

2China is an outlier as its response to the crisis concerns mostly public investment, which according to
the report represents 59 percent of total expenditures.
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if EIS is sufficiently high (or ESBG sufficiently small), a point made in Guerrieri et al.

(2020), the unemployment rate adjusts to accommodate the decline in aggregate demand

that results from the shock. This decline in consumption may manifest in both sectors,

opening the door for macroeconomic stabilization. Inspired by the current policy debate, we

study the effectiveness of lump-sum transfers versus a credit policy that generates the same

path of government indebtedness.

We argue that the power of lump-sum transfers versus a credit subsidy policy critically

depends on the level of financial development. Take two extremes. If we consider a natural

borrowing limit, the Ricardian equivalence holds and lump-sump transfers are neutral. In

this case, credit policy should be the preferred tool, and we show that it mitigates the

recession. Now consider an economy with the borrow limit equal to zero. In this case, a

credit policy is immaterial and lump-sum transfers are the preferred instrument. We also

showcase an intermediate case. The choice of whether to go for transfers or credit policy (or

the optimal mix between them) depends crucially on how the lending channel is impaired

due to Covid-19 crisis, captured here by some static comparative on the borrowing limit.

A first lesson is that economies with a developed financial system should unleash credit.

Developing economies should rely more on transfers. We also argue that a stringent debt

limit amplifies the recession, at the same time that restricts the use of credit subsidy, perhaps

the preferred instrument to target those households who really need support. We enrich this

discussion presenting a numerical illustration where we compare both policies, for different

levels of debt limits. To make policies comparable, we assume they produce the same path

of real government liabilities.

This is a rudimentary environment that, being so, faces several limitations. An obvious

limitation is the assumption of perfect labor reallocation across sectors, given that one feature

of the crisis is that the actual mass of unemployed cannot be easily absorbed by the remote

sector. The model assumes that a bar tender can work in grocery deliveries the next day. Yet,

the lesson is valid: the goal of macroeconomic stabilization is to prevent the needed recession
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in social sectors to spill over to sectors that can be maintained active. Second, the policies

themselves are very stark. For example, transfers are not directed to the poor, which are

likely to contract their demand the most for precautionary reasons. Targeted transfers are

part of social insurance in many countries and their effects in incomplete market economies

are well understood (e.g. Berriel and Zilberman, 2011). However, the speed of the crisis

limits the ability to setup transfers targeted to low wealth households rather than low income

households. Thus, transfers can be targeted only in as much income is a proxy for wealth.

The credit policy here is also stark because it targets individual debt only. In practice,

governments are also attempting to target firm credit, as a means to keep workers in their

jobs and avoid the social losses produced by inefficient unemployment spells. We explain how

the model can be modified easily along those lines. Yet, we think that governments should

attempt to stimulate credit card debt, a policy that has not being used as much as others.

Third, the debt limits are exogenous. This is a key feature of the model that determines the

relevance of the transfers versus credit subsidy, but clearly a credit program has to confront

the reality of default risk and moral hazard. Finally, we leave aside the question of how these

programs are financed. Temporary deviations from a Taylor rule allow, at least partially,

the consolidated government to control the trajectory of real rates, and this can potentially

introduce trade-offs.

A final important shortcoming is that the model is not tailored to speak to forced lock-

downs (or any other containment policy). This could be simply accommodated by an ad-hoc

restriction on the amount of social goods that can be consumed. The representation in terms

of the discount factor would be the same as the one here, but the representation would be

endogenous to policy. These are all issues that can be addressed in variations to this model.

Despite these limitations, and the distance to reality, the model here is a good laboratory to

think of policy implications in real time.

This paper is one of the many research responses that study the positive and norma-

tive macroeconomic implications of the Covid-19 pandemic. One group of papers integrates
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epidemiology and macro models,3 and study how the evolution of the pandemic interacts

with the macroeconomy. Examples include Eichenbaum et al. (2020), Alvarez et al. (forth-

coming), Jones et al. (forthcoming), Bethune and Korinek (2020), Krueger et al. (2020) and

Kaplan et al. (2020). Another group interprets the Covid-19 shock by using the standard

macroeconomics toolkit. In particular, the shock is interpreted as an unexpected shut down

of part of the economy as a consequence of the pandemic shock and unmodeled sanitation

measures. In Guerrieri et al. (2020), the shock is represented as a cap on labor employment.

A key finding is that this supply shock only generates demand deficiency in a tow-sectors

economy for a specific (but not restrictive) set of parameters. In Caballero and Simsek

(forthcoming), the large supply shock triggers a stock wealth decline of risk-tolerant agents,

leading to a feedback loop that further decreases asset prices and output when the interest

rate is constrained downward to accommodate the shock. In Buera et al. (2021), some of

the firms in their model with heterogeneous entrepreneurs must shut down due to the shock.

Our paper fits this branch of this emerging literature. We represent the Covid-19 shock as a

shock that reduces the consumption of social goods. We interpret it as a decease in marginal

utility of consuming such goods due to behavioral responses to the risk of being infected.

Incidentally, this shock is more likely to be recessive for a specific set of parameters, similar

to the set found by Guerrieri et al. (2020). Closely related is Faria-e Castro (2021), who

studies policy responses to a similar shock in a two-sector model with two types of agents,

borrowers and lenders. He finds that unemployment insurance is the preferred policy from

the point of view of borrowers, while savers favor transfers. Finally, there is a third branch

that studies empirically the macroeconomic consequences of early pandemics. For example,

Barro et al. (2020), Correia et al. (2020), and Jordà et al. (2020). This literature is evolving

fast, and these papers represent a rather incomplete list.

The paper is organized as follows. Section 2 presents the model. Section 3 discusses the

3A description of the baseline epidemiology model and simulations concerning the Covid-19 pandemic
can be found in Atkeson (2020) and Berger et al. (2020).
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results. Finally, Section 4 concludes.

3.2 Model

Time is continuous, t ∈ [0,∞). The economy is populated by ex-post heterogeneous house-

holds. There is a consolidated government, which is a combination of a Central Bank (CB)

and fiscal authority. Banks intermediate between borrower and lender households, but since

they make zero profits, they are simple pass through entities. The CB determines a common

policy rate and conducts open market operations that translate into a credit subsidy. The

fiscal authority makes/collects (lump sum) transfers/taxes to/from households and man-

ages unemployment insurance. Households face idiosyncratic income shocks produced by

unemployment spells. Households self-insure by borrowing and lending through banks.

There are two goods produced with a common input, labor. Due to wage rigidities,

a shock aimed to capture the economic impact of the Covid-19 pandemics (i.e., a shock

that reduces the consumption of goods that require social contact) generates unemployment

beyond a natural level. This social inefficiency is amplified through debt constraints. The

objective is to study the role of two specific policies aimed at stabilizing the economy after

the shock. The policy options are either a credit policy that shows up as a lending subsidy

or lump-sum direct transfers to households.

3.2.1 Preferences, technology, and the Covid-19 shock

To accommodate a Covid-19 shock, we consider two types of goods, one that can be consumed

remotely, crt , and another that requires social interactions, cst . Let households instantaneous

preferences be given by U (xt) ≡
(
x1−γ
t − 1

)
/ (1− γ); the composite good xt is given by

xt =
(
α1/εcrt

1−1/ε + ((1− α) βt)
1/ε cst

1−1/ε
)ε/(ε−1)

.
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Here, γ is both the risk aversion parameter and the inverse of the intertemporal elasticity

of substitution. For this version, the risk-aversion force is dominated by the elasticity of

substitution. In turn, ε is the elasticity of substitution between goods, and α is the share of

each type of good. Throughout the paper, we take a stance that social and remote goods are

substitute, ε > 1, such that the consumption of remote goods (at home, e.g., Netflix, Amazon,

supermarket expenditures, etc) increases, whenever the consumption of social goods (e.g.,

movies, restaurants, etc) decreases.

We interpret βt ∈ [0, 1] as a shock that reduces the utility from social goods due to

the fear of the pandemic. Intuitively, individuals arguably experiment a lower degree of

happiness whenever consuming certain goods that involve risk of being infected. In that

sense, our model is capturing a behavioral response of individuals during a pandemic, rather

than a proper containment policy that imposes social distance. Alternatively, we could

impose an upper limit on the consumption of social goods, say cst ≤ cs, that would capture a

policy that aims to limit social interactions, such as a lockdown. Both assumptions show up

mathematically as a modification to the expenditure problem, but in the case of rationing,

that representation would not be invariant to policy. We will study a quantity restriction in

a new version of the paper. Utility flows are discounted accordingly with discount rate ρ,

E
[∫∞

0
e−ρtU (xt) dt

]
.

Let ct be total expenditures. For simplicity, we assume that both goods can be pro-

duced with the same production function, so their relative prices is one—we can relax this

assumption without difficulty. The first-order conditions and simple algebra yield:

crt =
α

((1− α) βt) + α
ct; c

s
t =

((1− α) βt)

((1− α) βt) + α
ct;xt = ((1− α) βt + α)1/(ε−1) ct.

Naturally, a decrease in βt not only decreases (increases) the consumption of social (remote)

goods, but if the elasticity of substitution is more than one, ε > 1, for a given amount of

expenditures, the consumption of the composite good decreases. For plausible assumptions
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on α and ε, conceptually we can reverse engineer βt to deliver the path of cst compatible

with people fearing going out and staying at home for a given time, or the path desired by

a containment policy cs that limits consumption of social goods cst = cs.

By substituting xt = ((1− α) βt + α)1/(ε−1) ct back into the households’ objective func-

tion, and given that preferences are CRRA, one obtains

E
[∫ ∞

0

e−ρtξtU (ct) dt

]
,

where ξt = ((1− α) βt + α)(1−γ)/(ε−1) .

For (1− γ) / (ε− 1) < 0, which is true, for instance, when both ε > 1 and γ > 1,

a Covid-19 shock that reduces the consumption of social goods, morphs into a negative

discount factor shock (more discounting of the future). In the other case, in which ε > 1

and γ < 1, the shock can be represented equivalently as a positive discount factor shock

(less discounting) as agents do not gain much utility from current consumption. A positive

discount factor shock, coupled with price rigidity, tends to generate a recession whenever

the intertemporal elasticity of substitution is more than one, IES = 1/γ > 1, as agents

are willing to substitute aggregate consumption intertemporally. Hence, we also assume

throughout the paper that γ < 1, so our exercise can easily reproduce the feature that the

Covid-19 shock is clearly recessive. Note that the assumption that ε > 1 > γ is consistent

with the set of parameters for which Guerrieri et al. (2020) find that a supply shock in

one of the sectors in their two-sectors model generates demand deficiency, something those

authors calls a Keynesian supply shock—here we simply refer to the spill-over across sectors.

Finally, note that the higher the share of social goods, (1− α), the more intense will be the

propagation of the shock.

In addition, and for simplicity, we assume that production is a linear function of aggregate

employment, crt + cst = (1− Ut), where Ut is the unemployment rate. Note that labor can

be perfectly reallocated across sectors in response to the Covid-19 shock. This is a useful
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benchmark to show that, even under this assumption, the shock can induce a recession with

a scope for policy response aimed at stabilizing output. Nonetheless, imperfect reallocation

seems to be a key ingredient under the current crisis: given that the mass of unemployed

cannot be easily absorbed by the essential sector, which would further increase the scope for

policy to improve welfare.

Finally, there is no notion of payroll financing in this paper, as firms do not face frictions

and always honor their wage bills. Although subsidizing firms is an important aspect of

the current crisis, the focus here is on the trade-off between lump-sum transfers and credit

subsidy to households, rather than firms. Nonetheless, we can easily modify this approach,

by studying a subsidy policy to keep workers away from unemployment, but keeping them

in a different pool of idle firms. The idea is that these workers could return to the workforce

immediately, rather than going through the unemployment to employment process. We think

this is a core policy response, but for now we abstract from it.

3.2.2 Households

The non-financial sector features a measure-one continuum of ex-ante identical households,

that are ex-post heterogeneous. Heterogeneity follows from uninsurable idiosyncratic risk

z ∈ {u, e}, where u stands for unemployed and e stands for employed. The stochastic

process that governs this idiosyncratic risk is independent and identically distributed across

households. Households transit from one state to another according to an instantaneous

transition probabilities of Γeut = νeu+φ+
t and Γuet = νue−φ−t , where {νue, νeu} are exogenous

(or natural) transition rates, and φt is an endogenous employment-unemployment adjustment

rate that occurs due to price rigidity. Namely, φt is positive (negative) when the rigidity

constraint is binding and there is an excess supply (demand) of final goods under φt = 0.

Households receive a flow of real income given by:

dwt = y (z) dt+ Ttdt,
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where income wt is the sum of direct transfers Tt (to be described below) and labor income

(or unemployment insurance) y(z). Note that, in equilibrium, the real wage rate is one. We

assume that y (e) =
(
1− τ l

)
, and thus, households are taxed with rate τ l whenever they are

employed, and y (u) = b, meaning that b is the replacement rate for unemployment insurance

purposes.

Financial claims are nominal. Although all claims are nominal, the individual state

variable is st, the stock of real financial claims—the distinction would matter only with long-

term debt. Households store wealth in bank deposits, aht , or currency, mh
t , and borrow loans

against banks, lht . By convention,
{
aht ,m

h
t , l

h
t

}
≥ 0. Let real rates of return be rmt ≡ imt − πt

and rlt ≡ ilt−πt, where imt is the monetary policy rate, ilt is the rate on loans, and πt = Ṗt/Pt

is inflation. Note that the price of the composite good in terms of money is Pt. Currency

does not yield nominal interest, and thus, its real return is −πt. The law of motion for real

wealth follows

dst =

(
rmt
aht
Pt
− πt

mh
t

Pt
− rlt

lht
Pt
− ct

)
dt+ dwt, (3.1)

and the balance-sheet identity is given by

aht +mh
t

Pt
= st +

lht
Pt
.

From a household’s perspective, there is no distinction between holding deposits or currency

beyond their rates of return. Hence, currency is only held when the nominal deposit rate is

zero, and both assets yield the same return. This feature is introduced into the model only

to articulate a zero lower bound as an implementation constraint. Another observation is

that households do not hold deposits and loans if there is a positive spread between them.

Combining these insights, (3.1) can be written succinctly as:

dst = (rt(st)st − ct) dt+ dwt, (3.2)
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where rt(st) = rmt if st ≥ 0, and rt(st) = rlt if st < 0. Finally, households can borrow, but

only up to a certain limit. For now, there is a fixed threshold s̄ ≤ 0, such that st ≥ s̄. In

this version of the paper, we abstract from default risk and moral hazard associated with

incentives to repudiate debt. This is arguably a relevant feature of the current crisis. As

we discuss below, the degree of slackness of such debt limit is the key determinant of policy

design in response to the shock. Hence, exogenous debt limit is another feature of the model

that is clearly restrictive.

The Hamilton-Jabobi-Bellman (HJB) equation associated with the household’s problem

is:

Problem 3.1 [Household’s Problem]The household’s value and policy functions are the so-

lutions to:

ρV (z, s, t) = max
{c}

ξtU (c) + V ′ (z, s, t) [rmt (s)s− c+ y (z) + Tt]

+Γzz
′

t [V (z′, s, t)− V (z, s, t)] + V̇ (z, s, t) ,

subject to s ≥ s̄.

3.2.3 Unemployment, inflation, and the Phillips curve

In standard Real Business Cycle models, prices adjust to ensure market clearing, whereas in

standard New Keynesian (NK) models prices are rigid but firms produce and supply goods to

meed their demand. Here, we follow the NK tradition, but instead of assuming monopolistic

competition and a price adjustment process, we simply postulate that prices are rigid in a

way that makes inflation evolve according to a classic forward-looking version of the Phillips

curve:

π̇t = ρ (πt − πss)− κ (Uss − Ut) ,
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where the subscript ss denote steady-state levels. In particular, inflation increases (de-

creases) whenever unemployment Ut is below (above) its natural rate Uss, or inflation πt is

above (below) its long-run expected inflation-target πss, implemented by the CB interest-

rate policy. Different from a NK model, steady-state inflation does not have consequences

for efficiency.

By solving the equation forward, one obtains the following integral solution for inflation

at time t,

πt = πss + κ

∫ ∞
0

exp (−ρs) (Uss − Ut) ds.

Importantly, πt is not pre-determined, as it depends on path of future unemployment. Infla-

tion is boosted at intensity κ, as unemployment falls below steady state. When unemploy-

ment is below steady state, the economy experience wage pressures. In that case, nominal

wages tend to increase. Similarly, the economy features deflation as the unemployment rate

rises above steady state.

In this model, as anticipated above, we assume that the endogenous component φt of

employment-unemployment transitions adjusts to ensure market clearing. In particular, the

law of motion of unemployment is given by

U̇t =
[
νeu + φ+

t

]
(1− Ut)−

[
νue − φ−t

]
Ut. (3.3)

If demand is insufficient, and prices cannot adjust downwards, the unemployment rate re-

sponds.

3.2.4 Intermediation and implementation of credit spread with open-market

operations

Financial intermediation is carried out by a competitive fringe of intermediaries. In the

paper, these are simple pass through entities. In particular, banks choose their supply of
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nominal deposits, at, nominal loans, lt, and reserve holdings, mt.
4 Free entry and perfect

competition yield zero expected profits. Deposits and reserves earn corresponding rates

iat = imt , where imt is the policy target set by the CB. Due to the credit policy, the interest

rate on loans, ilt, differs from the policy rate.

To implement the credit policy, we assume that the CB branch of the consolidated gov-

ernment conducts a policy that targets a given loan subsidy, σt > 0. This subsidy is induced

by a combination of interest on reserves and open-market operations as explained below.

Due to competition, ilt must be such that expected returns satisfy ilt+σt = imt . In real terms,

let interest rates be expressed as rat , r
m
t and rlt. Given that iat = imt = ilt+σt, any composition

of banks’ balance sheet, such that lt + mt = at, is consistent with optimal behavior. The

aggregate supply of deposits and loans, and holdings of reserves are denoted by Abt , L
b
t , and

M b
t , respectively, and of course, must satisfies Lbt +M b

t = Abt .

To explain how the CB implements a negative spread, we work with the continuous time

limit of a discrete time implementation. To implement a spread σt, the CB purchases a

fixed allotment of loans Lft . Loans are purchased at a random auction at a pre-specified

price qt ≡ 1 + ∆σt · L
b
t

Lft
for a small time interval ∆. Since the price is greater than one, all

loans participate in the auction. Winners in the auction earn an arbitrage (qt − 1) per time

interval. The probability of selling a loan is Θ = Lft /L
b
t∆ per interval of time. Taking the

interval to zero, then the bank earns an arbitrage of

σt ≡ lim
∆→0

(qt − 1) ·Θt,

per instant of time.

4Banks operate without equity. The introduction of a role for bank equity (via restrictions like capital
requirements or limited participation) would produce bank profits and would make equity an aggregate state
variable. For simplicity, we abstract away from this dimension in this paper. In practice, alleviating capital
requirements is essential to expand credit.
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3.2.5 Consolidated government

Throughout the paper, we consider the consolidated government budget constraint, which

combines budget constraints associated with the Central Bank (CB) and the branch of

the government responsible for fiscal policies, and use the terms CB and (consolidated)

government interchangeably.

Budget constraint. The CB has a nominal net asset position, Et, defined as:

Et ≡ Lft −Mt.

The net-asset position is the difference between loans held by the CB, Lft , and the CB

liabilities, i.e., the monetary base, Mt. The monetary base is divided into the aggregate

holdings of reserves by banks M b
t and the household’s currency holdings, M0t. The monetary

base is always positive. The CB can issue or purchase loans Lft : when negative Lft is

understood to be a stock of government bonds, when positive, it is understood to be the

loan purchases of the CB.5 An open market operation is a simultaneous increase or decrease

in Mt and Lft without altering net asset positions.6

There are two “active” fiscal policies available to the government, lump-sum transfers Tt

and the credit subsidy σt. The parameter b is important to control the degree of insurance in

the economy and endow the unemployed with some income. We assume that the employment

insurance is not necessarily balanced, leaving a deficit of wtbUt −wtτ l (1− Ut). Considering

5There is no distinction between private and public loans. In fact, whenever Lft < 0, an increase in Lft
is interpreted as a conventional open market operation (OMO). Instead, when Lft > 0, an increase Lft is an
unconventional OMO. The assumption is that government bonds are as illiquid as private loans from the
point of view of banks.

6The model is rich enough to accommodate a “helicopter drop” through an increase in Mt, without a
counterpart increase in Lft .
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the consolidated budget, the nominal fiscal surplus without transfers is given by:

Πf
t = imt L

f
t − imt (Mt −M0t)− PtTt − σtLbt + wtτ

l (1− Ut)− wtbUt, (3.4)

where the sources of income are given by the nominal interest on loans and labor taxes,

whereas the sources of expenses are reserve remunerations, transfers, the credit subsidy and

unemployment insurance. The net asset position of the consolidated government evolves

according to

dEt = dΠf
t = dLft − dMt︸ ︷︷ ︸

unbacked transfers

.

The government accumulates a nominal claim on the private sector as undistributed income.

The net asset position decreases with the difference between the monetary base and the loan

purchases of the CB. In real terms, the CB’s net asset position is Et ≡ Et/Pt and its loan

holdings are Lft ≡ Lft /Pt. Let Wt denote the real wage, and f (z, s, t) the density associated

with the joint distribution of savings s and employment status z. The next proposition

exploits this observation to express the law of motion of the real net asset position Et in real

terms.

In real terms, Et satisfies:

Ėt = rmt Et + (σt − πt)
∫ 0

s̄

s [f (e, s, t) + f (u, s, t)] ds+Wt

(
τ l (1− Ut)− bUt

)
− τtEt, E0 given.

(3.5)

where transfers are given by Tt = τtEt. The first term in (3.4) is the portfolio income earnings

(losses) of the CB which equal the real rate times the net asset position. The second term

captures the losses from the CB’s subsidy. The third term is the outcome of income taxation

and unemployment insurance policy. Finally, transfers are subtracted from the real asset

position. A policy path is constrained by solvency conditions. An important restriction

is a long-run solvency constraint for the CB. In particular, there is a limit limt→∞ Et ≥ E

for some minimum E that guarantees that the CB can raise enough revenues and satisfy
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dE = 0. It must be the case that at E discount window revenues cover any balance sheet

costs. This condition is equivalent to assuming that the CB’s liabilities are not worth zero

in equilibrium. The model features a Laffer curve for CB revenues. Although we do not

solve for E explicitly, in the exercises we analyze in the following section, we impose that all

policy paths lead to a convergent stable government net asset position and limt→∞ dEt = 0.

Another restriction in the opposite direction is that Et ≤ −s̄, which is equivalent to saying

that the CB claim on the public cannot exceed the public’s debt limit.

Taylor rule. To set the interest instensively on reserves, the CB works with a Taylor rule

that allows for a discretionary component that is triggered by the shock, but also follows a

standard Taylor rule that captures commitment for the long-run. This feature is important.

Without a Taylor rule, the model is unstable, so we need the long-run component. At

the same time, we want to capture the idea that monetary policy responds to economic

conditions. For that, we specify the following rule:

imt = im∞ + η · (πt − πss) , (3.6)

where η > 1 is the parameter that governs the response of nominal interest rate to inflationary

pressures. In addition, im∞ is chosen to guarantee an inflation target πss.

Fiscal rule. To allow comparisons among policies, lump-sum transfers and credit policies,

we setup a path for government debt as a policy target. During the crisis, we allow debt to

expand and then shrink it back. We assume the following rule

Et = E∞︸︷︷︸
long-run target

+ (Ed − E∞) · exp
[
−γLRt

]︸ ︷︷ ︸
long-run deviation

+ (Et− − Ed) · exp
[
−γSRt

]
.︸ ︷︷ ︸

short-run deviation

(3.7)

The term E∞ is a long-run target. The term Ed is an attraction point of net asset position.

The rate Et− is the government net asset position the instant before a shock. Finally, the
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term exp
(
−γSRt

)
captures the speed of expansion of government debt and exp

(
−γLRt

)
the

speed of reversal of the discretionary policy to the long-run target.We further discuss this

rule in the Appendix A, where we argue that by assuming γLR < γSR, the net asset position

(debt) decreases (increases) and then increases (decreases) during and after the crisis to

accommodate the stabilizing policies. Since the path of net asset position is pinned down,

we obtain the possible mix of transfers and credit policy as a residual as follows. Take

derivatives with respect to time to obtain:

Ėt = −
[
γLR (Ed − E∞) · exp

(
−γLRt

)
+ γSR (Et− − Ed) · exp

(
−γSRt

)]
. (3.8)

And thus, all policies that combine paths for transfers Tt and credit subsidy σt satisfying

Tt = rmt Et + (σt − πt)
∫ 0

s̄

s [f (e, s, t) + f (u, s, t)] ds+Wt

(
τ l (1− Ut)− bUt

)
− Ėt, (3.9)

they also imply the same path for debt and, thus, they are comparable.

We consider two types of policy. First, a pure transfers policy, for which we set σt−πt = 0,

and thus solve for the path of lump-sum transfers that is consistent with the expansion of

debt in (3.7). In this case,

Tt = rtEt +Wt

(
τ l (1− Ut)− bUt

)
− ˙Et.

In addition, we consider an active credit policy for which we set the path credit subsidy

according to:

σt = σ∞︸︷︷︸
long-run target

+ (σd − σ∞) · exp
[
−ψLRt

]︸ ︷︷ ︸
long-run deviation

+ (σt− − σd) · exp
[
−ψSRt

]︸ ︷︷ ︸
short-run deviation

, (3.10)

and transfers are backed as a residual from (3.9). This subsidy rule is akin to the evolution

of debt in (3.7), in which the value σ∞ plays to role of the long-run target. Again, the
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term σd is an attraction point of the subsidy policy, and the rate σmt− is the credit policy

the instant before a shock. As regarding the law of motion to debt, the term exp
(
−ψSRt

)
captures a degree of responsiveness to the shock: the speed at which the discretionary policy

kicks, whereas exp
(
−ψLRt

)
the speed of reversal of the discretionary policy, to the long-run

target. Again, we further discuss this rule in the Appendix A. In this case, we assume that

ψLR > ψSR such that the credit subsidy σt first increases, and then decreases toward its

long-run target.

One important aspect of macroeconomic stabilization policy is the speed of the imple-

mentation. The Covid-19 shock has evolved faster than ever. Arguably, a credit policy is

faster to implement, given that monetary operations do not require the bureaucratic burden

of a sending checks. We can control the speed of the policy responses via the parameters{
ψSR, γSR

}
. Another critical aspect, is that we do not consider targeted transfers. Thus, the

transfer program wastes budgetary resources distributing resources to wealthy individuals.

Although in practice, transfers have been assigned to low-wage earners, the misallocation of

transfers is still a problem. There are many low wage earners that have years of savings, and

many high wage earners that are in deep debts. Without appropriately observing wealth,

the effectiveness of the policy faces clear implementation constraints.

Finally, we could enrich the model to evaluate different schemes to finance those policies.

For instance, by introducing short-run deviations of the Taylor rule that imply a lower

path for the interest imt , the debt evolution is mitigated, but this can potentially introduce

trade-offs. Hence, the model can also provide insights on the welfare implications of the

fiscal-monetary interactions needed to finance the debt implied by policies.

3.2.6 General equilibrium

Distribution of wealth and employment status. The mass of agents sums to one. At

each instant t, there is a distribution f (z, s, t) of real financial wealth across households given

their employment status z. The law of motion of this distribution satisfies a Kolmogorov-
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Forward Equation (KFE). The KFEs are given by:

∂

∂t
f (e, s, t) = − ∂

∂s
[µ (e, s, t) f (e, s, t)]− Γeut f (e, s, t) + Γuet f (u, s, t) and

∂

∂t
f (u, s, t) = − ∂

∂s
[µ (u, s, t) f (u, s, t)]− Γuet f (u, s, t) + Γeut f (e, s, t) . (3.11)

Note that a fraction Ut =
∫∞
s̄
uf (u, s, t) ds is unemployed, whereas a mass 1 − Ut is active

in the workforce. The mass of unemployed evolves according to the law of motion in (3.3).

Markets. Recall that mh
t (z, s), aht (z, s) and lht (z, s) are the demand for currency, deposits

and loans, respectively, at instant t by a household with employment status z and savings

s. Outside money is held as bank reserves or currency. The aggregate currency stock is

M0t ≡
∫ ∞
s̄

[
mh
t (e, s) f (e, s, t) +mh

t (u, s) f (u, s, t)
]
ds.

Naturally, households only hold currency at a zero-lower bound. Equilibrium in the outside

money market is:

M0t +M b
t = Mt. (3.12)

The credit market has two sides: a deposit and a loans market. In the deposit market,

households hold deposits supplied by banks. In the loans market, households obtain loans

supplied by banks and the CB. The distinction between the loans and deposits is that they

clear with different interest rates. The deposit market clears when:

Abt =

∫ ∞
0

[
aht (e, s) f (e, s, t) + aht (u, s) f (u, s, t)

]
ds, (3.13)

whereas the loans market clears when:

Lbt + Lft =

∫ 0

s̄

[
lht (e, s) f (e, s, t) + lht (u, s) f (u, s, t)

]
ds, (3.14)
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whereLbt and Lft are loans purchases by banks and the CB, respectively. Note that household

deposit demand is given by aht (z, s) ≡ Pts−mh
t (z, s) for positive values of s whereas demand

for loans by lht (z, s) ≡ −Pts for negative values of s.

Finally, the goods market clears when:

(1− Ut) ≡ Yt = Ct ≡
∫ ∞
s̄

∑
z∈{e,u}

(crt (z, s) + cst (z, s)) f (z, s, t) ds, (3.15)

where crt (z, s) and cst(z, s) represent the demands for remote and social goods, respectively,

at instant t by a household with employment status z and savings s. The definition of the

perfect foresight equilibrium is standard.

Equilibrium computation. The real equilibrium deposit rate solves a single clearing

condition (Bigio and Sannikov, 2021):

−
∫ 0

s̄

s [f (e, s, t) + f (u, s, t)] ds =

∫ ∞
0

s [f (e, s, t) + f (u, s, t)] ds+ Et for t∈[0,∞). (3.16)

If we obtain the real deposit rate, we also obtain the real value of loans and deposits as well

as the evolution of wealth. By Walras Law, if (3.16) holds, then the goods market clearing

condition (3.15) also holds.

3.3 Policy responses and trade-offs

3.3.1 Two insights

We state here two insights to guide the discussion below. First, consider the case in which

the borrowing limit is the natural one. Since this borrowing limit is never binding, and

except for the initial unexpected shock there is not aggregate risk, the Ricardian equivalence

holds meaning that debt and lump-sum transfers are equivalent to finance expenditures—see
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Ljungqvist and Sargent (2012) for a textbook treatment. Hence, if the economy eventually

returns to the same steady-state, any path of transfers is neutral as it will be consistent

with a path in which transfers are set to zero all time. This insight showcases an extreme

economy where one of the policies we evaluate has muted effects. Second, consider the other

opposite case, an economy where debt limits are severe, as in Werning (2015) and Guerrieri

et al. (2020). In particular, let the borrowing limit be zero. By construction, any credit

subsidy is immaterial as there is not credit to be subsidized.

This discussion showcases that the effectiveness of policy critically depends on the extent

of borrowing limits. In one extreme, when credit is ample, transfers are useless. In the other

case, when credit is restricted, a credit policy is useless. These insights might be important

for ongoing policy debates, as it means that in developed economies, with ample credit limits,

transfer policies are more likely to to be neutral, whereas in emerging economies, with low

credit limit, credit subsidy might not have a bite. These insights seem to be guiding policies

to some extent: as we noted in the introduction, developing countries are relying more

intensively on transfer programs, developed economies on credit programs.

3.3.2 Numerical illustrations

To evaluate the model, we present a simple calibration for illustrative purposes. As explained

above, we assume that ε = 1.8 and γ = 0.5, such that the shock in the marginal utility of

social consumption is associated with less discounting, and thus, due to IES > 1 and rigid

prices, it generates a recession. Also, we assume a low degree of substitutability, which

is in line with the idea that some substitution occurs (e.g., going to the movies for online

streaming), but given the nature of goods that requires social interactions, we doubt they

can be largely substituted for goods that can be consumed at home.

We assume the economy is initially in the steady-state. Then, we solve the model for

a time-varying path of βt, which governs the evolution of behavioral responses due to the

infection risk of Covid-19. Eventually, the economy converges back to steady-state. We
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assume βt follows an inverse-hump-shape path (see Figure 3.2, left-top panel), which becomes

perfectly foreseen once the unforeseen Covid-19 shock hit the economy.

We consider a few exercises. First, we analyze the model dynamics in an environment

with fully flexible prices. Second, we compare the model dynamics in an environment with

rigid prices under three different scenarios: no policies at all (laissez-faire), a pure trans-

fers policy in which the credit subsidy is set to zero, and an active credit subsidy in which

lump-sum transfers are computed as a residual. Finally, we experiment with different de-

grees of borrowing limits. We consider the natural borrowing limit, in which transfers are

immaterial due to arguments related to the Ricardian equivalence, so credit subsidy is the

preferred policy. We also consider a zero borrowing limit, in which a credit subsidy by con-

struction cannot do anything, so lump-sum transfers are the preferred one. And, finally, an

intermediate borrowing limit in which trade-offs between the use of both policies emerge.

3.3.2.1 Benchmark: flexible prices

To set the stage, in this section, we report results under a flexible prices benchmark, which

we obtain by setting the parameter κ to infinity. Figure 3.2 displays four plots. The top-left

panel displays the evolution of βt, the shock governing the marginal utility of consuming

social goods. Under the assumption that ε > 1 and γ < 1, this shock affects the economy as

if there is less discounting of the future. Market clearing implies that consumption equals

output, which is not affected by the shock since labor flows are exogenous. As the bottom

panels reveal, output is constant and households simply reallocate consumption from social

goods, affected by the negative marginal utility shock, toward remote goods. The price

margin that adjusts is the real interest rate. Regarding the path of the interest rate, this path

first increases at the time the shock arrives unexpectedly. Intuitively, given that households

anticipate a fall in the the marginal utility of consumption of social goods as the shock

escalates, they would like to anticipate consumption and, thus, interest rate must increase at

the very beginning of the transition path. As the shock evolves in a perfect foreseen fashion,
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interest rate follows an inverse hump shape, remaining temporarily below its steady-state

level, given the incentives households face to postpone consumption to the future. Finally,

given that output is constant, and consumption paths for social and remote goods depend

mostly on γ and ε, the borrowing limit does not affect these paths. It affects only the path

of interest rate which moves downwards as the borrowing limit becomes tighter and reduces

the demand for loans.

This is a stark economy. Labor reallocation is perfect and instantaneous, meaning that a

bar tender can become a UPS driver or a nurse the next day. This assumption is at odds with

reality, but still, showcases that that some segments of the economy should absorb resources

not employed in sectors that have to be avoided. The next sections address the points that

with wage rigidity, remote sectors can be dragged down by the recession in social sectors.

3.3.2.2 Rigid prices, pure transfers and active credit policy

Under the assumption of price rigidity, κ <∞, output drops in a persistent way, enhancing

the role of potential policies to mitigate the impact of the shock. In the next sections, we

consider scenarios without policy interventions (laissez-faire), with pure lump-sum transfers,

and with an active credit policy where transfers adjust as a residual. To make policies com-

parable, we assume they generate the same path of the consolidated government’s position in

the latter two cases. We report results for three different degrees of borrowing limits. First,

we consider the natural borrowing limit, in which transfers are innocuous. Second, we con-

sider a zero borrowing limit in which credit subsidy is immaterial. Finally, an intermediate

borrowing limit that illustrates the trade-off between using both policies.

Natural borrowing limit. Figure 3.3 considers the policy interventions, whereas Figure

3.4 displays output, consumption and interest rate paths. Compared to laissez-faire (full

blue line), dashed red lines (dash-dotted green lines) represent the paths that take into

account transfers policy (active credit policy) right after the shock, when the Government
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instantaneously implements them. Policies are designed to generate the same path of debt,

as illustrated in the first panel of Figure 3.3. The second and third panels plot paths of

transfers and credit policy, respectively. In the later case, transfers adjust residually as

illustrated by the seconde panel.

With nominal rigidity, and no policy interventions (blue full-lines in Figures 3.3 and 3.4),

the output drops in a persistent way. As we explained earlier, this responds to the inability

of the remote sector to absorb the slack of the social sector. There are more job separations

which implies larger unemployment, and is captured by the slope of the output path. Micro

uncertainty increases, meaning that precautionary savings should increase. This reinforces

the negative effect on interest rates due to “less discounting” and IES < 1, or a more

willingness to substitute intertemporally rather than intratemporally. Hence, as opposed to

the flexible prices benchmark, consumption of remote goods does not absorb perfectly the

fall in the consumption of social goods. There is scope for macroeconomic stabilization, a

policy analysis we pursue next.

Due to arguments related to the Ricardian equivalence, except for approximation errors,

the output, consumption and interest rate paths under laissez-faire and pure transfers overlap

perfectly as portrayed in Figure 3.4. In contrast, if a credit policy is implemented by reducing

the path of transfers, the fall in output is mitigated due to a boom in the consumption

of remote goods. Due to the absence of any containment policy in our model, perhaps

undesirably, the decline in the consumption of social goods is also mitigated. In addition,

we do not see an initial increase in the interest rate any more, whose path follows an inverse

hump shape, with the valley occurring before than in the laissez-faire economy. Intuitively,

the incidence of a credit subsidy implies a lower rate that debtors must honor, but a higher

rate that remunerates depositors. Hence, both paths of bank deposits and bank loans increase

with respect to an economy where transfers are innocuous, as illustrated by Figure 3.5.

We do not analyze an economy with credit against future taxes. But the result is in-

structive: if borrowing limits are very large, then how much we vary the limit with transfers
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will not have a large impact on the allocation.

Zero borrowing limit. Now we move to the opposite extreme. Consider Figures 3.6 and

3.7 that are the counterparts of Figures 3.4 and 3.5 for the case in which we assume no

borrowing at all (we omit the paths of policies since they carry a similar message to the

previous case in Figure 3.3). In the zero borrowing limit case, the credit policy is innocuous,

and since transfers adjust residual to deliver the same expansion of debt as in the pure fiscal

policy exercise, the paths under both policies (dashed red lines and dash-dotted green lines)

overlap. This means that the marginal impact of the credit policy is muted here. Figure

3.6 reveals that, under the zero borrowing limit and laissez-faire, the same shock generates

a recession nearly seven times larger than under the natural debt limit, which makes policy

even more urgent. In other words, a stringent debt limit amplifies a lot the recession, at

the same time that restrict the use of credit subsidy, perhaps the preferred policy tool to

target those households who really need support. Once transfers kick in, the recession (as

well as the fall in the consumption of social and remote goods) is mitigated substantially.

As expected, the remote sector accommodates better the effect of transfers.

Under the zero borrowing limit and laissez-faire, interest rate initially increases abruptly

as agents are willing to borrow to smooth the shock but the zero borrowing limit impedes

so. Once transfers are implemented, as illustrated in Figure 3.7, part of it becomes deposits

mitigating such increase in the interest rate.

Moderate borrowing limit. Finally, we consider the moderate borrowing limit. We

calibrate s̄ such that 10 percent of households are at the borrowing limit, st = s̄, in the

steady-state, which implies that 29 percent of them are indebted, st ∈ [s̄, 0). Figures 3.8 and

3.9 are the counterparts of Figures 3.4 and 3.5, and again we do not report the policy paths

for conciseness. Recall that a pure fiscal policy (dashed red lines) means that transfers are

set to match a given path of debt. As in the case with natural borrowing limit, under this
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policy, the fall in output and consumption of both social and remote goods is mitigated with

respect to the laissez-faire benchmark. Nonetheless, with an intermediate level of borrowing

limit, if the government uses part of its fiscal resources to implement an active credit policy

rather than solely pure transfers, it can further improves outcomes. Indeed, output and

consumption paths move further upward (dashed-dot green lines), with a expansion in the

remote good sector.

In addition, due to this mitigation in output and consumption once policies are imple-

mented, interest rates do not increase as much as they do in the laissez-faire case to induce

market clearing. The timing when rates fall below their steady-state level are anticipated

once policies are implemented. With a moderate borrowing limit, transfers further increase

deposits as part of the households save their transfers, but loans also fall as transfers to

another part of the households weak precautionary needs at the same time that they can

be used to anticipate consumption. Government debt absorbs such difference, affecting the

path of interest rate in the aforementioned way. Under the credit policy, which stimulates

both deposits and loans as illustrated by Figure 3.9, the interest rate increases less right

after the shock, just to follow the same inverse hump-shape path towards the steady-state.

3.4 Final remarks

All the examples above are illustrative of the mechanism. The key message is that the best

use of the mix between lump-sum transfers and active credit policy depends crucially on

the extent of the borrowing limit. In the next versions of the paper, we aim to explore

more this trade-off under a proper calibration and extensions that consider default risk and

endogenize the borrowing limit. This is important to asses possible moral-hazard constraints.

In addition, we aim to compare other types of policies, such as unemployment insurance and

job retention schemes.

Next versions of the paper aim also to relax the assumption on perfect reallocation of
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labor input across sectors, to study an ad-hoc restriction on the amount of social goods that

can be consumed so we can simulate containment policies, and to allow temporary deviations

from the Taylor rule so the consolidated government can tame the debt path with a lower

interest rate.
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3.A Appendix: Properties of policy rules

This section discusses the class of policy rules used in the draft. We specify rules of the

form: :

xt = x∞ + (x̄0 − x̄∞) · exp
(
−µLRt

)
+ (x0− − x̄0) · exp

(
−µSRt

)
.

In this rule, the value x̄∞ is a long-run target. The term x̄0 is an attraction point of the

policy rate in the short-run, after a shock. The rate x0− is the policy variable the instant

before a shock. The term exp
(
−µSRt

)
captures a degree of responsiveness to the shock to

its short-run attraction point—the speed at which the discretionary policy kicks in, whereas

exp
(
−µLRt

)
the speed of reversal of the discretionary policy, to the long-run target. In what

follows we assume µLR < µSR. This functional form has several natural properties:

1. First, observe that for any finite pair
{
µSR, µLR

}
we have the following:

lim
t→∞

xt = x̄∞.

2. Consider that for any finite pair
{
µSR, µLR

}
we have the following:

lim
t→0+

xt = x0− .

3. Consider that for any finite pair
{
µLR

}
we have the following:

lim
t→0+

lim
µSR→∞

xt = x̄0,

meaning that the adjustment is immediate.

4. Consider that for any finite pair
{
µSR

}
we have the following:

lim
t→∞

lim
µLR→∞

xt = x̄0,
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meaning that the attraction point is the discretionary point.

5. Consider the limit, µLR/µSR →∞, then speed of responsiveness is immediate and the

lim
t→∞

lim
µSR/µLR→∞

xt

= lim
t→∞

lim
µSR/µLR→∞

x̄∞ + exp
(
−µSRt

) [
(x̄0 − x̄∞) · exp

(
−
(
µLR − µSR

)
t
)

+ (x0− − x̄0)
]

= x̄∞ + (x̄0 − x̄∞) lim
t→∞

lim
µSR/µLR→∞

exp
(
−µSRt

) [
exp

(
−
(
µLR − µSR

)
t
)]

= x̄∞ + (x̄0 − x̄∞) lim
t→∞

lim
µSR/µLR→∞

exp
(
−µSRt

) [
exp

(
µSR

(
1− µLR/µSR

)
t
)]

= x̄0,

where the last line follows by L’Hospital rule.

6. Monotonicity of xt. Let’s assume x∞ > x̄0 and x0− > x̄0, which is the scenario in our

simulations. If µLR < µSR, then

∂xt
∂t

T 0 iff t T
1

µSR − µLR
ln

(
µSR

µLR
· x0− − x̄0

x∞ − x̄0

)
,

which means that the path of x̄t first decreases over time from x0− , then increases

back to x∞, which is our parametrization for the evolution of real net position, Et,

after the shock to represent the fiscal space available for stabilizing policies. If instead,

µLR > µSR, then

∂x̄t
∂t

T 0 iff t S
1

µLR − µSR
ln

(
µLR

µSR
· x∞ − x̄0

x0− − x̄0

)
,

which means that the path of x̄t first increases over time from x0− , then decreases back

to x̄∞, which is our choice whenever we study an active credit subsidy σt.

3.B Appendix: Figures
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Figure 3.2: Transition paths under flexible prices

(a) Preference Shock β (t)
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Notes: The figure reports the paths of preference shock, total output, real interest rate and consumption of

social goods and remote goods under flexible prices after an unforeseen Covid-19 shock. In panel (a), the

preference parameter of social goods consumption βt is expressed in the percentage of steady-state value.

In panels (b) and (d), the total output and consumption of social goods and remote goods are expressed

in percentage deviations from the steady-state values. In panels (c), the real interest rates are expressed in

annual percentages under three levels of borrowing limit: natural borrowing limit, zero borrowing limit, and

a moderate borrowing limit where s̄ = −0.1b.
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Figure 3.3: Nominal rigidity and policy variables (natural borrowing limit).

(a) Real Net Asset Position Et
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Notes: The figure reports the paths of real net asset position, real fiscal transfer and real credit subsidy in the

following scenarios of policy interventions after an unforeseen Covid-19 shock: laissez-faire, pure lump-sum

trasnfer and active credit policy. In panels (a) and (b), the net asset position and fiscal transfers are expressed

in percentage terms of the steady-state output. In panel (c), the real credit subsidity rate is expressed in

annual percentage. The pure fiscal transfer policy and active credit policy follow the same path of net asset

position, and the credit subsidy rates in laissez-faire and pure fiscal transfer policy are equal to zero. Given

the paths of net asset position and credit subsidy rate, the paths of fiscal transfers are computed as residuals

from equation (3.9). In all figures the households’ borrowing limit is set at the natural borrowing limit level,

such that the mass of population constrained at the limit is zero along the whole path of transition.
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Figure 3.4: Nominal rigidity and real variables (natural borrowing limit).

(a) Output Yt
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Notes: The figure reports the paths of total output, consumption of social goods and remote goods, and real

interest rate in the following scenarios of policy interventions after an unforeseen Covid-19 shock: laissez-

faire, pure lump-sum trasnfer and active credit policy. In panels (a), (b) and (c), the total output and

consumption of social and remote goods are expressed in percentage deviations from the steady-state values.

In panel (d), the real interest rates are expressed in annual percentages. In all figures the households’

borrowing limit is set at the natural borrowing limit level, such that the mass of population constrained at

the limit is zero along the whole path of transition. The paths of policy interventions follow Figure 3.3.
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Figure 3.5: Nominal rigidity and banking variables (natural borrowing limit).
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Notes: The figure reports the paths of bank deposits and loans in the following scenarios of policy inter-

ventions after an unforeseen Covid-19 shock: laissez-faire, pure lump-sum trasnfer and active credit policy.

The bank deposits and loans are expressed in percentages of the steady-state output. In all figures the

households’ borrowing limit is set at the natural borrowing limit level, such that the mass of population

constrained at the limit is zero along the whole path of transition. The paths of policy interventions follow

Figure 3.3.
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Figure 3.6: Nominal rigidity and real variables (zero borrowing limit).
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Notes: The figure reports the paths of total output, consumption of social goods and remote goods, and real

interest rate in the following scenarios of policy interventions after an unforeseen Covid-19 shock: laissez-

faire, pure lump-sum trasnfer and active credit policy. In panels (a), (b) and (c), the total output and

consumption of social and remote goods are expressed in percentage deviations from the steady-state values.

In panel (d), the real interest rates are expressed in annual percentages. In all figures the households’

borrowing limit is set at the zero borrowing limit level, i.e., s̄ = 0. The paths of net asset position and credit

subsidy rate follow Figure 3.3 and the paths of lump-sum transfers are computed as residuals from equation

(3.9).
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Figure 3.7: Nominal rigidity and banking variables (zero borrowing limit).
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Notes: The figure reports the paths of bank deposits and loans in the following scenarios of policy interven-

tions after an unforeseen Covid-19 shock: laissez-faire, pure lump-sum trasnfer and active credit policy. The

bank deposits and loans are expressed in percentages of the steady-state output. In all figures the households’

borrowing limit is set at the zero borrowing limit level, i.e., s̄ = 0. The paths of net asset position and credit

subsidy rate follow Figure 3.3, and the paths of lump-sum transfers are computed as residuals from equation

(3.9).
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Figure 3.8: Nominal rigidity and real variables (moderate borrowing limit).
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Notes: The figure reports the paths of total output, consumption of social goods and remote goods, and real

interest rate in the following scenarios of policy interventions after an unforeseen Covid-19 shock: laissez-

faire, pure lump-sum trasnfer and active credit policy. In panels (a), (b) and (c), the total output and

consumption of social and remote goods are expressed in percentage deviations from the steady-state values.

In panel (d), the real interest rates are expressed in annual percentages. In all figures the households’

borrowing limit is set at a moderate level, i.e., s̄ = −0.1b. The paths of net asset position and credit subsidy

rate follow Figure 3.3, and the paths of lump-sum transfers are computed as residuals from equation (3.9).

267



Figure 3.9: Nominal rigidity and banking variables (moderate borrowing limit).
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Notes: The figure reports the paths of bank deposits and loans in the following scenarios of policy inter-

ventions after an unforeseen Covid-19 shock: laissez-faire, pure lump-sum trasnfer and active credit policy.

The bank deposits and loans are expressed in percentages of the steady-state output. In all figures the

households’ borrowing limit is set at a moderate level, i.e., s̄ = −0.1b. The paths of net asset position and

credit subsidy rate follow Figure 3.3, and the paths of lump-sum transfers are computed as residuals from

equation (3.9).
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