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Genome-wide gene deregulation and oxidative stress appear to be critical factors determining the high variability of phenotypes
in Down’s syndrome (DS). Even though individuals with trisomy 21 exhibit a higher survival rate compared to other aneuploidies,
most of them die in utero or early during postnatal life. While the survivors are currently predicted to live past 60 years, they suffer
higher incidence of age-related conditions including Alzheimer’s disease (AD). This paper is centered on the mechanisms by which
mitochondrial factors and oxidative stress may orchestrate an adaptive response directed to maintain basic cellular functions and
survival in DS. In this context, the timing of therapeutic interventions should be carefully considered for the successful treatment
of chronic disorders in the DS population.

1. Introduction

Down’s syndrome (DS) or trisomy 21 is a prevalent genetic
cause of intellectual disability due to full or partial triplica-
tion of chromosome 21 (HSA21). The presentation varies
greatly between individuals. The molecular bases of this
variation is “the gene dosage effect” caused by the extra
chromosome 21, which leads to a global imbalance on
gene expression [1]. However, the molecular mechanisms
by which such gene dosage imbalance causes DS-specific
abnormalities remain unclear.

Albeit trisomy 21 is the most common aneuploidy that
infants can survive, the rate of miscarriage of fetuses with
DS during the first trimester is almost 50% [2]. The survival
rate for the first 18 years of life of DS individuals is 50.3% of
the total DS population, and the greatest percent of deaths
is observed during the first 5 years of life (35.9%). The
death rate drops to 13.1% between 19 and 40 years, and
DS individuals of 40+ years have a greater chance to live
beyond 60 years of age in developed countries, especially
those without congenital heart disease [3].

A remarkable feature of the syndrome is the presence
of Alzheimer’s disease (AD) neuropathology in the brain

of nearly all DS individuals, the majority of which develop
dementia with age [4]. Besides dementia, other aging features
appear prematurely such as cataracts, diabetes, hair graying,
leukemia, and hearing and visual impairment. Together,
they define DS as a “segmental progeroid syndrome” [5–7].
Mitochondria represent both a principal source as well as a
target of free radicals, which in turn cause structural damage
and activate signaling pathways associated with ageing and
age-related diseases [8–10]. Both oxidative stress and mito-
chondrial dysfunction are prominent features of DS [11–14].
The relation between oxidative stress, genome imbalances,
specific HSA21 genes, and the DS phenotype has been dis-
cussed elsewhere [11, 14–17]. In this paper, we will primarily
focus on mitochondrial deregulation, oxidative stress, and
the emergence of an adaptive response, which may influence
the timing and extent of clinical manifestations in DS.

2. Mitochondria and Oxidative Stress

Mitochondria have three major functions: generation of ATP,
production of reactive oxygen species (ROS) and initiation
of apoptosis. NADH and FADH2 formed in glycolysis, fatty
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acid oxidation, and the citric acid cycle are used to reduce
oxygen to water by a series of electron carriers located in the
inner mitochondrial membrane. The flow of electrons leads
to the pumping of protons out of the mitochondrial matrix
and the formation of a proton gradient across the inner
membrane, which provides the driving force used by ATP
synthase to produce ATP. This process is known as oxidative
phosphorylation (OXPHOS) [18, 19]. Most of the cellular
ROS are produced by electrons escaping from the electron
transport chain (ETC) which are captured by O2. Some
studies suggest that as much as 2–5% of the total O2 intake
ends up forming superoxide radicals. These are scavenged
by antioxidant enzymes such as mitochondrial superoxide
dismutase (SOD2) and glutathione peroxidase (Gpx) [20].
Mitochondrial DNA (mtDNA) encodes 37 genes: 13 mRNAs
for subunits of ETC complexes, 22 tRNAs, and 2 rRNAs
operating protein translation in the mitochondrial matrix
[18]. Since mtDNA is in close proximity to the ETC, it can
suffer mutations under excessive ROS production, leading
to impaired gene expression and further reductions in ETC
efficiency. Mitochondria eventually become dysfunctional
beyond repair and lose their electrochemical membrane
potential (MMP). The loss of MMP activates the perme-
ability transition pore, releasing mitochondrial material to
the cytoplasm. Ultimately, this triggers the execution phase
of the apoptotic process [18], which has been implicated in
multiple conditions including mitochondrial diseases, DS,
and age-related neurodegeneration [21, 22].

Besides mtDNA, nuclear DNA (nDNA) encodes approx-
imately 1600 mitochondrial genes [18, 21]. Because of the
split location of mitochondrial genes, mitochondrial genetics
does not follow Mendelian rules. While mitochondria and
mtDNA are maternally inherited [21], nuclear encoded
mitochondrial genes (NEMGs) are inherited from both
parents. Since each cell has thousands of mitochondria and
mtDNA copies; individual differences in the ratio of normal
and mutant mtDNA lead to heteroplasmy. Variations in
heteroplasmy and in the energy requirements of specific
cells and tissues dictate the variability in the presentation
of mitochondrial diseases, not unlike what is observed in
DS. The proportion of mutated mtDNAs varies spatially
(depending on the cell and tissue) and temporally (over
the individual’s life). Thus, a particular mtDNA mutation
may cause variable phenotypes [18, 23]. For example, the
mtDNA mutation tRNALeu A3243G has been associated with
mitochondrial myopathy, encephalopathy, lactic acidosis,
stroke-like episodes (MELAS), diabetes mellitus, Leigh’s
disease, and progressive external ophthalmoplegia (PEO)
[24]. This variability in phenotypes may also be relevant to
DS, where there is a high rate of mtDNA mutations and
several mitochondrial genes are disproportionally expressed.

3. Mitochondria in DS and DSAD

In addition to a handful of mitochondrial genes in HSA21
whose deregulation may impair mitochondrial function, the
evidence suggests that cytoplasmic inheritance of deleterious
mtDNA mutations in maternal mitochondria can influence

the frequency of DS in families or increase DS incidence in
pregnancies from older age females [25, 26]. Mitochondrial
activity is essential for spindle formation and chromosome
segregation during meiosis and early embryogenesis [27].
Age appears to influence mitochondrial function in oocytes
and follicular cells, and mtDNA mutations in oocytes
have been found to be age related [23, 27]. Dysfunctional
mitochondria have been implicated in the predisposition to
chromosomal nondisjunction during the first and second
meiotic divisions, in mitotic errors in embryos, and in the
reduced quality and developmental potential of aged oocytes
and embryos [23, 27, 28]. Thus, variable levels of mtDNA
mutations in maternal mitochondria would be present in dif-
ferent DS individuals. Since mtDNA mutations accumulate
with age, individuals starting their lives with higher mtDNA
mutation rates would be more predisposed to age-related
dementia. In fact, DS with Alzheimer’s disease (DSAD)
exhibit higher rates of mtDNA mutations in frontal cortex
compared to DS and age-matched controls (Figure 1(a)).

Similar differences were observed when mtDNA
mutations were analyzed in lymphoblastoid cells (LCL)
(Figure 1(b)) [29], indicating a systemic increase in mtDNA
mutations in DSAD. Specific mtDNA nucleotides were
mutated at higher rates in DSAD and sporadic AD than in
controls, and mutations in replication and transcription
regulatory sequences resulting in reduced mtDNA levels and
light strand gene expression were found in brains of DSAD
and AD individuals [29, 30]. Consistent with these studies,
a previous report indicates defective repair of mtDNA
damage in DS [31]. Interestingly, DS brains without AD
exhibited a slight increase in mtDNA levels, suggesting a
compensatory upregulation of mitochondrial biogenesis,
which disappeared in DSAD subjects. This decrease in
mitochondrial biogenesis with dementia correlates with
increased Aß levels and deposition, suggesting Aβ-related
toxic mechanisms affecting mitochondrial biogenesis
(Figure 2) [29].

4. Oxidative Stress and
Mitochondrial Alterations

Increased oxidative stress in DS and AD correlates with
a decrease in several mitochondrial components including
complex IV nuclear encoded subunit IV, mtDNA encoded
subunit I [32], complex I nuclear encoded 24 and 75 kDa
subunits [33], complex V nuclear encoded β subunit and
complex III nuclear encoded core protein I [23], and mito-
chondrial ATPase6 and mitochondrial transcription factor A
(Tfam) [34]. A recent study in DS fibroblasts found a specific
deficiency in complex I, increased levels of several ETC
components, and increased porin levels, further suggesting
that mitochondrial biogenesis is upregulated in DS. The
defect in complex I was associated with decreased cAMP-
dependent phosphorylation of complex I 18 kDa subunit,
reduced protein kinase A activity and low basal levels of
cAMP. Mitochondrial superoxide production and oxidative
stress were found to be 3 times higher in DS fibroblast,
which were rescued by treatment with a cAMP analog [35].
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Figure 1: Accumulation of mitochondrial DNA mutations in DS, DSAD, and AD frontal cortex (a) and lymphoblastoid cell lines (LCL) (b).
The graph was plotted as fold difference with respect to age-matched controls. DS brains age group: 0–40, DSAD age group: 45–68, and AD
age group: 65–90. For each group 6 to 16 samples were analyzed. LCL lines for all groups (DS, DSAD, DAD, and control) were obtained from
40–60 years old donors, 6–8 samples per group. The red line shows the baseline mutation level for the control group.
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Figure 2: Levels of Aβ correlated with mitochondrial biogenesis
represented as mtDNA amount. There was a significant inverse
correlation between insoluble Aβ and mitochondrial DNA amount
only in DSAD cases. Results reprinted from [29].

The general changes in expression of mitochondrial enzymes
correlate with a downregulation of the major mitochondrial
heat shock protein, HSP60 [36, 37], which is critical
to prevent protein aggregation during thermal and ROS

stress. In addition, a number of mitochondrial proteins are
elevated in DS including mitochondrial aconitase, NADP-
linked isocitrate dehydrogenase [38], and the mitochondria-
targeted ES1 protein homologue [39], all of which may be
part of a compensatory antioxidant response to increased
mitochondrial ROS production.

5. DS and Hormesis

Based on the considerations above, it is conceivable that
oxidative stress and redox changes play a dual role in DS.
At low levels, they promote cellular proliferation, while at
higher levels, they produce oxidative damage and initiate
apoptosis [40]. Adaptive response signaling, also known as
hormesis, is triggered by sublethal stress, which stimulates
cellular functional changes to protect against a subsequent
exposure to more severe stress [41]. Consequently, compen-
satory mechanisms can prepare the cell to resist higher stress
levels [42].

Since mitochondria are the main source of ROS pro-
duction, their role is essential in age-related oxidative
damage. While abundant research supports the idea that
reduced oxidative stress is associated with increased life span
[43–46] several experiments showed inconsistent or even
contradictory results in human studies when interventions
aimed to lower ROS level [47] were unable to produce health
beneficial effects [48, 49]. In a recent example, which is
relevant to DS, a 2-year randomized placebo-controlled daily
oral antioxidant supplementation did not improve cognitive
functioning nor it stabilized cognitive decline in DSAD [50].
These findings suggest that mitochondrial ROS production
could indeed trigger cellular processes that promote health
and longevity. Such signaling events, or adaptive response,
are observed in the context of caloric restriction (CR),
one of the best intervention strategies to increase life span
from yeast to mammals. In fact, CR induces mitochondrial
hormesis (mitohormesis) [51] by increasing mitochondrial
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Figure 3: Modulation of DS phenotypes by oxidative stress and mitochondrial factors. Fetal oxidative stress (OS) levels could be determined
by the mother’s age and initial mtDNA mutation levels in oocytes. Besides the genetic/intrinsic factors that create the genomic instability
in DS, environmental factors and lifestyle modulate the initial OS further. Since all these factors that play a role in the level of OS differ
individually, the OS-related changes will also be observed in variation. Simply, while the low level of OS could initiate the positive adaptive
response by activating proper defense signaling, high level of OS will start destructive signaling where the adaptive response could not be
able to accommodate the clearance of the damage. More positive factors (e.g., lifestyle, advantageous genetic background—mitochondrial
haplotype, APOE, BDNF genotype, etc.—and nutrition) will feed the adaptive response positively, while negative factors (e.g., congenital
defects, sedentary lifestyle, genotypes, etc.) will increase the OS further. In both low and high levels of initial OS conditions, aging will affect
this process negatively by increasing OS, such as increasing mtDNA mutation accumulation and decline in mitochondrial functions. Under
increasing OS conditions with aging, individuals with DS will be prone to develop more morbid conditions and prone to death depending on
their initial adaptive response signaling. In other words, negative factors will lead to earlier clinical manifestations of age-related conditions,
while positive adaptations (e.g., conditioned hormetic signaling) may support normal cellular and systemic functions for longer periods of
time.

respiration and elevating mitochondrial ROS production
without changing ATP production [52].

A prominent sensor related to hormesis is the Keap1-
Nrf2-ARE signaling complex. Under normal redox condi-
tions, the transcription factor NFE2-related factor 2 (Nrf2)
binds to Kelch-like ECH-associated protein 1 (Keap1) in the
cytosol leading to its proteasomal degradation [53]. Keap1
is a cysteine-rich protein that senses redox changes in the
cell. Under oxidative stress, conformational changes in Keap1
lead to its dissociation from the Nrf2-Keap1 complex and
to the translocation of free Nrf2 into the nucleus, where
it binds to antioxidant response element (ARE) regions in
the genome, and activates the expression of stress response
genes [54, 55]. So far, there is no complete information on
Nrf2/Keap1 genes, protein levels or activities in DS. However,
a recent study comparing gene expression profiles in DS
and euploid astrocytes found that Nrf-2-associated oxidative
stress response genes were differentially regulated in DS,
supporting the presence of hormesis in DS [56]. Additional
evidence of hormesis in DS comes from experiments show-
ing increased activity of mitogen-activated protein kinases
(MAPKs), including ERK1/2, SAPKs, and p38 in DS and
AD brains [57]. MAPKs phosphorylate Nrf2 enabling its
dissociation from the Nrf2/Keap1 complex [58]. GPx and
catalase are also Nrf2 target genes carrying ARE sequences
in their promoters [59]. Interestingly, higher intellectual
function in DS correlated with increased expression of GPx,

which could be part of the adaptive response in those
individuals [60].

Nrf2 also interacts with PPARγ, PGC1α, and PI3K/Akt,
all of which participate in mitochondrial biogenesis [61].
Thus, these factors may underlie mtDNA increase [29]
and mitochondrial biogenesis [35] in DS cells. Finally, a
generalized downregulation of mitochondrial activity has
been observed in different DS cell types including neu-
rons, astrocytes, pancreatic β cells, endothelial cells, and
fibroblasts, which is consistent with a cellular adaptation
to reduce ROS production and prevent cellular injury [56].
However, additional stressors and/or challenges in the form
of infections, seizures, age-related loss of function, and so
forth can eventually exhaust the capacity of the functional
adaptations to avert cellular damage. In this context, chronic
respiratory infections and multiple signs of early senescence
such as cataracts, skin atrophy, seizures, leukemia, and AD-
type neuropathology may be the result of oxidative stress,
mitochondrial dysfunction, and additional factors acting
systemically or in specific organs and tissues. Thus, the
severity of the DS phenotype may be the result of the
initial level of mitochondrial mutations, the accumulation
of oxidative damage, and the magnitude of the cellular
adaptations triggered by these changes. Activation of an early
adaptive response by initial sublethal levels of stress may
translate in a longer survival. However, the combination
of chronic stress and age-related changes would result in
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the premature and accelerated development of age-related
conditions such as dementia and AD pathology.

One consequence of the considerations above is that not
only the compounds but also the timing of treatment options
should be carefully considered in DS patients. For example,
long-term treatments designed to reduce oxidative stress
may not add any incremental benefit on top of the changes
driven by hormesis. Interventions would be more effective if
introduced at the very onset of stress or disease. In fact, recent
findings indicate that exercise-induced oxidative stress ame-
liorates insulin resistance and generates an adaptive response
enhancing the endogenous antioxidant defense capacity [62].
However, supplementation with antioxidants may preclude
the health-promoting effects of exercise in humans [62].
Thus, under normal conditions, antioxidants may not help
and may even interfere with hormesis. According to this
hypothesis, they would be most effective when an additional
stressor is present.

In conclusion, DS is the result of a whole genome imbal-
ance caused by triplication of HSA21 genes. The severity
and spectrum of the syndrome vary greatly. Besides oxidative
damage, mtDNA mutations and mitochondrial dysfunction
emerge as important modulators of DS phenotypes. This
variability is further influenced by an adaptive cellular
response to stress. A comprehensive and detailed analysis of
signature pathways unique to hormesis will be required to
fully assess the role of the adaptive response in DS (Figure 3).
Key elements of hormesis may be valuable predictors of
disease onset and treatment outcomes in DS individuals.
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