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ABSTRACT Milk oligosaccharides (MOs) can be prebiotic and antiadhesive, while fatty
acids (MFAs) can be antimicrobial. Both have been associated with milk microbes or mam-
mary gland inflammation in humans. Relationships between these milk components and
milk microbes or inflammation have not been determined for cows and could help eluci-
date a novel approach for the dairy industry to promote desired milk microbial composi-
tion for improvement of milk quality and reduction of milk waste. We aimed to determine
relationships among milk microbiota, MFAs, MOs, lactose, and somatic cell counts (SCC)
from Holstein cows, using our previously published data. Raw milk samples were collected
at three time points, ranging from early to late lactation. Data were analyzed using linear
mixed-effects modeling and repeated-measures correlation. Unsaturated MFA and short-
chain MFA had mostly negative relationships with potentially pathogenic genera, including
Corynebacterium, Pseudomonas, and an unknown Enterobacteriaceae genus but numerous
positive relationships with symbionts Bifidobacterium and Bacteroides. Conversely, many
MOs were positively correlated with potentially pathogenic genera (e.g., Corynebacterium,
Enterococcus, and Pseudomonas), and numerous MOs were negatively correlated with the
symbiont Bifidobacterium. The neutral, nonfucosylated MO composed of eight hexoses had
a positive relationship with SCC, while lactose had a negative relationship with SCC. One
interpretation of these trends might be that in milk, MFAs disrupt primarily pathogenic
bacterial cells, causing a relative increase in abundance of beneficial microbial taxa, while
MOs respond to and act on pathogenic taxa primarily through antiadhesive methods.
Further research is needed to confirm the potential mechanisms driving these correlations.

IMPORTANCE Bovine milk can harbor microbes that cause mastitis, milk spoilage,
and foodborne illness. Fatty acids found in milk can be antimicrobial and milk oli-
gosaccharides can have antiadhesive, prebiotic, and immune-modulatory effects.
Relationships among milk microbes, fatty acids, oligosaccharides, and inflammation
have been reported for humans. To our knowledge, associations among the milk
microbial composition, fatty acids, oligosaccharides, and lactose have not been
reported for healthy lactating cows. Identifying these potential relationships in bo-
vine milk will inform future efforts to characterize direct and indirect interactions
of the milk components with the milk microbiota. Since many milk components
are associated with herd management practices, determining if these milk compo-
nents impact milk microbes may provide valuable information for dairy cow man-
agement and breeding practices aimed at minimizing harmful and spoilage-causing
microbes in raw milk.
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The types of bacterial taxa detected in raw bovine milk have been reported quite
extensively (1). Some bacteria produce enzymes that spoil the milk or infect the

mammary gland, while others are commensals in the mammalian gastrointestinal tract.
If and how these bacteria may colonize various mammary tissues of healthy cows
remain uncertain (2). Yet they are detected in raw milk, even under hygienic milking
practices (1), and their detection can be important in identification and treatment of
intramammary infections as well as in prediction of milk product quality and impacts
on human health (3). Understanding the factors affecting microbial abundance in milk
could be helpful in developing strategies to shape the resident bovine milk microbial
community for better health, environmental, and economic outcomes.

Environmental and host factors that associate with the bovine milk microbial composi-
tion (4) include bedding (5), diet (6, 7), season (8), lactation stage, and inflammation (9),
and breed (10). However, relationships between the milk microbiota and milk compo-
nents remain poorly characterized for cows (11). Further, it has yet to be determined if
and how lactose, milk oligosaccharides (MOs), and milk fatty acids (MFAs) interact with
the microbiota found in milk to exert prebiotic or antibacterial effects like those identified
in the gut and in vitro. Williams et al. (12) reported associations among milk microbiota,
milk components, and mammary inflammation in humans, suggesting that milk compo-
nents and mammary inflammation may be closely linked and play a role in shaping the
milk microbiota. Others have recently reported relationships among milk microbes and
MOs and MFAs in humans as well (13–16). These studies in humans provide initial evi-
dence suggesting that MOs and MFAs are associated with milk bacteria.

Bovine MOs, and possibly lactose (17), can serve as prebiotics in the human gut and
in vitro (18). Species of Bifidobacterium and Bacteroides have been shown to degrade
bovine MOs (19, 20). Also, lactose consumption in humans with lactose nonpersistence
has been associated with increases in bacterial b-galactosidase activity (21) and abun-
dance of lactic acid bacteria, bifidobacteria (22), and lactobacilli (23) in the colon.
These relationships may occur within milk since positive associations have been
observed between MOs and Staphylococcus (12, 14) and Lactobacillus (16) in human
milk. Notably, too, sialylated bovine MOs have reduced adhesion of pathogenic bacte-
ria to intestinal epithelial cells in vitro (24).

On the other hand, there are a significant number of reports on the antimicrobial
effects of fatty acids. Saturated and unsaturated fatty acids have demonstrated antibacte-
rial activity against a variety of Gram-positive and Gram-negative pathogenic bacteria—
including Streptococcus, Pseudomonas, Escherichia coli, and clinical bovine mastitis isolates
of Staphylococcus aureus—with that activity depending on bacterial species and type of
fatty acid molecule (25–27). Negative relationships between Staphylococcus and certain
MFAs and microbiota richness in human milk support the idea that these relationships
might occur in bovine milk (14).

Lactose, MOs, and MFAs have previously been observed to associate with inflamma-
tion in mammary tissue. In humans (12) and cows, lactose content has been found to
have a negative relationship with somatic cell count (SCC) and intramammary infection
with Corynebacterium (28). Additionally, a negative relationship between SCC and the
MO lacto-N-tetraose was reported (12). Most MFAs are incorporated into triacylglycer-
ols, but the amount of free fatty acids in milk can increase with SCC and mastitis (29,
30). Positive relationships have also been reported between mastitis and numerous
free fatty acids (31), as well as long-chain saturated MFAs (32).

Relationships among mammary inflammation, milk components, and the milk micro-
biota have not previously been investigated in cows. Consequently, we aimed to identify
the relationships among the milk microbiota, milk components (specifically MFAs, MOs,
and lactose), and SCC in lactating Holstein cows to determine if milk components are likely
factors important to the bovine milk microbes and mammary health.
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RESULTS
Milk fatty acids and microbiota. No relationships between MFA b-diversity and

microbial b-diversity, or between MFA a-diversity and microbial a-diversity were iden-
tified. Yet, there were a total of 925 relationships between MFAs and microbial genera
(Fig. 1; see also Supplemental File 1). Many of the genera had relationships with 15 or
more MFAs, and most had associations with a variety of MFAs: short-chain fatty acids
(SCFAs), odd-chain saturated fatty acids (SFAs), even-chain fatty acids, branched-chain
saturated fatty acids, monounsaturated fatty acids (MUFAs), and polyunsaturated fatty
acids (PUFAs). The relationships tended to be mostly positive or mostly negative for a
given genus. Corynebacterium, Prevotella, Chryseobacterium, Pseudomonas, an unknown
Enterobacteriaceae genus, and Acinetobacter had mostly negative associations with
MFAs. Meanwhile, Bifidobacterium, Staphylococcus, an unknown Muribaculaceae genus,
Bacteroides, an unknown Oscillospiraceae genus, Ruminococcus, Mogibacterium, and
anunknown Lachnospiraceae genus had mostly positive associations with MFAs. The
trends in associations between genera and individual MFAs were mirrored in the asso-
ciations between genera and total MFA concentration (Fig. 2). Total MFA concentration
had the strongest negative associations with an unknown Enterobacteriaceae genus and
Acinetobacter and the strongest positive associations with an unknown Muribaculaceae ge-
nus, an unknown Oscillospiraceae genus (“uncultured 111”), and Lactobacillus.

Milk oligosaccharides and microbiota. No relationships between MO b-diversity
and microbial b-diversity or between MO a-diversity and microbial a-diversity were identi-
fied. Still, there were a total of 224 relationships between distinct MOs and microbial gen-
era (Fig. 3; Supplemental File 2). Most of the genera had associations with a variety of
MOs: neutral and fucosylated, neutral and nonfucosylated, and sialylated and nonfucosy-
lated. Corynebacterium, Enterococcus, Aerococcus, Stenotrophomonas, Pseudomonas, and an
unknown Enterobacteriaceae genus had many and mostly positive relationships with MOs.
Meanwhile, Bifidobacterium, Sphingomonas, a Rhizobiaceae genus, Chryseobacterium, a

FIG 1 Associations between distinct milk fatty acids (MFAs) and distinct microbial genera identified with generalized linear mixed-effects modeling. The bar
plot depicts the total number of negative or positive relationships between microbial genus counts and square root-transformed MFA concentration
(grams per 100 mL of milk) and number by MFA type: monounsaturated fatty acid (MUFA), polyunsaturated fatty acid (PUFA), saturated branched-chain
fatty acid (SFA: BCFA), even-chain saturated fatty acid above six carbons (SFA: even chain), odd-chain saturated fatty acid above six carbons (SFA: odd
chain), and saturated short-chain fatty acid (SFA: SCFA). Genera are grouped by class-level taxonomy. Genus RF39 belongs to the class Bacilli, genera
uncultured.111 and UCG.005 belong to the family Oscillospiraceae, genus UCG.010 belongs to the order Oscillospirales, and genus Family_XIII_AD3011_group
belongs to the family Anaerovoracaceae.
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Lachnospiraceae genus, and Acinetobacter had many and mostly negative associations
with MOs.

Lactose and microbiota. Lactose abundance was not associated with predicted rel-
ative abundance of microbial b-galactosidase in the milk microbial community or

FIG 2 Associations between total MFAs and distinct microbial genera. Generalized linear mixed-effects modeling was used to identify relationships between square
root-transformed MFA (grams per 100 mL of milk) and microbial genus counts. The estimated beta coefficient for total MFA abundance as a fixed effect for microbial
genus abundance is depicted. Genera are grouped by class-level taxonomy. Genus RF39 belongs to the class Bacilli, genera uncultured.111 and UCG.005 belong to
the family Oscillospiraceae, genus UCG.010 belongs to the order Oscillospirales, and genus Family_XIII_AD3011_group belongs to the family Anaerovoracaceae.

FIG 3 Associations between distinct MOs and distinct microbial genera identified with generalized linear mixed-effects modeling. The bar plot depicts the
total number of negative or positive relationships between microbial genus counts and MO relative abundance and numbers by MO type: neutral and
fucosylated, neutral and nonfucosylated, and sialylated and nonfucosylated. Genera are grouped by class-level taxonomy. Genus RF39 belongs to the class
Bacilli, genus uncultured.96 belongs to the family Peptococcaceae, and genus UCG.005 belongs to the family Oscillospiraceae.

Relating Milk Microbes, Components, and Inflammation Microbiology Spectrum

May/June 2023 Volume 11 Issue 3 10.1128/spectrum.04020-22 4

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.04020-22


combined predicted relative abundances of microbial b-galactosidase and 6-phospho-b-ga-
lactosidase. However, lactose did have relationships with 14 microbial genera (Fig. 4), half of
which were negative and half positive. Lactose had pronounced negative estimated beta
coefficients as a fixed effect for Corynebacterium, Stenotrophomonas, and Pseudomonas abun-
dances. Lactose also had a large positive beta coefficient as a fixed effect for Romboutsia and
Acinetobacter and especially for Paracoccus abundance.

Milk microbiota and SCC. The median SCC in milk samples was 55,000/mL, with
67.2% of milk samples below 100,000/mL and 21.3% of milk samples above 200,000/
mL (Fig. S1 in Supplemental File 3). Microbial a-diversity was not a predictor of SCC.
Also, none of the microbial genera were predictors of SCC, after multiple-test correc-
tion. Before multiple-test correction, Staphylococcus (Fig. S2) and Aerococcus (Fig. S3)
abundances had significant positive relationships with log SCC (P value, 0.05).

SCC andmilk oligosaccharides and fatty acids. Log SCC had a significant negative
relationship with log lactose as determined by linear mixed-effects modeling (LMM)
(beta coefficient = 20.096; P value , 0.001) (Fig. 5) and repeated-measures correlation
(RMCORR) (r = 20.228; P value = 0.010). Log SCC did not have a significant relationship
with MO a-diversity. However, a positive relationship between log SCC and the neutral,
nonfucosylated MO comprised of eight hexoses (8_0_0_0_0) was identified with LMM
(beta coefficient = 0.137; false-discovery rate [FDR]-adjusted P value = 0.011) (Fig. 6).
No relationship was identified between log SCC and MFA a-diversity or between log
SCC and individual MFA abundance.

DISCUSSION

Associations among bovine milk microbiota, milk components, and SCC were inves-
tigated to inform our hypotheses that milk components and mammary inflammation
work both independently and in concert to limit pathogenic bacteria and promote
beneficial microbes in milk. While relationships between diversity measures of MFAs or
MOs were not found to correlate with microbial a- or b-diversity measures, lactose
and one MO were found to correlate with SCC. Additionally, this study identified many
associations among individual MFAs, MOs, and microbes that might be indicative of
anti-infective functions for MFAs and MOs in milk.

FIG 4 Associations between lactose and distinct microbial genera. Generalized linear mixed-effects modeling was used to identify the relationship between
lactose (grams per 100 mL of milk) and microbial genus counts. The estimated beta coefficient for lactose abundance as a fixed effect for microbial genus
abundance is depicted. Genera are grouped by class-level taxonomy.
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Similar to our study, Moossavi et al. (33) did not find an association of MFA profile,
MO profile, or MO a-diversity with milk microbial composition or a-diversity in human
milk, yet in the same cohort, they found associations between distinct MFAs or MOs
and milk microbial diversity and between distinct MFAs or MOs and individual micro-
bial taxa (14). These findings suggest that certain MFAs or MOs have unique relation-
ships with certain milk microbes such that a more diverse MFA or MO composition
does not necessarily support a more diverse milk microbial composition.

As reviewed by Desbois and Smith, antimicrobial activity of fatty acids has been
observed for a variety of microbes, including methanogens, viruses, and fungi, with
fatty acid structure and shape being important to efficacy (34). The mechanisms under-
lying the antibacterial activity of fatty acids are varied and require further elucidation,
but many appear to relate to destabilization of the cell membrane and may explain
why polyunsaturated fatty acids (PUFAs) and monounsaturated fatty acids (MUFAs)
tend to be more toxic to microbes than saturated fatty acids (SFAs). Fatty acids tend to
have more microbial toxicity with greater numbers of carbon double bonds and cis
configuration. However, establishing an acidic environment may be another mode of
antibacterial activity as well. The human skin exudes free fatty acids, which are critical
in limiting Staphylococcus aureus colonization (34). FAs have been shown to have anti-
bacterial activity against potential mastitis-causing species such as S. aureus and
Corynebacterium bovis (34–36). We found that several bacterial genera to which masti-
tis-associated and psychrotrophic species belong, including Corynebacterium and
Pseudomonas (37, 38), and an unknown genus of Enterobacteriaceae (39) (a family that
contains several mastitis-associated bacteria [40]) had mostly negative associations
with numerous different MFAs, including most MUFAs, PUFAs, and SCFAs. The same
trends were observed for Acinetobacter, which is frequently associated with healthy
udders (41) but is psychrotrophic (37) and clinically relevant for its antibiotic-resistant
infections in humans (42). The majority of MFA 23:0, .99%, is incorporated into

FIG 5 Association between somatic cell count per mL (SCC) and lactose (grams per 100 mL of milk).
Using linear mixed-effects modeling, an estimated beta coefficient of 20.096 was determined for log
SCC as a fixed effect for lactose abundance. All three samples for each cow are plotted, and lines
depicting the estimated intercept for each cow and beta coefficient are shown.
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sphingomyelin (43) and was negatively associated with potentially pathogenic genera:
Pseudomonas, Enterococcus, Stenotrophomonas, Corynebacterium, and an unknown
Enterobacteriaceae genus (Supplemental File 1). This is particularly interesting because
sphingomyelins can be binding sites for pathogenic bacteria and their toxins (44).

Surprisingly, though, Staphylococcus had almost exclusively positive relationships with
MFAs, even with MUFAs and PUFAs. This is similar to the case with Staphylococcus in
human milk, which was reported to have positive associations with several human MFAs,
including MFAs 22:0 and 20:2 n-6 (12), like in this study. Meanwhile, we found that the
potentially beneficial or symbiotic bacteria, Bacteroides, Bifidobacterium, Ruminococcus, and
an unknown Lachnospiraceae genus, had mostly positive associations with individual SFAs,
MUFAs, and PUFAs (45, 46). Prevotella, however, had mostly negative associations. SCFAs
(represented by butyric acid and caproic acid in this data set) especially showed a trend of
positive relationships with potentially beneficial or symbiotic microbes (including
Lactobacillus [46]) and negative relationships with potentially harmful bacteria (including
Enterococcus [47] and Stenotrophomonas [48]) and with Aerococcus, which, in turn, had a
trending positive relationship with log SCC. However, none of the SCFAs or other MFAs
had relationships with log SCC, so we do not have evidence to suggest that there may
have been a link between MFAs and inflammation. Interestingly, many of the potentially
symbiotic microbial genera (e.g., Bifidobacterium, Bacteroides, Lactobacillus, and certain
Clostridia genera) that were positively associated with MFAs also tended to correlate posi-
tively with each other and negatively with potentially harmful bacteria, Enterococcus,
unknown Enterobacteriaceae, Pseudomonas, and Acinetobacter (Fig. S4). These trends may
suggest that MFAs are important in promoting a potentially less harmful milk microbiota,
but how they may do so in vivo has yet to be determined. According to previous research,
one could speculate that MFAs may affect milk microbes in vivo directly through antimicro-
bial activity and indirectly through modulation of immune responses via binding to free
fatty acid receptors which are expressed in a large range of tissues and immune cells (49).

Interestingly, some of the genera that had mostly positive or mostly negative associations
with MFAs had mostly opposite associations with MOs. These included Corynebacterium,
Pseudomonas, and an unknown Enterobacteriaceae genus which had mostly positive

FIG 6 Association between SCC and a neutral, nonfucosylated eight-hexose milk oligosaccharide (MO) 8_0_0_0_0. Using linear mixed-effects modeling, an
estimated beta coefficient of 0.137 was determined for log SCC as a fixed effect for log-transformed relative abundance of MO 8_0_0_0_0. All three
samples for each cow are plotted, and lines depicting the estimated intercept for each cow and the beta coefficient are shown.
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associations with MOs, while Bifidobacterium and an unknown Lachnospiraceae genus had
mostly negative associations with MOs. These differences may relate to the differing modes
of action of MOs versus MFAs on potentially pathogenic milk microbes. For example, MOs
might act through antiadhesive effects, which would then retain bacterial cell viability and
detection using culture-independent methods. This in contrast to MFAs, which might act pri-
marily through antimicrobial effects such as cell membrane disruption, which would destroy
the bacterial cell and expose the DNA to environmental degradation, preventing detection
via sequencing.

We might further speculate that within the milk matrix, and perhaps even within
the mammary tissue, the beneficial effects of MOs are exhibited through antiadhesive
properties against potential pathogens, rather than prebiotic activities to promote the
growth of probiotics, as is so often observed in the gut. Notably, neutral, fucosylated
MOs and sialylated, nonfucosylated MOs usually had positive associations with poten-
tially harmful or psychrotrophic bacteria, including Staphylococcus, Corynebacterium,
Enterococcus, and the unknown Enterobacteriaceae genus. Relatedly, Williams et al. (12)
found a positive association between 29-fucosyllactose and Staphylococcus. The neu-
tral, nonfucosylated MO with eight hexoses (8_0_0_0_0) was positively associated with
log SCC and negatively associated with Staphylococcus (Supplemental File 2), which
trended toward positive association with log SCC. It is interesting to consider that this
MO may be connected to inflammation and involved in limiting Staphylococcus to
improve mammary health.

Similar to the case with MFAs and MOs, we found several relationships between lactose
abundance and milk microbial genera. The most pronounced positive relationship was
between lactose abundance and Paracoccus abundance. Although Paracoccus is not fre-
quently detected in bovine milk, this genus can contain species with b-galactosidase that
degrade lactose in milk (50). On the other hand, the most pronounced negative relation-
ship of lactose was with Corynebacterium. Interestingly, lactose had negative relationships
with a few other potentially harmful bacteria—Enterococcus, Stenotrophomonas, and
Pseudomonas—and a negative relationship with Aerococcus, which showed a trend toward
positive association with log SCC. Lactose also had a negative association with log SCC,
which has previously been observed in human milk (12). Follow-up experiments are
needed to determine whether lactose abundance impacts milk microbes that play a role
in mammary inflammation or whether lactose is simply produced in higher quantities
when mammary inflammation is lower. In support of a negative correlation with inflamma-
tion not mediated by prebiotic effects, lactose abundance was not associated with pre-
dicted relative abundances of microbial b-galactosidases and 6-phospho-b-galactosidase.
While this may indicate that lactose, at least in the concentration range analyzed in this
study, did not have a prebiotic effect on milk microbiota, we cannot exclude the possibility
that microbes altered expression of lactose-degrading enzymes in response to the lactose.

In this study, we found many associations between milk microbes and MFAs, MOs,
and lactose, but we found little evidence of associations between the milk microbes, or
milk components, and mammary inflammation measured by SCC. However, if there
were relationships between milk components and SCC or milk microbes and SCC in
the milk, they may have been difficult to detect in our samples since we did not collect
quarter-level milk samples and there were up to 4 days’ difference in collection days
for SCC measurements versus for measurements of milk components and microbiota.
Additional analysis of quarter-level relationships between SCC and milk components is
needed.

The findings reported here, along with previous related findings in humans (12–14,
16, 33), suggest that future research should determine if MFAs, MOs, or lactose directly
impacts microbes in raw milk or within the udder. This work identifies candidate indi-
vidual milk components and milk microbes to interrogate specifically in relation to
each other. It is unknown if there are viable, metabolically active microbes within
healthy udders. However, there does appear to be potential for microbial entry
through the teat canal during and following milking and for microbial viability in milk
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stored in the teat cistern between milkings (51, 52). Identifying antimicrobial effects of
milk components upon viable milk microbes in vivo could lead to feeding and breed-
ing objectives designed to modify milk composition in order to select for beneficial
bacteria over potentially pathogenic or spoilage-causing bacteria.

Limitations. There were several aspects of this study that may have limited the abil-
ity to detect relationships among abundances of milk components, milk microbiota,
and SCC. First, the milk samples from which lactose, MOs, MFAs, and microbiota were
measured were collected on different days than the milk samples from which SCC
were measured. Similarly, MOs were measured in milk samples resulting from combin-
ing milk from the same cow on two consecutive days within the same period, while
milk samples from consecutive days were kept separate for lactose, MFA, and micro-
biota measurements. A potential implication of these differing collection dates is a loss
of sensitivity and accuracy in detecting relationships between milk components/micro-
biota and SCC and in detecting relationships between MOs and microbiota.
Additionally, correlations between absolute abundances of milk microbiota and milk
components, or SCC, are not necessarily detectable when using compositional mea-
surement of the milk microbiota. Additional research measuring the absolute abun-
dance of the microbes could improve our understanding of the correlations between
milk microbiota and milk components. While numerous relationships were identified
in this study between milk microbes and milk components, these relationships may
not necessarily apply to viable milk microbes, as a culture-independent approach was
taken to detect milk microbes. Accurate detection of viable bacteria at the time of col-
lection was not possible since milk samples were frozen during transport and storage
at 280°C, which leads to significant reductions in viable cells and alterations in viable
microbial community structure (53). However, there is potential insight gained from
measuring microbes that were present in the teat regardless of viability. For example,
potentially harmful microbes could have lost viability within the teat prior to sample
collection due to recent interactions with the host immune response, milk compo-
nents, or other bacteria. On the other hand, microbial viability might not be critical to
inducing changes in production of some milk components that are involved in patho-
gen defense. Research on intramammary inoculation of heat-killed mastitis pathogens
(54, 55) suggests that dead bacteria can elicit immune responses in the mammary tis-
sue that are effective in defending against viable pathogens. Therefore, measuring the
abundance of bacteria, regardless of viability, may be critical in understanding poten-
tial relationships between potential pathogens and milk components.

MATERIALS ANDMETHODS
Bovine housing and feed. As described previously (56) and under protocols approved by the

University of Wisconsin—Madison Institutional Animal Care and Use Committee (protocol number
A005945), 76 lactating Holstein cows were housed in tie stalls at the U.S. Department of Agriculture—
Agricultural Research Service U.S. Dairy Forage Research Center Dairy Farm in Prairie du Sac, WI, as part
of a 20-week crossover feed intervention trial to determine differences in feed efficiency of cows on a
low-starch–high-fiber diet versus on a high-starch–low-fiber diet. Cows were evenly assigned to diets to
achieve groups with similar parity, dry matter intake, milk production, and body weight. As a result,
there was not a difference in days in milk (DIM) or in parity between cows that began the low-starch–
high-fiber diet in period 1 (median DIM at start of period 1 = 126; median parity = 1) versus the cows
that began the high-starch–low-fiber diet in period 1 (median DIM at start of period 1 = 124; median
parity = 2). For the entire cohort, parities ranged from 1 to 6, with a median of 2 (see Fig. S1A in the sup-
plemental material). The trial started in October 2017 and ended in April 2018 and was comprised of
three diet periods. During period 0, all cows were fed a diet for 31 days composed of 50% low-starch–
high-fiber diet and 50% high-starch–low-fiber diet, and milk samples were collected starting at 3 weeks
into the diet. During period 1, cows were fed for 70 days with either the low-starch–high-fiber diet or
the high-starch–low-fiber diet, and milk samples were collected starting at 5 weeks into the diet. During
period 2, cows were fed the opposite diet for 70 days and milk samples were collected starting at
5 weeks into the diet.

Milk collections. Preceding milk collection, teats were stripped with 3 streams of milk, disinfected with
chlorine dioxide-containing Gladiator predip (BouMatic, WI), and towel dried, and milking equipment was
disinfected with iodine in water. After milk collection, teats were disinfected with iodine-containing
Udderdine postdip (BouMatic). Milk was collected from cows three times daily: at 4 a.m., 10:30 a.m., and
6 p.m. Milk samples for lactose, MO, MFA, microbiota, and SCC measurements were collected at 4 a.m. Milk
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samples were collected from each of the three diet periods. For lactose, MO, MFA, and microbiota measure-
ments, milk samples were collected on two consecutive days in each period (Fig. 7). For MO measurements,
milk samples from consecutive collection dates were combined before processing. For SCC measurements,
milk samples were collected before and after the dates of milk collection for lactose, MO, MFA, and micro-
biota measurements and differed in collection date by 1 to 6 days. On the first day of milk collection, 21
November 2017, cows ranged in DIM from 82 to 193, with a median of 115 (Fig. S1B), and on 19 March 2018
(the last day of milk collection analyzed in this study), cows ranged in DIM from 200 to 311. Milk samples
were immediately stored at 210°C, shipped on dry ice, and stored at 270°C while awaiting processing. SCC
was measured from fresh milk samples.

Milk analyses. For lactose measurements, milk samples of around 50 mL were warmed to 38°C in a
water bath, inverted five times, and measured on a Foss Milkoscan Minor type 78110 to obtain lactose con-
centration per 100 g of milk. The MOs are from the milk samples that Durham et al. reported previously (57).
In short, MOs were measured from 200mL of milk extracted through skimming, ethanol precipitation of pro-
teins, and C18 and graphitic carbon solid-phase extraction, prior to isobaric labeling and analysis by nano-liq-
uid chromatography quadrupole time-of-flight tandem mass spectrometry. MOs were identified based on
their monosaccharide composition as the number of hexose_N-acetylhexosamine_fucose_N-acetylneura-
minic acid_N-glycolylneuraminic acid, followed by an isomer designation, as needed. MOs were reported as
abundance relative to the matching oligosaccharide internal standard. The MFAs are from the milk samples
that Picklo et al. reported earlier (58). Briefly, MFAs were measured from 0.1 mL of milk in duplicate for each
collection day and reported as the mean value for each treatment in grams per 100 mL of milk. MFAs were
converted to fatty acid methyl esters using acetyl chloride and were separated and quantified using gas
chromatography with flame ionization detection (31). Microbial community analysis was performed on the
milk samples that Coates et al. published previously (6). Succinctly, 10 mL of milk were centrifuged and then
processed with the ZymoBIOMICS DNA miniprep kit to extract DNA. Particularly low DNA concentrations
(,1.9 ng/mL) were obtained from several milk samples, so another round of DNA extraction (“duplicate”)
was performed on another 10-mL aliquot from the sample milk sample. DNA extracts were sent to the
Integrated Microbiome Resource at Dalhousie University (Halifax, NS, Canada) for PCR amplification using
primers 515FB and 926R, library preparation, and sequencing of the V4-V5 region of 16S rRNA genes.
Amplicons were then sequenced on the Illumina MiSeq platform with 300 paired ends (PE). Demultiplexed
reads were processed using QIIME2 (59). Likely contaminant amplicon sequence variants (ASVs) were identi-
fied by comparing the prevalence in DNA extracts from blank (negative control) samples versus milk DNA
samples using decontam (60) and were removed from analysis. ASVs were assigned to taxonomic groups
using the SILVA 138 SSURef NR99 database (61). ASVs classified as mitochondria, chloroplast, and Eukarya
were also removed from analysis. Prior to normalization, cows given antibiotics (to treat clinical mastitis and
other infections) were removed (see “Sample selection and data filtering” below for additional details). Also,
samples with fewer reads than blanks (i.e., 49 or fewer reads) were removed and for the samples that were
extracted in duplicate, the replicate with the higher number of reads was retained. Counts were normalized
across the data set by rarefying without replacement at the 15th percentile (507 sequences per sample).
Fresh milk was preserved with bronopol (2-bromo-2-nitropropane-1,3-diol) and sent to Valley Agricultural
Software and AgSource laboratories for SCC measurements from around 30 mL of milk using a FOSSOMATIC
7 flow cytometer, and SCC was reported as counts per milliliter of milk.

Statistical analyses. Relationships between milk microbiota and lactose, milk microbiota and MOs,
milk microbiota and MFAs, milk microbiota and SCC, lactose and SCC, MOs and SCC, and MFAs and SCC
were explored (Table 1) in R version 4.0.2.

Correlations between microbial (ASV) b-diversity and MO b-diversity or between microbial (ASV)
b-diversity and MFA b-diversity were determined within each period by relating the Bray-Curtis dissimi-
larity using the Mantel test and Procrustes analysis. These analyses were performed with the vegan pack-
age v 2.5-7 (62). P values were adjusted for multiple tests using false-discovery rate (FDR), and a cutoff of
,0.05 was used to report significance (Table 1).

FIG 7 Milk sample collection time points for each analysis. During each period, milk was collected from each dairy cow to
measure SCC, lactose, MFAs, milk microbes, and MOs. Milk samples for lactose, MFAs, milk microbiota, and MOs were
collected on the same days. MOs were measured from the combination of the two milk samples from the same period
and cow. SCC was measured in milk samples collected before and after the milk collections for the other measures.
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Relationships between microbial (ASVs) a-diversity and a-diversity of MOs or MFAs was determined with
linear mixed-effects modeling (LMM) and repeated-measures correlation (RMCORR) (63). LMM was per-
formed with lmerTest package v 3.1-3 (64), and RMCORR was performed with the rmcorr package v 0.4.4
(65). LMM and RMCORR were also utilized to identify relationships between microbial a-diversity and single
MOs, MFAs, lactose, or SCC. For LMM, the microbial a-diversity was analyzed as the response variable, while
the MOs, MFAs, or lactose was analyzed as the predictor variables (fixed effects), and cow was included as a
random effect (i.e., random intercept). For RMCORR, cow was set as a participant. Relationships between mi-
crobial a-diversity and SCC, and between microbial genera and SCC, were also investigated with LMM, but
the microbiota were analyzed as the predictor variable and SCC as the response variable. Shannon and
Simpson metrics were used to calculate a-diversity of MOs or MFAs. Shannon, Simpson, and Faith’s phyloge-
netic diversity metrics were used to calculate a-diversity of microbial ASVs.

Relationships between rarefied abundances of microbial genera and abundances of MOs, MFAs, or lac-
tose were identified with generalized linear mixed-effects modeling (GLMM) with Poisson distribution in
which the microbial abundance was the response variable, the milk component (fatty acids, oligosaccharides,
or lactose) abundance was the predictor variable, and cow was the random effect (i.e., random intercept).
GLMM was performed with lme4 package v 1.1-27.1 (66). Relationships between the abundances of milk
components and the abundances of milk microbes were investigated for genus-level microbial taxa in order
to identify relationships with microbes at the lowest accurate taxonomic level that could be determined
from the 16S rRNA V4-V5 gene region (67) since microbial ability to metabolize MOs can vary within taxa
even down to species and strain levels (68), to enable interpretation in relation to correlations identified
between SCC and milk microbes which have been implicated in mammary health and inflammation at the
genus level and lower taxonomic levels (2), and to be comparable to similar studies in humans (12, 14, 16).

In our previous publication (6), we reported differential abundances of 11 bovine milk microbial gen-
era with diet from this cohort of cows. While many of these diet-associated genera were also associated
with abundance of certain MOs or MFAs in these analyses, the reverse was not true. In other words,
most of the genera associated with MFA, MO, or lactose abundances were not differentially abundant
with diet (see Results). We did not include diet or parity in our models because diet and parity have
been found to associate with MFAs (58, 69), MOs (57, 70), and lactose (71) in our cohort of cows and
others; therefore, if diet and parity impact the milk microbes, then it may be through effects on the milk
composition. With this reasoning, it would not be accurate to include diet and parity in our models as
fixed effects completely independent of MFAs, MOs, or lactose. Since we have exactly three data points
(one from each of the three periods and three diets) for each cow in our models, the effect of diet/period
is similar for each cow. We have also included cow as a random effect in our model, which not only
accounts for data points not being independent of each other but also allows us to relate the abun-
dance of a milk component to the abundance of a milk microbe within each cow and averaged across
cows. Ultimately, our objective was to determine how milk components and milk microbes correlate
without necessarily identifying the isolated effect of milk components on milk microbes. Accordingly,
we used parsimonious models to identify correlations between milk components and milk microbes.

When identifying relationships between SCC and MOs, MFAs, or lactose, RMCORR and LMM were utilized
with SCC as the predictor, milk component as the response, and cow as random effect. The SCC measurements
were right skewed and were consequently log10 transformed before applying LMM or RMCORR (Table 1).
Likewise, MO measurements were log10 transformed before investigating relationships with log SCC but were
not transformed for diversity calculations or relationships with microbial genus abundance. MFA concentrations
were also transformed prior to LMM, RMCORR, or GLMM to achieve more normal distribution by applying the
square root. MFA measurements also were not transformed prior to diversity measures.

Picrust2 (72), as a QIIME2 plugin, was employed to predict relative abundances of milk microbial
b-galactosidase and 6-phospho-b-galactosidase from the ASVs. Correlations between lactose and pre-
dicted b-galactosidase relative abundance, or lactose and predicted b-galactosidase and 6-phospho-
b-galactosidase relative abundances combined, were investigated with LMM and RMCORR.

Sample selection and data filtering. Cows 5651 and 6229 were removed from MO and lactose anal-
yses because they had lactose concentrations that were outliers, as determined based on the standard
error with a cutoff of 3 (73). Ten cows (5020, 5212, 5297, 5405, 5697, 6076, 6215, 6232, 6233, and 6241)
were removed from analyses because they were treated with antibiotics during the study. Eight cows
(5053, 5464, 5677, 6206, 6210, 6211, 6214, and 6254) stole food and were retained in all data sets, but
milk samples from these cows were not analyzed for MO abundance. Ultimately, 19 MOs, 77 MFAs, and
1,327 genera were measured and analyzed (Supplemental File 4). The parity and DIM of cows before
and after these filtering criteria remained similar (Fig. S1). After matching data sets by sample collection
date, cows with less than one sample per period were retained for b-diversity analyses since the analy-
ses were performed separately for each period, but these cows were omitted from analyses using LMM,
GLMM, and RMCORR.

For analyses of relationships between milk components and SCC, we hypothesized that SCC predicts
the milk component abundance; therefore, the SCC samples from 21 November 2017, 2 January 2018,
and 13 March 2018 and the lactose and MFA samples from 25 November 2017, 3 January 2018, and 14
March 2018 were analyzed and highlighted. On the other hand, we hypothesized that milk microbiota
predict SCC; therefore, relationships between milk microbiota and SCC were determined for microbiota
samples on 26 November 2017, 4 January 2018, and 15 March 2018 and SCC samples from 28
November 2017, 5 January 2018, and 19 March 2018.

Microbial genera, MOs, or MFAs present in less than 50% of samples and less than 90% of cows were
not included in analyses, except for b-diversity and a-diversity calculations. Genera that met the preva-
lence cutoffs differed slightly for each pair of data analyzed (Table S1).
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The Spearman rank correlations among all 44 milk microbial genera listed in Table S1 were calcu-
lated in R with the function cor.test, and the Spearman rho for each correlation was visualized in a heat
map (Fig. S5).

Data availability. The data sets and code used in our analysis are publicly available at the GitHub re-
pository: https://github.com/L-Coates/DGC_study1_MilkMicrobes_MOs_MFAs_lactose_SCC_Associations
.git. The milk microbiota data are available at Qiita (study identifier [ID] 14874) and available in the NCBI
database under BioProject number PRJEB59819.

SUPPLEMENTAL MATERIAL
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SUPPLEMENTAL FILE 1, XLS file, 0.3 MB.
SUPPLEMENTAL FILE 2, XLS file, 0.1 MB.
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SUPPLEMENTAL FILE 4, XLS file, 0.04 MB.
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