
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Predictive Sampling-based Robot Motion Planning in Unmodeled Dynamic Environments

Permalink
https://escholarship.org/uc/item/249574zz

Author
Ruiz, Javier Matias

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/249574zz
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Predictive Sampling-based Robot Motion Planning in Unmodeled
Dynamic Environments

A Thesis submitted in partial satisfaction of the requirements for the degree
Master of Science

in

Engineering Science (Mechanical Engineering)

by

Javier Matias Ruiz

Committee in charge:

Professor Sonia Martı́nez, Chair
Professor Jorge Cortés
Professor Maurı́cio De Oliveira

2019

The thesis of Javier Matias Ruiz is approved, and it is acceptable in quality
and form for publication on microfilm and electronically:

Chair

University of California San Diego

2019

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

Acknowledgements . vii

Abstract of the Thesis . viii

Chapter 1 Introduction . 1

1.1 Motivation . 1

1.2 Objectives . 2

1.2.1 Planning for Dynamic Environments 2

1.2.2 Making Predictions for Unmodeled Systems 2

1.3 Organization . 3

Chapter 2 Background . 4

2.1 Sampling-based Planning . 4

2.1.1 Asymptotically Optimal Rapidly-exploring Random Tree 5

2.1.2 The Goal Tree algorithm . 6

2.2 Pursuit-Evasion Games . 7

2.3 Estimation through Kalman Filtering . 9

2.3.1 The Kalman Filter Algorithm . 10

2.3.2 The Extended Kalman Filter Algorithm 12

2.3.3 Multiple Model Adaptive Estimation 12

iv

Chapter 3 Predictive Planning . 15

3.1 Sampling-Based Planning for Moving Goal 15

3.2 Predictive Moving Goal Tree . 18

Chapter 4 Predicting Goal Positions . 25

4.1 Accounting for Obstacles in with MMAE 25

4.2 Estimating Parameters in MMAE Models 26

Chapter 5 Simulation Results . 30

5.1 Moving Goal Tree . 30

5.1.1 2D Non-Predictive Moving Goal Tree 30

5.1.2 MGT with Robotic Manipulator 31

5.2 Expert Prediction . 31

5.3 Predictive MGT with Unknown Goal Positions 32

Chapter 6 Conclusion . 35

Bibliography . 36

v

LIST OF FIGURES

Figure 2.1: Comparison of trees created by the RRT, RRT*, and GT algorithms. 8

Figure 2.2: Visualization of Apollonius circle. 10

Figure 3.1: Evolution of a tree when a new goal is added. 16

Figure 3.2: Visualization of pursuit given future evader positions. 19

Figure 3.3: Planning with a moving obstacle. 24

Figure 4.1: Diagram of adaptive estimator. 26

Figure 5.1: Visual of robot planning in real time to catch moving goal in 2D space. 30

Figure 5.2: Simulation of MGT on Motoman SIA5. 31

Figure 5.3: Simulation of MMAE. 32

Figure 5.4: Simulation of predictive MGT with MMAE. 34

vi

ACKNOWLEDGEMENTS

I would like to thank professor Sonia Martı́nez for all the guidance and patience she

has given me; for all her support during the ups and downs that I encountered during my

time working on this project and thesis. I am truly grateful to have had her as my advisor.

I would also like to thank Troy Harden and Beth Boardman from LANL for their

help and support in performing the research and experiments needed for this thesis (sup-

ported by LANL and approved for release under LA-UR-19-31029).

I thank my committee members, professor Jorge Cortés and professor Maurı́cio de

Oliveira, for their time in reviewing my thesis.

I also want to give additional thanks to Sonia and Jorge for giving me the opportu-

nity as an undergrad to be at UC San Diego and to help out with the MURO lab’s summer

projects.

I want to thank my lab mates Parth, Aamodh, and Aaron, for their advice, for all the

lunch breaks, and for their friendship, making time in the lab more enjoyable.

Lastly, I thank my parents and grandparents, my brother and sister, my aunts and

uncles, and my girlfriend. I truly could not ask for more love and support from them, and

appreciate all that they’ve done.

This thesis, in part, has been submitted for publication as it may appear in IEEE

Robotics and Automation Letters, 2020, Ruiz, Javier; Boardman, Beth; Harden, Troy;

Martı́nez, Sonia. The thesis author was the primary author of this paper.

vii

ABSTRACT OF THE THESIS

Predictive Sampling-based Robot Motion Planning in Unmodeled Dynamic Environments

by

Javier Matias Ruiz

Master of Science in Engineering Science (Mechanical Engineering)

University of California San Diego, 2019

Professor Sonia Martı́nez, Chair

This thesis describes a predictive sampling-based algorithm for real-time robot mo-

tion planning to reach dynamic goals. The planner utilizes all available information about

future obstacle and goal positions over a time window to select a path that approximately

minimizes the time to reach this goal. Then, we integrate the proposed method with an

online learning algorithm that predicts future goal and obstacle positions. Because future

states are predicted by propagation, an incorrect model would result into a greater predic-

tion error for large horizons. Thus, using a pool of candidate models, we utilize a Multiple

Model Adaptive Estimation (MMAE) method with online parameter estimation to learn an

appropriate model that keeps this error bounded. Several simulations show the efficacy of

the proposed algorithms.

viii

Chapter 1

Introduction

1.1 Motivation

The problem of path-planning for robots in dynamic environments has been one

of great importance over the years. This is particularly relevant in collaborative scenarios

where robots are used alongside humans, which requires the design of adaptive planners

that can handle moving targets and obstacles. Of special interest is the case of manipulator-

human collaboration, where a desired goal (human hand) is always close to a moving ob-

stacle (human arm). The utilization of data-based models of uncertain systems for efficient

planning is gaining significant attention. Motivated by this, we aim to develop a new data-

driven predictive planning algorithm that can learn paths to moving targets with unmodeled

dynamics when close to a dynamic obstacle.

1

1.2 Objectives

We approach predictive path planning for dynamic environments in two parts. First,

we propose path planning algorithms for changing environments. We do this under the

assumption that future states of the environment (goal and obstacle position) are known.

Then we drop the assumption about the future states being known, and apply an adaptive

method to predict these states when the model of the environment is not explicitly known.

1.2.1 Planning for Dynamic Environments

First, we assume that the motion of the goal is known and non-adversarial. Based on

existing algorithms for planning with moving goals and obstacles, we propose a reactive

planning algorithm for these type of environments called the Moving Goal Tree (MGT)

algorithm. Then, based on dominance-based pursuit-evasion problems, we adapt the MGT

to incorporate information about future positions of the goal and obstacle. We call this new

algorithm the Predictive Moving Goal Tree (PMGT) algorithm.

The proposed PMGT algorithm adapts an initial RRT* tree into a sequence of trees

that are rooted at future goal positions. Each tree approximates optimal paths to a future

position in the presence of obstacles over a time window. The robot then chooses to move to

a next configuration on the path that allows to reach the future goal position simultaneously

or earlier than the goal. We establish how this results in a capture condition that converges

to the robust optimal capture solution when the planning cost is given by the time to capture

goal, and as the number of nodes and time window go to infinity.

1.2.2 Making Predictions for Unmodeled Systems

The second part of the thesis focuses on predicting the future states of the envi-

ronment when its dynamics are unmodeled. We consider the case where the dynamics of

2

the environment can be described by one of N possible parametrized models, with identity

of this model and its parameters being unknown. Our approach combines simultaneous

state and parameter estimation by way of a nonlinear Kalman Filter with a multiple model

estimation method. This allows us to estimate the parameters of multiple models online

alongside their weights, getting rid of the need to have an individual model for each param-

eter candidate.

1.3 Organization

This thesis is organized as follows. Chapter 2 discusses background for the meth-

ods introduced in the thesis. The RRT* and GT algorithms are outlined, and the concept

of dominance in pursuit-evasion games is discussed. Finally, this chapter discusses the

Kalman Filter algorithm, and the use of estimators in Multiple Model Adaptive Estimation.

In Chapter 3, we introduce the Moving Goal Tree (MGT) and Predictive Moving Goal Tree

(PMGT) algorithms. We give a Lemma that shows that under conditions commonly as-

sumed in pursuit-evasion games, and assuming that future evader positions are known up

to some horizon, that following our PMGT gives an approximate minimum time-to-capture.

Chapter 4 discusses our method for predicting the state of the goal with unmodeled dynam-

ics. Chapter 5 shows simulation results for our planning and prediction algorithms.

3

Chapter 2

Background

2.1 Sampling-based Planning

When performing path planning in continuous environments, sampling-based plan-

ning methods, such as the RRT* [1] and the Probabilistic Roadmap (PRM) [2], are widely

used. These types of planners have been modified for use in dynamic obstacle environ-

ments. More recently, reactive planning algorithms such as the Goal Tree (GT) [3] and

RT-RRT* [4], which are based on RRT*, restructure the tree by removing conflicting nodes

when the obstacle configuration changes. Other algorithms use predictions of the obstacle

motion in their algorithms, see e.g. [5] and [6], which bias their point sampling toward

regions that are safe for the robot. However, these papers assume that the goal is stationary

and the obstacle’s dynamic model is known and independent from the goal.

Sampling-based planning algorithms are widely used for motion-planning problems

dealing with robotics. These types of algorithms are popular for planning in continuous

high-dimension spaces as they don’t need to exhaustively search the entire space. Instead,

they use a subset of randomly sampled points in the configuration to build a path from

4

the desired start position to a goal. These types of planners are probabilistically complete,

meaning that if a path between the desired points exists, the probability of finding one of

these paths approaches 1 as the number of sampled points increases to infinity.

2.1.1 Asymptotically Optimal Rapidly-exploring Random Tree

The Asymptotically Optimal Rapidly-exploring Random Tree (RRT*) [1] algorithm

is based on the RRT algorithm. RRT* builds a tree (typically rooted at the starting position)

using each sampled point. Each node u in the tree has a position x associated with it, as

well as a cost, denoted by Cost(u). This cost is the current sum of all edge costs, Cedge(·),

for each edge in the path from u to the root.

At each iteration, a point xrand is randomly sampled. If there is some obstacle-free

path between xrand and an existing node on the tree with distance less than ε , a new node

unew is made at this position. Otherwise, a new point, xnew, is made by incrementing by

ε along the path between the nearest node on the tree and xrand, then unew is made at this

point. We find uparent by searching a neighborhood around unew, and choosing the node that

minimizes the sum of the distance from unew to uparent plus the distance from uparent to the

root. More explicitly, uparent is chosen according to

uparent = arg min
u∈U

(
Cost(u)+Cedge(enew,u)

)
, (2.1)

where U is the set of nodes within the neighborhood of unew. Then unew is added to the

tree as a child of uparent.

The biggest difference between RRT* and RRT is that after unew is added to the

tree, a rewiring is done around unew. For each node u in U , we re-assign unew as the parent

5

u if doing so would decrease their cost. More explicitly, for all u ∈U , if

Cost(unew)+Cedge(enew,u)≤ Cost(u),

then unew is assigned as the new parent of u.

The RRT* planner is outlined in Algorithm 1. The inclusion of finding the optimal

parent according to (2.1), in addition to the rewiring process, makes RRT* asymptotically

optimal. This means that as the number of nodes in the tree increases to infinity, the cost

of the path found by RRT* approaches the cost of the optimal path. RRT* can continue

running after finding a path to continue improving the cost of this path.

Algorithm 1 RRT*
Require: goal position xG, robot position xR, space X , iteration count K

1: Initialize tree T
2: uroot← AddNode(pos=xG, parent=NULL,T)
3: while NumberOfIterations < K do
4: xrand← Sample(X)
5: xnew← Extend(xrand,T)
6: uparent← FindParent(xnew,T)
7: if uparent then
8: unew← AddNode(xnew,uparent,T)
9: Rewire(unew,T)

10: end if
11: end while
12: return T

2.1.2 The Goal Tree algorithm

The GT algorithm [3] is based on the RRT*, is rooted at the desired goal position,

and was designed for planning in an environment with changing obstacles. When an ob-

stacle changes, or if a new obstacle is introduced to the environment, the tree is trimmed

of all edges and nodes that are in conflict with the new obstacle configuration. Rather than

6

checking each edge in the tree for conflict, a set of nodes,

Uconflict =
{

u
∣∣∣∣ ‖xO− xu‖ ≤ rO + rmax

}
,

is created. Here, xO is the center of an obstacle, rO is the radius of that obstacle, and rmax

is the maximum edge cost in the tree. Each of these nodes are then removed from the

tree, along with all of their descendants. The GT algorithm is outlined in Algorithm 2.

Figure 2.1 shows a typical tree and resulting path computed from RRT, RRT*, and GT.

Algorithm 2 Goal Tree
Require: goal position xG, robot position xR, space X , iteration count K

1: Initialize tree T
2: uroot← AddNode(pos=xG, parent=NULL,T)
3: while NumberOfIterations < K do
4: xrand← Sample(X)
5: xnew← Extend(xrand,T)
6: uparent← FindParent(xnew,T)
7: if uparent then
8: unew← AddNode(xnew,uparent,T)
9: Rewire(unew,T)

10: end if
11: if ObstaclesChanged() then
12: TrimTree(T)
13: end if
14: end while
15: return T

2.2 Pursuit-Evasion Games

In devising an efficient solution, it makes sense that the planner is adapted to reach

the goal in the smallest possible time accounting for all its future locations. This connects

with the theme of pursuit-evasion games in the presence of dynamic obstacles. Dominance

regions [7] are a main tool to identify which areas of the environment are reachable by

7

(a) RRT (b) RRT* (c) GT

Figure 2.1: Comparison of typical trees created by the RRT (a), RRT* (b), and GT (c)
algorithms. The robot starting position and goal position are indicated by the red and green
dots, respectively. The black shapes represent the obstacles in the environment. The RRT
was stopped after a path was found; RRT* and GT were stopped after 500 nodes were
added to the tree.

a player before any other, and can be used to define appropriate motion strategies. Thus,

while pursuers try to catch the evaders as quickly as possible, evaders can aim to stay in

their dominance region for as long as possible, see [8, 9]. While one can get inspiration

from these techniques, this approach can be too conservative for collaborative scenarios

(goals are not adversarial) and (unnecessarily) hard from a computational perspective.

In order to reach the moving goal in the smallest possible time, we explore the idea

of dominance regions used in pursuit-evasion problems [7]. In relating our current problem

to pursuit evasion, we say that our robot is analogous to the pursuer, and the moving goal is

analogous to an evader, with the human being some dynamic obstacle in the environment.

We assume that the pursuer’s maximum speed is larger than that of the evader’s, and

that both the pursuer and evader are subject to the same collision constraints with respect

to the obstacle. We also assume that the evader and obstacle positions are known for future

discrete time steps up to some horizon b. We note that we do not strictly treat this problem

as a pursuit- evasion game, since our evader is not adversarial, and is not trying to maximize

the time to capture.

8

By definition, the pursuer’s dominance region consists of all points that the pursuer

can reach before the evader does, given their current positions and their maximum veloci-

ties. Likewise, the evader’s dominance region is defined by the points that the evader can

reach before the pursuer. Let m =
vp
ve

be the ratio of the maximum pursuer velocity to that

of the evader, and let xe and xp be the positions of the evader and pursuer, respectively.

When there are no obstacles, the boundary between both players’ dominance re-

gions is given by the Apollonius circle. This circle is defined as the locus of points x, such

that, ∥∥xp− x
∥∥

‖xe− x‖
= m, (2.2)

where ‖·‖ is the Euclidean norm [10]. Given a fixed velocity of the evader, the pursuer’s

optimal strategy consists of moving straight to the point xa on the Apollonius circle that

intersects the trajectory of the evader. If m > 1, then the pursuer will catch the evader in

finite time, the pursuer’s motion results in a minimal capture time for this particular motion

of the pursuer, and both the evader and pursuer reach this point simultaneously.

2.3 Estimation through Kalman Filtering

The previous references require full information of the dynamic models of moving

objects. When dealing with unmodeled nonlinear human movement, algorithms that in-

volve learning from expert advice may be particularly useful. Learning from experts [11] [12] [13]

and multiple model estimation [14] [15] make predictions based on information from a pool

of different models. The more accurate a model’s prediction is, the more it is weighted in

relation to the others in the pool. Therefore, these algorithms’ performance is bounded by

that of the best expert. The direct application of these algorithms to our setting poses sev-

eral challenges: first, a long prediction horizon tends to amplify the propagation errors of

the wrong dynamic model. Thus, the pool of experts needs to be typically large so that these

9

Figure 2.2: Visualization of Apollonius circle given pursuer and evader positions, xp and
xe, and their maximum speeds vp and ve. When m > 1, equation (2.2) gives a circle that
encompasses xe. If the evader’s velocity is known, the point xa can be computed, which
gives the point on the circle where the evader is expected to cross. This is the optimal point
for the pursuer to travel to.

errors are kept small. If the general form of the dynamics is known up to some unknown

parameters, then a pool can be created by discretizing the parameter space and making an

individual model available for each parametric value [16]. This leads to a second problem

as if the true dynamics is described by one of many parametric models, we can be lead to a

prohibitively large number of candidate pool elements.

State estimation techniques are often used when dealing with a system that has

process and measurement noise. A common type of estimation algorithm is the Kalman

Filter (KF), along with some of its variants. The KF uses information about the process

and measurement noise, the process model, and previous state measurements of the system

to generate an estimate of the system state.

2.3.1 The Kalman Filter Algorithm

The KF algorithm provides an estimate of the state of a linear system. In particular

we look at the discrete-time case. Our notation for estimates of state x is given by x̂(k1|k2),

10

which indicates the estimate of x at time step k1 given information up to time step k2.

Consider the system

x(k+1) = F(k)x(k)+η
(k)

z(k) = H(k)x(k)+ν
(k)

(2.3)

where η(k) and ν(k) are zero-mean Gaussian noise with covariances Q and R, respectively.

We give the outline of the KF state estimation method.

The prediction of the state at the next time step is calculated using the system model,

x̂(k|k−1) = F(k)x̂(k−1|k−1), (2.4)

and a prediction of the error covariance, P, is given by

P(k|k−1) = F(k)P(k−1|k−1)F(k)T
+Q. (2.5)

Then the innovation and the Kalman gain are computed:

y(k) = z(k)−H(k)x̂(k|k−1), (2.6)

K(k) = P(k|k−1)H(k)
(

H(k)P(k|k−1)H(k)T
+R
)−1

. (2.7)

The final estimate of the state and covariance are given by

x̂(k|k) = x̂(k|k−1)+K(k)y(k), (2.8)

P(k|k) =
(

I−K(k)H(k)
)

P(k|k−1). (2.9)

11

2.3.2 The Extended Kalman Filter Algorithm

The Extended Kalman Filter (EKF) is a nonlinear variation of the KF. We consider

the following system,

x(k+1) = f (k)
(

x(k)
)
+η

(k),

z(k) = h(k)
(

x(k)
)
+ν

(k).

(2.10)

Estimates of state x are computed in the same manner as the KF, using (2.4)-(2.9), where

F(k) and H(k) are the Jacobian of the process function and measurement function, respec-

tively.

F(k) =
∂ f (k)

∂x

∣∣∣∣
x̂(k|k−1)

,

H(k) =
∂h(k)

∂x

∣∣∣∣
x̂(k|k−1)

j

.

(2.11)

Unlike in the case of the linear KF, using an EKF gives a suboptimal estimation of

the state when the model is nonlinear. This is due to the linearization of the process and

measurement models to get locally approximate estimates.

2.3.3 Multiple Model Adaptive Estimation

Multiple Model Adaptive Estimation (MMAE) is an approach to estimating states

using a pool of different models [16]. This approach is useful when one of the models in our

pool matches the true model of the system, without knowing which model is the correct one.

MMAE methods typically compute a weighted mean of different state estimates using each

model. The weight associated with each model is often synonymous with the probability

that the model is correct, based on measurements we take of the state.

Let us say we have the following system

x(k+1) = g(k)
(
x(k)
)
+η

(k), (2.12)

12

whose state we want to estimate, and noisy measurements

z(k) = x(k)+ν
(k), (2.13)

where η(k) and ν(k) are zero-mean Gaussian noises with covariances Q and R respec-

tively. We have a pool of N estimators, each based on one of N possible models, g(k)j ,

j ∈ {1, . . . ,N}. We assume each model is subject to its own unique process noise, with

differing covariances for η
(k)
j , but each has access to the same measurements from (2.13).

At every iteration k, we get an estimate of the current state x̂(k|k)j from each model. Each

estimate has a weight w(k)
j ∈ [0,1] associated with it, initialized to 1

N . The estimate x̂(k) is a

weighted mean of all x̂(k|k)j , given by

x̂(k) =
N

∑
j=1

w(k)
j x̂(k|k). (2.14)

In the case where each model has a KF or EKF applied to it, we use the same weight

update method as in [14] and [15]:

w(k)
j =

h̃ j(z(k))w
(k−1)
j

∑ h̃i(z(k))w
(k−1)
i

. (2.15)

Here, h̃ j(z(k)) is a Gaussian density function based on the innovation, y(k)j , and its covari-

ance S(k)j = H(k)P(k|k−1)
j H(k)T

+R,

h̃ j(z(k)) =
exp(−1

2(y
(k)
j)T (S(k)j)−1y(k)j)√
(2π)nz|S(k)j |

,

where nz is the dimension of our measurement vector. Following this update rule, our

13

weights end up being the probability that the corresponding model is the correct one, and

thus the sum of all w(k)
j adds up to 1 for all k.

14

Chapter 3

Predictive Planning

In this chapter, we present the Moving Goal Tree algorithm, which builds on the

GT algorithm of [3] and accounts for a dynamically moving goal. This is the basis for our

main predictive planning algorithm, the PMGT, presented in second part of this chapter.

3.1 Sampling-Based Planning for Moving Goal

The GT algorithm is an RRT*-based algorithm where the tree is rooted at the goal

rather than the starting position. A path is found when the tree expands to include the

starting position, and, as more nodes are added to the tree, the path is refined and becomes

asymptotically optimal.

In the Moving Goal Tree (MGT) algorithm, a node is added at the new goal position.

This node is then set as the new root of the tree, becoming the parent of the previous goal

node. We call the new goal node uG,new and the previous goal node uG,prev, while the new

edge between them is enew,prev, and the cost of this edge is denoted by Cedge(enew,prev). The

cost-to-come of each node in the tree is increased by Cedge(enew,prev). If we denote the cost-

to-come of each node, u, prior to adding the new goal as Costprev(u), then the cost of each

15

(a) (b) (c)

Figure 3.1: Evolution of a tree when a new goal is added. Figure 3.1a shows the tree with
root represented by uG,prev. In Figure 3.1b, the new goal node, uG,new, is added, and is made
the new root. A rewire is done in a neighborhood around uG,new, indicated by the dashed
circle. Figure 3.1c shows the tree after rewiring is done near the new goal.

node after updating the goal is

Costnew(u) = Costprev(u)+Cedge(enew,prev). (3.1)

With this new cost function, a rewire is performed in a neighborhood of uG,new, such that

for all nodes u in this neighborhood, if Cedge(enew,u)< Costnew(u), then the tree is rewired

and uG,new becomes the parent of u. Figure 3.1 shows the process for a 2-D example, for a

distance cost function. This restructuring is similar to that of RT-RRT*, though we root our

MGT at the goal rather than the robot position. For reasons explained in the next section,

we assume our goal to move more slowly than the robot. Therefore, by rooting the our

algorithm at the goal, the motion of the root will induce less changes than if we had it

rooted at the robot position.

Algorithm 3 shows the main part of the proposed method. Lines 8-18 capture the

behavior of the GT algorithm. We use u∗ to denote nodes in the tree, and x∗ to denote po-

sitions. Extend() finds the closest node position to the sampled point xrand and increments

16

Algorithm 3 Moving Goal Tree (MGT)
Require: goal position xG, robot position xR, space X

1: Initialize tree T
2: vroot← AddNode(pos=xG, parent=NULL,T)
3: while xR 6= xG do
4: if GoalChanged() then
5: xG← NewGoal()
6: uroot← ChangeRoot(xG,uroot,T)
7: else
8: xrand← Sample(X)
9: xnew← Extend(xrand,T)

10: uparent← FindParent(xnew,T)
11: if uparent then
12: unew← AddNode(xnew,uparent,T)
13: Rewire(unew,T)
14: end if
15: end if
16: if ObstaclesChanged() then
17: TrimTree(T)
18: end if
19: if PathExists(T) then
20: xR←MoveRobot(T)
21: end if
22: end while
23: return T

Algorithm 4 ChangeRoot
Require: new root pos xG, prev root node uG,prev, tree T

1: uG,new← AddNode(xG, NULL ,T)
2: uG,prev.parent← uG,new
3: for all nodes u in T \{vG,new} do
4: u.Cost← u.Cost+Cedge(enew,prev)
5: end for
6: Rewire(uG,new,T)
7: return uG,new

17

that position toward xrand to get xnew. FindParent() searches in a neighborhood of xnew for

the parent that would minimize the cost-to-go of the node at xnew. Rewire() iterates through

nodes in a neighborhood of unew and changes these nodes’ parent to unew if it results in a

lower cost-to-go.

In the proposed MGT algorithm, we add the ChangeRoot method. In the cases

where the goal moves, we move the root to the new goal, update the costs of the nodes in

the tree according to (3.1), and rewire around the new goal, outlined in Algorithm 4.

Here, we expand on the MGT algorithm by incorporating knowledge about the

future positions of the goal and obstacles in the environment. For the time being, we

assume that the goal and obstacle trajectories are known.

3.2 Predictive Moving Goal Tree

We achieve a similar effect to the Apollonius pursuit strategy in discrete time with

our sampling-based planner. We assume that we know the future evader positions x(k+i)
e ,

where i = 0 gives the current position at time step k and i ≥ 1 indicates the goal positions

i time steps in the future up to horizon b. We define ∆t to be a constant time difference

between all time steps k. Then, a set of points reachable from x(k)p with distance less than

ivp∆t is computed. The point enclosed by the set with the lowest future time index to

include an evader position xe,k+i is the optimal position to intercept. Figure 3.2 illustrates

the idea. This results in an asymptotically optimal capture condition as we formalize next.

Let us define i∗ ∈ {1, . . . ,b} to be the index of the future evader position x(k+i∗)
e we

want the pursuer to move toward at time k. We choose i∗ in order to minimize the time to

18

Figure 3.2: Visualization of pursuit given future evader positions. Each set Ai denotes all
points reachable from x(k)p in i time steps. Since x(k+3)

e is the earliest evader position (almost
simultaneously) reachable by both the pursuer and evader (at i = 3), the optimal strategy is
to take the shortest path there.

19

capture the evader:

i∗ =

min

i∆t≥τi
i if ∃i, s.t. : i∆t ≥ τi

argmin
i
(τi− i∆t) otherwise

(3.2)

where τi is the optimal time it takes for the pursuer to reach x(k+i)
e given its maximum

speed, and i∆t is the time for the evader to reach the same point. The first condition of (3.2)

chooses x(k+i∗)
e to be the earliest position that the pursuer can reach before or at the same

time as the evader. If no such point exists in our horizon, then the second condition chooses

x(k+i∗)
e that minimizes the time between when the evader reaches the point and when the

pursuer can.

Lemma 1 (Goal capture condition). Assume that the number of nodes in each of the

sampling-based trees of the MGT algorithm is very large so that the path from the robot

to a future evader position is practically optimal. Given future evader positions x(k+i)
e ,

i ∈ {1, . . . ,b}, we use (3.2) to choose x(k+i∗)
e for the pursuer to move to along one of the

optimal paths. Assuming the pursuer’s speed, vp, is constant, and that vp > ve, then there

exists some time step such that an i∗ can be computed from (3.2) that satisfies

τi∗ ≤ i∗∆t. (3.3)

Proof. Let us consider evader positions at some time steps k+ i and k+ i+ 1. From the

pursuer position, x(k)p , the lengths of the optimal paths to evader positions x(k+i)
e and x(k+i+1)

e

are equal to vpτi and vpτi+1, respectively. Since the evader does not necessarily move

optimally, the length of the optimal path from x(k+i)
e and x(k+i+1)

e is upper bounded by ve∆t.

20

By the triangular inequality, and using the fact that vp > ve, we get

vpτi+1 ≤ vpτi + ve∆t < vpτi + vp∆t.

Dividing by vp and rearranging terms gives us

τi+1− (i+1)∆t < τi− i∆t. (3.4)

We note that the inequality (3.4) shows a sequence of time differences decreasing with each

successive prediction.So, as new predictions are made for x(k+i)
e at each new time step k,

the time differences will decrease until an i∗ exists where (3.3) is satisfied.

Remark 1. From (3.4), we see that (τi − i∆t) is decreasing in i. This means that the

expression in the second condition of (3.2) can be approximated by b (provided the number

of nodes in each tree is very large, it will reduce to b almost always). We rewrite (3.2) as

the following:

i∗ =

min

i∆t≥τi
i if ∃i, s.t. : i∆t ≥ τi

b, otherwise
(3.5)

Remark 2. From Lemma 1, we have that our algorithm results in a capture strategy when

the cost function is related to time to reach the goal. Effectively, our algorithm is solving a

robust optimization algorithm over a sliding window. If the time window was sufficiently

large so that the robot can meet the goal point at one of the its future locations, we deduce

that the algorithm will approximate the minimum time path to reach that goal location.

To implement the Apollonius strategy in the presence of obstacles in a bounded

environment, we create copies of an initial tree and shift the root to the predicted goal

positions. The obstacle and goal positions are updated every step k, with ∆t being the

length of each step. At every k, the robot receives the current goal position, x(k)G , the subset

21

of the environment contained in the obstacle, O(k), and the position of the center of the

obstacle, x(k)O . The robot is able to compute future information, x(k+i)
G , O(k+i), and x(k)O , up

to time k+ b. At every time step, we create copies of the current tree T0, shift the goal to

x(k+i)
G , and trim nodes that conflict with obstacles O(k+i). These new trees are denoted as

Ti for i ∈ {1, . . . ,b}. If the predicted goal positions are correct, then we can avoid copying

T0 and shifting the goal, by simply copying Ti+1 from time step k into Ti at time step k+1.

After doing this, observe that tree refinement is implemented.

Given a maximum robot velocity, the time τi needed to reach the goal position at

time step k+ i along a path on Ti can be computed. We use (3.5) to choose i∗ which will

give the robot the best Tree T∗ to determine its path. Algorithm 5 outlines this method for

choosing a path to a future goal. The entire algorithm is outlined in Algorithm 6.

Algorithm 5 BestTree
Require: robot position xR, Tree set T

1: τi← TimeToReach(xR,Ti), Ti ∈ T
2: if ∃i ∈ {1, . . . ,b}, s.t. : i∆t ≥ τi then
3: i∗ = min

τi≤i∆t
i

4: else
5: i∗ = b
6: end if
7: return Ti∗

To prevent a conflict when the robot is near an obstacle, we place a circular buffer

around each obstacle, with a radius of dO +∆tvO, where dO and vO are the diameter and

maximum velocity of the obstacle, respectively. This prevents us from sampling in space

where the obstacle might be in the next time step. The buffer and algorithm are illustrated

in Figure 3.3. If the robot is inside this buffer, we choose the closest parent that exists

outside of the buffer.

22

Algorithm 6 Predictive Moving Goal Tree

Require: goal positions x(k)G , obstacle positions O(k), robot position xR, horizon b
1: Initialize tree T0
2: vroot,0← AddNode(pos=xG,0, parent=NULL,T0)

3: while xR 6= x(k)G do
4: if EnvironmentChanged() [∆t time has passed] then
5: for i ∈ {0,1, ...,b} do
6: if GoalPredictionCorrect() then
7: Ti← Copy(Ti+1)
8: else
9: Ti← Copy(T0)

10: uroot,i← ChangeRoot(x(k+i)
G ,uroot,i,Ti)

11: TrimTree(T,O(k+i))
12: end if
13: end for
14: else
15: for i ∈ {0,1, ...,b} do
16: xrand← Sample()
17: xnew← Extend(xrand,Ti)
18: uparent← FindParent(xnew,Ti)
19: if uparent then
20: unew← AddNode(xnew,uparent,T)
21: Rewire(unew,Ti)
22: end if
23: end for
24: end if
25: for i ∈ {0,1, ...,b} do
26: if Conflict(xR,O(k),Ti) then
27: Ti← ResolveConflict(xR,O(k),Ti)
28: end if
29: end for
30: T∗← BestTree(xR,T)
31: xR←MoveRobot(T∗)
32: end while

23

Figure 3.3: Planning with a moving obstacle. Light green target represents the current goal
position, darker green targets represent future goal positions. The black ellipse represents
the current obstacle, and the gray circle is a buffer representing the possible space the
obstacle can be in at the next step.

24

Chapter 4

Predicting Goal Positions

In this chapter, we describe how we predict future goal and obstacle positions when

their motion model is unknown. We combine the MMAE approach with an online EKF-

based parameter estimation method.

4.1 Accounting for Obstacles in with MMAE

Because this method computes a weighted average of the estimations, the prediction

space must be convex. This means we can not use this method directly to predict a goal po-

sition in the presence of obstacles. As mentioned before, we are considering this prediction

method in the context of manipulator-human collaborative tasks (i.e. receiving something

from/giving something to a human), where our goal will be near the dynamic obstacle.

Therefore, we use the MMAE method to predict the dynamic obstacle positions x̂(k+i|k)
O .

We then apply a translation to this position to get our predicted goal position x̂(k+i|k)
G such

that it is not in conflict with our obstacle.

25

4.2 Estimating Parameters in MMAE Models

K̃(k)
j

∆tf (k)jH̃

z(k) ỹ(k)j

x̂(k|k−1)
j

−

ζ̂
(k|k−1)
j

f (k+1)
j

f (k+2)
j

concat H̃

f (k+b)
j

ζ̂
(k|k)
j

...
...

ζ̂
(k+1|k)
j X̂ (k)

j,b

ζ̂
(k+2|k)
j

ζ̂
(k+b|k)
j

Figure 4.1: Diagram of estimator j. The EKF estimates the augmented state, then propa-
gates it through the model to predict ζ̂

(k+i|k)
j . The concat block denotes concatenating

ζ̂
(k+i|k)
j horizontally into a matrix

[
ζ̂
(k|k)
j ζ̂

(k+1|k)
j . . . ζ̂

(k+b|k)
j

]
.

Assume that a parametric family of mappings is available to describe a system evo-

lution. Then, one can aim to find the value of the best parameter that provides the best

state predictions over time [17]. Assuming that the best parameter is stationary, this can

be translated via the estimation of an augmented state that includes the original state and

parameter vector. We apply this idea inside the MMAE filter to reduce the model pool size

N to a set of structurally-different elements of a pool of experts.

First, we parameterize each model with a vector θ
(k)
j :

x(k+1)
j = g(k)j (x(k)j ,θ

(k)
j)+η

(k)
j

θ
(k+1)
j = θ

(k)
j + r(k)j ,

and measurement model where η
(k)
j and r(k)j , are zero-mean Gaussian noise vectors with

covariances Q j and q j respectively. To estimate the parameters of the model along with the

26

state, we augment the state and parameters,

ζ
(k)
j =

x(k)j

θ
(k)
j

 ,
so that our augmented model looks like

ζ
(k+1)
j =

g(k)j (x(k)j ,θ
(k)
j)+η

(k)
j

θ
(k)
j + r(k)j

= f (k)j (ζ
(k)
j)+

η
(k)
j

r(k)j

 .
Our augmented noise vector is Gaussian, zero-mean with covariance

Q̃ j =

Q j 0

0 q j

 . (4.1)

Then, we apply an EKF as usual.

We compute our prediction of the state and error covariance,

ζ̂
(k|k−1)
j = f (k)j (ζ̂

(k−1|k−1)
j) (4.2)

P̃(k|k−1)
j = F(k)

j P̃(k−1|k−1)
j (F(k)

j)T + Q̃ j,

where F(k)
j = ∂ f

∂ζ
|
ζ̂
(k|k−1)
j

. Then we find the innovation

ỹ(k)j = z(k)j − H̃ζ̂
(k|k−1)
j , (4.3)

where H̃ = [I 0], since we are not directly measuring the parameters. The Kalman gain is

27

given by

K̃(k)
j = P̃(k|k−1)

j H̃T (H̃P̃(k|k−1)
j H̃T +R j)

−1.

A final estimate of the augmented state is given by

ζ̂
(k|k)
j = ζ̂

(k|k−1)
j + K̃(k)

j ỹ(k)j . (4.4)

If our measurement model is (2.13), then to apply MMAE to this estimator, our

weight update for the augmented case is the same as (2.15). To make predictions about

future states up to step k+b, we take (4.4) and propagate it through each expert’s model b

times. We create a matrix from each of these predictions, defined as

Ẑ(k)
j,b =

[
ζ̂
(k|k)
j ζ̂

(k+1|k)
j . . . ζ̂

(k+b|k)
j

]
.

We define the following

X̂ (k)
j,b = HẐ(k)

j,b =
[
x̂(k|k)j x̂(k+1|k)

j . . . x̂(k+b|k)
j

]
,

s0 =

1

0

0
...

0

, s1 =

0

1

0
...

0

, . . . , sb =

0

0
...

0

1

, si ∈ Rb+1

such that each expert prediction at time step k is given by

x̂(k+i|k)
j = X̂ (k)

j,b si. (4.5)

28

Figure 4.1 shows a block diagram of our augmented EKF and model propagation. By

substituting (4.5) into (2.14), we make our weighted predictions p(k+i|k) based on current

parameter estimates.

Again, we use this framework to estimate the motion model of our obstacle, and

predict x̂(k+i|k)
O directly. We compute the expected positon of the goal by applying some

translation to the obstacle, in the same manner described at the end of IV.A. Adapting the

MMAE to include parameter estimation allows us to have multiple models of different

structures without having to have different parameter realizations for each of them.

29

Chapter 5

Simulation Results

5.1 Moving Goal Tree

5.1.1 2D Non-Predictive Moving Goal Tree

The MGT is tested in the simple case of a point navigating through a 2D environ-

ment to catch a moving goal, as shown in Figure 5.1. The point is able to catch up the

moving goal and find shorter paths around the obstacles as more nodes populate the tree.

(a) (b) (c) (d)

Figure 5.1: Visual of robot (red) planning in real time to catch moving goal (green) in 2D
space.

30

5.1.2 MGT with Robotic Manipulator

We also test the MGT algorithm in a simulation for a 7-DOF Motoman manipulator.

The obstacle is static, and the manipulator moves around it to catch up to the moving goal

configuration, shown in Figure 5.2.

(a) (b) (c)

Figure 5.2: Simulation of Motoman SIA5 robot moving along planned trajecotry using the
proposed MGT. The robot navigates around the sphere to catch up to the green goal as it
moves underneath the obstacle.

5.2 Expert Prediction

Figure 5.3 shows a simulation of a noisy nonlinear 1 - dimensional system. A pool

of 3 models is used:

g(k)1 (x(k)) = x(k)+0.1cos(0.1k)

g(k)2 (x(k)) = (x(k))−2− x(k)

g(k)3 (x(k)) = 0.9x(k),

where g(k)1 is the nominal model of the system. . As explained in Section 4.2, the algorithm

learns how to assign the highest weight to the correct structural model. It can be seen how

weighted predictions closely match the EKF predictions.

31

Figure 5.3: Simulation of MMAE, with one of the models matching the model of motion.
The k+5 and k+15 prediction denotes the prediction of x(k) from 5 and 15 time steps ago.

5.3 Predictive MGT with Unknown Goal Positions

We simulate our combined algorithm in a 2-D environment with a moving goal and

obstacle, shown in Figure 5.4. The goal is a fixed distance relative to the obstacle. A pool

of 3 parameterized models is used to predict the obstacle position, x(k)O = [x(k)x x(k)y x(k)
φ
]T ,

where x(k)x and x(k)y are the 2-D coordinates, and x(k)
φ

is the obstacle’s angle in the plane.

32

The parameter vector is two dimensional, given by θ = [θa θb]
T . The models are given by:

g(k)1 (x(k)O ,θ) =

x(k)x + sin(θax(k)
φ
)

x(k)y + cos(θbx(k)
φ
)

x(k)
φ

+ π

18

θa

θb

,

g(k)2 (x(k)O ,θ) =

θax(k)x

θbx(k)y

x(k)
φ

+ π

18

θa

θb

,

g(k)3 (x(k)O ,θ) =

x(k)x +θa

x(k)y +θb

x(k)
φ

+ π

18

θa

θb

,

where g(k)3 is the nominal model with θa = θb =−0.1. The goal position is estimated from

x(k)O by

x(k)G = rot(x(k)
φ
)

3

0

+
x(k)x

x(k)y

where rot gives the standard rotation matrix, and the length of the obstacle is 2.5. The

EKF learns the model of the obstacle and predicts future positions, with MMAE to appro-

33

priately weight the predictions of each expert at each time step. We see the predicted goal

positions become more accurate over time.

(a) (b) (c)

Figure 5.4: Simulation of predictive MGT with MMAE algorithm to predict future goal
and obstacle positions. The current goal is denoted by the lighter green color and future
predicted goal positions denoted by darker green colors.

34

Chapter 6

Conclusion

We have proposed an online sampling-based planning algorithm to be employed

in dynamic environments with a goal that moves in conjunction with an obstacle. The

algorithm uses information about goal and obstacle configurations at future time steps to

improve the time needed for the robot to catch the goal. We then propose a method to

generate these predictions when there are various uncertainties about the motion model for

the goal and obstacle. This method combines multi-model estimation with online parameter

estimation for each model. For future work, we will investigate the efficient modification fo

the PMGT to approximate a worst-case strategy in a pursuit-evasion approach, by dropping

our assumption that the evader is non-adversarial, and making use of robust estimation

methods.

This thesis, in part, has been submitted for publication as it may appear in IEEE

Robotics and Automation Letters, 2020, Ruiz, Javier; Boardman, Beth; Harden, Troy;

Martı́nez, Sonia. The thesis author was the primary author of this paper.

35

Bibliography

[1] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion plan-
ning,” International Journal of Robotics Research, vol. 30, no. 7, pp. 846–894, 2011.

[2] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,” IEEE Trans-
actions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[3] B. Boardman, T. Harden, and S. Martı́nez, “Improved performance of asymptotically
optimal rapidly-exploring random trees,” ASME Journal on Dynamic Systems, Mea-
surement, and Control, vol. 141, no. 1, 2018.

[4] K. Naderi, J. Rajamäki, and P. Hämäläinen, “RT-RRT*: A real-time path planning al-
gorithm based on RRT*,” in Proc. of the 8th ACM SIGGRAPH Conference on Motion
in Games. ACM, 2015, p. 113 –118.

[5] F. Damerow and J. Eggart, “Balancing risk against utility: Behavior planning using
predictive risk maps,” in IEEE Intelligent Vehicles Symposium, 2015.

[6] S. Agarwal, A. K. Gaurav, M. K. Nirala, and S. Sinha, “Potential and sampling based
rrt star for real-time dynamic motion planning accounting for momentum in cost func-
tion,” in International Conference on Neural Information Processing, 2018.

[7] R. Isaacs, Differential Games: A Mathematical Theory with Applications to Warfare
and Pursuit, Control and Optimization. Dover, 1999.

[8] Z. Zhou, W. Zhang, J. Ding, H. Huang, D. M. Stipanović, and C. J. Tomlin, “Cooper-
ative pursuit with voronoi partitions,” Automatica, vol. 72, pp. 64 – 72, 2016.

[9] D. W. Oyler, P. T. Kabamba, and A. R. Girard, “Pursuit–evasion games in the presence
of obstacles,” Automatica, vol. 65, pp. 1 – 11, 2016.

36

[10] C. Giovannangeli, M. Heymann, and E. Rivlin, “Pursuit-evasion games in presence
of obstacles in unknown environments: towards an optimal pursuit strategy,” in
Cutting Edge Robotics 2010, V. Kordic, Ed. Rijeka: IntechOpen, 2010, ch. 4.
[Online]. Available: https://doi.org/10.5772/10317

[11] N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,” Information
and Computation, vol. 108, no. 2, p. 212–261, Feb. 1994.

[12] S. Arora, E. Hazan, and S. Kale, “The multiplicative weights update method: A meta
algorithm and its applications,” Theory of Computing, vol. 8, p. 121–164, 2012.

[13] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games. Cambridge Uni-
versity Press, 2006.

[14] C. Barrios, H. Himberg, Y. Motai, and A. Sadek, “Multiple model framework of
adaptive extended kalman filtering for predicting vehicle location,” in IEEE Int. Conf.
on Intelligent Transportation Systems, 2006.

[15] V. Hassani, A. P. Aguiar, M. Athans, and A. M. Pascoal, “Multiple model adaptive
estimation and model identification using a minimum energy criterion,” in American
Control Conference, 2009.

[16] A. P. Aguiar, “Multiple-model adaptive estimators: Open problems and future direc-
tions,” in European Control Conference, 2007.

[17] L. Ljung, “Asymptotic behavior of the extended Kalman filter as a parameter estima-
tor for linear systems,” IEEE Transactions on Automatic Control, vol. 24, no. 1, p.
36–50, February 1979.

37

