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Deflection-based Attack Detection for Network Systems

Rajasekhar Anguluri and Fabio Pasqualetti

Abstract— This paper considers a deflection-based detector
for random attacks compromising the inputs of a network
system, using measurements from nodes non-collocated with the
input nodes. We derive the decision rule of our deflection-based
detector, and characterize its performance as a function of the
edge weights, attack and noise statistics, and the locations of
input and output nodes. In the asymptotic measurement regime,
we show that the detector’s performance is governed by the
singular values of the system’s transfer function matrix. Finally,
for a given input and output node locations, we numerically
solve an optimization problem to find the optimal network edge
weights that maximize the detector’s performance. Numerical
examples are presented to validate the theoretical results.

I. INTRODUCTION

For safe, reliable, and efficient operation of cyber-physical
systems (e.g., power and transportation systems, and medical
devices), there is an increasing need to develop sophisticated
detectors to decide against attacks with complex behaviors.
A few notable works in this direction include [1]–[3], where
the authors study the role of system dynamics, number of
compromised sensors/actuators, and attack magnitude and
type on the detection performance. As many cyber-physical
systems also have an in-built network structure, a few studies
also focused on understanding the role of network topology
(edge connectivity and magnitude of weights) and location
of the input and output nodes on the attack detector’s per-
formance from a graph-theoretic perspective [4]–[6]. These
studies highlight what structural properties of a network
(e.g., directed or undirected edges, positive or negative edge
weights, or presence of community structures) play a crucial
role in modulating the detection performance.

Motivated by the above studies, in this paper we propose a
deflection based attack detector for detecting random attacks
compromising inputs of a network (dynamical) system. With-
out assuming proper knowledge on the probability distribu-
tion of the attacks, we characterize the performance of the
deflection-based detector and show that its performance can
be improved by designing the edge weights of the network.
Overall, for random attacks on inputs, our results show that
the deflection-based detector can be used as an alternative
to the existing generalized likelihood ratio-based detectors,
which depends on the probability distribution of the attack
and also the nominal system dynamics.
Related work: In the last few years, with the increasing
need for detecting attacks with different characteristics (eg.,
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replay attack, false data injection attack, integrity attack,
and stealthy attack), researchers have proposed several attack
detection strategies and studied them extensively [1]–[3].
Notice that these strategies primarily differs depending on
the presence or absence of stochastic noise in the system.
For a comprehensive summary on various detection methods,
see [7] and the references therein.

In the context of attack detection in linear dynamical
systems with Gaussian noise, chi-squared detectors are well
studied [8]; however, these detectors only work for deter-
ministic attacks, and cannot be extended for random attacks.
Studies on network design for attack detection are limited. A
notable work in this direction is [9], where the authors design
an optimal communication network to implement global
detectors using local detectors. Instead, we consider network
design for maximizing the performance of a global input
attack detector. Finally, we note that there are several studies
on network design for non-detection based applications,
including disturbance rejection [10], network coherence [11],
and sensor placement [12].
Contribution: The contribution of our work is two-fold.
First, we develop a deflection-based detector to detect ran-
dom attacks compromising the inputs of a network (dynam-
ical) system. Both in the finite and asymptotic measurement
regimes, we characterize the attack detector’s performance
as a function of the network edge weights, attack and noise
statistics, and the input and output node locations. Our attack
detector relies on the attack’s covariance matrix, thereby
making it amenable to the attacks following arbitrary proba-
bility distributions. Second, for fixed input and output node
locations, we formulate and numerically solve a non-convex
optimization problem to choose the network weights that
maximize the detector’s performance. Finally, via numerical
examples we show that the detection performance on directed
networks is higher than that of the undirected ones.
Organization: The rest of the paper is organized as follows.
Section II introduces the network system and our deflection-
based attack detector. Section III characterizes the deflection-
based detector’s performance, and proposes an optimization
framework for network design. Section VI contains illustra-
tive numerical examples. Section V concludes the paper.
Notation: For any two n × n real matrices M and N ,
the operation M ≥ N denotes Mij ≥ Nij , for all i, j ∈
{1, . . . , n}. A n×n symmetric positive (resp. semi) definite
matrix M is denoted by M � 0 (resp. M � 0), and M � N
if M − N � 0. The set {e1, . . . , en} denotes the standard
basis vectors of Rn. The probability of an event E is denoted
by Pr[E ]. The expectation and variance of a random variable
(vector) X is denoted by E[X] and Var[X], respectively.
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II. PROBLEM SETUP AND PRELIMINARY NOTIONS

A. Attacked system model

Consider a network of n nodes represented by the directed
graph G := (V, E), where the node and edge sets are given
by V := {1, . . . , n} and E ⊆ V×V , respectively. Let aij ∈ R
be the weight assigned to the edge (i, j) ∈ E , and define the
weighted adjacency matrix of G as A := [aij ], where aij = 0
whenever (i, j) /∈ E . If A = AT, we refer the underlying
graph as un-directed network. Let K := {k1, . . . , kr} ⊆ V
be the set of input nodes, which receive r inputs. For the i-th
node, we assign a state xi ∈ R, and let the network evolve
with linear time-invariant dynamics

x[k + 1] = Ax[k] +Bw[k], (1)

where x = [x1 · · ·xn]T ∈ Rn contains the states, the initial
state x[0] = 0, and w[k] ∈ Rr is the input. The matrix
B = [ek1 , . . . , ekr ] indicates the nodes through which the
inputs excite the network. The input w[k] follows one of the
two statistical hypotheses:

(attack absent)H0 : w[k] = u[k],

(attack present)H1 : w[k] = u[k] + a[k].
(2)

Here, u[k] is an independent (across time) stochastic process
distributed according to N (0,Σ0), and Σ0 is known. Thus,
under H0, a known Gaussian process drives the network.

Under the alternative H1, the attack a[k] is assumed to be a
zero mean temporally uncorrelated (need not be independent)
stochastic process with unknown probability distribution and
marginal covariance matrix Σa := Cov[a[k]] = Cov[a[l]], for
all k 6= l. Our modeling framework allows attacks to follow
any arbitrary probability distribution. In fact, a[k] can be a
continuous or discrete random vector (see Remark 1).

We assume that the network dynamics (1) are measured at
m nodes (not necessarily collocated with the input nodes set
K). The measurements y[k] ∈ Rm from these sensors obey

y[k] = Cx[k] + v[k], (3)

where C = [ej1 , . . . , ejm ]T and v[k]
i.i.d∼ N (0,Σv). Finally,

under the hypothesis H0 and H1, we assume that any finite
set of random vectors in {a[0], v[0], u[0], a[1], v[1], u[1], . . .}
are uncorrelated (not necessarily independent).

B. Deflection criterion for attack detection

As the attack’s probability distribution is unknown in our
setup, the likelihood ratio-based attack detectors [8], [13] are
not only difficult to implement, but are hard to analyze using
the detection probability. To overcome the above problem,
we consider a detector based on a signal-to-noise ratio based
criterion called deflection [14], [15]. We now formally state
the deflection-based attack detector.

For compactness, let us denote the system and measure-
ment matrices by Ω := (A,B,C). For a fixed sample size N ,
let YN = [y[1]T, . . . , y[N ]T]T be the measurements collected

over the horizon k = 1, . . . , N . Define the threshold test :1

δ(YN ) < τ : attack absent (H0),

δ(YN ) ≥ τ : attack present (H1).
(4)

In the deflection test, one defines a test statistic δ(YN ) =
Y T
NQYN , for Q � 0, that maximizes the deflection criterion:

D(Q,Ω,Σa) =
(E1[δ(YN )]− E0[δ(YN )])

2

Var0[δ(YN )]
(5)

Here, Ei[·] and Vari[·], i ∈ {0, 1}, are the mean and variance
of δ(YM ) evaluated under hypothesis Hi. However, as the
attack covariance is unknown, we cannot evaluate E1[δ(YN )].
Thus, we consider a robust version of (5)—referred to as the
worst case deflection criterion (or WDC).

Assumption 2.1: The attack covariance matrix Σa is un-
certain, but is lower bounded by a known positive definite
matrix (Σ`), i.e., 0 ≺ Σ` � Σa.

Assumption 2.1 ensures that the attack signature cannot be
arbitrarily low. Thus, any reasonable test (4) have, at least,
some power to detect attacks. These types of assumptions
are standard in the theory of robust detection [16].

Definition 1: (Optimal WDC based detector) The optimal
WDC based detector is the test (4) for which the test statistic
is δ(YN ) = Y T

NQ
∗YN , where

Q∗ = arg max
Q�0

DW (Q,Ω), (6)

and the WDC is defined2 as

DW (Q,Ω) = inf
0≺Σ`�Σa

D(Q,Ω,Σa). (7)

Thus, the performance of the optimal WDC based detector
is given by DW (Q∗,Ω). Once Q∗ is obtained, the threshold
(τ ) needed to perform the test (4) can be computed by pre-
fixing the false alarm probability PF = Pr[δ(YN ) ≥ τ |H0].
Finally, the asymptotic optimal WDC is given by

DW (Q∗,Ω) = lim sup
N→∞

DW (Q∗,Ω)

N
. (8)

Notice that the asymptotic measure (8) is similar to that of
error exponent in the case of the Neyman-Pearson detector.

C. The network design problem

In this paper, for a given input and output nodal locations
(i.e., for fixed a matrices C and B), our goal is to select the
edge weights (or matrix A) such that the optimal WDC (8)
is maximized. This can be cast as an optimization problem:

maximize
A ∈Mn×n

DW (Q∗,Ω)

subject to ρ(A) < 1 (stability constraint),
|E| ≤ K (budget constraint),

(9)

where M ⊆ Rn×n denotes the set of adjacency matrices
over which the optimization is carried out. This restriction

1Throughout the paper, we will use the terms ”detector” and ”threshold
test” interchangeably.

2The expression (7) depends on the statistics of the input, attack, sensor
noise, and the matrices (Q,A,B,C). However, to avoid cluttered notation,
some of these parameters are suppressed in the definition of DW .



allows us to impose structural constraints on the network. For
instance, by imposing M to be symmetric, we get undirected
networks, or by letting M = {0, 1}n×n, we get binary
networks. Here, ρ(A)denotes the spectral radius of A. The
budget constraint regulates the total number of connected
edges. The numerical solution of this problem is deferred
until Section V.

Remark 1: (Mean of the attack) The zero mean as-
sumption of the attack is to obtain simplified and intuitive
expressions of the detector’s performance measure [17]. With
an extra effort, the results in this paper can be extended to the
non-zero mean case by considering the test statistic δ(YN )
that contains both the linear and quadratic term [15], [18].

III. OPTIMAL WORST CASE DEFLECTION BASED
DETECTOR

In this section we solve the maximization problem (6) to
obtain an expression for Q∗ as a function of the system ma-
trices Ω, and the input, attack, and noise covariance matrices.
We also characterize the expressions for finite and asymptotic
optimal WDC as well. For a given Ω = (A,B,C), define
the following impulse response matrix:

F =


CB 0 . . . 0
CAB CB . . . 0

...
...

. . .
...

CAN−1B CAN−2B . . . CB

 . (10)

The following result is instrumental for computing Q∗ (6).
Proposition 3.1: (Mean and variance of δ(YN )) For i ∈

{0, 1}, let the hypothesis Hi be as in (2). Let δ(YN ) =
Y T
NQYN for some Q � 0. Then

Ei[δ(YN )]=tr (QSi) and Var0[δ(YN )]=2tr[(QS0)
2
], (11)

where S0 = F (I ⊗ Σ0)FT + (I ⊗ Σv) and S1 = S0 +
F (I ⊗ Σa)FT.

Proof: Expand the state vector x[k] (1) and substitute
it in measurement equation (3) to obtain YN = ΘWN +VN ,
where WN = [xT[0], wT[0], . . . , wT[N − 1]]T and VN =
[vT[1]], . . . , vT[N ]]T. From the statistical description of w[k]
and v[k], we have that Ei[YN ] = 0 and Var0[YN ] = S0. From
these observations and the fact that δ(YN ) = Y T

NQYN , the
expressions of Ei[δ(YN )] and Var0[δ(YN )] in (11) can be
obtained by invoking Corollary 5.1 in [19].

Lemma 3.2: (Worst case deflection criterion) Let S0 be
defined as in the statement of Proposition 3.1. Then

DW (Q,Ω) =

(
tr[QF (I ⊗ Σl)F

T]
)2

2tr[(QS0)
2
]

, (12)

where Σ` are defined in Assumption 2.1.
Proof: By Substituting (11) in DW (Q,Ω,Σ) (5), fol-

lowed by few algebraic manipulations, we note that

D(Q,Ω,Σa) =

(
tr
[
QF (I ⊗ Σa)FT

])2
2tr[(QS0)

2
]

. (13)

Now, consider the following inequality:(
tr
[
QF (I ⊗ Σ`)F

T
])2

2tr[(QS0)
2
]

≥
infΣ`�Σa

(
tr
[
QF (I ⊗ Σa)FT

])2
2tr[(QS0)

2
]

= inf
Σ`�Σa

(
tr
[
QF (I ⊗ Σa)FT

])2
2tr[(QS0)

2
]

= inf
Σ`�Σa

D(Q,Ω,Σa)

= DW (Q,Ω).

The first inequality follows by noting that QF (I⊗Σl)F
T �

QF (I ⊗ Σa)FT (since Q � 0 and Σ` � Σa), and trace is
an operator monotone function. The second equality because
the term 2tr[(QS0)

2 is independent of Σa. The third from
the expression in (13), and the last one by definition.

From (6) and (12), the optimal WDC is given by

DW (Q∗,Ω) = maximize
Q�0

(
tr
[
QF (I ⊗ Σa)FT

])2
2tr[(QS0)

2
]

. (14)

Equation (14) is similar to the frame-theoretic notion of
measure of quality—a qualitative measure for the control-
lability and observability of a linear dynamical system [20].
Instead, we note that the optimal WDC measures the ability
of a linear dynamical system to distinguish between the
hypotheses H0 (attack) and H1 (no attack).

Lemma 3.3: (Optimal worst case deflection criterion)
Suppose the Assumption 2.1 holds true. Then, the optimal
Q∗ (6) is given by S−1

0 F (I ⊗ Σl)F
TS−1

0 . Moreover,

DW (Q∗,Ω)=
1

2
tr[(F (I ⊗ Σl)F

TS−1
0 )2]. (15)

Proof: The proof is known in the literature. We sketch
few details for completeness. From (12) notice that

Q∗ = arg max
Q�0

(
tr[QF (I ⊗ Σl)F

T]
)2

2tr[(QS0)
2
]

.

Let H1 = S
− 1

2
0 F (I⊗Σl)F

TS
− 1

2
0 and H2 = S

− 1
2

0 QS
− 1

2
0 . No-

tice that |tr(H1H2)|2 ≤ tr(H1H
T
2 )tr(H2H

T
2 ), with equality

iff H1 = αH2 for some α ∈ R. It follows that DW (Q,Ω) ≤
0.5tr[(F (I⊗Σl)F

TS−1
0 )2], for any Q � 0. To complete the

proof, let α = 1 in H1 = αH2 and then solve for Q∗.
We consider specific structures of input and attack covari-

ance matrices that results in simplified expression of (15).
Corollary 3.4: (Structured input and attack covariance

matrices) Let Σ0 = σ2
0M and Σ` = σ2

`M , for some M � 0.
Let F̃ = F (I ⊗M 1

2 ) and d = min{m, r}. Then

DW (Q∗,Ω) =
1

2

Nd∑
i=1

[
σ2
` s

2
i (Σ̃
− 1

2
v F̃ )

1 + σ2
0 s

2
i (Σ̃
− 1

2
v F̃ )

]2

, (16)

where Σ̃
− 1

2
v = I⊗Σ

− 1
2

v and Σ
1
2 is the unique square root of

Σv , and si(Σ̃
− 1

2
v F̃ ) denotes the i-th singular value of Σ̃

− 1
2

v F̃ .
Proof: Let Σ̃v = I ⊗ Σv . S0 = σ2

0F̃ F̃
T + Σ̃v (see

Proposition 3.1). Let UΛUT be the eigenvalue decomposition
of F̃ F̃TΣ̃−1

v , where UUT = UTU = I . We claim that F (I⊗



Σl)F
TS−1

0 and σ2
` [σ2

0I+Λ−1]−1 are similar matrices. To see
this, we begin with the following identity:

F (I ⊗ Σl)F
TS−1

0 = σ2
` F̃ F̃

T(σ2
0F̃ F̃

T + Σ̃v)
−1

= σ2
` F̃ F̃

TΣ̃−1
v (σ2

0F̃ F̃
TΣ̃−1

v + I)−1.

The claim follows by substituting F̃ F̃TΣ̃−1
v = UΛUT in the

right hand side of above expression. From (15), we have

DW (Q∗,Ω) = 0.5 tr[(F (I ⊗ Σl)F
TS−1

0 )2]

= 0.5 tr[UT(F (I ⊗ Σl)F
TS−1

0 )2U ]

= 0.5 tr[σ4
` [σ2

0I + Λ−1]−2]

= 0.5

Nd∑
i=1

[
σ2
`λi

σ2
0λi + 1

]2

,

where the second equality follows from the cyclic property
of trace operator and the fact that UUT = I , the third
because F (I ⊗Σl)F

TS−1
0 and σ2

` [σ2
0I + Λ−1]−1 are similar

matrices. The proof follows by noticing that s2
i (Σ̃
− 1

2
v F̃ ) =

λi((Σ̃
− 1

2
v F̃ )(Σ̃

− 1
2

v F̃ )T) = λi(F̃ F̃
TΣ̃−1

v ).
We shall drop the argument in si(Σ̃

− 1
2

v F̃ ) when the context
is clear. Corollary 3.4 states that when the nominal input and
the attack lies in the same subspace, the optimal WDC (16)
is governed by the singular values of the (weighted) impulse
response matrix Σ̃

− 1
2

v F (I⊗M 1
2 ). Let M = I and Σv = σ2

vI ,
and consider the following special cases:
Static system (A = 0 and CB = I): From (16), it follows
that DW (Q∗,Ω) = 0.5[Nd(σ2

`/(σ
2
0 + σ2

v))2], which is
the square of SNR 3. This expression says that larger the
attack signature, or larger the number of spatial/temporal
measurements, better the detection performance.
Dynamical system (A 6= 0 and CB 6= I): From (16),
depending on si’s being lesser or greater than one, one can
show that DW (Q∗,Ω) can be lesser or greater (respectively)
than the optimal WDC (16) associated with the static system.
Thus, when the network nodes interact, depending on their
interaction (connectivity structure or magnitude of the edge
weight), the detection performance may degrade.

For the ease of presentation, in what follows, we work
with the optimal WDC characterized in Corollary 3.4.

A. Asymptotic optimal WDC

We consider the asymptotic measurement regime, i.e., we
let N → ∞ in the expression given by (16). To this end,
let ρ(A) < 1, and consider the following transfer function
matrix associated with the state-space model in (1) and (3):

H(ejθ) = C(ejθI −A)−1B = C
∑∞
k=0A

ke−jkθB, (17)

where θ ∈ [0, 2π] and j is the imaginary unit. The second
equality is a consequence of the Liouville-Neumann series
expansion theorem [21]. We show that as N → ∞, a
properly scaled WDC (16) converges to a function of H(ejθ).
We need the following definition to state the result.

3Signal being the lower bound on the attack variance and noise refers to
the input and sensor noise

Definition 2: (Matrix function [22]) Consider an m×m
diagonalizable matrix M = Udiag(λ1(A), . . . , λn(A))U−1.
Let g be a complex function on the set {λ1(A), . . . , λn(A)}.
Then, g(M) = Udiag(g(λ1(A)), . . . , g(λn(A)))U−1. �

Lemma 3.5: (Optimal WDC: asymptotic measurements)
Let Σ2

0 = σ2
0I , Σ2

` = σ2
` I , and Σ2

v = σ2
vI . The asymptotic

optimal WDC (8) can be computed as

DW (Q?,Ω) =
1

4π

∫ 2π

0

tr
[
g(HT(e−jθ)H(ejθ))

]
dθ, (18)

where the mapping g(x) = (σ2
` x/(σ

2
0 x+ σ2

v))2.
Proof: Since B and C are bounded matrices and

ρ(A) < 1, matrix H(ejθ) is bounded for all θ ∈ [0, 2π].
Now, the statement of the lemma follows as a corollary to
the Avram-Parter theorem in the block Toeplitz case [23].

Notice that the expression (18) is finite and it also coin-
cides with lim infN→∞DW (Q∗,Ω)/N . Thus, DW (Q?,Ω)
(18) is the actual limit of DW (Q∗,Ω)/N (16).

B. Network Design

In this section, for fixed input and output nodal locations,
and input, attack, and noise statistics, we design networks
that maximizes the performance of an asymptotic4 optimal
WDC based attack detector. The reason for choosing the
asymptotic criterion is that it is easy to evaluate numerically.

We assume that the edge weights are bounded ie., amin ≤
aij ≤ amax for all i, j ∈ {1, . . . , n}, where amax > 0 and
amin < 0. This assumption is weaker than those made in the
prior works [10], [11], which also assume that the networks
are un directed. In our numerical examples, we compare the
performance of the optimal WDC based detector on directed
networks to that of the undirected networks.

Using (15) as an objective function, the problem (9) can
be reformulated as

maximize
A ∈Mn×n

1

4π

∫ 2π

0

tr
[
g(HT(e−jθ)H(ejθ))

]
dθ,

subject to ρ(A) < 1 (stability),

amin11
T ≤ A ≤ amax11

T (weight),
|E| ≤ K (connectivity).

(19)

Notice that the preceding (19) is a non-convex optimiza-
tion problem. To see this, note that the spectral radius ρ(A),
in general, is a non-convex function of A. Further, the
optimization variable is not a symmetric matrix. Thus, our
design problem may not be numerically solved using the
existing off the shelf convex optimization, at least in its
current form. Thus, in this paper, we use standard non-linear
programming software, such as fmincon in MATLAB, to
solve (19). As a result, the optimal solution might not be a
global maximum.

Remark 2: (Network design: optimal WDC vs H2 norm)
We compare the asymptotic optimal WDC to that of the H2

4Similar procedure can be used for designing networks that maximizes
the optimal WDC given by (15).
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(i) directed line network

(ii) directed circular network

Fig. 1: An illustration of line and circular networks. By setting
b = c, both the networks become undirected.

norm—a widely used metric for network design—given by

‖H‖22 =
1

2π

∫ 2π

0

tr
[
(HT(e−jθ)H(ejθ))

]
dθ. (20)

If g in (18) is linear, the H2 norm is identical (upto a scaling
factor) to the asymptotic optimal WDC. This happens when
all the singular values of H(ejθ) are zero or one (if σ2

0 = 0).
In general, the H2-norm (20) and the asymptotic optimal
WDC (18) both can outperform each other, because each
of them are associated with different statistical moments of
the measurements, and there is no ordering relation among
the moments. Thus, the network that maximizes asymptotic
WDC may not maximize the H2 norm, and vice versa. �

IV. NUMERICAL EXAMPLES

We present few numerical examples to illustrate the per-
formance of asymptotic optimal WDC based detector on line
and circular networks; see Fig 1. For a network of size n,
the directed line and circular networks are parameterized by
the weights [a, b, c]. By setting b = c, we get the un-directed
network. For all the examples, we chose n = 10, σ2

` = 1.0,
σ2

0 = 0.75, and σ2
v = 0.5. The weight constraint bounds in

(19) are amax = 2 and amin = −2.

A. Detection performance: line and circular networks

In Fig. 2, we plot the detection performance for the line
and circular networks with no self-loops (a = 0), by varying
the edge weights b and c. In both cases, the input and output
nodes are 1 and 2, respectively. For both these networks, we
see that the detection performance is a convex function in b
and c. Further, the detection performance over the directed
line (or circular) network is greater than its undirected
counterpart. This has been also verified by solving5 the
design problem 19, whose values are reported in Table I.

5We used fmincon command in MATLAB R2019b to solve 19.

TABLE I: Optimal edge weights of line and circular networks
network weights asymptotic WDC

directed line b = 0, c = 2 0.8843
undirected line b = 0.52, c = 0.52 0.0269

directed circular b = 0, c = 2 0.2956
undirected circular b = 0.52, c = 0.52 0.0442

B. Detection performance: sensor placement

In Fig. 3, we plot the detection performance of optimal
line and circular networks as a function of the output nodes.
In particular, for an attack input at node 1, we solved 19
for every output node in {2, 3, . . . , 10}. From panel (i),
notice that the detection performance on undirected line
networks deteriorates as the input-output distance increases.
Instead, the detection performance on a directed line network
improves as the input-output distance increases. A similar
description holds for the circular networks. This counter-
intuitive behavior has also been shown in the context of the
optimal (when the attack input is completely specified, unlike
in our current setting) Maximum-a-Posteriori detector [5].

V. CONCLUSIONS

This paper studies an attack detection problem for network
systems. In particular, for random input attacks affecting few
nodes in the network, we consider a worst-case deflection-
based detector that relies only on the known lower bound
of the attack’s covariance matrix but not on its probability
distribution. We explicitly characterize the performance of
this detector in terms of the network weights, noise statistics,
and input and output nodes’ location. Further, for given
input and output nodes, we also formulate and solve an
optimization problem to find the edge weights that maximize
the detection performance. Our numerical results suggest
that directed line and circular networks have better detection
performance than their undirected counterparts.
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