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ABSTRACT

The Zwicky Transient Facility (ZTF) has been observing the entire northern sky since the start of

2018 down to a magnitude of 20.5 (5σ for 30s exposure) in g, r, and i filters. Over the course of two

years, ZTF has obtained light curves of more than a billion sources, each with 50-1000 epochs per light

curve in g and r, and fewer in i. To be able to use the information contained in the light curves of

variable sources for new scientific discoveries, an efficient and flexible framework is needed to classify

them. In this paper, we introduce the methods and infrastructure which will be used to classify all

ZTF light curves. Our approach aims to be flexible and modular and allows the use of a dynamical

classification scheme and labels, continuously evolving training sets, and the use of different machine

learning classifier types and architectures. With this setup, we are able to continuously update and

improve the classification of ZTF light curves as new data becomes available, training samples are

updated, and new classes need to be incorporated.

Keywords: editorials, notices — miscellaneous — catalogs — surveys

1. INTRODUCTION

Astronomy, like many other branches of science, has

been experiencing an explosive increase in data volumes,

which are doubling roughly every two years. This rev-

olution has driven a renaissance in many areas of as-

tronomy, most notably in the time domain. At some

level, all astronomical sources exhibit changes in their

Corresponding author: Jan van Roestel

jvanroes@caltech.edu

brightness with time, driven by a myriad of different

phenomena. The study of source variability has bene-

fited greatly from the data deluge providing insight into

a broad range of astrophysical processes and phenom-

ena.

The light curves of variable objects contain informa-

tion about the nature of the objects and the physical

processes that are responsible for the observed changes.

Variable objects are a key tool in astrophysics and are

the main science driver in many fields. While it is nearly

impossible to list all their astrophysical applications,

variable stars have been used as distance indicators (e.g.,
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Pietrzyński et al. 2013, 2019; Riess et al. 2018), tracers

of the structure and kinematics of the Milky Way and

nearby galaxies (e.g., Skowron et al. 2019; Chen et al.

2019; Jacyszyn-Dobrzeniecka et al. 2016, 2017), or trac-

ers of the chemical evolution of galaxies (e.g., Genovali

et al. 2015). Studying stellar variability also helps us

to understand the evolution and physics of stars them-

selves – detailed modeling of eclipses has enabled precise

measurements of masses and radii of all types of stars

(e.g., Torres et al. 2010), asteroseismology is being used

to great effect to study the interior structure of stars

(e.g., Aerts 2019), and the irregular variability of cat-

aclysmic variables (CV), young stellar objects (YSO),

and active galactic nuclei (AGN) offers insight into ac-

cretion physics on all scales (Scaringi et al. 2015).

The necessary first step in enabling all these appli-

cations is to identify variable sources and classify them

into known object types while simultaneously looking

for new classes.

The astronomical community has extensive experience

in dealing with large samples of light curve data enabled

by survey telescope automation and advances in both

the camera technology and data processing and analy-

sis techniques. Notable examples of large-scale surveys

are: the All Sky Automated Survey (ASAS; Pojman-

ski 1997), the All Sky Automated Survey for Super-

novae (ASAS-SN; Shappee et al. 2014), the Asteroid

Terrestrial-impact Last Alert System (ATLAS; Tonry

et al. 2018), the Catalina Real-Time Transient Survey

(CRTS; Drake et al. 2014), EROS (Tisserand et al.

2007), Gaia (Gaia Collaboration et al. 2016), MACHO

(Alcock et al. 2000), the Northern Sky Variability Sur-

vey (NSVS; Woźniak et al. 2004b) the Optical Gravita-

tional Lensing Experiment (OGLE; Udalski 2003; Udal-

ski et al. 2015), Pan-STARRS1 (Chambers et al. 2016),

the VISTA Variables in the Via Lactea (VVV; Minniti

et al. 2010).

To deal with the massive amount of data involved,

these projects usually employ machine learning (ML)

techniques to detect and classify variable sources (e.g.,

Woźniak et al. 2004a; Debosscher et al. 2007; Kim et al.

2011, 2014; Palaversa et al. 2013; Masci et al. 2014; Arm-

strong et al. 2016; Heinze et al. 2018; Holl et al. 2018;

Jayasinghe et al. 2019; Jayasinghe et al. 2020). How-

ever, a more traditional approach – with the light curves

vetted by a human expert – also proves to be success-

ful (e.g., Drake et al. 2014; Soszyński et al. 2014, 2015,

2016a,b; Udalski et al. 2018). To date, over a million

variable stars have been detected and classified, the ma-

jority of which were found by OGLE (Soszyński 2018).

Astronomical light curve data are typically sparsely

and unevenly sampled, incomplete, heteroskedastic, and

come with a lot of different biases. It is challenging

to apply standard time series processing and analysis

techniques developed in other areas to such data.

A common approach to classification is to first com-

pute a set of summary statistics (features), such as the

mean or median flux, interquartile range (iqr), von Neu-

mann ratio, period(s)/amplitude(s), etc. These features

encode the light curves (with different cadences and

number of epochs) as a vector of finite length which al-

lows for direct comparison of objects. Debosscher et al.

(2007); Bloom et al. (2012); Nun et al. (2015); Kim &

Bailer-Jones (2016) use those to classify the objects.

This task can be done by humans (often by inspect-

ing only two features at a time); but the scale of the

problem essentially forces one to use machine learning

methods.

At the forefront of the revolution in time-domain as-

tronomy, the Zwicky Transient Facility (ZTF) project

uses the 48-inch (1.2 meter) Samuel Oschin Schmidt

telescope at Palomar Observatory in Southern Califor-

nia to observe the sky every night. Science observa-

tions began on March 17th, 2018 (Graham et al. 2019;

Bellm et al. 2019). The median magnitude limit is

20.5 in the r band for a nominal 30-second exposure

time (5σ detection). ZTF has been performing frequent

accurate measurements of more than a billion astro-

nomical objects observable from Palomar Observatory

(declination> −28◦).

ZTF light curves of variable stars have already been

used to make exciting discoveries by using targeted

searches. Searching for very short period variability,

Burdge et al. (2019) discovered one of the shortest pe-

riod binary systems known with a period of just 7 min-

utes. ZTF light curves have also been used to discovered

new types of variable stars: Kupfer et al. (2020a) discov-

ered a new type of compact objects binary, and Kupfer

et al. (2020b) found a new type of pulsating star. Van-

derbosch et al. (2019) discovered a white dwarf with

exocomets, the second of such a system. ZTF has also

been used to discover large number of outbursting or

flaring objects: cataclysmic variables and microlensing

events Szkody et al. (2020); Mróz et al. (2020).

In this paper, we present the framework designed by

the ZTF project to identify and classify variable ob-

jects in all ZTF data. Section 2 describes the ZTF light

curve data including pre-processing and feature extrac-

tion. In Section 3, we introduce the classification scheme

adopted for ZTF and describe the ML algorithms used

therein. In Section 4, we present the active learning ap-

proach to labeled data set assembly and classifier train-

ing. The performance of the resulting classifiers are dis-
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cussed in Section 5. Finally, in Section 6 we discuss this

initial study and outline our future work plans.

2. ZTF LIGHT CURVES AND PRE-PROCESSING

2.1. ZTF light curves

The ZTF camera uses 16 separate 6k × 6k CCD de-

tectors and has a total field of view of 47 square degrees

with a pixel size of 1.01′′ (Bellm et al. 2019). ZTF point-

ings are organized in two grids with rows of equal dec-

lination to cover the entire northern sky ranging from

declination −28◦ to the Northern celestial pole. The

primary grid uses 637 pointings of slightly overlapping

“fields”, covering 88% of the observable sky. The re-

maining area falls in the gaps between CCD detectors.

To cover this missing area, a secondary grid (897 point-

ings), offset in both right ascension and declination from

the primary grid, is used.

Several surveys are carried out by ZTF which use dif-

ferent filters, cadences, sky areas, and exposure times.

The main public survey (40% of the time) is an all-sky

survey in g and r with a cadence of 3 days (Bellm et al.

2019). Smaller, dedicated surveys are carried out by the

ZTF partnership (40%) and time available to Caltech

(20%). The largest survey is the supernova survey with

six observations per night of ≈3000 square degrees, a

survey of the TESS footprint, and other smaller surveys.

ZTF also carried out deep-drilling observations of the

Galactic Plane, where one field was typically observed

continuously for 1.5 hrs. Most of these surveys use g-

and r-bands (deep-drilling is only done in r-band), but

a small fraction of the observations ( ∼ 1.6%), are in

i-band. Most of the surveys focus on observing fields

from the primary grid.

At the time of writing, the median (min, max) number

of epochs for primary grid fields for all surveys combined

are 184 (26, 1079) in g, 338 (23, 1263) in r, and 23 (1,

165) in i. This broad range in the number of epochs per

field is partially due to observability (lower declination

fields tend be have fewer epochs), but mostly because

of the smaller surveys which tend to accumulate many

epochs for small sets of fields. The median number of

epochs per field in the secondary grid is much lower

(median < 50 for all filters). The low number of epochs

makes classification challenging, and we did not include

them in this study but will do so in future work.

All ZTF images are processed and data products are

automatically generated. This includes light curves of

all persistent sources in the science images, which are the

main data product for this work. Here, we summarise

the process, for a full description, see Masci et al. (2019).

First, reference source lists are generated by running a

source finding algorithm on reference images. Reference

images are constructed by combining at least 15 images

of good quality. When new science images are avail-

able, SExtractor (Bertin & Arnouts 1996) is applied

and sources within 1.5′′ of a reference source are linked

to that reference source to construct a light curve. Each

filter, and each CCD-quadrant1 per ZTF pointing is pro-

cessed completely separately from all other data. This

means that a single astrophysical object will have mul-

tiple ZTF light curves for each filter, and if they occur

in multiple ZTF fields (which can occur in the overlap

between fields or the primary and secondary grid), will

have multiple light curves even for the same filter.

In this work, we will use the individual light curves

as the basis for our classification, see for example Fig.

1. While combining light curves potentially allows for

better classification, we choose to classify the individual

light curve instead of combining them. We do this for

several reasons. First, the large field of view of ZTF

makes perfect absolute calibration of light curves diffi-

cult. Combining light curves with small but significant

calibration differences will introduce spurious variabil-

ity. Second, image artifacts (ghosts on the CCD, bad

pixels, etc) are position-dependent and typically only

affect one light curve of an object. Keeping the light

curve separate allows the objects to be classified using

the unaffected light curves. An additional motivation

to not combine light curves is that not all objects have

light curves in the different band-passes, especially for

faint and/or red objects. Classifying only single-band

light curve allows for a more uniform classification. Note

that we do inspect all light curves simultaneously when

labeling light curves, and light curves of the same object

share the same label.

Besides the light curves, images are also processed by

a difference image pipeline, and any source more signif-

icant than 5σ on the difference images (positive or neg-

ative), is reported as an alert (Masci et al. 2018). While

this pipeline is mainly designed to study transients and

moving objects, variable sources also generate alerts.

While, in principle, the alerts do not contain new in-

formation, the separate pipeline allows for a consistency

check which is useful to identify image and processing

artifacts. We, therefore, include some information from

the alert pipeline in our analysis.

2.2. Light curve pre-processing

Two main approaches to the light curve classification

problem have been employed by the community, differ-

ing by what is fed into a machine learning system: ei-

ther pre-computed features (e.g. Blomme et al. 2010;

1 each CCD has four readout channels
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Figure 1. Example light curves from ZTF. The left column shows two periodic variables, an RR Lyrae and an eclipsing binary.
The right column shows an outbursting cataclysmic variable and an irregular variable young stellar object. Note that we classify
the individual light curves for objects.

Richards et al. 2012) or the light curves directly (Naul

et al. 2017; Muthukrishna et al. 2019; Jamal & Bloom

2020).

The first approach inevitably causes certain informa-

tion loss, even though the computed features provide

a powerful and standardized insight into the raw data.

The choice of such features referred to as “feature engi-

neering” in the ML world, is a highly non-trivial problem

on its own.

The recent success of techniques that use artificial

many-layer neural networks (deep learning, DL; McCul-

loch & Pitts 1943), is in big part attributed to the ability

of such systems to discover and extract relevant features

directly from the data. DL systems frequently outper-

form more traditional approaches; however, it is chal-

lenging to apply those techniques to astronomical data

due to the intrinsic characteristics of the data discussed

above (Naul et al. 2017).

In this work, we employ a hybrid approach to retain

the advantages of both methods. We rely on the light

curve features while simultaneously striving to preserve

more information contained in the time series by us-

ing a two-dimensional second-order mapping of the light

curves based on the changes in magnitude (dm) over the

available time-differences (dt) (Mahabal et al. 2017).

2.2.1. Calculation of light curve features

For each light curve, we calculate a number of sim-

ple statistics, determine the best period and significance

using a period-finding algorithm, and evaluate features

that are the result of fitting the phase-folded light curve

with a multi-harmonic sinusoid. Here, we briefly sum-

marise the procedure; for full details, please see Cough-

lin et al. (2020a). First, we remove any light curve

epochs which are flagged as taken in bad conditions,

which is about 6% of all data. We also skip any ob-

ject within an empirically chosen radius 13′′ of “bright

stars,” taken to be stars in Gaia (Gaia Collaboration

2018) brighter than 13th magnitude or any object in

the Yale Bright Star Catalog (Hoffleit & Jaschek 1991).

Early experiments showed that the feature values are

strongly affected by the presence of deep-drilling data in

the light curves. E.g. deep-drilling observations of long-

period variables at one particular phase of the light curve

significantly skew many of the light curve statistics. Be-

cause this would severely limit the use of the features, we

decided to mask deep-drilling data when calculating the
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features. As shown by Pashchenko et al. (2018), many

of the commonly used light curve features are strongly

correlated. We therefore only calculate a small set of

features. We did add a few redundant features to the

set suggested by Pashchenko et al. (2018) (e.g., χ2, inter-

percentile ranges). These features allowed us to better

assess the quality of the light curves.

2.2.2. Period finding and Fourier features

The period finding strategy relies on a hierarchical

technique, where two fast algorithms, conditional en-

tropy (CE; Graham et al. 2013) and Lomb-Scargle (LS,

Lomb 1976; Scargle 1982), are used to identify high-

significance, candidate periods, which are then passed

to a slower, more comprehensive algorithm, multi-

harmonic analysis of variance (AOV, Schwarzenberg-

Czerny 1998). Our fast algorithms are implemented on

Graphics Processing Units (GPU) in CUDA, the spe-

cific implementation of CE can be found in Katz et al.

20202 and the LS implementation can be found here3. A

CPU-based AOV is then applied to the top 50 frequen-

cies identified by each of the algorithms to identify the

best period. We again masked any deep-drilling data as

it strongly affects the period-finding performance.

Once the best period has been identified, we fit the

light curve with a simple model that combines an offset

and slope with a series of sinusoids using that period.

The model is described by:

M(t) = st+ c+

n=5∑
n=1

an sin(n
2πt

P
) + bn cos(n

2πt

P
) (1)

The parameters an and ba are converted to amplitudes

and phases, and the amplitudes and phases of the har-

monics normalized to the amplitude of the first har-

monic. To determine the goodness-of-fit of this model,

we use the Bayesian Information Criterion (BIC) value

(Schwarz 1978). The number of harmonics used is de-

termined by the lowest BIC value.

2.2.3. Magnitude-time histograms – ‘dmdt’

As additional input for the deep-learning-based clas-

sifiers, we calculate a 2D histogram from all pairs of

magnitude and time difference (dm and dt, respectively).

This method encodes the one-dimensional light curves of

various lengths into a two-dimensional array of fixed di-

mensions (an image), which is much easier for a classifier

to interpret (Mahabal et al. 2017). We use 26 approxi-

mately logarithmic spaced time bins and 26 magnitude

2 https://github.com/mikekatz04/gce
3 https://github.com/johnh2o2/cuvarbase

bins, approximately logarithmic in both positive and

negative magnitude differences. We did include deep-

drilling data into the calculation of the histograms as the

high cadence data would fall mostly in the low-dt bins

that are not populated by the rest of the data points.

2.3. External data

In addition to the data based purely on the ZTF light

curves, some of our classifiers use data extracted from

external catalogs. We spatially cross-matched all of the

ZTF objects with the AllWISE (Wright et al. 2010),

Gaia DR2 (Gaia Collaboration et al. 2018), and Pan-

STARRS1 DR1 (Chambers et al. 2016) catalogs using

a match radius of 2′′ and extracted the following data

(and a catalog ID) for the closest corresponding object

within that radius:

• Gaia DR2: the G, BP and RP magnitudes, the

parallax and proper motion with their associated

uncertainties

• Pan-STARRS1 DR1: the grizy magnitudes with

their uncertainties

• AllWISE: the W1, W2, W3, and W4 magnitudes

and their uncertainties.

2.4. Data storage and access

Efficient data storage and access, given the data set

size, represent a substantial problem. We solved it by

employing Kowalski4, an open-source system used in-

ternally at Caltech to store the ZTF alert and light

curve data together with external catalogs and access

those through a standardized API (Duev et al. 2019a).

We used Kowalski to efficiently feed the feature com-

putation pipeline (Coughlin et al. 2020a) with the ZTF

light curve data and store the results. Additionally, the

(versioned) classifier predictions have been stored in a

dedicated database that fed the active learning process

described in Section 4.

3. CLASSIFICATION SCHEME

Astronomical ground-based light curve data are usu-

ally sparse, unevenly sampled, and heteroskedastic, and

ZTF is no exception to this general rule. A variable

object classification framework must tackle these chal-

lenges. First of all, the input image data used to gen-

erate the light curves are affected by a broad range of

factors such as the weather, the observability of fields,

and the cadences of different sub-surveys within ZTF. In

4 https://github.com/dmitryduev/kowalski
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addition, the accuracy of the photometry decreases for

fainter objects. The result is that objects belonging to

the same class will have different noise levels and appear

different to the classifier.

The second problem is that for some types of vari-

able objects, a light curve in a single filter is insufficient

for correct classification. Frequently, additional obser-

vations are needed in a different bandpass, either opti-

cal, infrared, radio or high-energy. In some cases even

this is insufficient, and the intrinsic luminosity must be

known (e.g. by using the distance from, say, Gaia paral-

lax). Evidently, these data are not always available for

all ZTF sources making the external data to be used by

the classification framework inhomogeneous and poten-

tially biased towards specific object subsets.

Further, there are several challenges specific to partic-

ular classes of variable objects. Some types of objects

are more abundant than others so that one has to fre-

quently deal with very imbalanced data sets, with class

examples ranging from hundreds of thousands down to

just a handful. In addition, the source taxonomy5 adds

to the challenge as classes can be overlapping. For ex-

ample, an accreting white dwarf – red dwarf binary (a

cataclysmic variable) can be both outbursting (e.g., a

dwarf nova) and eclipsing, or a pulsating star (Cepheid)

can be in an eclipsing binary system (e.g., Pietrzyński

et al. 2010). This is often caused by the class definitions

being a mix of phenomenological and “ontological” (or

intrinsic) characteristics of sources.

To tackle these challenges, we employ a hierarchical

approach to classification and use a set of independent

binary classifiers, each of which categorizes the input

data set into two groups (e.g., whether or not an object

belongs to some class A).

The main advantage of this approach is significantly

greater flexibility as compared to the typically used

multi-class classifiers, where an object is assumed to

have a single correct label of many, or multi-label classi-

fiers, where a single system outputs probabilistic predic-

tions of object class membership for multiple classes at

once. If the performance on a particular class is deemed

insufficient, retraining the classifier with new training

data (or employing a different architecture) does not af-

fect the system performance on other classes. Adding

new types of variable objects is straightforward and

also does not affect other classifiers. As ZTF contin-

uous operations and the temporal baseline and number

of epochs increases, new types of variables become de-

tectable, which only requires new classifiers to be added,

5 taxonomy: a scheme of classification

instead of having to rebuild an entire multi-class or

multi-label classifier.

Another advantage is more flexibility for the end-user.

Depending on the (astrophysical) class and the scien-

tific goal, requirements for completeness6 and purity7

can be very different. This trade-off is easier to inter-

pret when using binary classifiers. For example, even

though our classifiers are completely independent, they

are conceptually organized in a hierarchy so that the

“upstream” classifiers (high-level classes encompassing

a broader range of objects, which are typically trained

on larger collections) may be used to increase the sample

purity for the “downstream” classifiers.

If a classifier is trained on two specific types, the re-

sults can be erratic when it is confronted with out-of-

distribution objects. The binary classifiers we are using

- those that separate their inputs into a given type versus

everything else - help alleviate such a problem, making

them more robust by allowing the user to impose thresh-

olds along multiple dimensions simultaneously.

Finally, our approach implicitly allows for anomaly de-

tection (for example, the user can select all light curves

marked as variable, flaring, and periodic, and not be-

longing to any other class with high confidence).

These benefits come at a price: the main disadvantage

in our approach is that is computationally expensive,

both at training and for inference: one would need to

train, tune, evaluate, and then use for inference a large

number of models instead of a single one.

We organize our labels/classes and the corresponding

classifiers into two conceptual groups – phenomenologi-

cal and ontological (see Fig. 2).8

The classifiers of the first group characterize each ZTF

object according to the phenomenological properties of

the corresponding ZTF light curve, e.g. is the object

variable, periodic, flaring, eclipsing, etc. The classifiers

may act as high-level filters allowing the end-users to

efficiently identify objects of interest without imposing

a detailed classification scheme. The aim of the “phe-

nomenological” classifiers is to be as complete and unbi-

ased as possible. Therefore, these classifiers do not use

any external data for the classification to avoid biases

and enable independent analyses.

Our second group of classifiers - “ontological” - is

geared towards the categorization of specific types of

6 As quantified by recall or true positive rate, i.e. how many rele-
vant items are selected by the classifier.

7 As quantified by precision, i.e. how many items selected by the
classifier are relevant.

8 The figure was generated using the tdtax library,
https://github.com/profjsb/timedomain-taxonomy

https://github.com/profjsb/timedomain-taxonomy
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Figure 2. Conceptual hierarchical classification tree of in-
dependent binary labels/classifiers used in this work. The
filled circles indicate labels for which classifiers were trained.

variable objects based on as much information as is

available for a particular object. The result can then

be used to easily obtain a large, pure sample of that

particular type of variable. Alternately, by also includ-

ing lower-scoring examples one can use the result as the

input for specialized pipelines to discover new sources

(e.g. fitting eclipsing binary light curves with binary

star models). We note that these classifiers use features

from external catalogs in addition to ZTF data and are

therefore prone to non-ZTF-specific biases.

3.1. Machine learning algorithms

To automatically classify all ZTF light curves, we

use supervised machine learning algorithms. Supervised

machine learning algorithms “learn” mappings between

the input and the output spaces from a training set (for

which both the input and output are known). This is

achieved by solving an optimization problem of mini-

mizing a loss function that quantifies the gap between

prediction and ground truth. How this mapping is con-

structed depends on the machine learning algorithm and

can be tuned by changing the values of “hyperparame-

ters”. In this work, we use two different types of super-

vised machine learning methods.

In the first case, we employ deep learning methods, re-

ferred to hereafter as the deep neural networks (DNN).

DNN are universal function approximators that can

learn arbitrary mappings between the input and the out-

put spaces. The network’s output is produced using

multiple simple non-linear transformations organized in

interconnected “layers”. The networks are typically

“trained” by alternating forward and backward passes –

computing a prediction and then updating the trainable

transformation parameters (weights and biases) to de-

crease the loss function. Neural networks are extremely

flexible, with the number of layers and the number of

nodes per layer as some of the most important hyperpa-

rameters.

The second type of classifiers are gradient boosted de-

cision tree classifiers (Friedman 2001), implemented in

XGBoost (Chen & Guestrin 2016). This type of clas-

sifier is based on a series of decision trees used as weak

learners. They have real-valued outputs that can be

added together and used to implement splits. The trees

are gradually grown, with the additions being weighted

such that the classifier performance improves on the ear-

lier values. The growth is carried out in a greedy fash-

ion, based on purity scores and minimization of the loss

function. The thresholds for the accumulating values,

the number of trees, etc., can be used as hyperparame-

ters making this method extremely adaptable and gen-

eral. As in random forests (Ho 1995), random subsets

of features and the data are used per iterations.

4. DATA SET ASSEMBLY AND CLASSIFIER

TRAINING

As we noted above, labeled light curves from a multi-

tude of previous and current surveys are available. How-

ever, we decided not to blindly use those because that

would inevitably introduce survey-specific biases. In-

stead, we employed an active-learning approach of alter-

nating between data labeling and classifier training with

subsequent sampling of their predictions, both confident

ones and those near the decision boundary.

To streamline data labeling, we have built a dedicated

extension of the ZTF Variable Marshal9, an open-source

web application for interactive exploration, analysis, and

annotation of the ZTF variable sources (see Fig. 3).

The API-driven interface displays the ZTF light curves

for each filter per object, along with an additional set

of light curves that are phase-folded to any period (or

periods) associated with an object. As additional infor-

mation, the location on the Gaia observational HR di-

agram and a Pan-STARRS image cutout are displayed.

Labels can be assigned using a set of range sliders repre-

senting the class labels. The slider values are quantized

to 0, 0.25, 0.5, 0.75 and 1, to enable a human scanner

to indicate how certain they are of their classification,

the information that can be used in classifier training.

Being part of the ZTF Variable Marshal, all interactions

9 https://github.com/dmitryduev/ztf-variable-marshal

https://github.com/dmitryduev/ztf-variable-marshal


8 J. van Roestel et al

Figure 3. Labeling interface of the ZTF Variable Marshal.

with the interface can be carried out programmatically

via API calls.

Contrary to a common misconception, data labeling

is actually a job for highly-skilled, trained professionals

that takes most of the time and is one of the most impor-

tant parts of the work to build any successful ML sys-

tem. We started with multiple experts performing clas-

sification using different user accounts, but later moved

to regular multi-expert classification sprints that used a

single user account. This approach proved to be supe-

rior as it effectively averaged input from multiple experts

and minimized the number of mistakes while labeling10.

To test our pipeline during development, we selected

a subset of the ZTF data. In order to obtain a represen-

tative set, we chose ten pairs of ZTF-fields, taking into

account the RA and Dec, and the Galactic latitude, see

Fig. 4 and Table 4. These fields contain a diverse range

of Galactic environments and also span a range of dif-

ferent cadences and total number of epochs. We use the

10 This is somewhat similar to the agile software development tech-
nique of pair programming

Figure 4. The location on sky of the 10 pairs of ZTF-fields
(red) we used for testing our pipeline. The figure uses Equa-
torial coordinates and a Mollweide projection. The back-
ground shows the stellar density according to Gaia DR2 us-
ing a logarithmic scaling.

g, r, and i band light curve of these fields, a total of ≈34

million.

In order to explore the data and build an initial train-

ing sample, we visually inspected two sets of random and

non-variable light curves (from a field in the test-set)

by simply selecting light curves identified as outliers in

the IQR-magnitude phase space. We visually inspected
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≈2000 candidates with excess IQR values and ≈1000

random light curves without any excess in the IQR score.

This showed that there were many “bogus” variable can-

didates (blended stars, diffraction spikes) present in the

sample of excess IQR values, while there were also vari-

able objects (mainly eclipsing binaries) in the sample

without any IQR excess. After further experimentation

with additional features, their combinations, and unsu-

pervised ML clustering algorithms, we concluded that

no simple selection method could be found, which yields

a sample that is sufficiently clean and simultaneously

representative of the data.

Instead, to efficiently increase the size of the training

sample while keeping it representative, we used the in-

put from human scanners to build a ’seed’ variable/non-

variable (“vnv”) classifier. We used the labels ob-

tained from the initial scanning effort to build a simple

classifier (see below) and inspected random samples of

≈ 1000s low, medium and high scoring variable candi-

dates, which we labeled and added to the training sam-

ple.

In addition, we added a large diverse set of visu-

ally classified examples, which were under investigation

by various ZTF team members, including cataclysmic

variables (outbursting and non-outbursting from SDSS

(Szkody et al. 2011), CRTS (Drake et al. 2014; Breedt

et al. 2014), PTF (Groot priv. com.) and ZTF (Szkody

et al. 2020), and, RR Lyrae, eclipsing binaries, Delta

Scuti, Cepheids, Long Period Variables, variable YSOs

and AGN.

For each class (see Fig. 2), we trained a dedicated

classifier that was executed on the full (unlabeled) data

sample from the 20 test fields (≈ 34 million light curves).

Similarly to the seed “vnv” classifier, the predictions

were randomly sampled for low and high-scoring can-

didates as well as “abstained” examples (meaning that

their scores were close to 0.5 – the classifier decision

threshold used at training), and the resulting sets were

inspected and labeled by human experts. This process

was repeated multiple times over.

Next, we applied this set of classifiers to the stars

from the CRTS sample of periodic variables (Drake et al.

2014). We visually inspected all objects for which the

prediction did not match the CRTS label. We then

added the CRTS labels to the training sample, which

we used to train the next set of classifiers.

Finally, we performed several more rounds of the

train-infer-sample-label active learning process. As ex-

pected, with each completed cycle, we observed a grad-

ual improvement of the classifier performance (as de-

termined from a “hold-out” set). We stress that the

resulting labeled data set is very much a living entity.

Figure 5. The parameter distribution of the training set
with high-level classes indicated with different colors. The
top panel show the 90% interval (a measure of amplitude)
and the median magnitude. Objects with a large amplitude
are often variables, but so are many “bogus” light curves
(often artifacts due to bright stars). This figure also show
that there is no clear separation between variables and non-
variables. The bottom panel show the median magnitude
distribution of high-level classes.

Several characteristics of the training set as of the time

of writing (internal tag d11) are shown in Fig. 5 (with

the total number of objects per class in Table 1). This

shows that there are approximately the same amount

of variables and non-variables. Note that magnitude

distribution is different for the high-level classes. This

is partially due to the intrinsic distribution of objects,

but mostly due to selection biases in the training set.

From the training data, we separated a few sets of

≈100 objects each for the ontological classes, the ’gold’

samples. The light curves in these sets were selected as

very easy to classify examples of those particular classes.

These sets are meant as verification sets, to be used

as a ‘sanity check’ for both the phenomenological and

ontological classifiers.

The workflow described above is summarized in Fig.

6.

4.1. Training process

4.1.1. DNN
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Figure 6. Flowchart of the workflow. Features are extracted from the pre-processed ZTF light curves and combined with
external features from Gaia DR2, PanSTARRS1 DR1, and AllWISE via a spatial cross-match. The resulting feature data set
is sampled for a small “seed” set for human expert labeling. Externally-labeled data are inspected by the experts as well. The
blue arrows show the active learning process for iteratively building the training set and improving the classifier performance.
The labeled examples are assembled into a training/validation/test set that is used for classifier training. The phenomenological
classifiers use only the ZTF-based features in the process, while the ontological ones additionally use the external features. The
resulting set of trained classifiers is evaluated on the full light curve features data set. The resulting (versioned) scores are stored
in a database and sampled both for confident and near-the-decision-boundary predictions and passed for labeling to begin a
new active learning cycle.

Figure 7. Schematic of the conceptual DNN architecture.

When building the DNN classifiers, we had to explore

a vast hyperparameter space. Figure 7 illustrates the

conceptual DNN architecture that we iterated on:

• The phenomenological classifiers use the pre-

computed light curve features and dmdt his-

tograms as input. The ontological classifiers ad-

ditionally use the external features.

• A dense neural network containing multiple fully-

connected layers is used to process the features.

• A convolutional neural network is used to process

the dmdt ’s.

• The resulting feature maps are fused and passed

through a fully-connected “head” network that

outputs the final classification score.

The classifiers were implemented using TensorFlow

software and its high-level Keras API (Abadi et al.

2015; Chollet et al. 2015). We used the binary cross-

entropy loss function, the Adam optimizer (Kingma &

Ba 2014), a batch size of 64, and a 81%/9%/10% train-

ing/validation/test data split with a fixed random seed

for reproducibility. The input features were normalized;

the same norms were used for all classifiers. We did class

balancing of the training sets for the classifiers with a

small number of positive examples and used all available

data for the classifiers with a large number of available

examples. In the first case, the classifier performance

was checked on the originally dropped negative exam-

ples and the small number of misclassifications (typi-

cally on the order of 1− 3%) were added to the training

set. The training data were weighted per class. The

class weights were further adjusted to balance precision

(purity) and recall (completeness). We used the stan-

dard techniques to achieve the best performance such as

learning rate reduction on a plateau and early stopping

based on validation loss.

For the initial “seed” vnv classifier, we used a simple

architecture that followed the schematic in Fig. 7 and

demonstrated satisfying performance, with a minimal

number (chosen arbitrarily) of fully-connected and con-

volutional layers. As we expanded the data sets and

added more classifiers, we ran several rounds of hy-

perparameter tuning using the keras-tuner11 library

(O’Malley et al. 2019). The following hyperparameters

were tuned:

11 https://github.com/keras-team/keras-tuner

https://github.com/keras-team/keras-tuner
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(a) Architecture used in pro-
duction

(b) Example of a more com-
plicated architecture

Figure 8. Best-performing DNN architectures. Panel (a)
shows the architecture used in production phenomenological
classifiers. The same architecture is used for the ontological
classifiers with the difference being the input feature vec-
tor size (69 vs 40). Panel (b) shows an example of a more
complicated architecture that tends to show higher variance
compared to (a).

• Inclusion of the fully-connected branch in the

architecture or not (provided the convolutional

branch is included)?

– Number of layers (from 1 to 4) and neurons

therein (from 32 to 512 with a step of 32)

• Inclusion of the convolutional branch in the ar-

chitecture or not (provided the fully-connected

branch is included)?

– Number of filters (from 16 to 64 with a step

of 16), their size (3x3, 5x5, or 7x7) and type

(regular or separable convolution)

– Flattening the output of the last convolu-

tional block or use global average pooling in-

stead

• Number of layers and neurons in the head network

(from 0 to 3)

• Dropout rates (from 0.15 to 0.55 with a step of

0.1)

• Activation functions (ReLU, leaky ReLU, sigmoid,

tanh)

• Initial learning rate (from 1e-4 to 1e-3 with a step

of 1e-4)

Several best-performing architectures were evaluated

on the test sets described below in Sec. 5. As ex-

pected, the more complicated architectures tended to

show higher variance12 so for production, we selected

the simplest architecture that yielded the most robust

performance in most cases (see Fig. 8). The architecture

includes both the fully-connected and the convolutional

branches confirming that using dmdt ’s indeed improves

classifier performance. It uses separable convolutions

(see e.g. Chollet 2016), ReLU activation functions for

all hidden trainable layers and a sigmoid activation func-

tion for the output layer that produces a score from 0.0

to 1.0. Dropout layers with a rate of 0.25 are used for

regularization.

4.1.2. XGBoost

Similar to DNN, XGBoost has a large number of hy-

perparameters. These can be categorized as general pa-

rameters, tree boosting parameters, learning parame-

ters, etc. A thorough hyperparameter tuning is gen-
erally not possible, and, indeed, not practical. Vari-

ous methods are adopted to find near-optimal values for

some of the parameters that should be tuned. Some of

the critical parameters are:

• max depth: this indicates the depth of the tree,

with greater depth indicating more complex mod-

els, in turn implying models that are more prone

to overfitting,

• min child weight: this is a parameter that deter-

mines when further partitioning of a tree will stop.

Larger numbers indicate a more conservative ap-

proach,

12 In ML, variance is usually defined as the error from sensitivity
to small fluctuations in the training set.
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• subsample: this determines the fraction of the

data that the boosting algorithm will use at each

boosting iteration,

• colsample bytree: this is a counterpart to

subsample but pertaining to the columns. In other

words, it is the number of features that will get

used in each tree,

• eta: this is the learning rate and is applied after

every boosting step.

All of these parameters affect tree boosting. We tuned

these parameters, and, since we use all the available data

which is very unbalanced, we tuned one more viz.

• scale pos weight: this parameter decides if one of

the classes needs to be given extra weight while

fitting because it has fewer samples. Given the

way XGBoost determines the splits using its com-

plex parameters, even for unbalanced classes, one

is often fine with leaving this parameter set to one.

We started with scale pos weight, giving it four

choices viz. [1, CR/2, CR, 2*CR] where CR is the ra-

tio of samples belonging to the two classes. Then we

tuned max depth (from 3 to 7 at a spacing of 2) and

min child weight (from 1 to 5 at a spacing of 2) simulta-

neously, sampling the grid at nine points. Then we sam-

pled near the optimal point at a spacing of 1, thus cover-

ing [2,8] for max depth and [1,6] for min child weight.

This was followed by similar simultaneous tuning of

subsample (from 0.6 to 1.0 at the spacing of 0.2) and

colsample bytree (from 0.6 to 1.0 at a spacing of 0.2).

Here too we did a second round of tuning near the op-

timal point at a spacing of 0.1, resulting in a cover of

[0.5,1.0] each for subsample and colsample bytree. This

was then followed by tuning eta at the values [0.3, 0.2,

0.1, 0.05]. Then we went back to scale pos weight to

ensure that the value we had determined at the start

was still the best value. In all cases, scale pos weight

was 1 or close to one.

We did two sets of classifications with different inputs

sets of features (1) for the phenomenological classes we

used 40 features determined from the ZTF light curves

alone (see Table 2), and (2) for the ontological classes,

we used the 29 external features from AllWISE, Gaia,

and Pan-STARRS along with the 40 ZTF features as

with the DNN classifiers (see Table 3). Metrics from

these runs are given in Table 1.

4.2. T-SNE analysis of the training set

As described in Section 4, we built our training set

through a series of iterative steps. Both DNN and

Figure 9. An overview of the training set using t-SNE. Top:
variables and non-variables, Bottom: Leaf-level ontological
classes within the set of variables.

XGBoost use a set of features for classifications. We

passed these sets of features for our training sample

to t-distributed Stochastic Neighbor Embedding (t-SNE

van der Maaten & Hinton 2008), a dimensionality reduc-

tion technique. t-SNE maps points near each other in a

high-dimensional space to its low dimensional counter-

part by minimizing KL divergence (Kullback & Leibler

1951) between the two probability distributions using

gradient descent. In Fig. 9, we plot variables and non-

variables separately and then plot the leaf-level onto-

logical classes by leaving out the non-variables. Many

classes are seen to be clustered, but there is also overlap

between some others. This is to be expected especially

for classes with relatively fewer examples and the over-

laps can be used to predict classes with possible ambigu-

ities when running inference on light curves of unknown

objects.

5. CLASSIFIER PERFORMANCE

We have tested our classifiers on different labeled sets.

The test performance is based on a random split of the

training set (10% of the examples for a given class). The
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performance on the test set indicates the ability of the

classifiers to learn the decision boundaries. Table 1 sum-

marizes different metrics of our classifiers on these sets.

As can be seen in the table, the performance of the DNN

and XGBoost method is similar in most cases, with sim-

ilar values across the board. However, for XGBoost the

performance deteriorates when the class imbalance be-

tween two classes is more than a factor of 30, for example

for the Beta Lyrae (blyr) class.

The “gold” set performance can be considered a san-

ity check. The gold sets have been identified by human

scanners and are not part of the training sets. These

sets contain easy-to-classify objects, and our classi-

fiers should demonstrate excellent performance on them,

which is indeed the case (see Fig. 10). As can be seen in

the figure, most classifiers confidently classify the gold

set correctly. There are a few exceptions, for exam-

ple, the semi-regular variable classifier does not seem to

perform as well as the other classifiers (mostly due to

a lack of examples). There is also some confusion be-

tween some of the binary classes; the difference between

EA and EB light curves is subtle, so this confusion is

expected.

We also compare our classification scores for the pe-

riodic variable classes with the results from Chen et al.

(2020). Chen et al. (2020) used the ZTF data from

Data Release 2 to search for periodic variable stars.

They classified the variable stars by comparing the pe-

riods and parameters describing the light curve shape.

Fig. 12 shows the classifiers performance assuming the

Chen et al. (2020) labels as ground truth. The score

distributions indicate that our machine learning classi-

fiers mostly agree with the classification by Chen et al.

(2020).

As a final sanity check, we inspected how the classifi-

cations are distributed. To do this, we selected the most

confidently classified objects (we used score(variable)>

0.9 and score([class])> 0.9), and plotted them in differ-

ent feature spaces. First of all, we inspected how the

periods are distributed as shown in Fig. 11. This shows

that the periods are generally as expected for the dif-

ferent classes. Only ≈ 5% percent of the periods do

not seem to match what is expected for their respective

classes. We also inspected the distribution as a func-

tion of the number of epochs in the light curves. This

shows that the classifiers are not confident for objects

with fewer than 100 epochs, but this varies by classifier.

We finally inspected the spatial distribution, and it does

not show any anomalies.

6. DISCUSSION

6.1. Example usages and real-life performance

The classifier performance on the test, gold, and ex-

ternal high-purity sets indicate the precision (and to a

much lesser extent the recall) of the models, however,

say little about the “real-life” performance when eval-

uated on the full corpus of ZTF light curve data. To

explore the performance in a production setting, we ran

our classifiers on all light curves in the 20 test fields.

6.1.1. RR Lyrae

RR Lyrae pulsators are a well-defined class of pul-

sating stars that are relatively easy to identify. As a

typical example, we query classification results to ob-

tain a clean set of RR Lyrae. As criteria we use are:

score(variable) > 0.9 and score(RRLyrae) > 0.9. A

total of 2102 out of 34 million light curves pass these

criteria. Because objects can have multiple light curves,

this corresponds to a total of 1199 astrophysical objects.

A visual inspection of the light curves shows that 1073

objects (89%) are RR Lyrae variables. False positives in-

clude a few Delta Scuti stars (22) and Cepheid variables

(21) which have the same light curve shape (and are

closely related to the RR Lyrae pulsators), but have dif-

ferent pulsation periods. Other false positives are mostly

high amplitude irregular variables.

This analysis shows that the classifier works on ‘real-

life’ data. As expected, the real-life performance is

slightly lower than the test performance. It also indi-

cates that there is some confusion with irregular vari-

ables, which be solved by adding more examples of the

latter to the training set.

6.1.2. Finding YSOs

Young stellar objects exhibit variability on a wide

range of timescales, from hours to months, that may

be periodic or quasi-periodic when associated with stel-

lar rotation, or aperiodic/irregular when related to ac-

cretion from a circumstellar disk onto the central star,

which is a more stochastic process. Previous attempts

to find and classify YSOs using machine learning tech-

niques have not been particularly successful, having

both low completeness and low reliability.

As an example of a challenging classification task, we

inspect the sample of high probability YSO’s in light

curves of the 20 test fields. We select all light curves

with score(YSO) > 0.9. A visual inspection shows that

approximately 26% of the classified YSO’s can be con-

firmed as bonafide young variables. Contaminants in-

cluded AGN/ QSO/ Seyfert classes, which have similar

aperiodic variability to YSOs (both object categories are

often described as a damped random walk), as well as

pulsating AGB (e.g., Mira and SRVs), post-AGB (e.g.,

RV Tau) and other types of LPVs, with which YSOs

also share some features. YSOs can also have flaring



14 J. van Roestel et al

Class # Accuracy Precision Recall F1 Score

DNN XGB DNN XGB DNN XGB DNN XGB

e 44721 0.94 0.95 0.9 0.92 0.93 0.95 0.92 0.93

ea 819 0.94 1 0.91 1 0.87 0.02 0.89 0.03

eb 950 0.88 0.99 0.86 0.74 0 0.8

ew 39079 0.94 0.95 0.91 0.92 0.89 0.93 0.9 0.92

fla 829 0.97 1 1 0.84 0.87 0.82 0.93 0.83

i 1842 0.93 0.99 0.92 0.79 0.84 0.28 0.88 0.42

longt 968 0.95 1 0.93 0.87 0.93 0.38 0.93 0.53

pnp 64910 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.95

vnv 78083 0.97 0.98 0.99 0.98 0.97 0.98 0.98 0.98

agn 608 0.98 1 0.94 0.94 0.98 0.71 0.96 0.81

bis 44532 0.95 0.96 0.92 0.93 0.93 0.96 0.93 0.94

blyr 836 0.89 0.99 0.8 0.46 0.81 0.9 0.81 0.61

ceph 1075 0.93 1 0.88 0.76 0.89 0.92 0.89 0.83

dscu 6118 0.96 1 0.92 0.96 0.93 0.97 0.93 0.96

puls 18664 0.96 0.99 0.94 0.94 0.93 0.98 0.94 0.96

lpv 968 0.99 1 0.97 0.88 0.99 0.79 0.98 0.84

rrlyr 10866 0.95 0.99 0.93 0.95 0.89 0.95 0.91 0.95

rscvn 1210 0.85 1 0.83 0.77 0.68 0.82 0.75 0.8

srv 420 0.95 1 0.88 0.81 0.98 0.69 0.93 0.74

yso 849 0.99 1 0.99 0.92 0.99 0.99 0.99 0.95

Table 1. Test set performance of our classifiers using a score threshold of 0.5. Labeled data set version d11. Total number
of light curves in the set 124,037. See the appendix for the definition of each of the classes. The first half of the table
shows phenomenological classes, the second half the ontological classes. The second column shows the total number of labeled
examples of the corresponding class in the set; the classifiers were evaluated on 10% of those. For the phenomenological classes
only features from ZTF data were used (excluding dmdt for XGBoost).

behavior similar to the CV class, though contamination

from this category was < 0.5%.

Early tests on all ZTF data, specifically, around the

Galactic plane and Gould’s Belt regions, the techniques

described here show great potential for discovering large

numbers of new, previously unappreciated YSOs.

6.2. Comparison with ZTF alert brokers

ZTF alert brokers, e.g. ANTARES (Saha et al.

2014), ALeRCE (Sánchez-Sáez et al. 2020), La-

sair (Smith et al. 2019), and FINK (Möller et al.

2020), use ZTF alerts to identify and classify ob-

jects which exhibit variability in the ZTF data,

a goal similar to that of this project. The ap-

proach and focus is different however. The alert

brokers (currently) only use the ZTF alert data,

which are generated by 5 standard deviation

sources on difference images, and lack any in-

formation on lower amplitude variability. The

aim of this work is specifically to identify and

classify all stars, including low amplitude vari-

ables. We therefore use PSF photometry of all
persistent point-sources in the ZTF science im-

ages to classify them all. Therefore, we also use

different processing methods (most importantly

period finding).

6.3. Deficiencies of the classifiers and improvements

While the classifiers are working very well, we have

identified a few deficiencies. First, the classification per-

formance drops off for objects which are fainter than

20th magnitude. We expect the classification perfor-

mance to decrease with magnitude simply because of the

lower precision in the light curves. However, inspecting

light curves of faint, misclassified variables shows that

a human (and thus the machine learning algorithm) is

able to easily classify these light curves. Inspection of

the training set shows that there is a relative lack of

faint variable objects in the training sample (see Fig.

5). With our active learning framework, we are able to

remedy this by labeling a set of faint objects with a high

variability score.

A second issue is a large number of misclassifications

of irregular variables and “bogus” objects. In building

the training sample, we have focused mostly on identify-

ing periodic variable stars since they are easy to identify.

Analyses of the classification results show that many ir-

regular variables that are not classified correctly and
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(a) RR Lyrae ab (b) RR Lyrae c

(c) Flaring stars (d) EA

(e) EB (f) EW

Figure 10. Score distributions color-coded in logarithmic scale of all the DNN classifiers on different object types from the
gold set.

also that many seemingly high amplitude variables turn

out to be “bogus” (internal reflections in the ZTF tele-

scope). We expect to solve this issue automatically while

using the classifier; as objects are misclassified, we will

encounter them while using the classifiers. They will be

added to the training sample, and the next iteration of

classifiers will learn to better classify similar false posi-

tives.

6.4. Meta-classification

In this work, we have run DNN and XGBoost indepen-

dently. Each of them works very differently and yet it

is heartening to see their consistent performance with

high precision and recall for almost all classes. The

small number of misclassifications are of two types: (a)

outliers – these will be misclassified by both types of

classifiers, and (b) objects with a subset of properties

not quite captured by the classifier – these will likely

be different for the two classifier types. By combining

the classifications from the two classifier types we can

obtain even purer samples. The misclassifications - or

more specifically their deviant properties - will provide

an additional facet to the active learning training regime

we have employed here. That will be our next goal as

we bootstrap from the sources classified in this work.

7. SUMMARY AND FUTURE WORK

In this paper, we have established the framework and

infrastructure for the machine learning classification of

ZTF light curves. In future work, we will use the frame-
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Figure 11. The cumulative period distributions for different
classes. The samples have been selected by selecting on the
score(variable)> 0.9 and score([class])> 0.9 which are not in
the training-set. The distribution are generally what can be
expected for each class. A few percent of systems do have
period which are either very short or very long.

work construct the ZTF variable object catalog which

provides light curve features and classifications for all

ZTF light curves. The catalog will allow astronomers to

efficiently search the ZTF light curves for objects of in-

terests. In addition to the catalog, we will also make the

training set available for users who wish to run their own

classifiers (e.g. Alert brokers). The variable catalog and

training set will be updated periodically to incorporate

improvements in the classification.

The classification performance will be improved in a

number of ways. First of all, as ZTF keeps on accumu-

lating data, both the time baseline and the number of

epochs will increase. This will both improve the classi-

fication of longer-timescale phenomena, but also allow

for the detection of more subtle variability (e.g. the

detection of low-amplitude periodic variables or narrow

features like eclipses).

As astronomers are using the classifications and visu-

ally inspect the light curves, they will continue to la-

bel data. This will further improve the machine learn-

ing classifiers by correcting misclassifications and adding

them to the training sample. In addition, exploration

of the data by using a combination of light curve fea-

tures and phenomenological classes (e.g. periodic vari-

ables that do not fall into any of the known ontological

classes), allows us to identify rarer classes and add them

to the classification scheme.

Future work also includes testing of improved and dif-

ferent machine learning methods. Neural networks and

XGBoost are currently state of the art, but new ma-

chine learning methods are being developed at a rapid

pace. The currently implemented methods will serve as

a baseline benchmark to test novel methods. For exam-

ple; recurrent neural networks can be used to classify

variable-length time series directly without the need for

features. In addition, unsupervised machine learning

methods can be applied to find anomalous light curves.
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(a) RR Lyrae (b) Cepheids

Figure 12. Score distributions color-coded in logarithmic scale of all the DNN classifiers on different object types from the
Chen et al. set.

Facilities: ZTF

Software: astropy (Astropy Collaboration et al.

2018), keras (Chollet et al. 2015), keras-tuner (O’Malley

et al. 2019), kowalski (Duev et al. 2019a), matplotlib

(Hunter 2007), numpy (van der Walt et al. 2011), pan-

das (pandas development team 2020), tensorflow (Abadi

et al. 2015), xgboost (Chen & Guestrin 2016)
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APPENDIX

A. FEATURES

This section shows all the light curve statistics (Table 2) and external statistics (Table 3). The statistics and

processing of light curves is discussed in detail in Coughlin et al. (2020). In this appendix, we present the equations of

non-standard statistics or statistics for which multiple definitions exists. We refer readers the appropriate references

in the Table in other cases. In the equations, we use m for the magnitudes, t for the observation times, N for the total

number of epochs, and i to indicate individual epochs.

A.1. Amplitude statistics

We calculate a few simple statistics which are measures of amplitude: MAD (median absolute deviation), the

inter-quartile range, and the inter-percentile ranges for 60, 70, 80, and 90 percent.

MAD = median (|mi −mmedian|) (A1)

IQR = percentile(mi, 75%)− percentile(mi, 25%) (A2)

f90 = percentile(mi, 95%)− percentile(mi, 5%) (A3)

A.2. Higher order moments

We calculate the higher order moments with the equations given below.

Skewness =
N

(N − 1)(N − 2)

∑
i

(mmean −mi)
3

σ3
i

(A4)

Kurtosis =
N(N + 1)

(N − 1)(N − 2)(N − 3)

∑
i

(mmean −mi)
4

σ4
i

− 3 (N − 1)
2

(N − 2)(N − 3)
(A5)

A.3. Von Neumann ratio

The Von Neumann ratio measures the ratio between the correlated variance and the variance.

η =

(∑
i

(
1

∆ti

)2

mvar

)−1∑
i

(
∆mi

∆ti

)2

(A6)

with ∆ti = ti+1 − ti and ∆mi = mi+1 −mi

A.4. Welch & Stetson statistics

The use the Welch-Stetson I and Stetson J & K statistics from Stetson (1996)

δi = N/(N − 1)(mi − wmean)

Pi = δiδi+1

J =
∑

sign(Pi)
√
|Pi|

K =
∑

(|δi|)/N/
√

1/N
∑

δ2i

(A7)



ZTF source classification I 19

# feature name description and reference

1 period best period in days

2 significance significance of the period

3 n number of epochs in the light curve

4 median median magnitude

5 wmean weighted mean magnitude

6 wstd weighted standard deviation

7 chi2red reduced χ2 value after subtracting the mean

8 roms robust mean statistic (Rose & Hintz 2007)

9 norm peak to peak amp normalised peak-to-peak amplitude (Sokolovsky et al. 2009)

10 norm excess var normalised excess variance (Nandra et al. 1997)

11 MAD median absolute deviation

12 IQR the interquartile range

13 f60 the inter-60% range

14 f70 the inter-70% range

15 f80 the inter-80% range

16 f90 the inter-90% range

17 skew the skewness (2nd moment)

18 smallkurt the kurtosis (3rd moment)

19 inv vonneumannratio the inverse Von Neumann ratio (Neumann 1941, 1942)

20 welch i the Welch I statistic (Welch & Stetson 1993)

21 stetson j the Stetson J statistic (Stetson 1994)

22 stetson k the Stetson L statistic (Stetson 1994)

23 ad Anderson Darling test (Stephens 1974)

24 sw Shapiro Wilk test (Shapiro & Wilk 1965)

25 f1 power
χ2
0 − χ2

χ2
0

of the fit

26 f1 BIC difference in BIC value (Schwarz 1978)

27 f1 s slope

28 f1 c constant

29 f1 amp amplitude of the fundamental period

30 f1 phi0 phase of the fundamental period

31 f1 relamp1 relative amplitude of 1st harmonic

32 f1 relphi1 relative phase of 1st harmonic

33 f1 relamp2 relative amplitude of 2nd harmonic

34 f1 relphi2 relative phase of 2nd harmonic

35 f1 relamp3 relative amplitude of 3rd harmonic

36 f1 relphi3 relative phase of 3rd harmonic

37 f1 relamp4 relative amplitude of 4th harmonic

38 f1 relphi4 relative phase of 4th harmonic

39 n ztf alerts number of alerts within 2′′ (Duev et al. 2019b)

40 mean ztf alert braai the mean ‘real-bogus’ score of the alerts (Duev et al. 2019b)

41 dmdt a 26 by 26 histogram of all dm-dt pairs (Mahabal et al. 2017)

Table 2. ZTF features we calculated for each of the light curves. The ‘f1’ features are parameters from a fit on the phasefolded
light curves. All features are used by the phenomenological classifiers (barring n, the number of points in a light curve). XGBoost
excluded dmdt as well. See Coughlin et al. 2020b for more information.
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# feature name description and reference

1 AllWISE w1mpro W1 magnitude

2 AllWISE w1sigmpro W1 magnitude uncertainty

3 AllWISE w2mpro W2 magnitude

4 AllWISE w2sigmpro W2 magnitude uncertainty

5 AllWISE w3mpro W3 magnitude

6 AllWISE w3sigmpro W3 magnitude uncertainty

7 AllWISE w4mpro W4 magnitude

8 AllWISE w4sigmpro W4 magnitude uncertainty

9 AllWISE ph qual Photometric quality flag

10 Gaia DR2 phot g mean mag G-band mean magnitude

11 Gaia DR2 phot bp mean mag BP-band mean magnitude

12 Gaia DR2 phot rp mean mag RP-band mean magnitude

13 Gaia DR2 parallax absolute stellar parallax

14 Gaia DR2 parallax error parallax uncertainty

15 Gaia DR2 pmra proper motion in right ascension

16 Gaia DR2 pmra error standard error of proper motion in right

17 Gaia DR2 pmdec proper motion in declination

18 Gaia DR2 pmdec error standard error of proper motion in declination

19 Gaia DR2 astrometric excess noise Excess noise of the source

20 Gaia DR2 phot bp rp excess factor BP/RP excess factor

21 PS1 DR1 gMeanPSFMag Mean PSF AB magnitude from g filter

22 PS1 DR1 gMeanPSFMagErr Error in the magnitude from g filter

23 PS1 DR1 rMeanPSFMag Mean PSF AB magnitude from r filter

24 PS1 DR1 rMeanPSFMagErr Error in the magnitude from r filter

25 PS1 DR1 iMeanPSFMag Mean PSF AB magnitude from i filter

26 PS1 DR1 iMeanPSFMagErr Error in the magnitude from i filter

27 PS1 DR1 zMeanPSFMag Mean PSF AB magnitude from z filter

28 PS1 DR1 zMeanPSFMagErr Error in the magnitude from z filter

29 PS1 DR1 yMeanPSFMag Mean PSF AB magnitude from y filter

30 PS1 DR1 yMeanPSFMagErr Error in the magnitude from y filter

31 PS1 DR1 qualityFlag binary flag denoting if real of false positive

Table 3. Features external to ZTF. Barring the quality flags these were used in the ontological classifiers in addition to using
the ZTF features.

B. CLASS DESCRIPTION

B.1. Phenomenological classes

• Variable (vnv); a ‘variable’ source is any ZTF source which shows variability in its light curve due to astro-

physical origin. This excludes variability due to blended photometry, bright nearby stars, or any CCD artifact.

In a sense, this step can be regarded as a ’real-bogus’ filter (Duev et al. 2019b).

• Periodic (pnp); the ZTF light curve features astrophysical periodic variability. These are typically pulsators,

rotating stars and (eclipsing) binaries. This does not include semi-periodic or quasi-periodic variability. This

excludes variability due to a varying background (e.g. due to the moon), or spurious periodic variability due to

nearby bright stars or other artifacts.

• Flaring (fla); any ZTF light curve that shows flares, rapidly rising and fading events. These are mostly

cataclysmic variables, some young stellar objects, some AGN.
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• Irregular (i); objects which show irregular variability. These are mostly accreting objects, AGN, CVs, and

YSOs.

• Long timescale (longt); any object which shows variability on timescales of 100 days. This can be a steady

increase/decrease in luminosity, e.g., AGN and CVs. Long timescale period variable like Miras and the more

irregular semi-regular variables are generally included in this category.

• Eclipsing (e); any source which shows eclipses in the light curve. These are predominately eclipsing binaries.

Eclipsing planetisimals or planets with large rings would also fall in this category. The subtypes are EW

(overcontact binaries), EB (semi-detached binaries), and EA (detached binaries).

• Bogus; any light curve that seems variable, but is not due to any astrophysical variability. These are galaxies

which can seem to vary due to PSF variations, image artifacts like ‘ghosts’, blended stars, or diffraction spikes.

B.2. Ontological classes

• Active Galactic Nuclei (agn); extra-galactic objects which tend to vary irregularly. Often show slowly rising

or fading light curves, and can also show outbursts in rare cases.

• Long Period Variables (lpv); Long Period Variables are cool giant stars. Nearly all stars of this type show

some variability. Mira variables are AGB stars which show very high amplitude (> 2.5), long period (80-1000

days) variability. Semi Regular Variables (srv) show more irregular, and lower amplitude variability than

Miras.

• Pulsator (puls); any kind of pulsating star.

• Cepheid (ceph); Cepheids are radially pulsating giant stars in the instability strip. Period range between 1

and 50 days, with extreme examples of 200 days. light curves shapes range from asymmetric with a steep rise

and slow decay, to almost sinusoidal light curve shapes.

• Delta Scuti (dscu); Delta Scuti are pulsating A&F main sequence stars. The pulsation period ranges between

0.03 between 0.3 days, and the amplitude is typically 0.2 mag but can reach up to 0.8mag. Their light curves

are asymmetric, with a rapid rise and slow decay.

• RR Lyrae (rrlyr); RR Lyrae are radial pulsators on the horizontal branch; they are helium core burning and

hydrogen shell burning. The pulsation period ranges between 0.2 and 1.0 days. RR Lyrae ab are pulsating

in their fundamental mode and show amplitudes of up to 1 magnitude and have asymmetric light curves with a

steep rising phase. RR Lyrae c are first overtone pulsators. They have maximum magnitudes of 0.5, and show

more sinusoidal light curves. RR Lyrae d pulsate at two periods (’d’ stand for ‘double’). RR Lyrae Blazkho

are RR Lyrae which show evolution in their light curve shape, known as the Blazkho effect.

• Binary star (bis); any object which is a binary star.

• RS CVn (rscvn); a binary star in which at least one of the components has large stellar spots. The light curve

shape is sinusoidal with periods of a few hours to 14 days. The shape of the light curve changes over timescales

of months to years.

• Beta Lyrae (blyr); Binary systems were one of the components has evolved into a subgiant or giant star and

is filling it’s Roche lobe transferring mass in a disk. The light curve of these systems is of type ’EB’. The period

ranges between 0.3 days and 200 days. Systems with a period of >100 days contains a supergiant.

• Young Stellar Objects (yso); pre-main-sequence stars. They typically have an accretion disk and dust around

them. This results in a light curve which shows irregular behavior, sometimes with outbursts or dust obscuration

events.

C. OVERVIEW OF THE 20 TEST-FIELDS.

In Table 4 we show basic properties of the test-fields we used. They were selected as pairs and chosen to make sure

that they represent different Galactic latitudes and ZTF coverage.
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FieldID ra dec l b #g #r #i

296 15.7910 -17.05 141.274 -79.1454 126 165 23

297 22.8729 -17.05 168.678 -75.7386 108 156 26

423 192.250 -2.65 303 59.95 85 126

424 199.340 -2.65 316.926 59.1829 89 115

487 281.193 4.55 36.5577 3.0284 230 598 52

488 288.119 4.55 39.7486 -3.0953 221 584 52

562 88.373 18.95 189.844 -2.9775 245 595 16

563 95.578 18.95 193.164 2.9745 266 1047 14

682 266.856 33.35 58.6098 26.7346 822 790 79

683 274.709 33.35 60.8553 20.5066 773 1013 61

699 45.975 40.55 148.921 -15.1819 220 430 6

700 54.523 40.55 154.444 -11.5358 241 430 6

717 200.867 40.55 96.8087 75.0527 613 654 166

718 209.484 40.55 80.2113 70.6464 636 683 167

777 49.315 54.95 143.261 -1.7248 324 709 4

778 60.116 54.95 148.223 1.9883 300 577 4

841 145.714 69.42 142.515 40.204 368 354 31

842 162.857 69.35 137.094 44.7025 390 359 31

852 334.286 69.35 110.25 10.5906 262 292

853 351.429 69.35 115.729 7.9313 232 269

Table 4. The ZTF-fields IDs and statistics for the fields we have used for testing our procedures while developing the pipeline
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