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ScienceDirect
Plant virus infection fundamentally alters chemical and

behavioral phenotypes of hosts and vectors. These alterations

often enhance virus transmission, leading researchers to

surmise that such effects are manipulations caused by virus

adaptations and not just by-products of pathology. But

identification of the virus components behind manipulation is

missing from most studies performed to date. Here, we

evaluate causative empirical evidence that virus components

are the drivers of manipulated host and vector phenotypes. To

do so, we link findings and methodologies on virus pathology

with observational and functional genomics studies on virus

manipulation. Our synthesis provides an overview of progress,

areas of synergy, and new approaches that will lead to an

improved mechanistic understanding of host and vector

manipulation by plant viruses.
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Introduction
Manipulation of plant hosts and arthropod vectors has

emerged as an important component of plant virus ecol-

ogy and epidemiology. There are now numerous studies

documenting changes in vector orientation behavior,

settling and feeding behavior, and/or performance due

to virus infection in host plants, most of which are

expected to enhance virus transmission (recently

reviewed in Ref. [1�]). This pathway for vector manipu-

lation is indirect because the virus modifies insect behavior

via changes in the physiology of the shared host plant

resource (Figure 1). Most reports of putative plant virus

manipulation fall into this category, but more recently,

several studies have documented possible direct effects of
www.sciencedirect.com 
viruses on vector behaviors relevant for transmission.

Direct effects manifest as changes in vector behavior that

occur following acquisition and retention of virions, and,

like indirect effects, documented cases of direct effects

tend to enhance the probability of virus transmission [2–4]

(Figure 1). There are several excellent reviews summariz-

ing putative instances of indirect and direct manipulation

by plant viruses [1�,5–9], but we have only a nascent

understanding of how viruses are controlling hosts and

vectors. Here, we discuss possible pathways for host and

vector manipulationbased onknowledgeofvirus pathology

from the virology literature, review progress toward pin-

pointing the virus components responsible for inducing

manipulated phenotypes, and identify critical knowledge

gaps and their implications for the broader fields of virus

and vector ecology.

Defining manipulation in the context of
constraints on plant virus evolution
To be categorized as ‘parasite manipulation’ a documen-

ted effect of a plant virus on its vector should satisfy, at

minimum, two criteria [10–12]. First, it should result in

enhanced virus transmission, or at least create conditions

expected to enhance transmission given knowledge of

how viruses are acquired and inoculated by vectors [1�].
Second, the effect(s) should be under genetic control of

the virus, and, thus, subject to natural selection [10,11].

Accumulated evidence supporting the claim that plant

viruses are manipulating insect vectors largely addresses

the first criterion. For example, nearly all plant viruses

examined thus far enhance the attractiveness of their host

plants to vectors via changes in volatile odor compounds,

visual appearance, or both of these phenotypic aspects

(reviewed in Refs. [1�,7], see also Refs. [[1�],13–21] and

Figure 1). This pattern is evident across diverse virus

families and transmission mechanisms, which is expected

given that increasing the probability of vector contacts

with infected hosts is generally beneficial for pathogen

spread [22,23,24�].

Reports of viruses manipulating plant palatability cues

and vector feeding behavior are also well documented.

Unlike virus-induced changes in long-range cues (vola-

tiles, color), which uniformly favor enhanced vector

attraction to infected hosts, virus effects on plant palat-

ability tend to differ depending on the transmission

mechanism of the virus under study. For example, viruses

that are acquired through long periods of ingestion from
Current Opinion in Insect Science 2019, 33:7–18
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8 Behavioural ecology

Figure 1

Current Opinion in Insect Science 

Aspects of the host phenotype (top — indirect effects in green boxes) and components of vector behavior and physiology (bottom — direct effects in

blue boxes) that are frequently altered following virus infection or acquisition. Virus infection in plants typically modifies (a) the physical characteristics of

plant parts; (b) production and release of volatile compounds [17]; (c) primary metabolites such as amino acids and sugars [38]; (d) constitutive

defenses, including secondary metabolites (4-methoxy-indol-3-yl-methylglucosinolate and trichomes pictured here, trichome image by Heiti Pavesã

2013) [38,42]; and (e) inducible defenses and phytohormones (salicylic acid and jasmonic acid pictured here) [89]. The lower portion of the figure

presents possible mechanisms by which virus acquisition by vectors modifies preferences and physiology. These include virus effects on cue detection

and processing, possibly through direct interactions of viruses with insect tissues (f) [2,3]; changes in metabolism and mobility following virus traversal of

the midgut or virus replication in vector tissues (g) [114]; and virus effects on salivation behavior or the protein components of vector saliva (h) [102].

Circulative viruses reside in the salivary glands but their effects on vector saliva are not well studied. For each phenotypic aspect in both parts of the

figure, tags indicate whether modifications are likely to alter vector orientation preferences, settling/feeding behavior, or performance. Orientation

behavior (OB) refers to vector perception of, and responses to, long-range cues associated with identifying and contacting host plants (odor and visual

aspects). Settling and feeding behavior (SFB) refers to the behavioral sequences necessary for assessing host palatability cues (nutrients, secondary

metabolites, leaf toughness) and engaging in prolonged ingestion of plant sap or leaf tissue, all of which are components of virus acquisition and

inoculation. Performance (P) refers to metrics of vector fecundity and survival over time during an extended interaction with a host plant and is important

for virus transmission because vector numbers partially determine transmission rates [24�].

Current Opinion in Insect Science 2019, 33:7–18 www.sciencedirect.com



Mechanisms of host and vector manipulation by plant viruses Mauck, Kenney and Chesnais 9
the host often increase host palatability and ease of

accessing the tissues containing virions (e.g. phloem)

(reviewed in Refs. [1�,7], see also Refs. [[1�],17,19,25–
29] and Figure 1). This is expected to increase virus

transmission because vectors will preferentially settle

on infected plants, contact the tissue housing virions

more rapidly, and, once reached, take up a larger number

of virions from this tissue. Along with palatability, these

same viruses also tend to increase host quality, which is

expected to lead to enhanced production of vectors that

will acquire and retain virions before dispersal (reviewed

in Ref. [1�], see also Refs. [30–35] and Figure 1). In

contrast, for viruses acquired and inoculated through brief

probes of host tissue, there are many documented cases of

reductions in host palatability and quality following virus

infection (reviewed in Refs. [1�,36], see also Refs.
Figure 2

Mechanisms of symptom induction by viruses and hypothesized links to ma

parallels between studies from the virology literature that establish a genetic

virus components responsible for symptoms could also alter aspects of the

highlight two types of virus components (proteins and nucleic acids) that ha

functions of these components (how they interact with the host) and the se

replication and systemic spread within a single host plant. The third column

symptoms in host plants via the mechanisms listed in columns one and two

literature to develop hypotheses about how the virus components listed cou

enhance transmission by vectors. Viruses listed in column three are Cucum

Luteoviridae), Tomato spotted wilt virus (TSWV, Tospoviridae), Beet severe c

Caulimoviridae), Tomato yellow leaf curl virus (TYLCV, Geminiviridae), Beet c

Plum pox virus (PPV, Potyviridae), Potato virus X (PVX, Alfaflexiviridae), Tom

www.sciencedirect.com 
[15,16,37–43]). This is consistent with expectations for

manipulation by these pathogens because they are gen-

erally lost from the mouthparts if the vector does not

engage in brief probing of tissues followed by dispersal

[44–46]. By reducing host plant palatability and quality,

rapidly acquired viruses could limit phloem sap ingestion

(during which virions are lost) and encourage vector

dispersal following virion acquisition.

Although transmission-mechanism specificity supports

the idea that plant virus effects are adaptive and not

uniform by-products of pathology, it does not address

the second requirement to demonstrate that virus-

induced changes in host phenotype, vector behavior, or

vector performance are under genetic control of the

parasite [11,12]. Plant viruses have some of the smallest
Current Opinion in Insect Science 
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10 Behavioural ecology
genomes of any organism (roughly 4–20 kb). Nonetheless,

viruses with just a few genes are capable of inducing

drastic changes in the physiology of their host plants

[47–58,59�,60–64] (Figure 2). Viruses also have geneti-

cally encoded adaptations for interacting with their

vectors following acquisition, including proteins that

facilitate binding to the cuticle (stylet, foregut), crossing

cellular membranes, trafficking within hemolymph,

and invading and replicating in vector tissues [65–

70,71�,72,73,74,75�,76,77,78�] (Figure 3). It is possible

that virus traits facilitating these intimate associations

with vectors could be co-opted to induce behavioral

changes that enhance transmission (Figures 1 and 3).

Using functional genomics, the roles of various virus

proteins and genetic elements have been measured by

quantifying the impacts of viral mutations on virus-host

and virus-vector interactions (Figures 2 and 3). Protein-

coding genes and other genetic elements that enhance

within-host colonization and spread, or retention and
Figure 3

Plant virus components that enable or enhance invasion and replication wit

could be co-opted for manipulating vector behavior. This figure summarizes

tissues) alter the physiology of vectors following acquisition (columns one a

this summary to develop hypotheses about how the identified virus compon

(column four). In the first column, the term ‘propagative’ indicates viruses th

viruses that invade vector tissues (e.g. salivary glands), but do not replicate

(TSWV, Tospoviridae), Maize mosaic virus (MMV, Rhabdoviridae), Rice stripe

riceblack-streaked dwarf virus (SRBSDV, Reoviridae), Tomato yellow leaf cu

Luteoviridae).

Current Opinion in Insect Science 2019, 33:7–18 
colonization of the vector, are presumed to be under

strong selection to maintain, and possibly improve, these

functions. It is within this restrictive fitness landscape

that virus traits enabling manipulation of hosts and vec-

tors must evolve. Inevitably, this will involve one or more

components that are already performing an essential role

for host or vector exploitation (see e.g. in Figures 2 and 3).

Thus, genetic changes in viruses that enable manipula-

tion of host phenotypes and vector behavior should do so

without negatively impacting other protein functions

essential for virus replication and spread within a host

or virus acquisition and retention in vectors.

Genetic basis of indirect (plant-mediated)
effects
Alterations of host phenotypes in response to virus infec-

tion can be considered as a form of symptom expression,

an aspect that is well studied because symptoms are

strongly linked to virus impacts on plant fitness and fruit
Current Opinion in Insect Science 

hin arthropod vectors, and possible pathways by which components

 what is known about how circulative viruses (those that invade vector

nd two) and provides examples from the virology literature. We used

ents could be co-opted for direct manipulation of vector behavior

at also replicate in vector tissues, while ‘non-propagative’ indicates
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Mechanisms of host and vector manipulation by plant viruses Mauck, Kenney and Chesnais 11
quality. From virology studies, it is evident that there are

many pathways by which plant virus proteins could both

promote infection in a host plant and modify the expres-

sion of symptoms in ways that alter interactions with

vectors (Figure 2). This body of work also provides

evidence that symptom expression is often not linked

to the main function that a virus protein performs during

invasion and exploitation of the host plant (Figure 2). For

instance, targeted mutation of Cucumber mosaic virus
(CMV, Bromoviridae) 2b protein revealed that it can

control the expression of host symptoms (mottling, leaf

deformations) independently of its functions in facilitat-

ing virus accumulation and systemic movement through

suppression of the host’s RNA silencing mechanism,

which doubles as a natural antiviral defense [79,80]. This

example, and others described in Figure 2, support the

hypothesis that plant viruses can evolve to manipulate

host phenotypes and vector behavior without compromis-

ing within-host replication and spread. A range of pheno-

typic changes in hosts have been associated with putative

instances of virus manipulation of vector behavior and

performance (Figure 1) and these overlap significantly

with phenotypic changes (symptoms) induced by specific

virus proteins (Figure 2).

Despite there being many predicted routes for indirect

manipulation of vectors (Figures 1 and 2), so far, con-

served plant defense pathways appear to be the primary

targets of virus components implicated as drivers of

manipulated phenotypes (Table 1). These components

include a viral protease [81,82,83��], viral suppressors of

RNA silencing [42,84��,85–87], a viral replicase [42], an

RNA-dependent RNA polymerase [42], a nuclear shuttle

protein [88], and a satellite DNA element external to the

main virus genome [88–91]. Several of these components

act on the jasmonic acid (JA) pathway, activation of which

in uninfected plants normally results in the production of

defenses against herbivores and some pathogens [92].

Among begomoviruses purported to manipulate host

phenotypes and whitefly vectors, the Tomato yellow leaf
curl china virus (TYLCCV) bC1 satellite (a DNA element

that is encapsidated with the virus genome, but is external

to it) and the Cabbage leaf curl virus (CaLCuV) BV1

nuclear shuttle protein both function to suppress JA-

regulated defenses by binding MYC2 transcription factors

[88–91]. In this case, the core functions of these virus

components as promoters of within-host replication (by

weakening antiviral defenses) and the ancillary functions

in manipulation of vector behavior are collinear. And even

though the bC1 gene is external to the virus genome, the

TYLCCV bC1 protein localizes and behaves similarly to

the genome-encoded CaLCuV BV1 protein [88]. Sup-

pression of JA-regulated defenses by both bC1 and BV1

enables pathogen replication and spread within a host [47]

and this same function also results in the suppression of

defenses against whitefly vectors, which enhances their

attraction to, and settling and feeding on, infected hosts
www.sciencedirect.com 
(Table 1). Since begomoviruses are only acquired during

long-term phloem ingestion, settling and feeding in the

phloem for several hours are necessary for vectors to

become viruliferous.

Cucumber mosaic virus (CMV) also increases host attrac-

tiveness to vectors, but unlike begomoviruses, CMV

tends to decrease palatability via effects on within-plant

cues, which is expected to increase transmission effi-

ciency of this non-persistently transmitted virus by

encouraging aphid vectors to acquire virions during super-

ficial probing, and disperse before virions are lost from

their mouthparts [15,16]. Like begomoviruses, CMV also

encodes a protein (2b) that interacts directly with the JA

pathway to augment host immunity and alter host-vector

interactions, but in this case, the manipulative function

appears to be independent of 2b activity as a viral sup-

pressor of the host’s RNA silencing mechanism, an anti-

viral defense (Table 1) [84��]. This was demonstrated by

Wu et al. [84��] in a recent study implicating the 2b

protein as the virus component responsible for rendering

CMV-infected plants more attractive to aphid vectors via

suppression of JA-regulated defenses. 2b has also been

implicated in production of an unpalatable phenotype in

CMV-infected plants, which aphid vectors encounter

upon landing and probing tissues, and which contributes

to the efficient transmission of the CMV pathogen [42]. In

this case, 2b augments production of an antibiotic com-

pound toxic to aphids, and two other virus proteins, the 1a

replicase and 2a RNA-dependent RNA polymerase, act in

concert to limit the toxic effects of 2b, resulting in an

overall antixenotic phenotype that encourages dispersal

of viruliferous vectors [42] (Table 1). It is interesting to

note that the overall effects of CMV on host phenotypes,

and the individual effects of different variants of the 2b

protein, are not ubiquitous and appear to be host-depen-

dent [16,42,87] (Table 1).

Host- and vector-specific effects of virus components are

also evident in other pathosystems. The Potyviridae are

important agricultural pathogens, and two species, Potato
virus Y (PVY) and Turnip mosaic virus (TuMV) are well-

studied from a functional genomics perspective across

multiple hosts. For example, in a series of elegant studies

on TuMV infecting Nicotiana benthamiana and Arabidopsis
thaliana, it was determined that this virus enhances

performance of its aphid vector on infected host plants

via effects of the Nuclear-Inclusion a-Protease (NIa-Pro)

on ethylene production and ethylene-regulated defenses

against aphids (callose tissue deposition) (Table 1). For

TuMV, this enhancement has been linked to increased

opportunities for virus transmission [81]. A fascinating

finding is that NIa-Pro must relocalize from the cytoplasm

and nucleus to the vacuole in order to induce the

observed effects, and it only does so when a competent

aphid vector feeds on the host [83��]. NIa-Pro from PVY

behaves in the same way in N. benthamiana, suggesting a
Current Opinion in Insect Science 2019, 33:7–18
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Table 1

Virus components implicated as drivers of vector behavioral manipulation via indirect effects (green) and direct effects (blue)

Pathosystem

(virus, host, vector)

Virus effects Virus component

implicated

Core function Novel function to enable vector

manipulation

References

TYLCCV plus beta-satellite

Nicotiana tabacum, N.

benthamiana, Arabidopsis thaliana

Bemisia tabaci

Vector orientation preference for

infected hosts, settling preference

for infected hosts

(PC virus)

bC1 (satellite DNA

outside of the main

genome)

Suppresses JA pathway to

enhance virus replication and host

exploitation

Binds MYC2 transcription factor to

compromise activation of MYC2-

regulated terpene synthases,

suppress JA-mediated defenses

against vectors

[88–91]

CaLCuV

A. thaliana B. tabaci

Predicted to increase vector

performance and settling on

infected plants

(PC virus)

DNA-B

BV1

Nuclear shuttle protein, interacts

with movement protein for cell-to-

cell movement

Binds MYC2 transcription factor to

compromise activation of MYC2-

regulated terpene synthases

[88]

TuMV,

N. benthamiana

Myzus persicae

Greater vector fecundity on

infected versus healthy hosts,

settling preference for infected

hosts

(NP virus)

NIa-pro Cleaves the viral polyprotein at

seven of the nine cleavage points.

Stimulates ET production, expression

of ET-regulated genes that suppress

deposition of callose tissue,

relocalization to the vacuole in

presence of aphids

[81,82,83��]

PVY

N. benthamiana

M. persicae

Greater vector fecundity on

infected versus healthy hosts

(NP virus)

NIa-pro Cleaves the viral polyprotein at

seven of the nine cleavage points.

Relocalizes to the vacuole, functions

presumed similar to TuYV NIa-Pro

[83��]

PVY

N. benthamiana

M. persicae

Reduced vector fecundity on

infected versus healthy hosts

(NP virus)

HC-Pro Sequesters small RNAs in the

plant, binds HEN1 host protein; in

vector acts as a helper component

to attach virions to mouthparts

Transgenic expression increases

vector fecundity, but this effect is not

evident in natural PVY infections in N.

benthamiana.

[85]

CMV

A. thaliana

M. persicae

Vector orientation preference for

infected hosts, preferential

dispersal from infected hosts,

reduced performance

(NP virus)

1a, 2a, and 2b 1a is the viral replicase, 2a is the

RNA-dependent RNA polymerase,

and 2b is the viral suppressor of

RNA silencing (binds small RNAs,

inhibits AGO1 protein)

2a protein elicits host defenses and

antixenosis, 2b protein elicits host

defenses and antibiosis, 1a protein

moderates antibiotic activity of 2b to

ensure aphid survival

[42]

CMV

N. tabacum,

M. persicae

Increased phloem ingestion by

vectors, increased vector

fecundity on infected versus

healthy plants

(NP virus)

2b Viral suppressor of RNA silencing

(binds small RNAs, inhibits AGO1

protein)

Suppresses JA-mediated defenses,

enhances SA accumulation in

response to CMV infection

[86]

CMV

A. thaliana,

M. persicae

Vector orientation preference for

infected versus healthy hosts

(NP virus)

2b Viral suppressor of RNA silencing

(binds small RNAs, inhibits AGO1

protein)

Inhibits JA signaling by repressing

degradation of JA-regulatory proteins.

This inhibition leads to increased host

attractiveness to vectors

[84��]

BYDV

Triticum aestivum

Rhopalosiphum padi

Non-viruliferous aphids prefer

infected plants, viruliferous aphids

prefer healthy plants

(PC virus)

Virion Encapsidation of viral RNA during

within-host and between-host

spread, enable virion movement

from gut to salivary tissues in

vector insects

Retention of the virion results in

reversal of aphid preference for

infected hosts. Implication of virion

alone is made possible by in-vitro virus

acquisition assays.

[3]

TSWV

Datura stramonium

Frankliniella occidentalis

Viruliferous thrips feed more than

non-viruliferous thrips

(PCP virus)

Unknown Involves virus-induced changes

occurring during invasion and

replication in midgut, visceral

muscle, and salivary glands in

juvenile stage

Virus acquisition as a first instar, and

subsequent propagation throughout

vector development, increases adult

feeding frequency and intensity

[102]
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conserved function for NIa-Pro in modifying interactions

between plant hosts and competent aphid vectors [83��].
However, TuMV, PVY, or their respective NIa-Pro pro-

teins, all failed to produce the same effects in Nicotiana
tabacum [83��], and a different isolate of PVY than that

used by Bak et al. [83��] was also shown to reduce

fecundity of aphids when infecting N. benthamiana [85].

This variation is intriguing because it prompts us to

consider the evolution of manipulative virus traits, and

the molecular pathways by which they induce phenotypic

changes, in an ecological context that includes scenarios

where such traits might be maladaptive.

Genetic basis of direct effects
Direct manipulation of host behavior to enhance trans-

mission is well documented for trophically-transmitted

eukaryotic parasites [12,93]. Although they are far less

complex lifeforms, circulative plant viruses have similarly

intimate associations with their insect vectors [94–96,97�].
For example, circulative, non-propagative viruses cross

multiple membrane barriers on the path to the salivary

glands, and circulative propagative viruses additionally

replicate within various vector tissues. As with virus-plant

interactions (Figure 2), the virus components that enable

transport and propagation within vectors also have broad

effects on vector cell morphology, signaling pathways,

neurology, immunity, and other physiological aspects (see

examples in Figure 3). Functional genomics approaches

and protein-protein interaction studies have revealed the

specific virus components mediating these changes in

multiple pathosystems, while transcriptomic and proteo-

mic analyses of different vector tissues following virus

acquisition elucidate interaction networks perturbed by

virus invasion or replication (see examples in Figure 3). At

present, studies documenting direct effects of plant

viruses on vector behavior have not employed functional

genomics approaches, but instead focused on character-

izing effects of wild-type viruses.

We identified eight reports of transmission-conducive

changes in vector behavior following acquisition of a

circulative, non-propagative virus (Luteoviridae

[[1�],3,19], Geminiviridae [20,98�,99–101], and six reports

of changes in vector behavior following acquisition and/or

replication of a circulative, propagative virus (Tospovir-

idae [102,103], Reoviridae [104–106], and a Tenuivirus

[107]). Across these reports, virus acquisition by the

vector is associated with changes in the degree of prefer-

ence for orienting toward, or settling and feeding on,

infected versus healthy hosts. In general, viruliferous

vectors tend to prefer healthy hosts, and non-viruliferous

vectors tend to prefer infected hosts. This is predicted to

enhance virus spread [4,24�], leading researchers to pro-

pose that observed shifts in vector preference are the

product of adaptations on the part of the virus. However,

most of the studies cited above used vectors that were

made viruliferous through rearing for multiple generations
Current Opinion in Insect Science 2019, 33:7–18



14 Behavioural ecology
on host plants infected with the virus under study. Given

that virus-infected plants undergo significant changes in

physiology, nutrition and defense status [1�] (Figure 1),

for over half of the ‘direct effects’ reports published thus

far, differences in vector behavior cannot be attributed

solely to the presence or absence of virions within vectors.

A subset of studies incorporated methods to separate host-

mediated from direct virus effects (Table 1). Ingwell et al.
[3] verified that acquisition of purified BYDV virions from

artificial diet was sufficient to induce a shift in vector

settling preferences from infected plants to healthy plants.

However, even this approach does not fully exclude a role

for host proteins, as a previous study with a related virus

found that phloem proteins remain attached to the virion

surface during purification, and their presence increased

the virus transmission rate [108]. Moreno-Delafuente et al.
[99], Maluta et al. [100] and Fereres et al. [20] took a

different approach by deriving whitefly vectors from the

same colony and allowing them a 72 hour feeding period on

same-age tomato plants with and without infection by

different begomoviruses (ToSRV or TYLCV). Whiteflies

were then used directly in electrical penetration graphing

(EPG) experiments to measure probing and feeding behav-

ior, preference assays, or transferred to non-host plants of

the viruses to track insect survival and development. By

standardizing acquisition times and methods, these studies

provide evidence that intact virions are responsible for

inducing changes in vector behavior following acquisition

(Table 1), but it is not clear when following acquisition these

changes take place (i.e. following invasion of midgut cells,

movement to the hemocoel, or invasion of salivary glands).

Among circulative propagative viruses, only one study

clearly eliminated host carryover effects. Stafford et al.
[102] allowed thrips vectors to acquire the circulative,

propagativeTSWVpathogenasfirst instarsduringa 24 hour

feeding period, and subsequently reared vectors on green

bean pods (a non-host for the virus). Adults were used for

EPG recordings, which showed that TSWV infection in

male thrips increased feeding behaviors conducive to virus

inoculation. By temporally separating acquisition from

virus effects, this study demonstrates that sex-specific

alterations in behavior during the adult stage are linked

with virus propagation within thevector during the juvenile

stage. However, to date, no study describing direct effects

has identified a functional explanation for the behavioral

changes observed in vectors.

Outlook
There are now over 100 peer-reviewed publications

reporting putative instances of vector manipulation by

a plant virus, and the number of publications on this topic

is growing on a monthly basis. Identification of the virus

components underlying manipulations, and the pathways

by which they perturb host and/or vector physiology, are

the critical elements missing from most of these studies.

Without causative empirical evidence that virus-encoded
Current Opinion in Insect Science 2019, 33:7–18 
genes are the drivers of manipulation, many reports

remain largely descriptive, with no way to rule out by-

products of pathology as sources of supposedly manipu-

lated phenotypes. Although establishing the mechanistic

basis of virus manipulations is challenging, greater avail-

ability of host and vector genomic resources, and afford-

able technologies, are enabling approaches that before

seemed unfeasible. For example, to elucidate virus

pathology, virologists are now incorporating fine-scaled

timelines in morphological, proteomic and transcriptomic

studies [95,97�,109–111]. And there have also been major

advancements in techniques for localizing viruses and

their proteins in hosts and vectors [112]. By monitoring

changes in tissue tropism and gene interaction networks

over time, along with virus invasion and propagation,

virologists can track which genes are turned on and off

during key transitions in host or vector life stages and

disease progression to gain insight into the molecular

basis of virus pathology.

Among studies on host and vector manipulation, temporal

aspects have been largely ignored, with most mechanistic

studies targeting one time point for describing molecular

differences between infected and uninfected hosts. But

incorporating temporal profiles and molecular monitoring

into studies on virus manipulation will help generate

hypotheses regarding virus components involved

(Figures 2 and 3) and give researchers new tools for

confirming the presence of manipulative effects that

influence vector behavior or life history traits. Hypotheses

can be further tested using functional genomics

approaches already employed for studying virus pathol-

ogy (targeted mutagenesis, transient or transgenic expres-

sion of virus proteins) [83��,84��] and macromolecule or

protein interaction studies [48,113]. Ideally, this work

should also explore possible pleiotropic effects of altera-

tions in the virus components implicated as drivers of

manipulated phenotypes. Since most plant viruses infect

multiple hosts, this could be accomplished by quantifying

phenotypic shifts induced by virus components across

several hosts or vectors to derive hypotheses about path-

ways for the evolution of manipulative traits in ecolog-

ically complex environments. Considering the number of

studies already published (recently reviewed in Ref. [1�])
and the implications of virus manipulation for disease

spread [4,24�], mechanistic studies must be a priority

moving forward. Achieving an understanding of the

genetic basis of plant virus manipulation will thus require

extensive collaboration among researchers in the fields of

virology, plant biology, ecology, and entomology.
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insect behavior to enhance their spread. Sci Rep 2012, 2:1-6.

4. Roosien BK, Gomulkiewicz R, Ingwell LL, Bosque-Pérez NA,
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