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Abstract 
 
A multiscale, modular approach to protein sampling with novel Monte Carlo algorithms 

is is presented.  The systems studied use an all atom forcefield with a Generalized Born 

implicit solvation model.  The multiscale approach addresses 3 degrees of freedom:  1) 

the solvation terms, 2) the sidechain degrees of freedom, and 3) the backbone degrees of 

freedom.  The goal of the work is to identify the special design issues surrounding these 

degrees of freedom, and create an overall sampling approach that optimizes all of these, 

while generating coherent trajectories that obey detailed balance.  This design is expected 

to sample challenging, highly constrained systems that may be exceedingly difficult using 

standard molecular dynamics methods.  The work presents present developments with 

regard to algorithmic approaches, design features, and applications to protein systems.  

Future directions in these areas are also discussed. 
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Chapter 1 

Monte Carlo Methodologies 
 

Introduction 

Protein Configurations  

Proteins are long, unbranched chains of amino acids that self assemble in a 

process known as folding to form secondary and tertiary structures.  In general, for a 

known sequence of amino acids, there is one distinct protein structure.  These folded 

structures act in nearly every aspect of cellular function, by facilitating chemical 

reactions and providing physical structure to the cellular machinery.  Understanding the 

structure of a protein at a molecular level is key element of structural biology and of 

biophysics. 

A vast field of study is dedicated to obtaining the crystal structure of the protein 

experimentally.  There is also considerable energy dedicated to predicting protein 

structures computationally.  Currently, protein structures are predicted using either 

bioinformatics or physics based (ab initio) methods.  Bioinformatics approaches often 

rely on some knowledge about the sequence and structure.  There are many portions of a 

protein for which bionformatics methods fail, and this requires the use of more predictive 

methods.  The ab initio prediction field seeks to use strictly physical methods to predict 

structure. 
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Figure 1.1 – a) Example of short polypeptide with backbone and sidechain dihedral degrees of freedom.  
Backbone dihedrals (φ) are shown in red, and sidechain dihedrals (χ) are shown in black. b) The energy 

landscape of a polypeptide as it folds into a native structure (Figure 1b courtesy of K.Dill) 
 

Sampling Protein Configurations 

The topic of structural biology and computational structure modeling is vast, and 

only a brief background is presented.  The goal here is to present many of the essential 

mathematical ideas that will form the basis of the remainder of the work.   

Due to the extraordinary geometric complexity of proteins, there exists a large 

body of work dedicated to exploring their structures.  A key abstraction that is made 

 

Figure 1.2 – Motivation for thermal sampling of protein structures.  a)  Differences between mean energies 
and the minimum energy.  The black trace is a potential energy well with depth ε=10RT0.  Distributions 
and means are shown at T0 , 1.5T0 and 3T0. a) Schematic of the global landscape of a protein in different 

environments. 
 

 

External  
Change 

a) b)

a) b)
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when considering the configurations of a protein is to consider the energetics as a high 

dimensional landscape.  A mainstay of the field is the hypothesis that the protein 

landscape is funnel-like 1-3.  Figure 1.1 shows a small peptide, as well as a landscape 

description of protein folding.  The funnel hypothesis suggests that the landscape is 

deeper than it is wide, and that the lowest energy states are stabilized by the depth of the 

basins.  Figure 1.2 shows how basin depth affects the mean value of an observed 

configuration.  If the well is sufficiently deep, optimization methods may be utilized to 

locate local minima.  In general, however, it is desirable to locate many local minima, as 

well as to estimate the population of each of these states.  One motivation for this is 

presented in Figure 1.2b, whereby adjacent local minima may play a role in stabilizing  

 

 

Figure 1.3 – Trajectories through configuration space with Monte Carlo depends on the trial move set.  The 
circles represent positions in state space, or locations along an energy landscape.  The white circles 
represent ‘interesting’ configurations.  The black arrows represent the connectivity of states using a 

dynamical propagator, such that each state is connected through space and time.  The red arrows represent a 
new connectivity of states due to a Monte Carlo strategy.  An ideal Monte Carlo scheme will sample a 

broader region of configurations more efficiently. 
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interactions with undetermined changes in conditions, such as the presence of a substrate.  

To predict macrostate populations correctly requires either molecular dynamics methods 

or Monte Carlo methods.  Molecular dynamics methods are by far the most widely used, 

but can often suffer from being unable to sample space completely.  Monte Carlo 

methods can often give very good sampling, if the trial move set is constructed correctly.   

Figure 1.3 shows how a cleverly constructed trial move set can efficiently sample 

across an energy landscape to locate interesting configurations.  The main focus of this 

work is to present developments of Monte Carlo methodologies to facilitate an efficient 

sampling of protein landscapes. 

 

Monte Carlo:  Theoretical Foundations 

Monte Carlo Integration 

Monte Carlo4 is a well known method for simulating molecular systems, and the 

foundations are well understood5-7.  As has been described previously, it is also a method 

for numerically evaluating an integral.  It is common to view the definition of the integral 

as a prescription for sampling in the physical system of interest.  More specifically, if we 

are able to define an integral such that  

Equation 1 

)(XX∫= fdQ  

where X is a vector with dimension N, such that 

Equation 2 

[ ]TNxxx ,..., 21=X  
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and the differential is expressed compactly as 

Equation 3 

∏
=

==
N

i
iN dxdxdxdxd

1
21 ...X  

This integral is often referred to as the partition function, or configuration 

integral.  To evaluate Eq. 1 numerically, the standard approach would be to discretize the 

space into small volume elements iXδ , which can be of varying size, depending on the 

position in space, and evaluate the following sum over the entire volume Ω: 

Equation 4 

)( i
Ωi

i fQ XX∑
∈

= δ  

As one might expect, the difficulty in evaluating this integral for high dimensional 

systems is in constructing the volume elements correctly, such that the regions of space 

contributing to the integral are adequately sampled, and that the numerical error in the 

discretization of the space is minimized.  As the number of dimensions increase, a 

different methodology becomes ultimately a more efficient approach.  The approach is 

simply to select a point iξ  in the N space from a uniform distribution, and compute the 

following sum: 

Equation 5 

∑
=

Ω
=

TN

i
i

T

f
N

Q
1

)(ξ  

where NT is the total number of trials.  This method proves to be more efficient for high 

dimensional systems than constructing NT bins and evaluating Eq. 4.  While the body of 
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this work does not incorporate Monte Carlo integration, it is presented as a motivation for 

using stochastic methods to sample very large configuration spaces. 

 

Importance Sampling 

As the size of the configuration space becomes larger, the density of the space for 

which the function f(X) contributes substantially to the integral becomes smaller and 

smaller.  It therefore becomes of interest to sample the volume elements with more 

‘importance’ more frequently.  If we identify the function f(X) as a (normalized) 

probability distribution p(X)/Q, we can see more easily that the high probability regions 

of space will contribute more to the integral than the low probability portions.  Moreover, 

if we are interested in some observable property of the system: 

Equation 6 

∫>=< )()(/1 XXX pOdQO  

where p(X) is an unnormalized probability function associated with a physical model 

through a Boltzmann factor of some energy function: 

Equation 7 

)()( XX Uep β−=  

where β=1/kBT is the inverse temperature T times the Boltzmann constant kB.  If we are 

able to visit regions of configuration space with the same probability as is given by Eq. 7, 

then we can simply evaluate Eq. 6 as: 
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Equation 8 

∑
=

>=<
TN

i
i

T

O
N

O
1

)(1 X  

where NT  is again the number of trials.  It is important to notice that the evaluation of Eq. 

8 does not require knowledge of the normalization constant Q.  This method will be even 

more efficient than the Monte Carlo integration technique, because the sites visited are 

only the high probability (or low energy) states of the system, which typically comprise a 

much smaller subspace of the entire system of interest.  The goal, then, is to devise a 

strategy that will allow us to visit regions of configuration space with the correct 

probability. 

 

 Master Equation and Balance Requirements 

The master equation model8 is a common starting point in studying broader class 

of statistical mechanical problems, and it can be helpful in understanding the ideas 

leading to the more familiar Metropolis criterion that is widely used in Monte Carlo 

techniques.  To begin, an index  is assigned to every coordinate state: 

Equation 9 

)( ii pp X=  

There is no particular restriction with regard to the use of continuous coordinates 

here.  The discretization is made only for convenience in notation.  The probabilities need 

not be normalized, and this will become a general feature of the sampling approach.   
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Figure 1.4 – Examples of bookkeepping for probability flowrates.  a) Flow of probability through state i is 
shown.  For simplicity, only states  j-n flow to state i.  (For figures b and c, arrows have length 

commensurate with the product of the probability times the transition probability, or ‘flowrate of 
probability’ b) Balance.  The sum of the incoming flowrates is equal to the sum of the outgoing flowrates. 

c) Detailed balance.  All flowrates at each node are equal.    
 

A simple statement of the conservation of probability over the entire configuration space 

at all times gives the Master Equation: 

Equation 10 

∑∑
≠≠

−=
ij

iji
ij

jij
i TpTp

dt
dp  

which is simply a first order kinetic model for the flow between states of a system.  Here, 

Tij is defined to be the transition probability from state i to state j, (See Figure 1.4).  We 

wish to devise some propagation strategy that will ensure that the final state of the system 

has a stationary probability distribution over all states.  We simply set the left hand side 

of Eq. 10 to zero and obtain this condition, which is the condition of balance9: 

Equation 11 

∑∑
≠≠

=
ij

jij
ij

iji TpTp  

This is the most general requirement for a Monte Carlo propagation strategy that 

will ensure that a stationary distribution is obtained (see figure 1.4b).  For this work, 

 

 

 

i 

j k

l

m 

n 

Tik

Tki 

 i  i
pk Tik

pk Tki

a) b) c) pk Tki= pk Tik
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however, the stricter condition of detailed balance is enforced for all pairs of states i and 

j: 

Equation 12 

jijiji TpTp =  

this stricter condition ensures that Eq. 11 is satisfied.  This condition is illustrated in 

Figure 1.4c.  In practice, this condition is easier to enforce, and is used more widely.  

This propagation strategy will ensure that sites are visited with a frequency 

commensurate with the probability of occupying that site.  A sequence of states visited 

according to this prescription is known as a Markov Chain of states, and a propagation 

scheme that follows this strategy is known as a Markov Chain Monte Carlo Method. 

 

The Metropolis-Hastings Acceptance Criterion 

Since the probabilities of each state are known, Eq. 12 is a prescription for the 

transition probability.  Hastings10 has provided a formalism for understanding the Markov 

chain method that is a generalization of the earliest developments of Rosenbluth4,11,12, 

and the foundations for the biased sampling13 methods that are widely used, and form the 

basis of many of the techniques which are presented in the present work14-16.    

The transition probability is defined as the product of two probabilities: 

Equation 13 

ijijij accT α=  

where αij is the selection probability, and accij is the acceptance probability, or 

acceptance rule.  The selection probability is the designed feature of the propagation 

strategy.  It is the probability of selecting coordinate j from coordinate i.  The most 
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common design used here is some uniform selection probability (adding a uniform 

deviate to the coordinate state is a common choice).  As we shall see, the choice of 

uniform deviates has the convenient property that jiij αα =  for all states.  Of course, this 

is not the only choice, and a clever construction of these distributions forms the basis of 

many of the methods introduced throughout this work. 

Given the selection probability, there remains only to solve for the acceptance 

probabilities, which form the basis of the propagation rule.  Combining Eqs. 12 and 13 

gives: 

Equation 14 

iij

jji

ji

ij

p
p

acc
acc

α
α

=  

this ratio of forward and reverse acceptance probabilities defines the acceptance rule in 

terms of known quantities.  For any single propagation step, however, we would like to 

know what the acceptance rule is.  There are two commonly used functions that satisfy 

Eq.14.  The less widely known function is the Barker acceptance rule: 

Equation 15 

jjiiij

jji
ij pp

p
acc

αα
α

+
=  

Eq. 15 is evaluated by choosing a random number uniformly distributed over 

[0,1], and comparing to the value computed.  If the random number is less than the 

number computed, then the move is accepted.  If not, then the move is rejected.  The 

more familiar Metropolis acceptance rule is: 
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Equation 16 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

iij

jji
ij p

p
acc

α
α

,1min  

where the move is always accepted if the ratio in the argument is greater than 1.  If the 

ratio is less than one, a random uniform number over [0,1] is selected and compared to 

the ratio.  Again, if the random number is less than the ratio, the move is accepted.  A 

seemingly endless variety of functions should exist that satisfy Eq. 14, but, in practice, 

nearly all acceptance rules use the Metropolis criterion some exceptional cases using the 

Barker criterion.  All of the modified acceptance criteria presented in this work can be 

derived from Eq. 14. 

 

Hybrid Monte Carlo 

An important Markov Chain Monte Carlo algorithm of particular interest is the 

Hybrid Monte Carlo17 approach of Duane and Kennedy.  While it is not a fundamental 

theory of Monte Carlo sampling, it is of particular interest in relation to some of the 

algorithms developed for this work, and is presented here as background. 

The basic idea behind Hybrid Monte Carlo is to incorporate Molecular Dynamics 

moves in a Monte Carlo scheme in a way that obeys detailed balance.  This can prove to 

be a powerful method in complex systems, since gradient information can be 

incorporated in the trial move set.  It can be thought of as a way of generating a more 

“natural” trial move in local space.  It does not, however, sample large regions of space, 

since the trial moves only randomize the initial velocities, and not the positions.  In later 
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sections, we shall introduce a companion algorithm to HMC which may prove to be 

useful in improving ergodicity of HMC algorithms. 

 

Procedural Details of Hybrid Monte Carlo 

The basic steps in a single Hybrid Monte Carlo move are as follows: 

1) Select momenta from a Gaussian distribution 

2) Use a molecular dynamics algorithm to propagate for a number of steps 

3) Accept the move using the Metropolis criterion applied to the change in the 

Hamiltonian 

The procedure for a single Hybrid Monte Carlo step is to first select momenta 

from a Gaussian distribution of velocities: 

Equation 17 

⎟
⎠
⎞

⎜
⎝
⎛ ⋅−= − ππMπ 1

2
exp)( β

Gp  

where π = Mv is the momentum vector, M is a matrix containing the masses of each of 

the atoms, such that Mii
 = mi ,  and v is the vector of velocities.  To show how the 

velocities are generated in practice, we express Eq. 17 as a product of Gaussian 

distributions: 

Equation 18 

∏

∏

=

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

N

i

ii

izi
N

i

iyiixi
G

m

vmvmvm
p

1

2

2
,

1

2
,

2
,

2
||exp

2
exp

2
exp

2
exp)(

v

π

β

βββ

 



 13

The process for selecting these velocities is, then, to assign a random velocity of 

unit magnitude for each atom, and select the magnitude of the velocity from a gaussian 

distribution with standard deviation iσ  given by: 

Equation 19 

ii mβσ /12 =  

Gaussian variates are generated by selecting from a uniform distribution and applying the 

Box-Muller transform18. 

After selecting velocities, a short molecular dynamics trajectory is generated.  The 

Verlet operator LV is applied to the initial conditions can be expressed as: 

Equation 20 

),()','( ξπqπq == VL  

where q’ and π’ are generated by applying the Verlet algorithm to the coordinates q and 

ξ, where ξ  is the vector of momenta generated as described by Eqs. 18 and 19.  Here, the 

subscript V refers to the potential that drives the Verlet propagation strategy.   

The Verlet Leapfrog propagator is defined in the usual way.  The initial half-step: 

Equation 21 

2/)(1 δτqξπ V∇−=  

is followed by S=τ/δτ  steps, indexed by t , in position space and S -1 steps in momentum 

space: 

Equation 22 

δτ

δτ

ttt

ttt tV

πMqq

qππ
1

1

11 )1(  ,)(
−

−

−−

+=

>∇−=
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and the final half step: 

Equation 23 

2/)(1 δτSSS V qππ ∇−= −  

 

and the final velocities and positions are assigned (q’,π’) = (qS, πS).  The Verlet strategy 

has two important properties to notice.  The first is that the algorithm deterministic and 

time reversible, which means that the probability of arriving at a state is given by a Dirac 

function: 

Equation 24 

)','()',',( SSV ππqqπqπq −−=→ δα  

which is true for a deterministic propagation of the coordinates.  The time reversibility 

condition simply states that the trajectory run in reverse will trace the same path that the 

forward trajectory traces.  In terms of selection probabilities, this can be expressed as: 

Equation 25 

),','()',',( πqπqπqπq −→−=→ VV αα  

 

The second important feature of the Verlet algorithm is that the Hamiltonian is preserved 

to order of δτ2.  The Hamiltonian H(π,q) is given by the sum of the potential V(q) and 

kinetic K(π) energies: 

Equation 26 

ππMπ
πqqπ

⋅=

+=
− )(2/1)(

)()(),(
1K
KVH
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Expressing these terms as Boltzmann factors gives: 

Equation 27 

( )
( ) )()(exp)(

)(exp)(
πππ

qq

GK

V

pKp
Vp

=−=
−=

β
β

 

and observe that the Boltzmann factor of the kinetic energy is the Gaussian distribution 

given by Eq. 17.  The Boltzmann factor of the Hamiltonian is given by: 

Equation 28 

)()(
)()(),(,

πq
πqπq

GV

KVVH

pp
ppp

=

=
 

where the notation pH,V  also conveys the potential being used to propagate the 

coordinates.  It should be noted that the only requirement for a proper potential here is 

that there are associated analytical gradients that can be computed in order to conserve 

the Hamiltonian of the system.  This property is true of potentials that may or may not be 

representative of the complete physical description of the system.  With this background 

and notation in hand, the acceptance criterion is defined simply as: 

Equation 29 

[ ]
[ ]),(exp

)','(exp
),(
)','(

)'(
)'(

,

,

πq
πq

πq
πq

qq
qq

H
H

p
p

acc
acc

VH

VH

HMC β
β

−
−

==
→
→  

where the convention of expressing the ratio of acceptance probabilities, as in ratio of 

acceptance probabilities, as in Eq. 14, is adopted.  Since the Hamiltonian is conserved, 

the acceptance ratio for these processes is nearly unity, and the size of the timestep can be 

adjusted to ensure this to within a desired range. 
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Proof of Detailed Balance 

Rather than solving for the acceptance probabilities, detailed balance will be 

demonstrated.  Eq. 29 can be expressed using the terms of Eq. 28: 

Equation 30 
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Rearranging Eq. 30 gives: 

Equation 31 

),','()acc'(-)'()',',()acc()( GVGV πqπqπqπqπqπq −→−=→ pppp  

where we notice that )'(-)'( GG ππ pp = , due to the symmetry of the Gaussian distribution.  

Multiplying both sides by the appropriate expressions in  Eq. 25:   

Equation 32 
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Since the momenta are sampled from a distribution, it can be integrated out.  To do this, 

we multiply both sides by 'ππdd  and integrate.  The left hand side of Eq.32 is: 

Equation 33 

)'()T()',',(acc)',',()(')( VGV qqqπqπqπqπqπππq →=→→∫ ppddp Hα  

where )'(T qq →  is probability of transitioning to state q’ from state q.  The right hand 

side of Eq. 32 is computed similarly as:  

Equation 34 

)'()T'()-,'-,'(acc),'-,'()(-)'-()-()( VGV qqqπqπqπqπqπππq →=→−→∫ ppddp Hα  
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where it is noted that )'()(' ππππ −−= dddd .  The results of Eqs. 33 and 34 demonstrate 

that detailed balance is obeyed with regard to the coordinate: 

Equation 35 

)'()T'()()T( VV qqqqqq →=→ pp  

 

It should be noted that the choice of distribution for the initial momenta are not 

arbitrary.  The main requirement is that the distribution be symmetric, such that the 

identity used to transform Eq. 30 to Eq. 31 can be invoked.  The  acceptance criterion 

from which the proof has been developed requires that the distributions come from the 

specific distribution defined in Eq. 27.  It is of course, possible, to select from a 

distribution other than this distribution, but this would also require a modified acceptance 

probability. 

 Hybrid Monte Carlo algorithms are, in general, a nice complement to standard 

MCMC methods, since the acceptance probabilities are very high.  The use of gradient 

information facilitates the generation of low energy trial states.  The incorporation of 

randomized momenta also provide for trial moves to emerge from steep enthalpic basins 

to a more entropically favored state that can often help to alleviate pathological kinetic 

trapping using standard Monte Carlo moves.  In general, Hybrid Monte Carlo moves in 

the context of some of the algorithmic developments represents an interesting future 

direction for this work. 
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Configuration Integral for a Protein 

Having established that Monte Carlo sampling is a means for evaluating integrals 

of the type given by Eqs. 6-8, we can proceed to assign a more physical description of the 

model, and introduce the form of the configuration integral which will be used in the 

remaining chapters.  The partition function begins as: 

Equation 36 

∫ −= )]([}{ RR UedQ β  

where R is the set of all coordinates for both protein and solvent, and the potential U(R) 

is the pairwise (molecular mechanical) potential describing all interactions of protein and 

solvent.  We can separate the contributions of each and express the partition function as: 

Equation 37 
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where R<P> is the set of all (Cartesian) protein coordinates, R<W> is the set of all solvent 

coordinates.  Here, the potentials UP and UW indicate the portions of the potential that 

depend only on the coordinates of the protein and the solvent, respectively.  The last 

potential depends on the coordinates of both protein and solvent.  Following the 

traditional formulation of implicit solvation19, it is possible to assert a new potential 

<UPW(R<P>)>, which  is a function of the protein coordinates only. We can then integrate 

out the coordinates of the solvent: 

Equation 38 
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Equation 39 
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where A(R<P>) = UP(R<P>) + <UPW(R<P>)> is a new potential that contains the 

contribution of the protein interactions and the average contributions of the solvent 

molecules.  This is likened to a free energy, since it depends on average properties.  For 

our purposes, however, we can view the new potential as defining our new partition 

function.  For this work, <UPW(R<P>)> is estimated using the Surface Generalized Born 

Model (SGB)20.  Many of the sampling approaches introduced in Chapter 2 rely on the 

notion that the solvent model requires more CPU time to evalutate than the remaining 

elements of the forcefield.   

Following Deem’s derivation21, we can perform a change of coordinates to a local 

coordinate system: 

Equation 40 
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The first equation fixes the rotational and translational degrees of freedom.  This 

representation is sometimes referred to as the bond vector representation, originally 

described by Flory and later by Scheraga.  The partition function can further be separated 

into: 

Equation 41 

∫
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We can now express coordinates in spherical coordinates of the ith coordinate system: 
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Equation 42 
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where θ and Φ are the bond and dihedral angles, respectively.  Expressing the partition 

function in terms of these coordinate and invoking the constraint that the bond angles and 

lengths are preserved yields: 

Equation 43 
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The important thing to notice about the above transformation is that there is no effective 

Jacobian term in the integrand as a result of transforming into dihedral coordinates.  The 

configurational integral can now be expressed in terms of the backbone dihedrals φ, and 

the sidechain coordinates χ: 

Equation 44 

∫
><−= )]([''

PAeddCQ Rχφ β  

where the sidechain dihedrals are encompass all rotatable bonds along the sidechain 

branches of a peptide, and the backbone dihedrals cover all rotatable bonds of a backbone 

(φ,ψ,ω).  For most of the work, however, the ω angles are held fixed at the native states.  

The Dirac transformation for this constraint is straightforward, and not shown here.   

Figure 1.4 shows an example of a small peptide and the associated dihedral angles to be 

sampled.  The sampling protocols presented in Chapters 2 and 4 begin with Eq. 41.   
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The form of Eq. 44 suggests that a natural partition of coordinates (sidechain and 

backbone) exists, and that a sampling method that is cognizant of such partitions may 

provide improvements.  Chapter 4 addresses this idea in considerable detail. 
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Chapter 2 

Multiscale Monte Carlo Sampling of Protein Sidechains:  Application to Binding 
Pocket Flexibility 

 

Jerome Nilmeier 

Graduate Group in Biophysics, University of California at San Francisco 

Matt Jacobson 

Department of Pharmaceutical Chemistry University of California at San Francisco 

 

Abstract 

We present a Monte Carlo sidechain sampling procedure and apply it to assessing the 

flexibility of protein binding pockets.  We implemented a multiple ‘time step’ Monte 

Carlo algorithm to optimize sidechain sampling with a Surface Generalized Born implicit 

solvent model.  In this approach, certain forces (those due to long-range electrostatics and 

the implicit solvent model) are updated infrequently, in “outer steps”, while short-range 

forces (covalent, local nonbonded interactions) are updated at every “inner step”.  Two 

multi-step protocols were studied.  The first protocol rigorously obeys detailed balance, 

and the second protocol introduces an approximation to the solvation term that increases 

the acceptance ratio.  The first protocol gives a 10 fold improvement over a protocol that 

does not use multiple time steps, while the second protocol generates comparable 

ensembles, and gives a 15 fold improvement.  A range of 50–200 inner steps per outer 

step was found to give optimal performance for both protocols.  The resulting method is a 

practical means to assess side chain flexibility in ligand binding pockets, as we illustrate 

with proof-of-principle calculations on 6 proteins:  DB3 Antibody, thermolysin, estrogen 
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receptor, PPAR-γ, PI3 kinase, and CDK2.  The resulting sidechain ensembles of the apo 

binding sites correlate well with known induced fit conformational changes, and provide 

insights into binding pocket flexibility. 

Introduction 

 Side chain sampling and optimization algorithms, mostly based on a rotamer 

approximation22-26, have been used extensively in modeling proteins, including homology 

modeling27,28 and predicting conformational changes due to ligand binding29-31.  We have 

been interested in developing sampling methods for protein side chains (and, in other 

work, loops) that generate thermodynamic ensembles of conformations, in contrast to 

locating the global energy minimum32,33.  Minimization methods implicitly neglect the 

effect of entropy on side chain conformations, and generally cannot distinguish whether 

sidechains will adopt a single well-defined conformation, or a distribution of 

conformations.  For the many sidechains that are tightly packed in the core of a protein, 

minimization is an effective approach.   For less tightly packed sidechains that display 

some degree of flexibility, a thermodynamic ensemble becomes a more appropriate 

description. 

Side chain conformational heterogeneity is important to protein-ligand binding.  

The ability to accurately predict the flexibility/rigidity of binding site residues would be 

useful in structure-based drug design31,34.  For example, a recent paper by Sherman et al. 

29 describes a computational method to predict “induced fit” effects upon ligand binding 

which relies on some advanced knowledge of which side chains may adopt different 

conformations upon ligand binding, e.g., from multiple co-crystal structures.  We 

demonstrate here that thermodynamic ensembles of side chain conformations in apo 
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proteins correlate well with known induced fit conformational changes in various well 

studied drug targets. 

In principle, molecular dynamics sampling methods 31,35 can be used to obtain 

thermodynamic ensembles for protein binding sites.  The main disadvantage is that the 

timescales required to observe large changes in side chain conformations can be long 

relative to the ~1 fs timesteps employed in atomically detailed molecular dynamics 

simulations; transitions between side chain rotamers can take up to μs, which is a known 

difficulty in binding  affinity calculations 35-37.  Monte Carlo sampling 38 can lead to more 

efficient generation of the complete thermodynamic ensemble, if the trial moves are 

constructed carefully.   

For macromolecules, which contain complex, heterogeneous, and densely packed 

atomic configurations, construction of efficient trial moves can be a substantial challenge.  

A variety of both rigorous and nearly rigorous methods have been used 21,33,39-43 to 

address this challenge.  One common idea among these involves decomposing the 

degrees of freedom into subspaces that are more manageable, both computationally and 

conceptually.  The most natural decomposition for proteins is between backbone and 

sidechain degrees of freedom.  Future work will incorporate backbone motions, but the 

current emphasis is on the sidechain degrees of freedom. 

Another common decomposition is between solvent (water) and solute (protein) 

degrees of freedom.  Here we use an implicit solvent model, which makes it possible to 

efficiently sample large side chain conformational changes.  By contrast, in explicit 

solvent, large changes (e.g., across rotamers) are difficult to sample with good acceptance 

rates because of steric clashes between waters and the side chain, and the need for the 
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solvent to relax around any new trial conformation.  The same steric issues have 

motivated the use of implicit solvent in molecular dynamics studies as well44-46.  For this 

work, the electrostatic solvation term is evaluated with the SGB model 20,47 and the 

nonpolar solvation energy with the nonpolar (NP) model 48.  The solvation model here 

was developed for use with the all atom OPLS-AA 2001 forcefield 49 and is implemented 

in the Protein Local Optimization Program 50,51.  While this model is chosen as a 

compromise between efficiency and accuracy, it remains the most computationally 

expensive portion of the energy evaluations.  The current effort is to develop a general 

sampling scheme which allows optimal use of an implicit solvation model in the context 

of a Monte Carlo scheme.  The  present application is to sidechain sampling, but can be 

extended to backbone sampling strategies in a straightforward manner. 

The major innovation here in terms of computational methods is the 

implementation of a multi-scale strategy, analogous to methods such as RESPA 52,53, used 

in molecular dynamics, to accelerate convergence toward the thermodynamic ensemble.  

The theory underlying this approach has been presented previously 54, and is only briefly 

reviewed here.  The application of a multiscale Monte Carlo approach to sampling 

proteins in implicit solvent has been presented by Michel et al55, with different 

implementation details and approximations introduced.  Other algorithmic details crucial 

for speed, including the rapid elimination of conformations with steric clashes, are also 

described.  The resultant method is a practical means to assess side chain flexibility in 

ligand binding pockets, as we illustrate with proof-of-principle calculations on 6 proteins.  
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Theory and Methods 

Configuration Integral 

The  implicitly solvated 19 macromolecular ensembles of interest can be 

represented by the following configuration integral: 

Equation 45 

( )∫ −= )]([exp RR AdQ β  

where is R is the set of all Cartesian coordinates of the macromolecule of interest, and 

Equation 46 

)()()( RRR GUA +=  

where A(R) is the sum of the forcefield energy, U(R), and the implicit solvation energy, 

G(R).  The solvation energy is dependent on the Born radii, which are a function of the 

coordinate state of the macromolecule.  In the SGB implementation we use, the Born 

radii α(R) are computed using surface integrals, and thus are dependent on the global 

coordinate state R of the protein.  This calculation can take much longer (roughly 100 

times longer in cases studied) than the pairwise energy terms.  Some improvements have 

been gained by updating only local regions of the surface area as needed, and efforts are 

ongoing in this area to improve the efficiency and accuracy of this model 56,57.   

In general, however, any attempt to optimize sampling would benefit most from 

evaluating the solvation energy less frequently.  While this approach is motivated by 

computational efficiency, a physical argument can also be made.  The Born radii 

generally vary slowly for relatively small, local conformational changes.  The sampling 

strategies presented are intended to make the best use of these ideas while still generating 

meaningful ensembles. 
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Constraints on various degrees of freedom can be introduced to generate a 

configuration integral q0 over a smaller subspace by identifying fixed (F) and sampled (S) 

degrees of freedom, such that dR=dR<F>dR<S>, and imposing a rigid constraint on the 

fixed degrees of freedom, yielding- 

Equation 47 

( )∫ ><><>< −= )]|[(exp 00
FSS Adq RRR β  

Following the formulation of Deem 21, the transformation from Cartesian to torsional 

coordinates can be made with a Jacobian of unity, if bond lengths and angles are 

preserved.  For the current work, the backbone torsions will be constrained to an initial 

value of 0φ , and the fixed sidechains to an initial value of ><F
0χ .  The resulting integral 

can be recast as 

Equation 48 

( )∫ ><><>< −= )],|([exp 000
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where χ<S> is the set of sidechain torsional coordinates that are sampled.  The integral of 

interest over the subspace can be recast by letting dr=dR<S>, and  

)|(),|()( 000
><><><>< == FSFS AAA RRχφχr , yielding the more compact expression: 

Equation 49 
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Generation of Trial Configurations 

To generate a reversible trial move, a single sidechain i is chosen at random from 

the list of sampled sidechains, and the updated set of torsions is assigned according to: 

Equation 50 

ξχχ += ii'  

where i'χ  and iχ  are the trial and previous set of dihedral coordinates, respectively, for 

sidechain i, and ξ  is a vector of uniform random variates of the same dimension, for 

which each value is drawn from the domain [-d/2, d/2].  To account for local fluctuations 

as well as larger fluctuations, the domain size d is assigned a value of either 360º or 18º 

with equal probability.  The idea behind the heterogeneous move set is to alternate 

between large dihedral trial moves that cross local χ wells, and small trial moves, which 

sample the local χ basin.  For the present work, selections from a rotamer library are not 

incorporated as a trial move, as slight nonuniformities in the distribution of the χ angles 

of the rotamer library have a quantitative effect on the distributions.  As a practical 

matter, however, a mixture of rotamer and random moves could conceivably be 

implemented if quantitative energy distributions are not required. 

For residues with rotatable polar hydrogen groups (Cys, Ser, Thr, Tyr), the 

torsional angle that places the hydrogen is also selected randomly when the rotamer state 

is assigned.  Also, the torsions of the amine hydrogens of lysines are sampled.  Torsions 

for methyl hydrogens are not currently sampled.  

A hard sphere approximation is invoked, which vastly improves sampling 

efficiency, while preserving much of the essential physics of the system.  This has been 

shown in liquid systems 58,59 as well as proteins.  For the current work, pairs of atoms that 
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are closer than 0.7 times the sum of the Lennard-Jones radii are considered to be 

sterically disallowed.  That is, no energy is computed for sterically disallowed states, 

because the steric clash will result in high energies and small acceptance probabilities.  

Cell lists (linked lists) further accelerate the identification of steric clashes, by only 

checking for clashes between atoms known to be proximal.  A series of dihedral 

perturbations is generated as described until a configuration that is sterically allowed is 

generated.  The resulting configuration is treated as a trial move.  For the systems studied, 

the average number of sterically disallowed moves ranges from 0.5 to 0.75 (see Table 

2.2), which is roughly a 2 to 4 fold improvement in sampling efficiency, because the CPU 

time per steric clash evaluation is negligible relative to the energy evaluation.   

 

Multiple Time Step Monte Carlo (MTS-MC) 

A sampling procedure known as multiple time step Monte Carlo54, which was 

originally developed for Ewald sum calculations60, can be used to optimally sample 

against a potential that can be decomposed into additive components.  These components 

are typically, but not necessarily, short and long range contributions to the energy.  The 

algorithm relies on the assumption that the short range term varies rapidly with respect to 

the move set, while the long range term varies more slowly.  A related formalism is 

presented using approximate potentials 61.  Many algorithms use similar ideas, including 

both molecular dynamics integrators 52,53 and minimization algorithms 62.  Some 

applications using algorithms that are similar in spirit involve evaluating Ewald sums less 

frequently in fluid simulations with periodic boundary conditions, sampling of polar 

fluids 5, and polarizable water sampling 63.   
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While the formalisms in these approaches vary, they can all be thought of as 

relying on some decomposition of the overall potential to be sampled.  The natural choice 

of decomposition is into short and long range terms, which we denote by subscripts S and 

L, respectively 

Equation 51 

)()()( rrr LS AAA +=  

The details of the nature of the decomposition of interactions into long and short 

range can vary from system to system. A more detailed description of the decomposition 

for the present case, with proof of detailed balance, is given in the Supplementary 

Material. 

Using the above decomposition, detailed balance can be maintained using the 

following sampling protocol: 

 

1) Starting with the configuration ri, generate a number NI of ‘inner loop’ steps, where 

each step consists of a trial configuration rk that is generated reversibly (such as the 

trial configurations described by Eq. 50, and accepted according to the following 

short range acceptance criterion: 

Equation 52 
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2) Take the final configuration from the inner loop to be the trial configuration rj for the 

‘outer loop’ and apply the long range acceptance criterion: 
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Equation 53 
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It is important to note that any statistical quantities of interest can only be computed 

using the outer loop configurations.  In all cases where the ratio of acceptance 

probabilities are given, the Metropolis acceptance criterion is used in practice. 

 

Recasting MTS-MC to Account for Infrequent Born Radii Updates 

For the present case, the most costly term to evaluate in the energy is the solvation 

term, which is due largely to the time intensive step of computing the Born radii, α(R), 

and we develop a strategy such that the Born radii are not updated in the inner steps.  To 

motivate this method, it is helpful to express the potential in the following form: 

Equation 54 

)),(()()),(( nmnnm GUA rRαrrRα +=  

where rn is nth configuration of the subset of sampled coordinates, α(Rm) is the set of 

Born radii which are evaluated based on the coordinates of the mth coordinate state Rm of 

the entire protein, )( nU r , and )),(( nmG rRα  is the solvation energy evaluated at the given 

states.  We can further express the energy deviation from the ‘true’ potential, where the 

Born radii are synchronous with the current coordinate state, in terms of an error potential 

)),(( nm rRαε :  

Equation 55 
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Thus, the inner loop configurations are evaluated according to an approximate short 

range potential )),(( nmSA rRα , where the Born radii are held at a previous, or ‘latent’ 

state.  The relation to the true short range potential can similarly be written in terms of a 

short range error potential )),(( nmS rRαε : 

Equation 56 
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where the coordinate state is rn, and the latent Born radii, α(Rm) are calculated from a 

previous step.  Likewise, the true long range potential can be described in terms of long 

range error potential: 

Equation 57 
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For simplicity, these energies can be expressed in terms of the state indices only: 

Equation 58 
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Where n is the index of the current coordinate state, and m is the index of the Born radii 

held at a previous state.  We can simply recast the decomposition as:  

Equation 59 
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where the index of the coordinate state is first argument in each of the functions, and the 

index of the Born radii state is the second argument.  While the error potential described 

in Eq. 14 contains both long and  short range terms, the idea of the sampling protocols is 

to treat the all of error potential terms as long range terms.  Using this new 

decomposition, we can define two different sampling protocols: 

1) In both protocols, start with the configuration Ri, generate a number NI of ‘inner loop’ 

steps, where each trial configuration rk is generated using Eq. 51.  The Born radii are 

held at a latent state i, such that the short range acceptance criterion is: 

Equation 60 

( )[ ]),()',(exp
)'|(
)|'(

kiAkiA
kkacc
kkacc

SS
S

S −−= β  

2) Take the final configuration from the inner loop to be the trial configuration rj for the 

‘outer loop’ and apply either of 2 acceptance criteria: 

A. With error correction: 

Equation 61 

( )[ ]),(),(),(exp
)|(
)|( iiAjijiA

jiacc
ijacc

LL
L

L −+−= εβ  

B. Without error correction: 

Equation 62 
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Protocol A rigorously obeys detailed balance, while protocol B is an approximation 

introduced to improve computational efficiency.  It should be noted that the Born radii 
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are completely updated in every outer loop calculation, regardless of protocol.  The ideal 

error potential term would be narrowly distributed about a mean of zero, so that the 

distribution generated by neglecting the term would be nearly equivalent to the true 

distribution.  The effect of the modification will be discussed in detail in the results 

section. 

As a control, a “standard” Monte Carlo trajectory, or protocol S, was also studied.  

For the standard Monte Carlo protocol, the same trial move set was used, including steric 

screening, but with the Born radii updated at every step, with no decomposition of 

potentials.  For every step, the acceptance criterion is simply:  

Equation 63 
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Estimation of the Time to Convergence and Improvement Ratio 

To estimate the optimal number of inner steps, we express the total processor time T to 

compute a trajectory as: 

Equation 64 

><= OTO dNdtNT /,  

where >< OdNdt /  is the expectation value of the time required to generate an outer step.  

This is not a fixed value, since the innermost sampling loop samples an arbitrary number 

of configurations until a sterically allowed configuration is obtained.  NO,T  is the total 

number of outer steps, which includes the both the nonequilibrated steps, nO, and 

equilibrated steps, NO.  This can also be expressed as: 
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Equation 65 

)(, SILTO tNtNT +=  

where tS is the average time required to generate a single (sterically allowed) trial 

coordinate and evaluate the short range potential.  The rate tL is the time required to 

evaluate the long range potential, which includes the long range energies and the time 

required to update the Born radii.  This quantity does not need to be averaged, since there 

is no dependence on the number of steric clashes.  NI is the number of inner steps that are 

set for the simulation.  Since statistics can only be gathered on the equilibrated outer 

steps, we can express NO in terms of the standard error: 

Equation 66 
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where σ  is the variance of the energy over the entire equilibrated portion of the 

trajectory, ε  is the desired error in the estimate of the energy, and g(NI) is the correlation 

interval, or distance between uncorrelated snapshots.  This quantity is measured from the 

simulation, and will vary with the number of inner steps for a given system with all other 

conditions held constant.  It is closely related to other measures of quality of Monte Carlo 

trajectories, such as acceptance ratio, and a low correlation interval often corresponds to a 

high acceptance ratio. 

 Since the number of steps required to equilibrate depends strongly on the initial 

condition, we shall overestimate this quantity by assuming that nO=NO.  This varies in 

practice from a few correlation intervals to less than half of the number of outer steps.  As 

long as the equilibration time is proportional to the number of equilibrated steps, it will 



 36

cancel out in the improvement ratio calculation.  Using this assumption, the estimated 

CPU time required for a converged trajectory is: 

Equation 67 
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where the number of inner steps can be adjusted to locate the optimal computing time.   

As a measure of sampling efficiency, the following quantity can be expressed: 

Equation 68 
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where I is the improvement, and TS is the time required for a converged trajectory in a 

standard Monte Carlo protocol. 

 

Convergence Determination and Error Estimation 

Determination of the number of steps required for equilibration and the 

correlation interval was performed iteratively.  Initially, the number of steps required for 

equilibration was estimated to be 3000 for the standard trajectory, 1000 for NI 

=1,50,100,200, 300, and 400 for the remaining inner step settings.  To estimate the 

correlation time, an autocorrelation function of the energy was computed, and the 

correlation interval g was identified as the first place the autocorrelation function crosses 

zero.  This initial estimate is expected to overestimate the true correlation time since the 

trajectory may include nonequilibrated regions, which contain slow fluctuations towards 

the equilibrium state that would not be present in the stationary distribution.  Using this 

initial estimate, a blocksize was assigned to have a value of g.  Α block standard 
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deviation σB is computed at each point (using the points preceding the point of interest), 

and the trajectory was deemed to be converged if the block standard deviation was less 

than a nominal value σB=15kBT. 

With this new estimate of the equilibrated region of the trajectory, another 

estimate of the correlation time was applied.  To improve the estimate, the 

autocorrelation function was fit to a simple exponential )/exp( Dττ−  where τD is the 

decay constant, or correlation time.  For this procedure, a least squares fit was performed 

where the sum of the squares of the errors between the function and the data points are 

weighted according to the inverse of error at that point.  The error in the autocorrelation 

function is given by5: 

Equation 69 

[ ]
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where  g=1+2τD is the correlation interval, or the number of steps between uncorrelated 

snapshots.  Once a correlation time is obtained, the Reverse Cumulative Averaging 

method was used to obtain a better estimate of the location of the equilibrated region 64, 

with the blocksize set to g.  A confidence level of 85% was used  to reject the hypothesis 

that the block averaged samples came from a normal distribution, according to the 

Shapiro-Wilk Test 65,66.  The location of the equilibrated portion of the trajectory depends 

heavily on the value of the blocksize, and vice versa, so 30 iterations of the blocksize and 

RCA convergence calculation were run.  See Figure 2.1 for the convergence times, 

correlation intervals, and total simulation lengths for each simulation. 
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NI NO,T <dt/dNO,T > 

(s) 
<E>-<E>STD 

(RT) 
σ ε NO (all)  

S 250000 6.02 0.00 5.65 0.37 2366928 
       
A-1 95000 6.29 -0.19 5.88 0.76 421025 
A-50 40000 12.02 -0.01 5.83 0.21 195235 
A-100 25000 16.37 0.13 5.83 0.19 122849 
A-200 15000 26.08 0.17 5.86 0.22 74035 
A-300 10000 34.37 0.25 5.82 0.24 48860 
A-400 6000 43.44 0.12 5.83 0.31 29354 
A-500 5000 51.48 0.13 5.91 0.37 24195 
       
B-1 95000 6.20 1.77 5.96 0.28 393587 
B-50 40000 11.11 1.58 6.07 0.07 198311 
B-100 25000 16.01 1.79 6.12 0.08 123416 
B-200 15000 24.72 1.89 6.12 0.08 73904 
B-300 10000 32.86 1.71 6.19 0.10 48913 
B-400 6000 41.40 1.69 6.09 0.11 29440 
B-500 5000 50.47 1.83 6.18 0.12 24568 

 
Table 2.1 – Simulation Data for Model System.  Data shown summarizes the results for 10 simulations of 
each Protocol and Inner step setting.  For leftmost column, NI is the number of inner steps.  S indicates a 
standard protocol (no inner steps).  For the remaining columns, protocol and number of inner steps are 
given.  (A-50 represents protocol A using 50 inner steps).   NO,T is the total number of steps simulated, 

including nonequilibrated portions of the trajectory.  <dt/dNO,T > is the average time to generate an outer 
step, as described in the text.  <E>-<E>STD(RT) is the average equilibrium energy minus the standard 

measurement, σ and ε are the standard deviation and standard error of the equilibrated energies.  Rightmost 
column is the total number of equilibrated steps (across all simulations at the designated setting) used for 

the calculation. 
 

Preparation of Unbound receptors 

The proteins studied are listed in Table 2.2.  A few of the proteins had missing 

side chains or loops outside of the binding sites (>15Å) being studied.  These were 

reconstructed in arbitrary configurations free of steric clashes using standard routines in 

the Protein Local Optimization program.  The side chains to be sampled in the Monte 

Carlo were defined as those within 8 Å of any atom of the ligand in the holo structure. 

All calculations were performed in the absence of the ligand.   
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Figure 2.1.  Summary statistics for validation dataset.  Bars represent log of simulation lengths, and black 
dots connected with lines represent the correlation interval for that simulation.  All simulations are run at 
600K.  The blue portion of each bar is the unequilibrated portion, and the green portion is equilibrated.  

Different values are given for different runs, which are trajectories using the same settings, including initial 
condition, but assigned different random seeds.  The natural log of the number of Total steps, NO,T, appears 

on the x-axis. 
 

Composite Energy Histograms 

In order to represent multiple simulations of the same sampling protocol as a 

single histogram, a superposition of individual energy histograms was computed.  This is 

done to obtain better statistics so that detailed balance may be demonstrated for protocol.   
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For each trajectory histogram, an error BB gn=ε  was assigned at each bin 

point, where nB is the number of entries in each bin.  To generate the composite 

histograms for protocols A and B, each of the trajectory histograms for each protocol 

were superimposed with a weight proportional to the number of uncorrelated entries in 

each bin of each trajectory.  The errors are computed a superposition of square of the 

errors of each trajectory, with the same weights used to compute the composite 

histograms.  It should be noted that the sampling protocols produce the same distribution 

of energies, independent of number of inner steps chosen.  The data from all ranges of 

inner steps can therefore be combined to form a single histogram.  Since the error is 

computed using the autocorrelation times, the fact that the distributions fall within error 

suggest also that the correlation times are correctly estimated. 

 

Timings 

Since simulations were run on a variety of machines, smaller trajectories were 

collected to estimate the average time per outer step (see Table 2.1).  Timings of the 

simulations were measured on a Linux machine, using a single CPU from a dual AMD 

Opteron CPU running at 2.2 GHz. 

Results and Discussion 

Comparison of Protocols Using Antibody DB3 

To optimize the number of inner steps and other parameters of the algorithm, the binding 

pocket of apo antibody DB3 (1dba) 67,68 was selected as a model system.  A total of 3 

sampling protocols were explored, as defined in Methods.  To compare the effect of 

neglecting the short range error in the Born updates, identical simulations were run using 
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protocols A (rigorous) and B (approximate).  A single set of 10 trajectories using protocol 

S was also generated.  The number of inner steps (NI) was set to 1, 50, 100, 200, 300, 

400, and 500.  For each inner step setting, 5 trajectories were collected, starting from the 

same (nonequilibrium) initial condition with different random seeds.  Since the backbone 

is held fixed, room temperature simulations tend to exhibit frustrated dynamics.  To 

obtain better statistics, especially for protocol S, all simulations were run at 600 K.  The 

goals of these simulations are twofold: 1) to generate sufficient statistics to demonstrate 

detailed balance, and 2) to study the effect of adjusting the number of inner steps and 

protocol.  A total of 80 separate trajectories were collected for the analysis.  Figure 2.1 

summarizes the pertinent information on these trajectories. 

 

 

Figure 2.2.  Protocol A distributions superimpose with Standard energy histograms, and Protocol B 
generates a similar approximate distribution.  All simulations were run at 600K, under the conditions 

summarized in Figure 2.1.  Dimensionless energy is plotted on the x axis, with the mean of the energies of 
the standard simulation <E> subtracted from the energy (see Table 2.1).  On the y axis is the probability of 

observing that energy. 
 



 42

 

Figure 2.3.  Approximate protocol provides slightly better performance, and optimal performance of both 
protocols is in the range of NI=50-200.  a) log of correlation interval, b) acceptance ratio, c) improvement 

ratio, as given by Eq. 68. 
 

The average energies and standard errors of each simulation are in Table 2.2, and 

Figure 2.2 shows histograms of equilibrated energies for each sampling protocol. The 

energy distributions of protocols A and S (standard) appear to be equivalent.  While error 

bars are not shown for clarity, the histograms superimpose to well within the estimated 

error.  The energy distribution of protocol B is offset by roughly 1.75RT, and is clearly 

from a different distribution than protocol A.  The standard deviation of protocol B is 
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larger by roughly 0.3RT.  The broader distribution and higher mean value is due to the 

more permissive approximation, which increases the number of states that are accepted.   

The correlation interval is shown in Figure 2.3.  A sharp decrease is observed from NI = 

50–200, which steadily decreases over the remaining inner step settings.  The acceptance 

ratio shows an initially sharp increase, since a smaller number of inner steps helps to 

generate better trial moves for the outer loop.  As the number of inner steps increase 

however, the inner loop becomes less efficient at generating trial configurations.  This 

effect is more prominent in protocol A, which is the rigorous approach.  Figure 2.3c 

shows the relative improvement over protocol S (no inner steps).  Optimal values are in 

the range NI = 50–200.   For both protocols A and B, a broad optimal range is observed, 

which suggests that this optimal range should hold for a wide variety of proteins.   

 

Binding Pocket Studies 

 As a first application, we investigate the flexibility of side chains in protein 

binding pockets.  As a test set, we consider several proteins from Sherman et al29, as well 

as PI3K69.  The assumption of this work is that side chains that show more flexibility in 

our ensembles will be capable of undergoing rearrangements upon binding ligands.  

Table 2.2 lists the binding pockets studied.  For all trajectory data which is displayed, 

individual sidechains conformations were filtered such that no two conformations are less 

than an RMSD of 0.05 Å from one another. 

Protocols A and B were used to generate side chain ensembles, at a variety of 

temperatures.  Temperatures >300K were explored for three primary reasons.  First, our 

goal is to predict conformational changes that could occur upon binding a ligand.  In the 
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limit of pure “conformational selection”, the bound conformation of the protein would be 

populated significantly, or at least measurably, at ambient temperature.  However, there 

can also be some additional conformational rearrangement of the 1protein to 

accommodate the ligand (“induced fit”), derived from the free energy of ligand binding.  

Here, we have essentially postulated that ligand binding can “induce” conformational 

changes that may not be observable with a room temperature thermal ensemble.  It has 

been observed that sidechain rearrangements within binding pockets can be cost up to 4 

kcal/mol of free energy 36,37. 

Another reason for considering higher temperature distributions of 600 K is 

related to limitations of the energy function.  In particular, it has been widely reported 

that Generalized Born solvent models can over-stabilize hydrogen bonds and salt bridge 

interactions57,70.  This known limitation of the implicit solvent model will tend to result in 

reduced flexibility of charged residues at ambient temperatures.  

Finally, the use of a rigid backbone will also reduce side chain flexibility.  The 

test cases were chosen in part because ligand binding does not induce large changes in 

backbone conformation; clearly, further algorithmic development, which will be reported 

in due course, is needed to deal with backbone fluctuations.  When there is reason to 

believe that backbone changes are likely to be small, simply using a higher temperature 

may help to reduce artifacts due to the rigid backbone.   

Ultimately, from the standpoint of identifying “flexible” side chains in a binding 

site, we view the choice of temperature as a user-definable parameter; in practice, 

performing simulations with multiple values of the temperature may be advisable.  Note 

that, since the backbone is held fixed, the protein will not denature during the simulation, 
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which provides considerable freedom in the choice of temperature and simulation 

protocol. 

a) b) c)

d) e) f)

j) k) l)

g) h) i)

T=300K T=600K T=900K

Protocol 
A

Protocol 
B

Protocol 
A

Protocol 
B

a) b) c)

d) e) f)

j) k) l)

g) h) i)

a) b) c)

d) e) f)

j) k) l)

g) h) i)

T=300K T=600K T=900K

Protocol 
A

Protocol 
B

Protocol 
A

Protocol 
B

 

Figure 2.4.  Distribution of sidechain configurations for Tyr97 and Trp100 of 1dba.  Brown configurations 
are from the native  structure, cyan configurations are from the holo structure.  Grey sidechains are distinct 
configurations from a sidechain trajectory at the given conditions.  a) Tyr97 at 300K, protocol A; b) Tyr97 

at 600K, protocol A; c)  Tyr97 at 900K, protocol A; d) Tyr97 at 300K, protocol B; e) Tyr97 at 600K, 
protocol B; f) Tyr97 at 900K, protocol B; g) Trp100K at 300K, protocol A; h) Trp100 at 600K, 
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a) b)

c) d)

e) f)

a) b)

c) d)

e) f)

 

Figure 2.5.  Binding pocket ensembles.  Simulations are carried out in the absence of ligand at 600 K, with 
protocol B (no error correction).  Ligand and bound (holo) structures are shown in cyan. Unbound native 
sidechains in starting configurations are shown in brown.  The computed ensemble is shown as thin lines.  

The ligand from the holo structure is shown for reference.  a) DB3 antibody and progesterone, b)where it is 
similar to the apo structure, although significant fluctuation is observed.  Intermediate conformations are 

not observed suggesting a high energy barrier for the rotation. 
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Antibody DB3 67,68 

 For the DB3 antibody (Figures 2.4 and 2.5a), the primary conformational change 

between the two structures is the large movement of the Trp100 side chain to 

accommodate 4-hydroxytamoxifen.  We studied this system with both protocols A and B 

at T=300, 600, and 900 K, with NI=200 (the upper end of the optimal range).  It is 

encouraging to observe that the large conformational change in Trp100 is observed in the 

Monte Carlo simulations, performed without a ligand present, at 600 K using protocol B 

and at 900 K using protocol A.  Two conformational states of Trp100 are observed:  a 

low-population state where the side chain is in a similar conformation as the holo 

structure, and a high-population state where the sidechain occludes the binding region. 

Table 2.2 – Binding Pockets Studied.  RB is the receptor used in the simulation (without ligand), and  RA is 
a reference receptor with LA bound to it.  <NC> is defined as the total number of steric clashes divided by 

the number of sterically allowed steps. 
 

The residues His27D and Asn35 show less flexibility in the simulations, and also 

little conformational change between the apo and holo structures (Figure 2.5a).  Tyr97, 

by contrast, appears to fluctuate in multiple basins.  This is because it is mostly solvent 

exposed, and there is very little steric hindrance.  The side chain adopts similar 

conformations in the apo and holo structures.  This does not necessarily imply a failure of 

the computational prediction, however.  It is possible that this side chain could adopt 

different conformations in complex with other ligands.   

Label Protein RB RA LA # residues <NC> 
A DB3 Antibody 1dba 1dbb Progesterone 30 0.54 
B Thermolysin 1kr6 1kjo Z-D Glutamic Acid 41 0.74 
C Estrogen Receptor 1err 3ert Raloxifene 73 0.65 
D PPAR-γ 1fm9 2prg GI262570 65 0.75 
E PI3 Kinase 2chx 2chw PIK-039 45 0.65 
F CDK2 1buh 1dm2 hymenialdisine 46 0.73 
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 The magnitudes of fluctuations observed using protocols A and B for Trp100 and 

Tyr97 are similar (Figure 2.4).  Since protocol B is slightly more efficient and appears to 

provides similar configurational diversity, it was used for the data presented for all the 

remaining binding pockets in Figure 2.5.  In addition, we have chosen to use T=600 K for 

the remainder of the test cases, because it provides a balance between sampling 

alternative conformations that may be important in ligand binding, but not so much 

diversity as to be uninformative.  We reiterate that we view temperature as a user-

adjustable parameter, and using multiple temperatures, as with this test case, may be 

advisable.   

 

Thermolysin 71 

  The residues His142, His146, and Glu66, which coordinate the Zn ion are 

correctly predicted to be rigid (Figure 2.5b).  For this simulation, the zinc ion was 

included.  The hydrogen bonding network of His231 is correctly preserved.  Asn112 is 

predicted to be very flexible, and in fact rotates significantly upon ligand binding.   

 

Estrogen Receptor 72,73 

Residues Leu525, Met421, and His524 all show significant flexibility in the 

simulations, and also undergo significant rearrangements upon binding 4-

hydroxytamoxifin (Figure 2.5c).  Glu353 and Arg394 display less flexibility due to the 

strong salt bridge.  These show small conformational rearrangements upon binding the 

ligand due to formation of hydrogen bonds to it.  Backbone rearrangements observed 

upon ligand binding, such as those seen in His524 and Leu525, are of course not captured 
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by the side chain MC simulations.  As a rough guide, however, the ensemble correlates 

well with observed rearrangements. 

 

PPAR-γ 74 

 The hydrophobic residues Phe282, Leu452, and Leu469 display flexibilities that 

correspond to structural rearrangements upon ligand binding (Figure 2.5d).  Phe363 fails 

to sample the bound configuration, and is the first of  only two false negative cases from 

the entire dataset (see CDK2).  It is likely that this is due to the fact that the rigid 

backbone occupies a region which occludes the possibility of sampling an alternative 

state.  His449 displays a narrow range of flexibility which corresponds to the 

displacement in the target structure. Tyr473 samples alternative solvent exposed 

configurations, similar to Tyr97 in the DB3 antibody.  Gln286 displays flexibility, and 

appears to sample some conformations similar to the holo conformation, to the extent that 

the slightly different backbone configurations permit. 

 

PI3 Kinase 69,75 

 All residues which do not undergo significant rearrangement upon ligand binding 

are predicted to be rigid in the simulations (Figure 2.5e).  Glu880 and Lys890 display 

conformational diversity in the  

simulations which encompasses the observed apo and holo conformations.  Met804 

displays significant flexibility in the sidechain ensemble which encompasses the apo and 

holo conformations.  The movement of this side chain is critical for opening a 

hydrophobic pocket that is critical for ligand binding and specificity.    
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a)

b)
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b)

 

Figure 2.6.  CDK2 salt bridge interaction.  a) Binding pocket ensemble and representation is identical to 
Figure 2.5f, but from a different perspective.  b) sidechains from CDK2 structures 1h24, 1h25, 1h26, 1h27, 

1h28, 1hcl, 1pw2, 1w98, and 2jgz. 
 

CDK2 76-78 

 Residues Glu81, Leu83, and Asn132 each appear to display conformational 

diversity commensurate with the observed changes between the apo and holo structures 
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(Figure 2.5f), while Phe80 is the second false negative of the dataset.  Lys33 displays 

flexibility, although it does not quite sample the bound configuration.  Instead, in the 

absence of ligands, it forms a salt bridge with Asp145, which is disrupted by the 

hymenialdiside interaction in the bound form. 

Figure 2.6a shows a closeup of the salt bridge which is transiently disrupted in the 

600 K simulation.  Figure 2.6b shows a superposition of multiple structures of CDK2 

which display a similar structural diversity.  

 

Conclusions and Future Directions 

 A novel application of the MTSMC algorithm has been applied to sampling 

sidechain degrees of freedom in implicit solvent.  Relative to a “simple” Monte Carlo 

algorithm without the use of inner steps, the multi-scale approach increases the 

convergence by a factor of 10–15.  Rapid steric screening provides an additional factor of 

2–4 speed up, and other algorithmic details (rapid updates of energies when only a 

portion of the protein is moving) also contribute to efficiency.  Applications to small 

molecule ligand binding sites in proteins demonstrate that the method can be used to 

efficiently sample large changes in side chain conformations, and identifies side chains 

that may undergo conformational changes upon ligand binding.   

Additional degrees of freedom can be incorporated into this approach in a 

straightforward manner.  For example, local changes in backbone conformation can be 

included using analytical loop closure79,80 methods with an appropriate Jacobian81.  Such 

a method, which is under development, could be an efficient means of sampling 

conformational changes such as those that have been observed in the kinase DFG motif, 
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or in loop latching as in TIM barrels82, in a way that obeys detailed balance and thus can 

capture entropy differences between states.   
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Appendix A :  Proof of Detailed Balance with a Short Range Cutoff 

A more detailed accounting of the short and long range decompositions is 

presented.  These details omitted from the body of the text for clarity.     

The use of a short and long range cutoff is a common way of improving 

calculation efficiencies.  The advantage gained is in the infrequent updating of the long 

distance interactions.  To explicitly track the updating of the short and long range cutoffs, 

Eqs. 58 and 59 can be re-expressed as: 

Equation 70 

),())(1(),()(),( nmAlSnmAlSnmA −+=  

where S(l) is a ‘switching function’ of the coordinate state l, which divides the space over 

which the potential A(m,n), as expressed in equation 15, is the potential at Born state m 

and coordinate state n.  When the Born radii are evaluated based on the current 
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coordinate state, the short and long range potentials can be expressed in terms of the 

current coordinate (and Born radii) state n, and latent cutoff state l:  

 Equation 71 
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Since S(l) is a function of the complete set of coordinates, a full update of the distances 

must be computed.  The idea behind the use of the cutoff is to limit the number of times 

the full distance matrix is computed, as well as the full potential.   

To this end, an efficient Monte Carlo protocol will update the switching function 

infrequently, while maintaining detailed balance or very nearly doing so.  For the 

updating scheme that is used for the present work, detailed balance is rigorously 

maintained with regard to the short and long range evaluations.  The simplest form that 

the switching function can take is a simple distance cutoff, but more complicated forms, 

such as cell neighbor lists and other types of additive decompositions can be used.  For 

this work, atoms are treated as short range if any single atom within a sidechain is within 

a cutoff distance of another  sidechain.  Default Settings that were developed for an 

optimal minimization strategy were used 62.  The cutoffs vary according to type of 

interaction.  Each sidechain is identified as either charged or nonpolar.  All atoms in the 

given sidechain are labeled as such.  For nonpolar atoms interacting with nonpolar atoms, 

the cutoff is 15Å.  For charged-nonpolar interactions, the cutoff is 20Å, and for charged-

charged interactions the cutoff is 30 Å.  The updating scheme used for the current work is 

to update the switching function at the beginning of the each ‘outer’ iteration of the 

sampling loop.   
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While the proof of detailed balance for the switching function updating scheme is 

independent of the Born radii updating scheme, the full bookkeeping of all latent states is 

presented here for completeness.  Re-expressing the short and long range potentials in 

Eq. 56 with the short range state made explicit gives: 

Equation 72 
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The resulting (unnormalized) probability distributions are: 

Equation 73 
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Expressing the probability of a single state in terms of the decomposed states gives:  

Equation 74 
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Following the derivations presented in 54,61, the required detailed balance condition is: 

Equation 75 
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where T(j|i) is the probability of transitioning from coordinate state i to j.  Expanding this 

expression gives:  
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Equation 76 
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where α(j|i) and accL(j|i) are the selection and acceptance probabilities ‘outer’ state j from 

state i.  Following the MTSMC derivation54, the probability of selecting state j from state 

i is probability given by the following: 

Equation 77 
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where the above transition probability is the product of the individual transition 

probabilities of the inner loop: 

Equation 78 
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In the short range, or inner loop of sampling, neither the switc hing function nor the Born 

radii are updated, so that each step obeys the following detailed balance relation: 

Equation 79 
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The transition between outer states j and i obey the following detailed balance relation: 

Equation 80 
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 Combining eqs 32-35, and solving for the ratio of acceptance probabilities gives: 
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Equation 81 
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Protocols A and B follow the same updating scheme for the switching functions.  The 

acceptance probability  for protocol A is expressed in Eq. 60 as: 

Equation 82 
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The ratio of Eqs. 81 and 82 is unity:  

Equation 83 
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and therefore the sampling scheme described by Eqs 81 and 82 rigorously obeys detailed 

balance.  For all equations in the body of the text, the state of the switching function is 

not shown, but is updated according to the scheme described.  It should be noted, 

however that the ‘standard’ protocol is not updated according to this scheme, since there 

is no need to express the energies in terms of the latent states.     

The acceptance probabilities for protocol B, as given in Eq. 62 are: 
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Equation 84 
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The ratio of the true acceptance probabilities is equivalent to the acceptance probabilities 

given in Eq. 60, and the ratio is given simply as: 

Equation 85 
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Appendix B:  Superposition of Multiple Histograms 

The superposition of histograms from multiple simulations follows a procedure that 

weights the contribution of each histogram by the estimated error in each histogram at 

each bin site.  This procedure has proven to give slightly better statistics when combining 

data from multiple simulations.  We begin by generating an unnormalized histogram 

from an energy trajectory.  We start by defining a vector of uniform bins: 

Equation 86 
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where EMIN and EMAX are the minimum and maximum energies, respectively, and δe is the 

bin width, which, for the cases shown here, are equivalent for every bin.  The 

unnormalized histogram of energies for a single energy trajectory is: 

Equation 87 

∑ −−>= −
t

itiitiij bEHbEHh )()( ,1,  

where the sum over t indicates that the entire (converged trajectory) is evaluated at each 

timestep.  Here we identify the trajectory as the ith trajectory.  H(x) is the Heaviside step 

function, and the convention )( 1−> it bEH  indicates that the function has a value of unitiy 

when greater than 1−ib .  This is simply an expression of the standard method for counting 

histograms.  The normalized histogram is simply: 

Equation 88 
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A key to estimating the error in the estimate of the bin size is to assume that the variance 

is proportional to the number of entries in the bin84: 

Equation 89 

ijij h=σ  

If we use the standard error expression, we arrive at the following estimate of the error at 

each bin site: 

Equation 90 

iji
iij

ij
ij hg

gh
==

/

2
2 σ

ε  



 59

where the indices i and j refer to the simulation and bin number, respectively.  Once this 

estimate is established, we simply use this idea to count the number of uncorrelated 

entries to the overall histogram in order to estimate the error.  For a set of simulations I, 

we can generate a composite histogram )(C
Ih : 

Equation 91 
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with the error computed as: 

Equation 92 
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The main advantage to this method over a simple superposition of histograms is that it 

uses the estimate of the correlation interval for each trajectory in the weighting of the 

histograms.  This approach naturally identifies the trajectories for which kinetic trapping 

is causing anomalously large correlation times.  The error in the estimate of a correlation 

time is g +/- τ, so that an estimate of the correlation time can vary substantially from 

trajectory to trajectory. 
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Chapter 3 

Backbone Sampling:  Loop Closure Algorithms 

 

Figure 3.1 – A set of closed loops for an RNA backbone generated using the closure algorithms described.  
The endpoints are held at a fixed position, and the bond lengths and angles are also held fixed.  The loop 

closure problem solves the system of equations which give the set of dihedral angles that satisfy these 
constraints. 

 

Introduction 

 The idea of loop closure as applied to peptide systems was first introduced by 

Scheraga85,86, and applied to systems such as cyclic peptides.  Figure 3.1 shows a simple 

ensemble of closed loops for the backbone of an RNA structure.  Here we can see that 

while the endpoints are held fixed, a wide variety of structures are present which satisfy 

the loop closure constraint.  Having the capacity to explore alternative configurations of a 

closed loop can allow for the study of a wide variety of problems in protein sampling that 

are otherwise completely intractable, since the transitions for these types of motions 

would otherwise be of an inordinately long timescale.  As shall be shown in later 

chapters, it is often the case that the fluctuations of a single loop in a protein can be the 

central feature contributing to its function.   
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Figure 3.2 – Loop Closure coordinates and definitions.  a)  Coordinate labels for the tripeptide closure b) 
Scheraga coordinates with unit bond vectors c) Coutsias coordinate with bond vectors r.  Notice that the 

vectors z form a closed triangle in a plane. 
 

The goal then is to develop a way of locally sampling loop configurations while 

holding the remainder of the protein fixed.  To accomplish this task, a variety of 

geometric algorithms are available, but the present work will focus on the original work 

of Scheraga and related implementations of Dinner87, and the closely related work of 

Coutsias et al88, as these algorithms are straightforward to implement in a way that allows 

for uniform sampling of dihedral coordinates.  Both of  the closure relations presented 

have an associated Jacobian determinant that can be computed directly.    

The loop closure equations presented here are only a small subset of a very large 

body of work related to protein modeling and other fields of robotics and kinematics.  

Even the small sampling of equations here are only discussed to help to better understand 

the nature of the implementations involved.  Much of the fundamental work in this area 

was conducted with Prof. Evangelos Coutsias, who very generously provided working 

loop closure codes that could be interfaced directly to the routines in the Protein Local 

Optimization Program (PLOP). 
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Loop Closure Equations 

Scheraga Closure 

 The Scheraga closure is presented here primarily to motivate the 

development of the Jacobian determinant.  Referring to Figure 3.2, and following 

Dinner’s notation, we define each bond vector in the following way:  

  

Equation 93 

11 prRTr −−− += iiiii 1  

where ri is the bond vector pointing in the same direction of ui, pi points to the origin of 

the ith coordinate system, and direction and T and R are rotation matrices, given by: 

Equation 94 
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where θ and φ are the bond angles and dihedrals, respectively.  This notation is somewhat 

standard, based on Flory’s original descriptions.  For the purposes of this work, the 

ω angles are held fixed, and so the transformation from u2 to u3 (for example), has an 

additional rigid body transformation (comprised of a 2 rotations and a displacement), 

which is implied, but omitted for simplicity.  The closure equation that results is simply a 

statement of the following constraint: 
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Equation 95 
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with the additional constraints that place the coordinate system: 

Equation 96 
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where e1 = (1,0,0)T and e2 = (0,1,0)T.  Since u6 is a unit vector, there are only 2 degrees of 

freedom specified in Eq. 96.  The direction of v relative to u6 gives the angle γ = φ6, so 

that, when the 3 degrees of freedom specified by the constraint S are counted, a total of 6 

degrees of freedom are specified.  The bond angles and lengths are held fixed, such that 

the only unknown degrees of freedom are the dihedral degrees of freedom as given by the 

rotation matrices R.  There are a total of 6 unknown dihedrals, and so a system of 

equations is now fully specified. 

 The solution of these equations is nontrivial, and not presented here.  A salient 

feature of the system of equations is pointed out, however.  There exists the possibility of 

multiple solutions for any given system of equations, and it is a requirement of the 

algorithm to be able to generate the full set of solutions for the system of equations.  This 

is accomplished by a variety of trigonometric transformations, which will ultimately lead 

to a polynomial of 16th degree86, permitting the use of Sturm’s method to locate the full 

set of numerical roots to a polynomial equation. 
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Coutsias (CSJD) Closure 

 The Coutsias closure88, developed by a collaborator, is presented here as well.  

The variables of interest are presented here to motivate the Jacobian formulation.  The 

definitions here follow a slightly different convention, so we shall define the variables 

more carefully.  This formulation follows the CSJD paper. 

The vectors of interest are defined as follows:  

Equation 98 
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and a simple coordinate system can be defined using the planar triangle formed by the 

closed loop of z vectors: 

 

Figure 3.3 – Internal coordinates for CSJD closure (Figure 3.adapted from Coutsias et al88) a) dihedral 
angles τ which are the unknown variables, b) Internal variables definitions c) τ and σ are directly related. 
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Equation 99 
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The angles are defined as follows: 

Equation 100 
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The vectors pointing from the α carbons to the adjacent atoms can be defined in terms of 

the internal coordinate system: 

Equation 101 
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The constraints can now be enforced by imposing the rigidity of the angles at the nodes: 

Equation 102 

iii θστ cosˆˆ 1 =⋅ −rr  

resulting in a system of 3 equations and 3 unknowns (τ1,τ2,τ3).  Further rearrangement of 

the equations is detailed in Coutsias et al, but it is noteworthy that the resulting equation 

is also a polynomial of 16th order, which is amenable to the same solution method as the 

Scheraga closure (although a more sophisticated method is used here).  The closure 

equations always produce an even number of solutions, and the solutions are equivalent 

using either the Scheraga or Coutsias method.  It is also noteworthy that the formulation 
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presented here connects to a large body of kinematics literature, and future work may 

expand on these formulations for more specific loop closures. 

 
The Jacobian coordinate transformation 

 Now that the variables have been defined for each of the formalisms, is of interest 

to derive the Jacobian in both coordinate systems.  The Jacobian coordinate 

transformation allows us to express the change in differential volume (or hypervolume) 

when transforming from one coordinate system to another.  Expressing the 

transformation from coordinates a to b, we can write:  

Equation 103 
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Where da=da1da2…daN and db=da1da2…daN.  This is often thought of as a chain rule in 

higher dimensions.  The Jacobian is the determinant of the Jacobi matrix: 

Equation 104 
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The Jacobi matrix is a square matrix, sometimes notated as: 

Equation 105 
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Equation 106 
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Jacobian in Flory-Scheraga Coordinates 

 The Jacobian required by the concerted rotation in the Flory-Scheraga coordinate 

system comes from the following transformation: 

Equation 107 
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 Where the coordinates shown are given in Figure 3.2a.  The reason for the 

transformation here is due to the fact that the dihedral space would not be sampled 

randomly due to the loop constraints.  

 The Jacobian shown is not easily calculated, but the inverse relation is more 

straightforward to compute.  This was first calculated by Dodd89.  Here we present is in 

contrast to the Jacobian calculated in SCJD coordinates.  The inverse Jacobian is related 

in the following way: 

Equation 108 
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Equation 109 
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which is a 6x6 square matrix.  With some rearrangements, a 5x5 matrix is obtained, and 

can be expressed in terms of the cross products of vectors: 

Equation 110 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⋅×⋅×⋅×⋅×⋅×
⋅×⋅×⋅×⋅×⋅×

−×−×−×−×
=

∂
∂

265264263262261

165164163162161

451351251151
65

)()()()()(
)()()()()(

0)()()()(

)(
),,(

euueuueuueuueuu
euueuueuueuueuu

rrurrurrurru

φ
ur γ  

The details of how these matrices are obtained are well documented, and we present them 

here in comparison with the CSJD Jacobian.   

 

Jacobian in CSJD Coordinates 

 The Coutsias closure gives a system of equations with 3 unknowns, rather than a 

system of equations with 6 unknowns.  It stands to reason then that a simpler Jacobian 

would be possible to compute.  To begin, the local conformer (backbone) coordinates can 

be written as: 

Equation 111 

)()()(}{ 333222111
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where we shall adopt a local coordinate system of the loop as our basis (say, coordinate 

system 3).  The vectors m are the bond vectors connecting the carbonyl carbon and 
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nitrogen groups.  Each triplet of variables is dependent, and can be reduced to a single 

vector variable.  For example, the bond angle constraint given by: 

Equation 112 

)cos(ˆˆ 1 iii dd θστ =⋅ −rr  

Ιmplies that a series of rigid rotations will transform all rσ
 to rτ, with a Jacobian of unity.  

Since the (fixed) dihedral rotation is not given in SCJD, we will not express the rotations 

explicitly, in order to avoid extra variables.  The second angular axis of rotation can be 

chosen from the internal coordinates of the alpha carbon.  Likewise, the constraint on δi 

implies that the m vectors can be generated by similar rigid rotations about the bond 

angle and δi.  These rigid rotations constrain the extra variables to fall along the path of 

integration of the 3 independent variables.  The three independent vector variables are: 

Equation 113 
τττ
321 rrr ddd  

We could have easily chosen the sigma vectors as the independent variables, which 

would ultimately lead to the same Jacobian.  This is analogous to the starting point of the 

Scheraga closure (Eq. 107).  Another way of expressing differentials of this type is: 
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where the 3x3 matrix in square brackets is the effective Jacobi matrix.  These vectors 

must be expressed in the same basis set.  It is worthwhile to restate the definition of rτ in 

SCJD: 

Equation 116 
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Where we have added the subscript <i> to indicate which coordinate set basis is being 

used, since there are three basis sets used in the loop.  The relation of one basis set to 

another is given by bi+1=Ci+1bi, where: 
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It is convenient to express the partial derivatives in the following notation: 

Equation 118 
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where the subscript <i> again reminds us of which basis we are expressing the vector.  

We now express the effective Jacobi matrix compactly as: 

Equation 119 
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Where each column has 3 elements.  Here, we are using 3rd basis set, since z3 is held 

fixed as part of the loop closure requirement.  Notice, however, that the 3rd basis does not 

remain fixed.  We can express the Jacobi matrix in terms of the native bases as: 
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Equation 120 

[ ]
><><><

=
∂

∂
332212111 )()()(

)(
)(

rrCCrC
τ

r
δδδ

σ

 

We can now express each column explicitly in terms of the local angular coordinates: 

 

Equation 121 
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 It is not necessary to express this matrix in angular coordinates, although it is 

believed to be more efficient.  If we wish to express the Jacobian in terms of Cartesian 

components, as does Theodorou and others, we can write: 

Equation 124 
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In practice, these Jacobians should be equivalent, and example calculations have shown 

this to be the case, but the original Dodd and Theodorou Jacobian is in the current 

implementation.  The novel calculation of the Jacobian in CSJD is presented here for 

completeness and general interest. 

 

Implementation Details 

 Since the loop closure algorithm works only for 6 dihedrals, additional logic is 

added to extend this functionality to loops of arbitrary length.  Figure 4.5 illustrates how 

this is implemented.  As is the case with all previous descriptions, the ω angles are held 

fixed to the native values.  Each a carbon is treated as a node.   

 To begin, a φ or ψ angle is chosen at random and perturbed uniformly.  This is 

referred to as the driver angle.  A triangle connecting α carbons is constructed randomly 

about this perturbation, and the triangle that is constructed is treated as a closed loop, 

with only the φ/ψ pairs adjacent to the α carbons selected allowed to move, with the 

remaining portions of the loop treated as rigid bodies.  This procedure requires a loop 

with at least 4 α carbons, so that one α carbon node contains the driver angle, and the 

remaining 3 α  carbon nodes can be used to construct the loop.  A stationary set of 

solutions is also generated, for which the change in the driver angle is zero.   



 73

 

Figure 3.4 – Loop Closure for a loop of arbitrary length.  The dark gray arrow points along the randomly 
selected driver angle dihedral, and the light gray triangle shows a randomly constructed triangle around the 

driver angle.  The 6 free dihedrals (black arrows) are constructed to be directly adjacent to the Cα nodes 
forming the triangle. 

 

  This procedure generates a minimum of two and a maximum of 32 solutions.  A 

solution is selected randomly from this set with the following probability: 

Equation 125 
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where )'(φSJ is the set of dihedrals selected from the ensemble of solutions to the loop 

closure equations, )( )0( =Δ D
iJ φφ  is a member of the stationary ensemble of solutions, for 

which the number of solutions is )0( =Δ D
SN φ .  The set of solutions associated for which the 
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driver angle is assigned a uniform variate ξ is )( )( ξφ =Δ D
iJ φ , with the number of solutions 

being )( ξφ =Δ D
SN .  The minimum number of stationary solutions is 2, 1 of which is the ‘self 

solution’ or, unmodified coordinate state.  The number of solutions is always even, due to 

the symmetry of constructing a loop.  The minimum number of solutions with the 

perturbed driver angle can be zero, as the driver angle can generate a set of dihedrals for 

which there is no solution.  Overall, there is a guarantee of at least 2 solutions to choose 

from every time a loop closure move is generated. 
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Figure 3.5 – Distribution of φ/ψ angles with and without Jacobian weighting of selection for an 11 residue 
peptide.  No forcefield is used in the selection or acceptance probability. 

 

 Figure 3.5 shows a stacked histogram of φ,ψ  angles sampled using a 50% 

mixture of uniformly perturbed dihedrals and loop closure moves.  This closely follows 

previous methods to demonstrate the uniformity87,89, and a similar approach is used here.  

The free dihedral perturbation is needed in order to allow the loop closure moves to 

sample over the ensemble of all possible loop closure configurations, as an ensemble of 

dihedrals for a single closed loop closure will have geometrically occluded regions of 

space. The motivation for showing the non Jacobian sampling is to show that the 
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introduction of the free dihedrals does not guarantee uniformity, and that the use of the 

Jacobian generates a uniform distribution. 
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Figure 3.6 – Proline Loop Closure a) Loop closure variables (Figure 3.adapted from Ho et al90) b) Example 
of an ensemble of proline states and related backbone angles c) Side view showing alternative pucker states 

d) top view showing alternative pucker states. 
 

Specialized Closures - Proline Pucker 

 The proline ring is a cyclic five member ring that is constructed about the Cα-N 

peptide bond, which directly couples the backbone angle91.  The closure equations are 

presented in Ho et al, and Figure 3.1a shows the dihedral coordinates of interest for this 

system.  There are 3 properties of this closure that are of relevance to the design.  The 

first is the fact that the loop closure equations permit up to 2 solutions, which represent 

what is typically understood to be ‘pucker up’ and ‘pucker down’ solutions.  The second 
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is that Cβ− Cγ− Cδ angle is allowed to fluctuate to accommodate the strained geometry 

of the ring, which deviates from detailed balance in the sense that the bond angles should 

be held fixed. The third is that any perturbation to the backbone angle of a proline must 

be screened in some way to ensure a closed proline loop is feasible to construct. 

a) b)a) b)

 

Figure 3.7 – Effect of proline sampling on accessible configurations of TIM a) TIM with no proline 
closure moves  closed form is in blue and open form is in red. b) Same simulation conditions, but with the 

proline closure added. 
 

 So, for a sidechain perturbation of proline, (where the backbone is not necessarily 

perturbed), the sampling consists of solving the closure and selecting between the pucker 

states with equal probability.   For any loop closure move, the move is first screened to 

see whether the φ angle falls within the allowable range, and then a closure move is 

generated with the new perturbed angle, followed by a selection of pucker state as 

described above.  No Jacobian is computed for this closure.  Typically, the pucker 

selection is very strongly enthalpically driven, and so the deviation from detailed balance 

in these cases is not even detectable as a source of error.  Figure 3.7 shows an example 

trajectory of the loop of TIM, which is flanked by prolines.  These effects are particularly 

pronounced for Monte Carlo trajectories.  Notice that even harmonic fluctuations are 
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inaccessible, since any perturbation requires the correct geometric concerted move of 

coordinates.   

 

Future Directions for Loop Closures 

 Loop closure algorithms and there extensions have made key aspects of Monte 

Carlo sampling accessible.  Simple extensions to the current closure approach could 

include more sophisticated definitions of what a ‘loop’ is, which could include disulfide 

bridging, or virtual geometric networks (such as hydrogen bonding), whose properties are 

thought to be conserved.  Of course, the extension to DNA and RNA is of interest, with a 

host of implementation issues to consider.  The kinematics description also affords a wide 

variety of generalizations, including those which conserve geometries in new and more 

helpful ways.  A simple example of this is to generate a loop closure move which 

preserves the location of a point along the loop in Cartesian space, and reconstructs 

alternative configurations according to this new constraint.  As new systems and 

approaches emerge, optimal geometric algorithms will always play a central role in an 

optimal design. 
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Chapter 4 

  Monte Carlo sampling with hierarchical move sets: 
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Matt Jacobson 

Department of Pharmaceutical Chemistry University of California at San Francisco 

 

Abstract 

We present a new Monte Carlo method for sampling rugged energy landscapes 

that allows for efficient transitions across sparsely distributed local basins.  The trial 

move consists of two parts:  the initial move consists of a large, coarse trial move, and the 

second part is a Monte Carlo trajectory generated using smaller trial moves.  To maintain 

detailed balance, a reverse transition probability is estimated along a path that differs 

from the forward path.  Since the forward and reverse transitions are different, we label 

the algorithm POSH (Port Out, Starboard Home) Monte Carlo.  The process obeys 

detailed balance to the extent that the transition probabilities are correctly estimated.  

There is an optimal range of performance for a given energy landscape, which depends 

on how sparsely the low energy states of the system are distributed.  For simple model 

systems, there is no upper bound to the number of inner steps.  The phosphopeptide Ace-

Gly-Ser-pSer-Ser-Nma is studied as a proof of principle for the algorithm in a 

biomolecular application.  For the system studied, we show that POSH sampling 
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generates precise distributions using the number of inner steps set to up to 20.  NMR 

observables also compare well with experimental values. 

 

Introduction 

The Metropolis algorithm4 has been in use for over 50 years, with generalizations 

of the idea applied to fields far beyond the field of molecular modeling, for which it was 

initially developed.  For systems with densely packed geometries, the generation of good 

trial moves can be a substantial challenge.  A variety of methods in the field of liquid 

simulation have been developed to address this type of problem92,93,94.  For polymeric 

systems, chain growth methods11,13 and other methods using the idea of biased sampling 

10,95,96 have become a staple of the field, as well as simple pivot moves97.  The Rosenbluth 

methods have been applied in continuum applications as well98,99. 

For biomolecular systems, methods such as Monte Carlo Minimization100 have 

emerged as a practical method for sampling landscapes that have multiple, sparsely 

distributed minima.  This produces an approximately correct distribution, and is able to 

produce an ergodic distribution of configurations.  More rigorous estimates basin entropy 

can be made, as is the case with the Mining Minima approach101,102. 

There are many sampling algorithms which are designed expressly for crossing 

large energetic barriers and obeying, or nearly obeying, detailed balance.  Most of these 

involve generating a Markov chain of states (a walker) in an expanded state space103, 

which can be accepted to the configuration space of interest based on a modified 

acceptance probability 104-108.  The most widely adopted of these types is the replica 

exchange method 109, and other closely related methods110-113,  which are particularly well 
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suited to parallel processing.  The success of these approaches has led to a variety of 

sampling methods that emphasize locating global minima.  In many cases, particularly in 

difficult biomolecular optimization problems such as protein folding2,3, drug design, and 

homology modeling114-117, where the challenges of structure prediction are driven 

primarily by enthalpic and geometric considerations, the use of minimization and other 

optimization approaches have become the mainstay of the field, with entropic 

considerations added as a secondary effect.   

In this work we propose a simple, general method for sampling rugged landscapes 

that obeys detailed balance.  The basic idea is to generate a large initial trial perturbation, 

followed by a series of small Monte Carlo moves to anneal the initial trial move to a 

lower energy, and accept resulting trial move with a modified acceptance probability. 

 

Motivation 

Partitioning of configuration space 

A Monte Carlo sampling strategy seeks to evaluate integrals of the type 

Equation 126 
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where q is the set of all coordinates of the system of interest, β = (kBT)-1 is the inverse 

temperature, and U(q) is the potential energy.  The observed quantity O  is averaged 

over many instances O(q).  Z is the normalization constant, or configuration integral. 
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The Boltzmann factor in the integrand is the unnormalized probability 

distribution. 

Equation 127 

))(exp()( qq Up β−=  

Often, a natural partition of the entire space becomes convenient.  A common instance of 

this assertion is the Born-Oppenheimer approximation, where the nuclear degrees of 

freedom are considered to be uncoupled, or adiabatic, relative to the electronic degrees of 

freedom13.  This type of approximation also appears in the formulation of the implicit 

solvation model, where the solvent degrees of freedom are integrated out, and an 

approximate model for the interaction between a macromolecule  and the solvent (y) is 

introduced 19.  Propagation along adiabatic degrees of freedom has been introduced in 

both Monte Carlo98,118,119 and Dynamical118-120 contexts.  For the application considered, 

the coordinate decomposition is between protein backbone and sidechain coordinates.   

 The motivation for sampling separate subspaces is often guided by the assertion 

that a partitioning of configuration space can be defined where the covariant fluctuations 

between the partitioned subspaces is small.  This can often be justified by a dynamical 

argument, as is frequently the case for the examples given above.  The practical 

motivation for decomposition of subspaces is often much more compelling, however.  In 

proteins, for example, different geometric algorithms are appropriate for sampling 

backbone 86,88 and sidechain degrees of freedom121, and the challenge lies in combining 

these trial moves in a way that preserves ergodicity, as well also generating a high 

acceptance ratio, and, of course, the expected distribution of states. 
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Figure 4.1 a) schematic of the multiple subspace sampling problem for proteins.  Backbone and 
sidechain coordnates are f and c, respectively  b) Generalization of the 2 subspace sampling problem.  x 

and y represent subspaces to be sampled c) Monte Carlo sampling of a 2 dimensional landscape.  Points in 
red are trial configurations, and points in black are accepted configurations. 

 

Figure 4.1a shows a schematic to motivate the development of a sampling 

protocol.  The complete configurational space is partitioned into torsional coordinates (φ) 

of the backbone and torsional coordinates of the sidechains (χ).  Consider a trial move 

that consists of randomly selecting a subspace to perturb (φ or χ), and accepting with the 

Metropolis criterion.  A single perturbation in backbone space may generate a 

configuration with the sidechains in a high energy state.  Likewise, a perturbation of 

sidechains only may also lead to a high energy state.  Although a series of samples from 

the trial state could generate a lower energy state, the initial move would be rejected 

outright with a standard scheme.  If both degrees of freedom were perturbed 

simulaneously, however, the likelihood of generating a reasonable trial can become 

vanishingly small.  The generalization of this problem to a topological model and a 

continuum representation is shown in Figure 4.1b.  For the remainder of the work, the 

original coordinate state will be labeled as state 1, the initial trial state will be state 2 and 

the final trial state will be labeled state 3.  The reflected trial state, labeled as state 4, will 

be defined shortly. 

1
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Figure 4.1c shows two basins separated by large energy barriers on a simple two 

dimensional energy landscape.  The trial moves shown here are also unable to sample 

across basins effectively, due to the nature of the trial move set.  A system that remains in 

a macrostate for long times relative to local correlations is often referred to as quasi-

ergodic105, frustrated/glassy122, or kinetically trapped.  In the cases shown for Figure 4.1, 

the most intuitive solution is to generate a series of Monte Carlo steps in the alternate 

subspace in order to locate a low energy coordinate, and then accept the final trial 

coordinate with some reasonable probability.  In this sense, the transition the initial trial 

to the final trial can be thought of as an annealing step.  

 

Theory 

Detailed Balance 

To determine the proper acceptance criterion, the condition of detailed balance is:  

Equation 128 

jijiji TpTp =  

 

 
 Figure 4.2  -  POSH pathways a) Adiabatic pathway b) Hybrid Pathway c) Diagonal Pathway.  Calculation 

of coordinate 4 is described in the text, and in Figure 4.3.  Coordinate labels in 4.2a correspond to state 
numbers, and are equivalent in figures b and c. 
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where i and j are two arbitrary coordinate states with probabilities )( ii pp q=  and 

)( jj pp q= , as given by Eq. 127, respectively.  The transition probability Tij  is the 

probability of transitioning to coordinate state j from state i, and Tji is the reverse 

transition probability.  The condition of detailed balance will be applied to the states 1 

and 3, as shown in Figure 4.2: 

Equation 129 

313131 TpTp =  

where the forward transition consists of a trial move followed by a chain of moves.  In 

the cases described by Figure 4.2a, for example, the initial trial could be also notated as 

p2=P(x’,y), where x’ is a trial move, and so on, as labeled.  This condition for (super) 

detailed balance as shown in Figure 4.2a was originally stated by Siepmann98,99.  In his 

derivation, the degrees of freedom for the initial perturbation were orthogonal to the 

annealed degrees of freedom, under the adiabatic assumption.  Defining the topology of 

the states is sufficient to derive a slightly more general form, with the assignment of 

coordinate states added only for clarity.  The 3 cases of interest are described in Figure 

4.2.   

The condition of detailed balance is met only if we choose to enforce the 

flowrates between states 1 and 3.  If all states were accounted for (1,2,3 and 4), then only 

the condition of balance would be satisfied 9.  In either case, however, the satisfaction of 

Eq. 129 will ensure a proper distribution of states.  
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Hierarchical Perturbations 

The general scheme is a hierarchical decomposition of move sets.  The initial 

perturbation is designed to be a large move which will cover large regions of 

configurational space, while the series of trial moves in the ‘inner loop’ are much smaller, 

and designed to be an annealing move. The initial trial move, labeled )2,1(ξ , is, for all 

cases here, a vector of uniform variates over some domain ]2/,2/[ )2,1()2,1( dd− , where 

)2,1(d  is a vector of the same dimension as the complete space (with zero entries for the 

degrees of freedom that are not sampled).  The series of Monte Carlo steps in the inner 

loop use a different perturbation type, )3,2(
nξ , where n is the inner step number, and the 

domain is ]2/,2/[ )3,2()3,2( dd− .   

Figure 4.2 shows schematically the three main ways that the perturbations can 

differ.  For the adiabatic pathway, the initial perturbation is only along one subspace (x), 

while the annealing steps are along y coordinate only.  For the hybrid pathway, the initial 

perturbations are in x, while the remaining perturbations are in x or y (or both).  Finally, 

the diagonal path allows for perturbations in both x and y in both the initial and final step.   

The essential feature of the algorithm presented is that the perturbation domains 

)2,1(d  and )3,2(d  perturbations differ in some hierarchical way.  Typically, the initial 

perturbations will be larger, such that local basins can be traversed.  The annealing step 

uses smaller perturbations to search for nearby low energy states from the initial trial.  As 

long as the total space is covered by the combination of perturbations, meaning that there 

are no zero values in the vector sum )3,2()2,1( dd + , the complete sampling of space is 

possible.   
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This approach is not, in and of itself, guaranteed to solve the quasi-ergodic 

problem, however.  The connectivity between states that is generated by perturbation 

domain )2,1(d  can still limit the accessibility of alternative macrostates.  The use of the 

annealing steps, however, permit larger move sets in the initial trial step that might not 

otherwise be practical.  Table 4.5 describes the types of move sets used for all 

simulations generated for the present work.  

 

Acceptance Criterion   

The forward transition can be defined as a combination of moves described 

diagrammatically in Figure 4.2.  The forward transition probability follows the pathway 

(1 2 3), which is a combination of the (1 2) transition and the (2 3) transition.  

While it is possible to require that the reverse transition be along the pathway (3 2 1), 

the resulting acceptance probability depends on the energy of the initial trial state, which 

does not improve the acceptance probability.  This is shown explicitly in Appendix A.  

Here, an alternate reverse path is proposed.   

To emphasize the difference in forward and reverse paths, we describe this as the 

POSH pathway (Port Out, Starboard Home).  Here, state 4 consists of the reverse trial 

perturbation, followed by a trajectory which arrives at state 1.  This can be described as: 

Equation 130 

31413431323121 accpaccp αααα =  

where αij and accij are the selection and acceptance probabilities, respectively, of state j 

from state i.  The trial coordinate q2 is generated as:  
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Equation 131 

)2,1(
12 ξqq +=  

where )2,1(ξ  is a uniform deviate vector that perturbs along the (1 2) portion of the 

pathway.  Figure 4.3a shows the forward path construction in detail.  The final trial 

coordinate q3 is generated using a series of Monte Carlo transitions which will be 

described shortly, and the reflected trial coordinate q4 can be defined in terms of the final 

trial coordinate and the deviate )2,1(ξ used to generate the trial coordinate: 

Equation 132 

INqqq
ξqq
δ+=

−=

14

)2,1(
34  

where 

Equation 133 

23 qqq −=
INδ  

is the change in position from the trial position to the final trial position after a series of 

inner steps NI.  

In principle, the coordinate state q4 need not be defined in terms of the forward 

random deviate to preserve the property α12 = α34.  The choice of the reflected trial 

coordinate given by Eqs. 132 and 133 have the convenient property of allowing the 

transition pathway (4 1) to be defined using the information from the forward trajectory, 

forming a ‘closed loop’.  The (2 3) and (4 1) selection probabilities are given by the 

following transition probabilities:  
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Equation 134 
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where )(
23

INT  and )(
41

INT  are the transition probabilities along the respective Markov chains 

of length NI .  Solving for the ratio of acceptance probabilities gives: 

Equation 135 
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Eq. 135 obeys detailed balance to the extent that the transition probabilities are 

correctly estimated.  The transition probability of a multistep stochastic walk can be 

described by the Chapman-Kolmogorov equation: 

Equation 136 
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where k=0 corresponds to initial state i and k = NI corresponds to state j, and  

),(
,11

),( )|( ji
kkkk

ji tt −− =qq  is the  

transition probability from state k-1 to state k (at step k).  An estimate of this integral over 

all paths can be made by computing the product of a single series of transitions:  

Equation 137 
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Eq. 136 is an exact description of the transition probability, which incorporate all 

possible paths connecting states i and j, while Eq. 137 is an estimate based on the 

transition probabilities recorded from a single trajectory.  
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Figure 4.3 Notation and indexing for transition matrix construction Coordinate states 1,2,3 and 4 are 
described in the text.  The perturbation from 1 to 2 is given by the vector ξ(1,2), which also connects states 3 
and 4.forward trajectory along the (2 3) pathway is connected by a line with black dots, which represent 

coordinates along the annealed path.  A set of trials at step (k-1 k) is shown for reference.  For clarity, the 
case of an accepted trial move in both forward and reverse transisitions are shown.  The white circles are 
trial moves that are not accepted.  For the forward trajectory, the accepted move is a black dot connected 
with a gray arrow.  The gray arrow represents the transition for which a probability is computed.  The red 
and blue arrows show the difference vectors for which the reverse trajectory is constructed.  The reverse 
transition probability connects the k-1 reverse coordinate to an accepted trial coordinate, which is not 

necessarily the same as the next step in the reverse pathway.  The only difference between a) and b) is in 
the way that the reverse coordinate is constructed using the difference vectors (shown in red and blue) a) 

True Reverse Pathway b) Concurrent Reverse Pathway. 
 

Forward Transition Probability 

The forward transition probability is estimated using the record of the selection 

and acceptance probabilities of the single trajectory generated.  For the purposes of this 

work, it is assumed that the selection probability is uniform for all trial moves, so that 

only acceptance probabilities need to be computed.  If a trajectory in the inner loop is 

generated using the Barker acceptance criterion, the transition probability at the kth inner 

step is: 
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Equation 138 
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where the the trial coordinate T
k 1−q  is generated using the uniform deviate: 

Equation 139 
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T
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The selected coordinate S
k 1−q  is the coordinate resulting from the application of 

the Barker criterion.  A random number is generated over the domain 

)]()(,0[ 11
T
kk pp −− + qq .  If the random number is greater than or equal to )( 1

T
kp −q , the trial 

move is accepted, and T
k

S
k 11 −− = qq .  Otherwise, the trial move is rejected, and 11 −− = k

S
k qq . 

Rewriting the transitions of Eq. 138 with the Metropolis transition probability 

gives: 

Equation 140 
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Dellago uses a similar relation to define the Metropolis action123.  The usual 

Metropolis criterion is applied to select or reject the trial coordinate: 

Equation 141 

( ) ))(/)(,1min( 11
)3,2(

,1 −−− = k
T
kMetropoliskk ppacc qq  

Notice that the notation and generation of the trial coordinate are identical to that 

of Eq. 140.  In principle, any record of transitions which can be maintained can be used in 

lieu of either of the two expressions presented.  In practice, however, the relations which 
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obey detailed balance have given good results for the model systems studied.  Using 

Metropolis transitions preferable approach for most types of simulations124, and this is 

true for the present case as well.  For the remainder of the paper, however, the transition 

elements will be described using the Barker acceptance probability, since the notation is 

easier to read. 

 

Reverse Transition Estimates 

It should be noted that the estimate of the (4 1) transition probability represents 

a challenging  class of problems whereby the endpoints are known, and the calculation of 

all paths connecting them as described by Eq. 136 needs to be estimated.  In general, the 

estimate of this probability is accomplished through importance sampling.  Techniques 

such as Transition Path Sampling, have gained wide use in generating such estimates 125-

127, whereby macrostate endpoints are defined, rather than fixed coordinate states.  This is 

generally a favorable approach, especially since the forward (2 3) trajectory can be 

thought of as a importance sampled transition path.  While Transition Path Sampling is 

primarily a method for estimating rate constants, it contains similar notions of transitions.  

Here we present an alternative method for estimating a transition probability, which has 

been demonstrated to be useful here, but there is clearly an interest in generating more 

robust and efficient methods for estimating these transition probabilities.   

Reverse Transition Pathway (True) 

  Figure 4.3a describes the reverse transition path construction.  Since it most 

closely mirrors the forward path, we label this as the true reverse transition pathway.  To 
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construct the reverse pathway, we first keep track of the displacement from initial trial 

state at step k: 

Equation 142 

2qqq −= kkδ  

The reverse path is defined using the displacements from the forward path.  The 

true reverse transition pathway can be estimated using the forward trajectory information 

in the following way:   

Equation 143 

kk qqr δ−= 4  

where kr is the kth coordinate state in the reverse pathway as constructed in Figure 4.3a.  

The transition probability from state k-1 to k is recorded as: 

Equation 144 
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where )1,4(
11 kk

T
k ξrr += −−  is constructed using the same perturbation strategy (using domain 

)3,2(d ) as the forward case.  The selection of coordinate S
k 1−r  is follows the same 

procedure as in the forward pathway.  It is important to notice that the selected coordinate 

k
S
k rr ≠−1 , since )( kp r , can easily become vanishingly small relative to )( 1−kp r  in the 

reverse trajectory for complex landscapes, whereas )( 1
S
kp −r  is selected according to its 

probability weight.  The coordinate 141 −− −= kk qqr δ , forms the anchor point at each step 

along the reverse pathway, from which a trial coordinate is generated. 
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One practical consideration when using eqs 18-20 to generate the reverse 

trajectory is that it requires the storage of the complete forward trajectory 

},...,{ 21 INqqqq δδδδ =  prior to generating the reverse trajectory.  Since these trajectories 

are generated using random deviates, this can be accomplished by maintaining a list of 

the random seeds, rather than an exhaustive storage of coordinate states.  Even with this 

approach, however, it is can be cumbersome to reconstruct the entire reverse trajectory 

only after the entire forward trajectory has completed. 

 

Concurrent Reverse Transition Pathway 

To simplify the storage requirements, an alternative path for the reverse 

coordinate can be defined 

Equation 145 

kkNI
qqr δ+=− 1'  

which provides the same connectivity between state 4 and state 1 (See Figure 4.3b).  

Using this definition of the reverse coordinate path, the following transition can be 

defined:   

Equation 146 
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This pathway can be generated as the forward trajectory is being generated (since 

it doesn’t require knowledge of the final trial state).  The storage requirements are much 

less for this pathway, and it is slightly easier to implement.  A discussion of the errors 

introduced by using either of these pathways is in Appendix C. 
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Figure 4.4 Illustration of forward and reverse transition probability calculations.  The possible ensemble of 
paths connecting states 4 and 1 represent putative trajectories that exhibit similar transitions in various 

stages of the trajectory. 
 

Qualitative Justification for the Reverse Pathway Estimation 

 The primary motivation for using accepted trial moves (using either method) at 

each step in the reverse pathway is to maintain numerical stability.  Since the reverse 

pathway is constructed in a region of space that has not been located using importance 

sampling, as is the case with the forward pathway, reconstructing the path exactly will 

generate vanishingly small probabilities for even the simplest of landscapes, such as 

those studied for this work.  The fact that the states are no longer connected contiguously 

may in fact improve the estimate, as a collection of transitions along the reverse pathway 

is estimating an ensemble of reverse pathways (see Figure 4.4).  In fact, the key challenge 

to improving this sampling strategy is an understanding of how to efficiently and 

accurately estimate these transition probabilities.  
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Results and Discussion 

Error Metric and Efficiency Considerations  

As a general measure of the quality of the sampled distribution versus the true 

distribution, we can define the following ergodicity metric which is commonly used 

assessment of sampling quality 104,128,129: 

Equation 147 
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where 2χ  is the mean squared error (MSE) over the course of the entire simulation, NB is 

the number of bins, G(xi,yi)  is the normalized distribution as described in Appendix B.  

H(xi,yi) is the normalized histogram at the square bin centered about (xi,yi), with 

dimensions δbxδb. 

To compare trajectories, the ratio of MSEs is evaluated using the same number of 

energy evaluations throughout the entire trajectory, which includes those energy 

evaluations in the inner loop.  For an inner loop of length NI, the number of energy 

evaluations required is 2(NI+1) per outer step.  We can define a simple improvement 

metric: 

Equation 148 
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Where the MSE of a standard simulation, 2
Sχ  is computed using the number of 

steps, defined as NSTD.  In order to ensure a fair comparison, the total number of energy 

evaluations is held constant, such that NO=2NSTD / (NI+1), where NSTD is the number of 
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energy evaluations of a ‘standard’ simulation (with no annealing step).  Thus, while a 

larger number of inner steps will almost always improve the acceptance ratio, it will not 

always improve the efficiency of sampling, due to the cost of generating the trial move. 

Figure 4.5a shows 3 landscapes, each with evenly distributed arrangements of 

equivalent basins in the same domain.  The basins are identical each with parameters 

given as landscape G in Table 4.4.   

For NG=4, the improvement decreases to a minimum of 0.8 times that of the 

standard simulation.  For NI =4, there are simply not enough inner step moves to reliably 

locate nearby basins because the large initial trial move in the sparse space will very 

rarely land in a favorable region of space.  At NI = 9, however, the annealing steps begin 

to locate basins, recovering a nearly equivalent MSE to the standard simulation.  At NI 

=9-39, a noticeable improvement is observed, which tapers off at NI =39, since the cost of 

a trial move is 80 times that of a standard simulation.  The total number of accepted outer 

steps is a good measure of the effectiveness of the sampling, and is shown in Figure 4.8c.  

The data show that the highest number of outer steps accepted for this landscape is at NI 

= 9.  The improvement in error at NI =39 occurs even though there are fewer newly 

accepted configurations because the trial moves are more decorrelated, which will  also 

serve to improve the statistics.  

For NG = 9, and NG = 16 a similar drop in efficiency is observed at the lower inner 

loop settings.  The improvement is recovered however, for the NG = 9 case.  For the NG = 

16 case, the standard sampling approach is more effective, as the basins are sufficiently 

densely packed that a POSH scheme is no longer needed.  Note also that the number of 

newly accepted outer steps is much higher for the standard setting (NI=0). 
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a)

b)
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Figure 4.5:   Efficiency of POSH sampling depends on the sparsity of minima.  a) Schematic of 
Landscapes sampled  Colors correspond to legend.  Each circle represents a single gaussian basin (Table 
4.1, landscape G) b) MSE versus number of inner steps.  c) Number of steps accepted.  The number of 

outer steps in each case is adjusted such that the total number of energy evaluations is the same (100k) for 
each setting.  See table 4.5 for sample settings. 

 

Since the algorithm was motivated by an interest in locating disjoint minima in a 

sparse space, it is not surprising to see the performance depend strongly on the sparsity of 

the basins.  So, for a given landscape and perturbation protocol, there exists an optimal 

NI, which decreases to 1 as the landscapes become less sparse.  
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These results also suggest that, the initial perturbation should be large relative to 

the annealing step.  The initial perturbation should be large enough cross barriers, while 

the size of the annealing step is chosen to give good acceptance in sampling the local 

basin.  It is usually straightforward to estimate the size of the annealing step.  Often, the 

length scales emerge quite naturally from knowledge of the system.  For example, a 

typical range for a single dihedral perturbation in a proteins or small molecules is 

typically less than 2π/3, which is roughly the width of a single χ well.   

For the cases studied here, the acceptance ratios for the standard protocols in the 

first 2 cases (those showing improvement) were less than 1%, which means that the 

initial perturbation is designed to be ineffective for the standard protocol. 

 

Figure 4.6 – Tetrapeptide model system 

 

 

Molecular System Application:  Phosphopeptide 

As a first biomolecular application, we applied POSH to a phosphopeptide: Ace-

Gly-Ser-pSer-Ser-Nma, which has been studied previously for forcefield 

development130,131.  This system is small but challenging for sampling.  The phosphate 



 99

group forms hydrogen bonds with different combinations of backbone nitrogen groups , 

and transitions between these conformations are relatively slow in MD simulations.    

For this study, only dihedral angles are allowed to fluctuate, excluding the peptide 

ω angles and capping methyl group torsions.  The current implementation is in an SGB20 

implicit solvent model,  with an external dielectric of 80 and an internal dielectric of 2.  

The nonpolar term is from the Levy and Gallicchio48 model, and the OPLS-AA 

200549,132.  The phosphate partial charges are nonstandard, and are those used by Groban 

et al133, based on a study conducted by Wong et al130.   

 

Implementation Details:  Modular Perturbations 

 Perturbations are classified as either backbone moves or sidechain moves.  For the 

current work, a backbone move consists of selecting a single φ or ψ angle randomly, and 

assigning a uniform variate perturbation to that angle over a defined domain.  For the 

initial trial perturbation, the domain is [-π,π], while the inner step trial moves are over a 

smaller perturbation domain [-π/10, π/10].   

The sidechain perturbation follows the same prescription regardless of whether it 

is considered to be an initial trial or an inner step move.  It is accomplished by selecting a 

residue site randomly, and assigning a uniform variate perturbation to each of the 

χ angles, and polar hydrogens if needed.  Here, the each uniform variate is over the 

domain of either [-π,π] or [-π/20, π/20], determined randomly, with the selection 

probability of either domain given equal probability.  This is the same protocol developed 

in previous work which studies only sidechain fluctuations121.  The polar hydrogens are 

sampled over the domain [-π,π] at every step for which that residue is selected. 
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At both the initial trial step generation and the inner step moves, either a 

backbone move or sidechain move is selected with equal probability.  This corresponds to 

the diagonal pathway, since all degrees of freedom are allowed to fluctuate in the (1 2) 

as well as the (2 3) transitions.  To generate the (4 1) transition, the concurrent reverse 

pathway is used (Eq. 146 ).  At each forward transition, a reverse trial move is generated 

using the same type of perturbation for the forward perturbation (sidechain or backbone).  

Both forward and reverse trajectories use Metropolis transitions.   

 

Empirical Corrections:  Stationary Transitions 

 A practical consequence of the reverse pathway estimation in complex systems is 

that the reverse transitions corresponding to a rejected trial have been observed to result 

in an error in the estimate the ratio of forward and reverse transitions.  In particular, the 

reverse transition calculations are most susceptible to error, as the construction of the 

reverse pathway will often pass through sterically hindered portions of configuration 

space, resulting in anomalously high energies.  In these cases, it has proven to be useful 

to introduce the following empirical correction to the reverse transition probability:  

Equation 149 
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where )1,4(
1, +−− kNkNa  is the Metropolis acceptance probability for the reverse transition.  This 

relation simply uses the forward transition probabilities in the reverse trial move when 

the forward trial is rejected, which prevents the overestimate of the ratio )(
23

)(
41 / II NN TT , 

especially in longer inner loop settings.  The motivation for the use of this correction 

comes from the notion of an “ideal transition”.  If we consider the ideal forward transition 
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move, it would consist of a series of purely downhill moves.  Likewise, the reverse 

transition pathway would also consist also consist of purely downhill moves.   For these 

‘ideal transitions’, the estimate of the ratio )(
23

)(
41 / II NN TT  would be unity.  If the reverse 

trajectory moves through a very challenging portion of configuration space, it is 

frequently a better assumption that the ratio of transitions is unity than to compute the 

ratio of reverse transitions.  

 

MTSMC Acceptance probability 

To improve performance, some of the energy parameters LP  are held at the latent 

state of the original coordinate, giving the parameter set )( IL rP .  Most notably, the long 

range interactions and Born Radii are held fixed during the inner loop sampling.  At the 

end of each cycle of POSH sampling, the resulting coordinate state is taken to be a trial 

move and subjected to the Multiple time-step Monte Carlo acceptance criterion: 

Equation 150 
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which has been described previously121 in more detail.  Here we refer to state I is the 

initial coordinate state and state F is the final coordinate.  The probability ))(|( jp Li rPr  

is the Boltzmann factor of the energy evaluated at current coordinate state i with latent 

parameters from coordinate state j.  For all cases studied here, a single POSH cycle is 

followed by a parameter update.   

To generate comparable trajectories without POSH sampling, a set of standard 

trajectories was also generated, which maintained the MTSMC sampling.  For these 
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trajectories, the same number of inner steps are used in between latent parameter updates.  

The trial moves for these are those which would be used for the (1 2) moves in the 

equivalent POSH scheme. 

To improve precision and efficiency of sampling, a mixture of POSH and 

standard sampling was explored.  For this scheme, either the standard or the POSH 

scheme is selected with equal probability, with the number of inner steps set to the same 

value for either case. 

Finally, a set of standard trajectories for which the latent parameters are fully 

updated at each step are generated.  The same prescription is used for the trial moves as 

in the MTSMC case. 

 

Validation Results 

Figure 4.9 shows the distribution of energies from the standard (MTSMC) scheme 

versus the equivalent POSH sampling scheme.  The energy distributions from either 

scheme are equivalent, which demonstrates that the POSH sampling is able to reproduce 

the correct distribution in a polypeptide system.  

  Standard Posh Fraction=0.0 Posh Fraction=0.5 
 

NI β<E> σ d/σ0 β<E> σ d/σ0 β<E> σ d/σ 
 -149.48 3.71 0.95       

1 -152.95 3.66 0.00 -153.26 3.56 -0.09 -152.96 3.59 0.00 
5 -152.97 3.63 -0.01 -152.89 3.73 0.02 -152.86 3.73 0.02 

10 -152.49 3.80 0.12 -153.15 3.57 -0.06 -152.85 3.69 0.02 
20 -152.59 3.78 0.10 -151.73 3.91 0.33 -152.57 3.79 0.10 
50 -152.78 3.71 0.04 -149.42 4.08 0.96 -151.83 4.00 0.30 

Table 4.1 -  Precision of POSH Sampling for tetrapeptide systems.  Simulations of a standard (MTSMC), 
POSH simulation and mixed POSH/standard are shown.  For all simulations b<E> is the average energy for 

the system, where b=1/kBT, s is the standard deviation of the energy trajectory, and d/s0 is computed as 
b/s0(<E>- <E>0), where  s0  and <E>0 are taken from the Standard simulation where NI=1 (highlighted in 

yellow). 
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Table 4.1 shows that, for the POSH sampling, quantitative agreement can be 

obtained for settings of up to NI=10.  Nontrivial deviations from the standard distribution 

are observed at NI
 =20, suggesting an upper bound for precision for this particular system.  

To improve sampling, a 50% mixture of standard trial moves is incorporated.  This is 

intended to improve both precision and efficiency.  It is natural to expect an improvement 

in precision with this approach.  The mprovement in efficiency results from the 

introduction of heterogeneity in the move sets, such that the likelihood of remaining in a 

kinetically trapped configuration is reduced.  The improvement to precision is mixture of 

standard simulations appears to substantially improve this deviation, but the estimate of 

the reverse transition probability is clearly limited to a shorter range of steps for the more 

complex systems.  The reasons for this deviation are largely due to the much more rugged 

landscape involved.  It should be noted that the (4 1) transition almost always consists 

of unphysical configurations, which, for molecular systems can have pathologically large 

energies, to the point that even roundoff error can become a factor in the reverse path 

estimate.  The introduction of the empirical correction to the transition estimate appears 

to substantially improve the quality of the sampling, largely due to the effect described 

above.   

Figure 4.7 shows the rates of convergence to the final energies.  To make the 

trajectories comparable, the number of energy evaluations (excluding the latent parameter 

updates) are plotted along the x axis.  For a standard simulation, there are NE = NO  

evaluations,  and for a POSH simulation, there are  NE = 2NO (2NI +1) energy evaluations.  

Since a single posh cycle is run prior to updating the Born radii according to Eq. 150, the 



 104

‘standard’ trajectory is that which uses a single inner loop step (with no posh sampling) 

before updating the Born radii. 

The rate of convergence is fastest for the mixture of POSH and standard 

simulations.  For the low inner steps settings, the mixed simulation appears to be 

converge roughly 2 times faster than a standard simulation.  The POSH sampling without 

the mixture does not display improvement for NI=1, but does show improvement for 

NI=5.  At NI=10, all methods perform roughly equivalently, and both POSH protocols fail 

to show improvement at NI=10, which is also where the precision begins to break down.   

a) b)

c) d)

a) b)

c) d)

 

Figure 4.7 – Rates of Convergence.  Block Averages are computed and plotted against the number of 
energy evaluations per datapoint. 

 
Since this system was previously well sampled with standard MD approaches, 

substantial improvements in efficiency were not expected, since it was selected to 
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evaluate the sampling precision, so it was surprising to observe any improvements at all.  

It was equally surprising was to see that, for cases where POSH did not show 

improvement, the mixture proved to be faster than either the standard or POSH sampling 

alone, suggesting that the synergy of the combined sampling is a useful design feature.  

  Experiment 
Wong et al 
Simulation 

Standard  
(MTSMC) 

Standard  
(no MTSMC) 

  <J> <J> <J> <J> 
Ser1 5.63(0.12) 4.12(0.03) 3.24(0.04) 3.36(0.02) 
Ser2 6.65(0.12) 6.62(0.11) 7.67(0.02) 7.25(0.01) 
pSer3 5.48(0.12) 5.73(0.10) 5.52(0.05) 5.86(0.02) 
Ser4 6.93(0.12) 7.37(0.03) 7.46(0.01) 7.46(0.01)   
POSH Sampling 
  NI=1 NI=5 NI=10 NI=20 NI=50 
  <J> <J> <J> <J> <J> 
Gly1 3.23(0.11) 3.22(0.10) 3.16(0.14) 3.12(0.08) 3.21(0.06) 
Ser2 7.69(0.04) 7.66(0.08) 7.62(0.06) 7.66(0.09) 7.60(0.06) 
pSer3 5.59(0.17) 5.58(0.17) 5.45(0.10) 5.51(0.04) 5.61(0.11) 
Ser4 7.45(0.03) 7.50(0.02) 7.45(0.02) 7.46(0.02) 7.41(0.02) 
      

Table 4.2 - J coupling Data 
 

 
Physical Observables 

  J couplings were computed using the Karplus equation: 

Equation 151 
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where <J> is the average NMR J coupling value, L is the length of the simulation, and θi 

is the dihedral angle of the ith snapshot, of the H-N-Cα-H bond.  It is compared to 

experiments and simulations as reported by Wong and Jacobson130.  Of all of the 

simulations, we expect the standard (MTSMC) values to be most reliable, since it 

contains data from all inner steps settings.  We find good agreement between the standard 

simulation (with MTSMC) and experiment, most notably in the pSer coupling, which is 
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most sensitive to the phosphate interactions.  We obtain poor agreement with experiment 

for the Gly coupling, but this anomaly is also observed with the simulation data, and is 

due to the fact that J couplings are not well defined with regard to Glycines. 

  
Wong et al 
Simulation 

Standard 
(MTSMC) 

Standard 
(no MTSMC) 

  % HB  % HB % HB 
Gly1 56(04) 63(03) 04(00) 
Ser2 51(04) 62(03) 05(01) 
pSer3 60(04) 80(04) 14(01) 
Ser4 08(02) 09(03) 09(01)   
POSH 
Sampling  
  NI=1 NI=5 NI=10 NI=20 NI=50 
  % HB  % HB  % HB % HB  % HB  
Gly1 61(13) 54(11) 59(06) 54(07) 51(05) 
Ser2 59(12) 53(10) 59(06) 54(06) 50(06) 
pSer3 73(14) 67(13) 75(08) 69(08) 66(08) 
Ser4 17(11) 20(11) 11(04) 15(04) 08(02) 

Table 4.3 -  Fraction of Phosphate hydrogen bonded to amide hydrogen by residue 
 

 The agreement with the molecular dynamics simulation is good, considering that a 

different forcefield and implicit solvation model were used.  We obtain good agreement 

of the J couplings with the standard (MTSMC) simulation as a control, and notice also 

that the observables appear to me reasonable across a broader range than that observed 

with the control.  This is because the control is, in general, a stricter measure of sampling 

precision than the experimental measures.  The experimental measures, however, help to 

validate the overall protocol, which include the forcefield and implicit solvent used. 

The hydrogen bonding fractions between the phosphate groups and the amide 

groups are in table 4.3.   
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Conclusions and Future Directions 

We have presented a sampling protocol that allows for efficient sampling of 

sparsely distributed basins, such as those that are encountered in complex biomolecular 

energy landscapes.  The protocol obeys detailed balance to the extent that the transition 

probabilities are correctly estimated.  Three variants of the sampling protocols were 

presented in terms of pathways:  1) adiabatic, 2) hybrid, and 3) diagonal.  Each pathway 

provides adequate performance, and have useful practical motivations, but the diagonal 

and hybrid approaches are more robust for longer inner loop protocols.  Two reverse 

pathway constructions were presented, and appear to be equivalent in terms of precision, 

with a slight preference given to the concurrent reverse pathway due to the ease of 

implementation.  The algorithm performs most efficiently on very sparse energy 

landscapes.  It has been implemented in a realistic biomolecular system, and a range of 

precision and efficiency has been established.  A two-fold efficiency is relatively 

straightforward to obtain, in both model systems and the physical system studied. 

 For future work, implementation and performance in complex systems, 

particularly biomolecular, will be helpful to determine how well the algorithm performs.  

Since the algorithm obeys detailed balance, it can be combined with other methods, such 

as hybrid Monte Carlo, and Multiple Time Step Monte Carlo to optimize the efficiency of 

sampling of a complex system overall.  Improving the transition probability estimates is 

an ongoing effort, and future work will address some of the current limitations of the 

approach.  A better estimate could remove systematic biases in the more approximate 

schemes, as well as limit the number of trial moves used to generate the reverse transition 
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estimate.  Finally, an extension of this algorithm to parallel systems could provide better 

exchange rates between replicas. 

 

Appendix A:  Alternative Acceptance Probability 

An alternative to the POSH pathway is presented to illustrate the limitations of the 

standard acceptance criterion.  Consider the reverse pathway which passes through the 

same coordinates as the forward trajectory.  The condition for detailed balance is then: 

Equation 152 
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The selection probabilities along the (2 3) and (3 2) are given by the transition 

probabilities: 

Equation 153 
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If each inner step obeys detailed balance the the resulting detailed balance condition is 

satisfied: 

Equation 154 
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This criterion is, in general inefficient, since it depends on the energies of the original and 

the initial trial. 

 

Appendix B:  Model System 

Consider a 2 dimensional Gaussian distribution: 

Equation 156 
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where x and y are scalar variables, and the index i refers to the ith parameter set defining 

the distribution.  Models of this sort have been used to analyze biomolecular systems, due 

to the simple evaluation of the configuration integral and other observables134,135.  The 

potential is simply a harmonic potential: 

Equation 157 
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where γ is a force constant, x0 and y0 are the coordinates of the minimum, and the σ1 and 

σ2 are the standard deviations along the principal axes of the distribution.  Rθ is a matrix 

which rotates the principal axes of the distribution by an angle θ: 

Equation 158 
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The entire set of parameters defining a single Gaussian term, then, are given as: 



 110

Equation 159 

( )γθσσ wyx 2100=p  

One advantage to using potentials of this type is that the free energy of each basin can be 

computed analytically.  Also, potentials of mean force can be analytically computed.   

 

a) b)

c) d)

f)e)

a) b)

c) d)

f)e)

 

Figure 4.8 - Landscapes Studied.  2D contours of landscapes as described in text with parameters given in 
Table 4.5.  For all plots, x is along horizontal axis. a) Single Basin b) Orthogonal Disjoint Basins c) 

Orthogonal Accessibe Basins d) Acute Basins e) Acute Basins f) Multiple Basins. 
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Potentials can be superimposed to generate nonlinear behavior: 

Equation 160 
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For all cases presented, the temperature is unity. 

 
Landscape # x0 y0 σ1 σ2 w θ/π γ 
A 0 0 3 5 1 0.2 0.2 
B -10 -10 4 12 1 0 9 
  10 10 12 4 1 0 9 
C -10 -10 4 12 1 0 1.8 
  10 10 12 4 1 0 1.8 
D -10 10 4 10 1 0.15 1 
  10 10 4 10 1 0.55 1 
E -5 5 5 9 1 0.15 1 
  5 5 5 9 1 0.55 1 
F -12 -15 6 14 3 0.15 6 
  5 12 5 10 4 0.25 9 
  3 -10 5 3 2 0 3 
  15 5 10 8 3 -0.1 6 
  -3 2 2 3 1 0.3 3 
G XX XX 3 3 1 0.0 9 
Table 4.4 – Parameters of Landscapes as described in Appendix B. 

 

Appendix C:  Model System Studies 

Since the algorithm contains the possibility of sampling two subspaces 

hierarchically, a two dimensional surface becomes a convenient model system for 

studying the precision of sampling (see Figure 4.5).  These model systems are 

superpositions of 2D Gaussian distributions, whose partition functions are known 

analytically.  Appendix B describes these in detail, and Table 4.4 lists the parameters 

used.  These landscapes were designed to have features that are thought to influence the 

sampling.  One of the features is the symmetry/asymmetry of the surface, which can play 
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a role in due to the symmetry in the reverse path construction.  Another feature of interest 

is the distribution of local minima, either as quasi-ergodic or accessible basins.  

Landscapes with anharmonic saddle points and complex features were also included to 

mimic rough landscapes in a way that is intended to make errors in sampling more easily 

detected. 

Figure B 
)3,2(

xd
)3,2(

yd )1,4(

xd
)1,4(

xd db Path Type 
Reverse 
Pathway 

8 45 22.5 0 0 9 0.9 Adiabatic True 
8 45 22.5 0 9 9 0.9 Hybrid True 
8 45 22.5 22.5 9 9 0.9 Diagonal True 
9 45 22.5 22.5 9 9 0.9 Diagonal Both 
 60 60 60 12 12 0.25 Diagonal True 

Table 4.5 – Simulation settings for simulations in figures.  Parameters of Landscapes as described in 
Appendix A.  B represents the lower and upper bound of the landscape in both the domains of both x and y.  

The values  X and X are the lower and upper bounds of the initial (1 2) perturbation for x and y, 
respectively, and X and  X are the lower and upper bounds for the (2 3) perturbation for x and y, 

respectively. db is the square bin width of the 2D histograms collected. 
 

Choice of Perturbation Scheme 

 In applying the POSH sampling to a system of interest, many considerations drive 

the choice of subspace partitions, but the choice will be limited to the types listed in 

Figure 4.2.  It is worthwhile to notice the design considerations involved in each of the 

perturbation types.   

The adiabatic pathway is convenient in cases where the subspaces are thought to be 

loosely coupled.  The adiabatic pathway is also of importance because it is the 

fundamental idea from which more nuanced descriptions emerge.  In some cases, there 

can be a significant computational advantage to sampling along one subspace while 

holding the remaining degrees constant.  This is certainly true of backbone and sidechain 

sampling, where, for example, a trial backbone coordinate can be screened for sidechain 

steric clashes outright before generating a costly Markov chain.  The adiabatic pathway is 
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useful when the potential can be evaluated in the annealed subspace, (y as shown in 

Figure 4.2a) much more rapidly than in the perturbed coordinate (x as shown in Figure 

4.2a).  These considerations are not feasible using either of the two other strategies.   

The hybrid pathway is named such because it can be used (for example) in 

concert with standard hybrid Monte Carlo scheme.  Here, the choice of perturbation 

coordinates can be a subspace of ‘interesting’ coordinates, while the set of annealed steps 

can be along all degrees of freedom (such as would be the case if a dynamical propagator 

was used).  In the case of biomolecules, for example, the torsions could be perturbed in 

the initial step, with each step in the inner loop generated according to an HMC scheme 

(allowing all bonds, angles and torsions to fluctuate).   

Finally, the most general of the pathways is the diagonal pathway.  For this 

pathway, all degrees of freedom are perturbed in both steps, with the only difference 

being in the magnitude of perturbations.   

 For Figure 4.6, the MSE of the adiabatic pathway with NI = 1 is defined as 2
Aχ   

and calculated for each of the pathways.  The MSE, )(2
INχ for each value of NI is 

computed and the normalized value 22 /)( AIN χχ  is a measure of the error relative to a 

standard error.  Table4.5 details the simulation conditions of the landscapes studied.  As 

expected, the diagonal sampling scheme emerges as the most accurate of approaches 

across all landscapes shown here.   
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a) b)

c) d)

e) f)

a) b)

c) d)

e) f)

 

Figure 4.9:   Accuracy of true and concurrent reverse paths are nearly equivalent.  Each letter corresponds 
to the landscapes shown in Figure 4.5.  MSE errors are normaliszed to the True Reverse pathway with 

NI=1 for each landscape.  Simulations were run with NO=40k steps.  See Tables 4.4 and 4.5 for additional 
settings. 

  
The hybrid approach also performs extremely well, suggesting that allowing all 

degrees of freedom to fluctuate in the annealing steps is a key to improving precision.  

The hybrid pathway often outperforms the diagonal pathway for smaller inner step 

settings, but this may be due to the fact that the initial perturbation of the hybrid case is in 

fact much smaller, since it only spans 1 dimension.  At larger values of NI, the hybrid and 

diagonal pathways perform nearly identically.  While the adiabatic pathway performs 

very well for smaller values of NI , it exhibits systematic bias as the number of inner steps 

is increased, due to the constrained sampling of the annealed coordinate.  For shorter 

trajectories ( NI  < 10 for the cases here ), the difference in error is negligible for all 

pathways.  Any of these approaches, for relatively short trajectories, could be applied to 
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more complicated systems with confidence, but in cases where longer inner loop 

trajectories are needed, the hybrid and diagonal pathways are more robust. 

 

Choice of Reverse Pathway Construction  

 The estimate of the transition probability using the forward trajectory information 

is a common and relatively well understood method for estimating the forward transition 

probability5.  Since the reverse pathway construction is the novel feature of this approach, 

it is worthwhile to compare the reverse pathway construction methods.  Figure 4.7 shows 

the MSE between the landscapes of Figure 4.5 and the sampled trajectory.  For Figure 

4.7, the MSE of the true reverse pathway with NI = 1 is defined as 2
Tχ   and a ratio 

22 /)( TIN χχ  is calculated for each of the pathways.  For all cases, the relative MSE 

steadily decreases with the number of inner steps.  The concurrent reverse pathway 

appears to generate slightly smaller MSEs.  The performance across this range of 

landscapes suggests that either choice would be sufficient.  This is somewhat surprising, 

since the shape of the reverse pathway is completely different for each case, and it is 

tempting to think that the shape of the landscape could have a more profound effect on 

the error.  This does not appear to be the case, however, in these test cases.  Since the 

concurrent reverse pathway is both reliable and easier to implement, it is likely to be used 

more widely. 
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Chapter 5 

Applications, Design Philosophy and Future Directions 
 
 
 

One goal of this work is to provide a highly efficient tool for sampling 

configuration space of proteins in a variety of contexts.  It has been part of the philosophy 

to introduce efficient Monte Carlo algorithms, establish that the algorithms are efficient, 

precise, and robust, and provide access to daring users of newly developed computational 

biophysics software.  I would like to lay out the overall design philosophy, and explain 

the where new features are most easily implemented.  I would also like to take this 

opportunity to point to future design features that could be implemented with relative 

ease. 

 

Design Philosophy 

Current Design 

The sampling framework is designed to incorporate a mixture of POSH and non 

POSH trial moves.  The motivation for this is several fold.  The primary motivation is 

that the success of a Monte Carlo strategy is largely dependent on the quality of the 

geometric perturbations, and the inclusion of POSH sampling should provide 

enhancements.  For this reason, a standard scheme should be accessible, which is 

guaranteed to generate high precision statistics, and be robust (if not optimal) for all 

parameter settings.  Of course, it is hoped that the use of POSH move sets will provide 

enhanced sampling, and a simple setting is made available to adjust the fraction of times 

a POSH trial move is generated versus a standard trial move.  For even simple 
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biomolecular systems, it should be noted that a 50% mixture of standard and POSH 

moves provides improvements over either settings.   

 

Figure 5.1 – Schematic of sampling loops.  a) a standard simulation of length NI
(STD) is shown as a special 

case of POSH sampling with the initial perturbation set to zero and the final state accepted with probability 
1 b) The POSH sampling scheme, with NI

(POSH)  walking steps. c) An example of a chain of states using 
either POSH or STD schemes within the solvation framework. 

 
Figure 5.1 shows a simple analogy between a Markov Chain generated with a 

standard procedure versus a POSH chain.  If we consider the (1 2) trial move as a 

‘jump’ move, with the following steps as ‘walk’ moves, then a standard trajectory is can 
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be viewed as a POSH cycle with the (1 2) move set to be zero.  This modifies the 

acceptance probability to 1 also. 

The jump and walk moves are contained within the same subroutine, and is 

currently designed to be a menu of geometric perturbations.  The idea is to be able not 

only to call different jump and walk settings from the configuration file, but to easily 

modify the code as new perturbation types become available. 

 

The Solvation Envelope 

The solvation optimization of the sampling remains as the primary source of the 

optimization.  From the simple studies in Chapter 2, a 10 fold improvement was easy to 

observe, and it is likely that the improvements can be even better with careful parameter 

tuning.   The current design is to nest the core sampling approaches (either POSH or 

standard) within the solvation bookkeeping machinery such that this optimization is 

automatically taken care of when introducing new jump/walk options.  Figure 5.2 

illustrates how the settings are currently used.   

 

 Extensions 

Small Molecule Sampling:  A relatively new development from Ken Borrelli and 

Victor Guallar is the incorproration of small molecule sampling in the context of the 

sampling framework described. 

Rigid Body/Domain Sampling:  The small molecule module contains functionality 

for sampling rigid body displacements between chains.  This could conceivably be 

extended to the displacements of secondary structures as well. 
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Multiple Loop Sampling:  The incorporation of multiple loops in the sampling 

protocol requires no new algorithmic work, either with regard to loop closure or Monte 

Carlo sampling, and should work well once implemented. 

Protonation State Sampling:  It is also hoped that protonation states can be 

sampled in the near future, providing an efficient constant pH simulator. 

a)

b) c) d) e)

a)

b) c) d) e)

 

Figure 5.2 – An apo simulation is run under a variety of constraints to explore configurations that may lead 
to holo configurations.  A) leftmost structure is native apo state, middle structure is an arbitrary simulation 
protocol, leading to a hypothesis about a binding mode of a holo structure, shown on the right.  Types of 

simulations are shown in b-e b) sidechain trajectory, as described in Chapter 2, c) single loop and adjacent 
sidechains (current functionality) d) multiple loops and adjacent sidechains (future implementation) e) 

multiple loops, sidechains, and ligand.  Ligand sampling functionality is available, courtesy of K. Borrelli 
et al 

 

Steric Screening Options 

Steric screening is a key element in efficient Monte Carlo routines, and 

functionality exists currently accomplish steric screening, as described in the sidechain 

sampling routines described in Chapter 2.  Due to the design of the POSH sampler, 

however, steric screening of the trial state can occlude high energy trial states.  The steric 

screening functionality was therefore disabled in order to establish the validity of the 

POSH sampler.  As optimal sampling ranges are identified, it should also be a priority to 

reincorporate steric screening in some coherent way.   
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Figure 5.3 – PI3 Kinase Preliminary Studies a) original sidechain studies of γ isoform predicted 
that M804 played a role in the dynamics of the binding pocket.  B) simulation of a δ isoform with point 

mutations throughout the protein, but not in the first shell of the protein binding pocket.  The dynamics of 
the Trp812 are altered by the mutation from Glu814Met in the second shell of the binding pocket.  C) 

Incorporation of backbone dynamics of single loop in g isoform  provides further detail into the nature of 
the flutuations between Met804 and Trp812, residues which are known to play a role in determining 
specificity d) simulation of δ isoform also reveals significant fluctuations in Trp812, which leads to 
enhanced binding affinity.  Current efforts to quantify the dynamics of this system are underway. 

 

Applications 

Constrained Sampling and Conformational Selection 

The idea behind many of the sampling approaches is to take a small functional 

portion of the protein, and simulate this portion exhaustively such that alternative 

conformations may be observed.  In most cases, this means sampling this portion of the 

protein at a higher temperature.  Due to the nature of the constraints imposed, this is often 
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possible without disrupting the structure to wildly unphysical configurations, as would be 

the case if the full protein were simulated.  The constraints we impose are severalfold, 

depending on the type of simulation being run.  Figure 5.2 illustrates the types of 

simulations that might be run to explore alternative configurations.  All settings currently 

restrict the ω angles, bond angles, and bond lengths to their native state.  Many of these 

constraints may introduce artifacts which may bias the sampling towards near native 

configurations, which is one motivation for running higher temperature simulations.  As 

was the case when generating the sidechain trajectories described in Chapter 2, it is noted 

that even high energy configurations can often be of interest, as these high energy states 

may encounter stabilization upon the presence of a ligand. 

 

PI3 Kinase 

The exploration of PI3 kinase functionality is an ongoing effort in collaboration 

with the Kevan Shokat group at UCSF69.  While much of the data is quite nascent, it has 

become an interesting system for our functionality.  The PI3 kinase family is a set of 

targets implicated in a wide range of diseases, including inflammatory conditions, 

thrombosis, and cancer.  There is a keen interest in the Shokat group to elucidate the 

structural basis of this functionality.  It has also been an interesting companion system to 

study as new functionalities emerge, and allow for more detailed study of the system.  

The original apo binding pocket that was studied using the sidechain sampling of Chapter 

2 is in Figure 5.3a.  An interesting phenomenon that was noticed was that the sidechain 

trajectory of W812 changed significantly upon point mutations which were more than 

one solvation shell away from the binding pocket.  The simple sidechain trajectory  
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a) b) c) d)

e) f)

a) b) c) d)

e) f)

 

Figure 5.4 –Ensembles of TIM loop a) open apo configuration shown in red, and closed holo configuration 
is shown in blue, bound to PGA b) apo closed loop ensemble c) apo open loop ensemble d) open and 

closed ensembles appear to have overlapping regimes e) PGA placed in the apo open configuration and 
simulated.  Only internal degrees of mothion are sampled.  E) Same simulation conditions, but with 

translational and rotational degrees of freedom allowed to fluctuate. 
 

provided the hypothesis.  Once the loop and sidechain functionality became available, we 

were able to generate apo binding pocket trajectories with the β hairpin allowed to 

fluctuate.  Current efforts are underway to quantify the fluctuations within the selectivity 

pocket (the region between W812 and M804), and to correlate this with known binding 

affinities as provided by the Shokat Group. 

 

The Canonical Case:  Triose Phosphate Isomerase 

The dynamics of the catalytic loop of Triose Phosphate Isomerase form are well studied, 

and have proven to be a good model system for understanding the algorithms.136  The 
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mechanism is well understood as a latching mechanism.  The data presented here is a 

qualitative demonstration that the method has promise, and current efforts to further 

quantify these dynamics are underway.  Figure 5.4a-d shows these simulations, run at 

high temperature, and sufficient overlap of configurations suggests that the 

conformational selection hypothesis may have some applicability in the study of these 

systems.   

 An additional demonstration of functionality is show in Figures 5.4e and 5.4f.  

The open configuration is simulated with the PGA ligand placed in the native holo 

configuration and simulated.  While this data is also preliminary, it is provided to show 

that the ligand sampling functionality provided by Ken Borrelli is working correctly, and 

that a much richer variety of systems are also accessible through this methodology. 

 

Future Directions 

A Key Advance in the Making:  POSH and Hybrid Monte Carlo 

The POSH sampling approach presented in Chapter 4 lays a theoretical 

foundation for a new way of designing Monte Carlo move sets.  It is the hope of the 

author that the developments of Chapter 4 represent a strong first generation of sampling 

approaches, and that the methodology be allowed to grow into new, more efficient 

methods in future work.  There are two limitations to the initial work presented.  The first 

is that the construction of the reverse pathway will limit the efficiency by at least a factor 

of 2, which narrows the parameter space for observed improvements.  The second 

limitation is in the existence of an upper bound for the number of inner steps.  We were 

able to observe marked improvements in efficiency and almost complete insensitivity to 
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the number of inner steps for the simple model systems.  In the real systems however, the 

robustness and efficiency was found to be somewhat limited, due mostly in the error in 

estimating the reverse pathway.   

For a first generation of algorithmic approaches, the implementation can be 

considered a success, since the theory presented is an entirely new propostion.  The 

details of the performance are also important however, and I would like to present an 

enhancement to this theory here, to be published in future work. 

The theory begins with the POSH acceptance probability, as given in Chapter 

4 Eq. 135: 

Equation 161 
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If we introduce the simple idea that each inner step be generated using a hybrid Monte 

Carlo step, the transition probability at each (forward step) step (using the Metropolis 

criterion) is: 
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where 1−kH and T
kH 1−  are the initial and trial Hamiltonians, respectively, and are 

generated using the Hybrid Monte Carlo procedure described in Chapter 1.  The salient 

feature of the HMC approach is that the size of the timestep can be arbitrarily controlled 

to such that Eq. 164 is nearly always unity:  This assumption yields the following 

estimates of the forward and reverse transition probabilities: 

Equation 165 
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where the value of the reverse transition probability can be estimated to be unity without 

the need to compute a reverse trajectory.  It should be noted that the theory still asserts 

the existence of the reverse pathway, which has been demonstrated in the work of 

Chapter 4.  This simple assumption immediately solves two of the major limitations of 

the original sampling method.  It alleviates the need for computing the reverse trajectory, 

which was thought to be the major source of numeric error.  It also provides a factor of 2 

improvement in the efficiency of the sampling.  An additional improvement which is not 

directly addressed is in the greatly reduced coordinate updates when constructing the 

reverse pathway that requires a significant amount of coordinate transformations and 

bookkeeping of coordinate states, while HMC requires only the bookkeeping of the 

Cartesian array in the forward pathway for the inner loop steps.   
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Figure 5.5 – POSH Hybrid Monte Carlo.  Each inner step is computed using a Hybrid Monte Carlo move, 

consisting of NVERLET molecular dynamics moves.  Eq. 165 permits an estimate of the reverse transition 
probability that does not require the reverse pathway to be constructed. 

 

There are other factors to consider, but this approach appears to have substantial 

promise.  It appears to combine the basin hopping trial moves of the POSH formulation 

with the more natural annealing process of the HMC procedure.   Initial tests have shown 

to be much more robust in parameter space.  The sampling appears also to have high 

ergodicity, as has been shown with preliminary studies with Met-Enkephalin in vacuo. 

 

 
Figure 5.6 – Distribution of Energies using POSH-HMC for NI =20,40,80.  The deviations from the mean 
value are 0.02σ, 0.04σ, and 0.06σ, respectively.  Compare to an expected deviation of 0.1σ using standard 

POSH at NI=20. 
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a)

b) c)

a)

b) c)

 

Figure 5.7 – Comparison of Replica Exchange protocols for multiple temperature POSH sampling and 
single temperature sampling shows that multiple temperature POSH sampling and replica exchange.  ‘Hot’ 
replica is run at high temperature (100T0) in the outer loops, while the ‘cold’ replica runs the inner loop at 
room temperature.  Exchange rates are improved from 7% to 10% for the simple system shown here.  Top 
Figure 5.is the 1D 2 basin potential with sampled data points, and the basin distributions are shown in the 

lower figures. 
 

Parallel Sampling Methodology 

If the notion may be advanced that constructing Monte Carlo acceptance criterion 

using the POSH formalism is a valid approach, then a framework for generating a variety 

of novel methods is possible.  A simple extension of the POSH sampling framework is to 

establish different temperatures for the inner and outer loops.  If the inner loop is sampled 

according to a low temperature, we can accept the trial move with a high temperature 

criterion.  This has the practical consequence of generating a distribution of states in the 

high temperature ensemble that is nonetheless biased towards low temperature states.  If a 
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high temperature replica is generated using this procedure, a simple replica exchange 

protocol can be generated that has improved acceptance rates.   

 

Continued Theoretical Work 

It appears as though an interesting class of sampling approaches may be emerging 

from some of the simple ideas brought forth.  It would be interesting to consider more 

applications in this direction, which may include nonequilibrium ideas, applications to 

free energy, and further advances with regard to replica exchange protocols.   

 

Conclusions 

The main goal of the thesis work was to incorporate a functionality that allowed 

for the sampling of proteins using a physics based model, and to generate distributions of 

states for which quantities like free energy and populations can be computed as 

meaningful quantities.  The hope is threefold:  1) That the current methodologies be used 

to study a wide variety of proteins, 2) That the current extensible design of the code is 

accessible enough that it may be modified to include different degrees of freedom and 

novel geometric algorithms and 3) That some of the ideas in the Monte Carlo strategies 

be of use to the larger community of computational science.    
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