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ScienceDirect
Flowers of the lower eudicot Aquilegia (columbine) possess

morphological innovations, namely elaborate petal spurs and a

fifth distinct organ identity, the staminodium, that are well

suited to the investigation of key questions in developmental

evolution. The recent evolution of these characteristics

combined with a growing set of genetic and genomic resources

has provided insight into how the traits arose and diversified.

The petal spur appears to represent a key innovation that

diversified largely via modification of specific aspects of cell

expansion. In the case of the staminodium, gene duplication

has played a role in allowing a novel organ identity to be carved

out of the traditional ABC program.
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Introduction
The established plant genetic models have provided us

with a detailed understanding of the genetic programs

controlling the development of structures such as lateral

organs, including the floral organs (reviewed [1,2]). How-

ever, we must recognize that these models capture only a

very limited component of the enormous diversity in floral

morphology. Commonly known as columbine, Aquilegia is a

member of the basal eudicot family Ranunculaceae whose

morphology and evolutionary history make it a powerful

tool for studying the evolution of novel morphology [3,4].

The genus encompasses 70 recently diversified species,

which although morphologically varied (Figure 1), remain

largely interfertile [5]. In addition to this interesting recent

history, the phylogenetic position of Aquilegia, roughly

intermediate between the core eudicots and grasses, pro-

vides an attractive data point for deeper comparisons

across the flowering plants. Aquilegia possesses five distinct

types of floral organs: petaloid sepals in the first whorl;
Current Opinion in Plant Biology 2014, 17:22–27 
nectiferous, spurred petals in the second whorl; four to

seven whorls of 10 stamens each; a whorl of 10 sterile organs

termed the staminodia; and an innermost whorl of four to

seven carpels (Figure 2a,d). Although the floral bauplans of

the diverse Aquilegia species are very similar, the flowers

differ in color, many aspects of spur morphology, and, in

one case, the presence of staminodia. Several groups have

been using a growing set of genetic and genomic tools to

investigate the genetic basis of the novel floral features of

Aquilegia. These tools include a high-quality Sanger-

sequenced genome for A. � coerulea ‘Goldsmith’ [6] with

detailed gene annotation utilizing multiple deeply

sequenced expressed sequence tag (EST) and RNAseq

libraries (e.g., http://compbio.dfci.harvard.edu/tgi/cgi-bin/

tgi/gimain.pl?gudb=aquilegia), resequencing of 13

additional species as well as the sister genus Semiaquilegia
(Figure 1), two bacterial artificial chromosome (BAC)

libraries [7], and a well-established virus induced gene

silencing (VIGS) protocol [8].

There are a number of immediate questions suggested by

Aquilegia’s floral morphology in relation to the otherwise

conserved ABC model of floral organ identity. The ABC

model suggests that floral organ identity is established by

the interaction of three classes of gene activity: A class

alone determines sepals; A + B, petals; B + C, stamens; and

C alone, carpels [9]. This model fails to explain, however,

how a flower could produce two whorls of morphologically

distinct petaloid organs, as in the sepals and petals of

Aquilegia, or even more dramatically, an entirely novel fifth

organ such as the staminodium. Expression and functional

studies of A, B and C gene homologs in Aquilegia have shed

light on these questions. In regard to A function, it has

previously been demonstrated that this role is not well

conserved, even within the core eudicots [10,11]. Consist-

ent with this, the Aquilegia homologs of the Arabidopsis A

gene APETALA1 (AP1), AqFL1a and AqFL1b, control leaf

morphogenesis and inflorescence structure but do not

contribute significantly to flower development [12��]. In

contrast, C class function, represented by homologs of

AGAMOUS (AG), is generally well-conserved across the

angiosperms in terms of promoting stamen and carpel

identity as well as floral meristem determinacy. Ongoing

functional studies of the Aquilegia AG paralogs AqAG1 and

AqAG2 suggest that this is equally true for the loci, although

a role in novel staminodium identity requires further

investigation (B Sharma et al., unpublished data).

This leaves us to focus on the role of the B class genes,

APETALA3 (AP3) and PISTILLATA (PI) in Arabidopsis.
www.sciencedirect.com
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Figure 1
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Simplified phylogeny of Aquilegia species relative to the sister genus Semiaquilegia (based on [22,30]). All species represented have been the subject

of genome resequencing or, in the case of A. jonesii, deep RNA-seq. The evolution of several features is represented by colored bars, specifically the

initial gain and subsequent loss of both petal nectar spurs and staminodia. The geographic distribution of the species is also indicated to the right of

the phylogeny. EU = European, AS = Asian, and NA = North American. Panels (a)–(l) are photographs of the species, as indicated by the corresponding

superscript letters. (a) A. aurea. (b) A. vulgaris. (c) A. oxysepala. (d) A. ecalcarata. (e) A. formosa. (f) A. coerulea. (g) A. pinetorum. (h) A. longissima. (i)

A. canadensis. (j) A. jonesii. (k) A. flabellata. (l) Semiaquilegia. All photographs by SA Hodges except (c) and (k) by Hong-Xing Xiao.
They offer an obvious starting point since the novel

features of Aquilegia involve both different forms of peta-

loidy and derivatives of the stamens. Early studies found

that there are three major paralogous lineages of AP3 in

the Ranunculid order and, in Aquilegia, due to a more

recent duplication, the genus actually possesses four AP3-

like genes: AqAP3-1, AqAP3-2, AqAP3-3 and AqAP3-3b
[13,14]. These proteins all appear to function as hetero-

dimers with the protein of the single PI homolog, AqPI,

but each have distinct expression patterns [14]. AqAP3-1
expression is initially broad but rapidly becomes

restricted to the staminodia, AqAP3-2 is also broad at

early stages but is only consistently expressed in stamens,

and both AqAP3-3 and AqAP3-3b are entirely restricted to

the petals, with AqAP3-3b expressed at much lower levels.

Consistent with the dependence of each AP3 protein on

AqPI, the latter is broadly expressed across the petals,

stamens and staminodia. Furthermore, transient RNAi

targeting AqPI demonstrates that the B functional domain

in Aquilegia is expanded to include the staminodia as well

as the canonical petals and stamens (Figure 2e) [14].

Following from these data, the questions that have

received recent attention are: Do the AP3 paralogs, in

fact, show subfunctionalization and neofunctionalization

as suggested by their expression patterns? and How has

both petal and staminodium morphology diversified

down-stream of organ identity?
www.sciencedirect.com 
Petal identity and diversification
Work in Aquilegia has also informed questions about the

evolution of petal identity itself. The diversity of Ranun-

culid petal form, combined with a variability even of their

presence within the family, prompted botanists to con-

clude that they evolved from stamens many times inde-

pendently [15,16]. With the advent of gene expression

studies, however, Rasmussen et al. [17] suggested that this

diversity was instead controlled by a commonly inherited

identity program, which was lost in some cases rather than

gained multiple times. More recent work in Aquilegia has

supported this hypothesis: the MADS-domain AqAP3-3/
3b paralogs have been shown to specifically promote petal

identity with no contribution to stamen or staminodium

development (Figure 2f) [18]. Furthermore, similar stu-

dies in the distantly related Ranunculaceae genus Nigella
have recovered the same result [19��,20�]. While this

evidence does seem to argue for a conserved petal iden-

tity controlled by AqAP3-3 orthologs, the question

remained: What happens to these genes when petals

are naturally lost? This point has been addressed by a

study that examined multiple pairs of closely related

genera in which one taxon had petals while the other

lacked them [19��]. In every apetalous genus, expression

of the AqAP3-3 ortholog is dramatically reduced, if not

completely eliminated, and the genomic loci show a

variety of evidence of pseudogenization. All of these data
Current Opinion in Plant Biology 2014, 17:22–27
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Figure 2
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Novel floral organs of Aquilegia and homeotic RNAi phenotypes that affect their identity. (a) Flowers of A. formosa. On the left, a pre-anthesis flower

with all stamens removed. The petaloid sepals (sep) and spurred petals (pet) are visible along with the inner staminodia (std) surrounding the carpels

(car). Note that the staminodia are free from each other. On the right, a post-anthesis flower in which the sepals, petals and stamens have naturally

abscised while the persistent staminodia are fused to form a continuous sheath that surrounds the carpels. Photograph by SA Hodges. (b) The spurred

petal of A. � coerulea ‘Goldsmith’. (c) The staminodial sheath of A. � coerulea ‘Goldsmith’. Photographs in (b) and (c) by B Sharma. (d) Floral diagram

for a wildtype (WT) flower showing five distinct organ identities: sepals (sep), petals (pet), stamens (sta), staminodia (std), and carpels (car). (e)

Phenotype of AqPI-silenced flower (aqpi) in which petals are replaced by sepals and both stamens and staminodia by carpels. (f) In AqAP3-3-silenced

flowers (aqap3-3), the petals are replaced by sepals with no effect on the other floral organs [18]. (g) AqAP3-2-silenced flowers (aqap3-2) show

stunted, sterilized stamens, indicated in grey [32]. (h) AqAP3-1-silenced flowers (aqap3-1) display strong transformation of staminodia into carpels and

some perturbation of inner stamen development [32]. (i) Double silencing of AqAP3-1 and AqAP3-2 (aqap3-1/2) results in complete transformation of

all stamens and staminodia into carpels with no effect on petal identity but some reduction in size [32].
are, therefore, consistent with a model in which petal

identity was commonly inherited but turned off in many

separate instances. Of course, one may also ask why the

loss of petals is so commonly tolerated in the family. One

likely explanation is the presence of petaloid sepals in
Current Opinion in Plant Biology 2014, 17:22–27 
almost all of the taxa. This transference of primary

attractive function from the second to the first whorl

could have released constraint on the petals, allowing

them to diversify in morphology or, on occasion, be lost

[17,19��].
www.sciencedirect.com
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Having established the genetic basis of petal identity, we

can now turn our attention to the elaboration of these

organs. Aquilegia flowers feature a diverse array of petal

nectar spurs, the shape of which is tightly associated with

specialized pollinators that range from bees to humming-

birds to hawkmoths (Figure 1; [21,22]). Tight correspon-

dence between a pollinator’s tongue and the spur length

in any particular species is considered a product of selec-

tion for pollen removal and receipt, driving spur length

over a 16-fold range and reproductive isolation between

species [22]. Combined with the explosive worldwide

radiation of Aquilegia species after the evolution of the

nectar spur, this novelty is thought to be the key inno-

vation that enabled Aquilegia to become a textbook

example of adaptive radiation [23]. Despite the clear

ecological and evolutionary significance of spur length,

however, almost nothing was known about Aquilegia spur

morphogenesis until very recently.

Early hypotheses posited that spur development is

caused primarily by ‘meristematic knobs’ thought to flank

the spur attachment point, adding one cell at a time until

the final spur shape is achieved [24]. Recently, however,

spur growth has been shown to be an extreme example of

organ curvature, progressing in two dynamic phases.

During phase I, diffuse cell divisions occur throughout

petal primordium but when the nascent spur cup reaches

�1 mm in length, the division domain contracts in a wave

that begins at both the blade and base, progressing

eventually toward the future nectary [25��]. The result

is that cell divisions persist in the spur region for longer

than in the blade and base, which promotes the initial out-

pocketing of the spur. This localized domain of cell

division continues to contract until the spur reaches

�5 mm, when it enters phase II. This consists of highly

anisotropic cell elongation that drives the bulk of spur

growth and continues until the spur reaches its final

length. The inference that spur shape ontogeny is gov-

erned by the these two simple phases was confirmed by

modeling: spurs were computationally ‘grown’ using

thousands of experimental measurements of cell area

and anisotropy to achieve spur profiles that were in

agreement with natural profiles and shapes [25��].
Another critical finding of this study is that the consider-

able variation in spur length across various Aquilegia
species appears to be entirely controlled by variation in

anisotopic cell elongation, rather than cell number. The

degree of elongation is, in turn, controlled by the duration

of the elongation period, which suggests that a macro-

morphological feature — spur length — is controlled by a

cell level parameter, which is itself mediated by hetero-

chronic shifts. A clear target of future work is to under-

stand the genetic basis of this morphological novelty,

which will take advantage of genome sequence resources

that cover a wide range of species with various spur shapes

and lengths, as well as the secondarily spurless A. ecalcar-
ata (Figure 1d). This natural variation is a powerful tool
www.sciencedirect.com 
because the species are interfertile, which allows genetic

dissection through segregation studies [26] and there are

even natural hybrid zones where association mapping is

promising [27].

Aquilegia staminodia, more than sterilized
stamens
Unlike the staminodia of many other angiosperms, which

may simply be aborted stamens, the staminodia of Aqui-
legia are a continuous whorl of sterile, laterally expanded

organs that surround the carpel whorl (Figure 2a,c). After

anthesis, when all of the outer floral organs abscise, the

staminodia stay attached to the receptacle and undergo

late congenital fusion to form a cylindrical sheath [14].

The current hypothesis is that this reflects an herbivory

deterrence mechanism protecting the early developing

fruits [28], but this has yet to be tested in the field. In

Semiaquilegia, the sister genus to Aquilegia (Figure 1l),

similar organs are present in the same position, but they

are more variable in number and morphology [29]. No

other genus in the Ranunculaceae has similar staminodia

in this position, suggesting that they evolved recently in a

stepwise fashion, becoming sterilized in the last common

ancestor of Aquilegia + Semiaquilegia �8 mya and further

elaborated in the lineage leading to Aquilegia �6 mya

[30�].

As described above, expression studies implicated the

AP3 paralogs AqAP3-1 and AqAP3-2 in the differential

control of staminodium and stamen identity, respectively.

Using VIGS, a transient RNAi approach, each of these

paralogs has been silenced individually and in combi-

nation [32��]. In AqAP3-2 silenced plants, stamens show

broad anther necrosis and, in the most severe phenotypes,

anthers were highly reduced to yield naked sterile fila-

ments (Figure 2g), reminiscent of the underdeveloped

staminodia seen in Semiaquilegia. There was no effect on

the actual staminodia or other floral organs in AqAP3-2-

silenced flowers, however. In the AqAP3-1 knockdowns,

the primary phenotype was homeotic conversion of the

staminodia toward carpel identity with some weak necro-

sis or transformation to carpel identity in the inner sta-

mens (Figure 2h). These findings would appear to suggest

that AqAP3-2 is essential to the proper development and

fertility of the stamens while the main role of AqAP3-1 is

staminodium identity with some gradient of influence on

the innermost stamens. These conclusions are supported

by the double silencing phenotype, in which all of the

stamens and staminodia were strongly transformed to

carpels (Figure 2i). There was also some reduction in

petal size but no obvious effect on identity. These find-

ings reveal a complex picture of a modified ABC model

following gene duplication. While AqAP3-3 experienced a

relatively ancient subfunctionalization to control only

petal identity, more recent evolutionary changes to the

AqAP3-1 and AqAP3-2 paralogs have allowed the defi-

nition of a new organ identity derived from the innermost
Current Opinion in Plant Biology 2014, 17:22–27



26 Growth and development
whorl of stamens. Both AqAP3-1 and AqAP3-2 are broadly

expressed throughout the stamen/staminodium domain at

very early stages and it appears that this early AqAP3-1
expression is sufficient to promote some degree of stamen

identity. Because of the later establishment of differential

expression, we see that proper stamen development

requires AqAP3-2 while staminodium identity depends

on AqAP3-1. Again, the available genomic resources for

Aquilegia as well as its sister genus Semiaquilegia, will

hopefully facilitate a better understanding of how this

differential expression pattern evolved, as well as how the

entire staminodium identity program was derived from

the ancestral stamen program.

Conclusion
Aquilegia’s recent evolutionary history makes it a particu-

larly useful model for studying traits related to the evol-

ution of floral novelty. That being said, there are many

other developmental features of interest where Aquilegia,

along with its genomic resources, will represent an

important model, including compound leaves, cymose

inflorescence structure, flower color, perennial life-form

and the requirement for vernalization in controlling flow-

ering time. For instance, the genus has been used to

demonstrate that the role of CUC homologs in the dis-

section of leaf margins is deeply conserved across eudi-

cots [31]. As our tools continue to improve, these

comparisons will grow even more powerful.
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