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Abstract

Patient-Specific Vascular Model Construction and Modification for Blood Flow Simulation
and Analysis

by

Adam Robert Updegrove

Doctor of Philosophy in Engineering-Mechanical Engineering

and the Designated Emphasis

in

Computational and Data Science and Engineering

University of California, Berkeley

Professor Shawn Shadden, Chair

Cardiovascular disease has remained the leading cause of death worldwide for the past 15
years, and organizations such as the American Heart Association (AHA) and the National
Institute for Health (NIH) spend hundreds of millions of U.S. dollars annually to investigate
heart disease and stroke. Local characteristics of blood flow in the heart and the rest of the
cardiovascular system provide important information in both understanding progression of
and diagnosis of cardiovascular diseases. Unfortunately, current medical imaging techniques
cannot provide data with high enough temporal and spatial resolution to extract meaning-
ful and accurate research conclusions. Thus, many researchers investigate cardiovascular
diseases using a patient-specific blood flow simulation framework. In this framework, a pa-
tient’s geometry is constructed on a computer from medical image data, and a numerical
simulation, such as finite element analysis (FEA), is used to provide very high detail infor-
mation. Typically, the most time consuming step and also one of the most crucial steps
in this pipeline is constructing the geometry of interest from the image data. In addition,
many of the tools to create an image-based model are commercial, not readily available,
or dispersed amongst a variety of software packages. This dissertation discusses two main
avenues of research: (1) the development of unique, customized, and open-source tools for
vascular model construction and meshing for FEA and (2) the investigation into and the
creation of novel model construction methods for an alternative of FEA called isogeometric
analysis (IGA). All of the tools developed were implemented using open-source tools such as
the Visualization Toolkit (VTK) and have been implemented into the software framework
SimVascular. In addition, many of the methods developed were tested for applicability and
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robustness on the open-source vascular model repository, which is a large database of over
100 vascular models provided by the Open Source Medical Software Corporation (OSMSC).
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0.1 Introduction

0.1.1 Motivation

Cardiovascular diseases are the leading cause of death worldwide [1, 2]. Many of these
cardiovascular diseases are caused or a↵ected by characteristics or disruptions of local blood
flow. Unfortunately, current imaging techniques cannot provide blood flow information at a
high enough resolution to be useful for in depth cardiovascular disease investigation. Thus,
patient-specific hemodynamic or blood flow simulation was pioneered in the late 1990’s [3, 4]
to investigate the progression of cardiovascular diseases. Since then, patient-specific blood
flow simulation has entered the clinical world [5], and also proven to be an e↵ective method
for studying a variety of cardiovascular diseases in the academic world [6, 7, 8, 9, 10, 11,
12, 13, 14]. In patient-specific blood flow modeling, a patient-specific model is “segmented”
or constructed from medical image data, such as magnetic resonance imaging (MRI) or
computed tomography (CT). This model is prepared for simulation historically through a
meshing procedure that makes it suitable for analysis or blood flow simulation. Blood flow
analysis is then carried out using numerical techniques such as finite element analysis (FEA),
finite volume (FV) analysis, or isogeometric analysis (IGA).

Despite its e↵ectiveness as both a research tool and as a supplement to clinical proce-
dures, there are still many ine�ciencies and bottlenecks in the blood flow simulation pipeline.
It is still a major challenge to accurately and e�ciently create vascular models from med-
ical image data. This is due to a combination of challenges including a large collection
of cardiovascular diseases, vast di↵erences in patient vascular anatomies, and di�culty in
distinguishing blood vessels from other artifacts and anatomical structures in image data.
Researchers typically report modeling to be the most time-consuming step of the patient-
specific blood flow pipeline. Though it can often take a significant amount of time to run a
complex and large simulation, solvers run independently, and this is time that can be utilized
elsewhere by the researcher. Thus, patient-specific model construction is a major roadblock
in the blood flow simulation pipeline for both academic studies and use in the clinic. It has
been proposed that a patient-specific geometry should be constructed in 40 minutes or less
to be used for computer-integrated surgery [15]. In addition, the model or geometry is often
a main source of error in simulations. Thus, it is important to both reduce the time it takes
to create patient-specific models as well as make construction methods more reproducibly
accurate.

An additional challenge for researchers looking to investigate a particular cardiovascular
disease is the lack of easily available and usable tools to perform both anatomical construction
and blood flow analysis. This is due to a variety of reasons:

1. Many software tools for image segmentation, modeling, and analysis are either general
tools or intended for a di↵erent application. For example, SolidWorks is one of the
most powerful computer-aided design (CAD) frameworks in the industry. Though
SolidWorks excels at constructing complex mechanical parts and assemblies, a model
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cannot be constructed from medical image data through SolidWorks, and it is di�cult
to import a vascular model and perform meaningful modifications to the geometry.

2. There are very few tools that provide a full pipeline of the vascular modeling workflow.
Starting from image analysis and segmentation and ending with blood flow simulation
may require a researcher to use up to four or five di↵erent software frameworks. It is
then a major challenge to develop a procedure to pass data between these interfaces
and also learn and develop the skills to use all of these di↵erent tools.

3. Powerful software packages are typically commercial, and even with an academic li-
cense, it can be expensive to purchase and use. This is a roadblock to researchers who
may simply want to evaluate a tool to test its applicability for cardiovascular problems
but cannot due to the cost.

To address these issues, the research discussed in this dissertation has been geared around
providing usable, e↵ective, and open-source tools for the software framework, SimVascu-
lar [16]. SimVascular is currently the only completely open-source software to enable re-
searchers to go all the way from image data to blood flow simulation analysis. In the e↵ort
to provide a completely open-source pipeline for cardiovascular simulation, it became evident
that there are a lack of complete, robust, and usable modeling and meshing tools, especially
in specific to cardiovascular modeling. In this dissertation, SimVascular will be overviewed,
and the specific contributions made as part of this doctoral work will be discussed. The
algorithms and methods developed as part of this dissertation have been implemented in
an open source library called vtkSV. The library includes algorithms for geometric manip-
ulation, Boolean operations, NURBS and parametric modeling, surface decomposition or
segmentation, and other miscellaneous and useful operations.

0.1.2 Background

Many software platforms focus on visualizing medical image data for identification of anatomic
structures in clinical, academic, and educational settings; Osirix (https://www.osirix-viewer.
com), Volview (https://www.kitware.com/volview), and Slicer (https://www.slicer.org) are
all examples of softwares focussing on image visualization. Other software platforms, such as
ITK-snap (http://www.itksnap.org), Seg3D (http://www.sci.utah.edu/cibc-software/seg3d.
html), and MITK (http://mitk.org), focus on obtaining a usable segmentation of structures
within medical images for a variety of applications including 3D printing, anatomical stud-
ies, and analysis. Though these can often times provide quality representations of the image
data, it can be more e�cient to work within a platform specializing on the area of interest.
For example, VMTK (http://www.vmtk.org), CRIMSON (http://www.crimson.software),
and SimVascular (http://www.simvascular.org) all provide tools focussed on segmentation
of vasculature from medical image data for the purpose of blood flow simulation. VMTK
has a variety of command line python tools for vascular segmentation, model creation, and
meshing; however, VMTK is not directly linked to a solver, and an external solver must be

https://www.osirix-viewer.com
https://www.osirix-viewer.com
https://www.kitware.com/volview
https://www.slicer.org
http://www.itksnap.org
http://www.sci.utah.edu/cibc-software/seg3d.html
http://www.sci.utah.edu/cibc-software/seg3d.html
http://mitk.org
http://www.vmtk.org
http://www.crimson.software
http://www.simvascular.org
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found or purchased for simulation. CRIMSON provides tools for the vascular segmentation,
model creation, and meshing pipeline within a graphical user interface (GUI), but the solver
is not open source and available for widespread use. SimVascular provides a complete blood
flow simulation pipeline with an open-source GUI for vascular model creation and an open-
source solver that can be called directly from the GUI, built and executed on a cluster, or
run through a gateway interface [17].

SimVascular was originally developed in the lab of Charles Taylor at Stanford University.
After significant developments in making the pipeline usable for researchers at Stanford,
the software was open sourced in 2007. Despite being open source, multiple components
of the software were still commercial, and it was very di�cult to obtain and compile the
source. With the work presented in this dissertation, significant improvements have been
made towards creating a more accessible, robust, and user friendly pipeline.

0.1.3 Outline

A description of the new open-source SimVascular pipeline and the di↵erent components of
the pipeline will first be provided in Chapter 1. This will help to give a basic understanding
of the software as well as establish a context for the remainder of the work described in this
dissertation. Following the overview of SimVascular, the contributions for this dissertation
for vascular modeling and e↵ective tools in constructing analysis suitable models will be
discussed in Chapter 2. Next, meshing procedures and the challenges associated in meshing
vascular models will be reviewed in Chapter 3. This will be followed by a small description
of IGA along with an analysis of geometric representations that have recently been devel-
oped for use with IGA in Chapter 4. I will then describe methods developed during this
doctoral work to tackle the complicated task of forming analysis suitable multi-variate spline
representations in Chapter 5. In each section, the relevant literature will be reviewed, the
developed methods and their applications will be described, and if there are direct results of
the methods, those will be presented and discussed.
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Chapter 1

SimVascular

Parts of this chapter are published in [16] and in collaboration with Nathan M.

Wilson, Jameson Merkow, Alison L. Marsden, and Shawn C. Shadden.

1.1 Introduction

Cardiovascular disease is the leading cause of death and disability worldwide. Central to both
the causes and consequences of cardiovascular disease are local and regional disruptions in
blood flow. The relationships between hemodynamics and cardiovascular diseases are subtle
and multifaceted. While qualitative understanding and correlations are well documented [18,
19, 20, 21, 22, 23], precise knowledge of hemodynamic conditions is needed to quantify risk
and evaluate mechanisms. Simulation-based methods can provide a powerful framework in
this regard. Advanced numerical methods are enabling increasingly realistic representations
of cardiovascular physiology. Moreover, because the role of hemodynamics in any disease
scenario is highly individualized, medical imaging and clinical data often forms the basis
for patient-specific numerical simulations. These simulations can now provide a means to
perform patient-specific treatment planning, virtual surgery and design optimization.

Image-based blood flow modeling was pioneered in the late 1990’s and early 2000’s [3, 4,
24, 25, 26, 27] and, in the years since, has proven to be a powerful tool in basic science and
clinical research. Indeed, HeartFlow recently introduced the first FDA-approved simulation-
based service for routine clinical evaluation of coronary stenoses [28]. In most image-based
modeling applications, 3D angiographic data obtained from computed tomography (CT) or
magnetic resonance imaging (MRI) is used to construct a geometric model of a vascular
region. Image processing is used to construct a vascular model that is then imported into a
computational fluid dynamics (CFD) package to generate a volumetric mesh and numerically
simulate blood flow. While numerous image processing software packages exist, most are
not designed to generate computer models well-suited for simulation purposes. And while
numerous CFD packages exist, most are not designed to accommodate the sophisticated
boundary conditions, physiologic models and physics specific to cardiovascular modeling.
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The software package SimVascular was originally developed in the lab of Charles Taylor
at Stanford University to provide a complete pipeline from medical image data segmentation
to patient specific blood flow simulation and analysis. SimVascular provides boundary con-
ditions that achieve physiologic levels of pressure, fluid structure interaction, and a highly
accurate and e�cient finite element flow solver. The software was released in 2007 and
remained the only software package for cardiovascular simulation that includes the entire
pipeline from model construction to simulation analysis. However, the need for commercial
components and licenses previously hindered new user adoption and prevented complete
open source release. Moreover, the infrastructure for continued software development was
lacking as well as necessary features for wider use.

To overcome the above barriers, the SimVascular revitalization project was launched in
2013. A major goal of these e↵orts was the development and integration of open-source
alternatives for a truly open-source SimVascular project. In addition, new functionality in
nearly all facets of the pipeline has been added to enhance modeling accuracy, usability and
e�ciency. Examples of recent enhancements include direct 3D segmentation, discrete solid
modeling, mesh repair tools, fluid-solid interaction with variable wall properties, closed-loop
lumped parameter network modeling, and updates to the graphical user interface (GUI).
In addition, case studies, online documentation, CMake compatibility, a user forum, binary
packages for all major operating systems, and other infrastructure to support the open-
source project have been brought online (www.simvascular.org). As part of the overhaul
of SimVascular, two large updates have taken place. The first update included complet-
ing the open-source pipeline with the addition of open-source modeling and meshing tools
and updates to many parts of the source code. This update culminated in the release of
SimVascular 2.0 [16]. The next update involved the development of an entirely new GUI,
which produced SimVascular 3.0 [29]. Both GUI architectures will be described briefly, and
the general image-based patient-specific blood flow simulation pipeline will be described in
detail.

1.2 Pipeline and Architecture

1.2.1 SimVascular Pipeline

The SimVascular pipeline starts with image processing and segmentation and continues all
the way through to post-processing of simulation results. Figure 1.1 displays nominal steps
of image-based modeling in SimVascular, although alternative and additional steps may be
employed. We briefly describe the main steps in the pipeline, and then provide additional
details in the subsequent sections.

Paths - The segmentation process typically starts by creating pathlines along the vessels
of interest. It is possible to create models using a lofted 2D segmentation method (Sec-
tion 1.3.1) or direct 3D segmentation methods (Section 1.3.2). When performing lofted 2D
segmentation, the pathlines are used to resample the image data to a cross-sectional “in-

www.simvascular.org
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Figure 1.1: The SimVascular pipeline leads the user from visualization of image data to
completion of blood flow simulations. Steps 2-4 correspond to the lofted 2D segmentation
process. Adapted from [30].

tensity probe” window that can be moved along the vessel’s path (Fig. 1.5a). For direct
3D segmentation methods, paths are not necessary but can be used to help initiate region
growing methods.

Segmentation - For the lofted 2D segmentation method, functionality is provided to
move along each pathline and create a series of segmentations that delineate the luminal
boundaries of the vessel (Fig. 1.5b). Alternatively, for direct 3D segmentation, functionality
is provided to position seed surfaces (spheres) that will expand, merge and morph in 3D
space to fill in the luminal boundary.

Model - After image segmentation, a solid model can be generated. Following the
lofted 2D approach, the series of segmentations are lofted together with splines (Fig. 1.5c).
For either the lofted 2D or direct 3D approach, functionality for manipulating the model
and identifying faces of the model (e.g., for specifying boundary conditions) is provided.
Additionally, surfaces from 2D (Fig. 1.5d) and 3D methods can be combined into a single
model using custom boolean operations.

Meshing - A volumetric finite element mesh is created from the geometric model for
numerical analysis. SimVascular supports construction of unstructured tetrahedral meshes
as well as several advanced meshing features including boundary layer meshing, radius-based
meshing, regional refinement and adaptive meshing.

Simulations - Simulation in SimVascular is broken down into three executables in which
a presolver, solver and postsolver are used to generate simulation results. There is function-
ality to assign boundary conditions, material properties, and set parameters for the solver.
The svSolver can be run through the GUI; however, it is common for simulation files to be
generated on a desktop computer and then copied to a high performance computing (HPC)
cluster where the svSolver can be run in parallel.
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1.2.2 SimVascular Architecture

SimVascular’s core source code is comprised of two common coding languages: C++ and
Fortran. The majority of the source code is written in C++, including code for segmentation,
solid modeling, and meshing. The solver, svSolver, is the only portion of the source currently
written in Fortran. The SimVascular source code is built upon a repository in which objects
are stored, maintained, and tracked. The repository, which is a large hash table, facilitates
memory management across the large scale software platform. The repository stores all
data structures as a cvRepositoryData object. Figure 1.2 displays a simplified inheritance
diagram for the SimVascular data structures. Stemming from the cvRepositoryData data
structure, there are several objects used within SimVascular’s source code for data repre-
sentation. These objects include cvDataObject (a general subclass of cvRepositoryData),
cvSolidModel, and cvMeshObject. These are abstract base classes providing virtual functions
for implementation in derived classes. They define a rigid structure for the derived classes
that is important for the modularity of SimVascular. SimVascular uses external libraries for
multiple Solid Model and Mesh Object classes (Fig. 1.2). Each of these packages are included
in a derived class demonstrating SimVascular’s extensibility for new module plugins.

Figure 1.2: Inheritance Diagram of cvRepositoryData. Derived classes in aqua are open
source while derived classes in gray are commercial and optional.

1.2.3 SimVascular 2.0 GUI

The SimVascular 2.0 GUI is comprised of an interactive display, as well as image and work
tabs (Fig. 1.3). The image tabs provide control over how the image data is displayed. This
includes functionality such as loading medical image data, point cloud visualization, and
volume rendering. The work tabs encapsulate the core functionality of the model construc-
tion process. In SimVascular 2.0, the Tcl language is used for C++ bindings (for high level
access to core functionality) and as the front end interpreter language. Tcl/Tk is used in
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combination for the graphical user interface (GUI). In addition, SimVascular’s core C++
functions are wrapped with Tcl bindings and callable through a Tcl console or interpreter.
The Tcl interpreter provides users the ability to use custom scripts, in addition to or in place
of the GUI, to access a wide range of the SimVascular functionality and automate repeatable
procedures.

Figure 1.3: The SimVascular pipeline is mirrored in the main work tabs of the GUI of
SimVascular 2.0 (enclosed in red box): Paths ! Segmentation ! Model ! Meshing !
Simulations.

1.2.4 SimVascular 3.0 GUI

The SimVascular 3.0 GUI was developed in 2016 and also provides functionality for all steps
of the SimVascular pipeline, but in a more up-to-date interface using Qt and derived from the
Medical Imaging Interaction Toolkit (MITK) (Fig. 1.4). Care has been taken to improve the
usability and design of the interface to facilitate the workflow. An interactive data manager
allows creation, editing, and removal of all data types within the SimVascular pipeline.
Each step of the pipeline also contains its own separate module tab which is activated upon
selection of an item of that specific data type in the data manager. In this manner, it is
obvious what tools and functions can be performed for each data type. Python bindings
have also been created for SimVascular’s core C++ functions to complement the new GUI.
For more information on the development and implementation of the SimVascular 3.0 GUI,
see [29].
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Figure 1.4: The SimVascular pipeline is mirrored in the SimVascular 3.0 Data Manager (en-
closed in red box). Images ! Paths ! Segmentation ! Model ! Meshing ! Simulations.

1.2.5 SimVascular Maintenance

The source code is maintained as a github repository (https://www.github.com/SimVascular).
Maintenance and development is enhanced with multiple modern software development tools.
CMake is used to build and test functionality of the source, while Travis CI is used for auto-
mated building on various versions of Linux with di↵erent library versions, and CTest/CDash
are used for nightly builds. Stable binary releases of the software are posted on Simtk
(https://www.simtk.org/home/simvascular). Simtk also currently hosts user forums, email
lists, and a bug tracker for SimVascular.

1.3 Image Segmentation

Image data consists of a set of scalar values defined on a structured grid. The scalar values
represent an intensity field in 3D space and objects or material within the image are identified
by di↵erent intensity values or ranges. The first step in image-based modeling is to segment
the image data in a region of interest (ROI) to extract the boundary or structure of an object
from the intensity field. With SimVascular, the segmentation process is most commonly used
to identify the luminal surface of a blood vessel; however other anatomical structures may
be similarly segmented and modeled. Extensive research has been conducted in the field

https://www.simtk.org/home/simvascular
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of image segmentation [31, 32, 33, 34] and SimVascular utilizes established techniques that
incorporate both 2D and 3D image segmentation techniques.

1.3.1 2D Segmentation Methods

Figure 1.5 displays the steps to generate an individual vessel using the lofted 2D segmentation
approach. First, an approximate centerline is generated along the vessel (Fig. 1.5a). Along
this path, a series of segmentations is generated by stepping a 2D cross-sectional imaging
window along the vessel (Fig. 1.5b). Finally, the segmentations are lofted together to give
a surface representing the lumen (Fig. 1.5c). Lofting is performed through generation of
spline interpolating functions. To create a vascular network, multiple vessels are created
sequentially, and then unioned via a set of boolean operations (Fig. 1.5d).

Figure 1.5: Creation of a vascular geometry using the lofted 2D segmentation approach
involves moving a cross-sectional image window along each vessel path to create a series of
segmentations (b) that are lofted to form each vessel (c). A solid model is generated by the
union of individual vessel models (d).

The 2D cross-sectional imaging window (Fig. 1.5a,b) is limited to a region around the
path so that peripheral image data does not interfere with the local segmentation of the vessel
of interest. There are a variety of methods implemented to segment the lumen, though the
two main approaches are based on level set and threshold techniques.

Level Set - A contour is initialized by a seed point (small disk) and grows in the directions
of changing intensity values to find the location of sharpest change. This picks out the
vessel wall as a complete contour region (Fig. 1.6, left). A pair of windows displaying the
image intensity and magnitude of the intensity gradient facilitates segmentation creation and
editing. A moving level set front is governed by

�t = �v|r�|�rg ·r�, (1.1)
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Figure 1.6: Left: A slice along the vessel pathline is segmented using level set segmentation
techniques. Right: The same slice is segmented using threshold techniques.

where �t represents the front, v is the velocity normal to the front, and g is an edge detection
function. The velocity term, v, is represented di↵erently for two di↵erent stages. In the first
stage, the velocity is represented by exponentially decaying functions. In the second stage,
the velocity is represented by edge attraction functions. Parameters in the SimVascular GUI
correspond to scalars governing the decay in the first stage and attraction in the second
stage. For more details, see [32].

Threshold - Image intensity values are assumed to be centered at each pixel. A bilinear
interpolation function is then used to create isocurves of a specified threshold value on the
image. These isocurves are potential contours of the lumen. A circle of specified radius
is centered on the path, and the smallest closed isocurve that completely encapsulates the
circle is identified as the lumen boundary (Fig. 1.6, right).

Manual - Manual segmentation is useful for noisy data sets, images with complicated
features, or cases where the automated methods fail to converge. Points along the lumen
are manually selected by the user and (automatically) connected with a closed spline to
represent the geometry.

Analytic - A 2D segmentation is created using a circle or ellipse of user specified dimen-
sions. This can be helpful for ideal geometries, noisy data, or locations where no image data
exists.

Segmentations created by any of the above methods can be smoothed post creation.



CHAPTER 1. SIMVASCULAR 12

Also, in some applications multiple segmentations can be created using the same set of
level set or threshold parameters, allowing for “batch mode” segmentation. In batch mode,
for a specified range along the vessel path, segmentations are automatically generated with
specified settings. Segmentations can then be checked and modified as needed using the
editing or smoothing tools provided in SimVascular. In cases of appropriate image quality,
this can be an e�cient way to automatically generate a set of segmentations along each path.

1.3.2 3D Segmentation Methods

Direct 3D segmentation methods are also available in SimVascular, which are useful for
segmenting vessel sections that do not lend themselves well to 2D cross section segmentation,
such as aneurysms, and vessel junctions. This process begins by placing 3D seed “points”
(small spheres) within vascular locations. These act as initial surfaces for active contours
and level set algorithms. Seeds can be positioned by manual selection in the 3D window
using coordinate position sliders, or along SimVascular pathlines.

In addition to specification from seeds, initial contours from which a 3D surface is grown
can be specified via several alternative methods. These methods include initialization from
previous level set surfaces, surfaces created through 2D segmentation, and even 3D iso-
surfaces of the image data. After positioning seed points or selecting an initial contour
surface, a 3D surface is grown using one of two level set algorithms: (1) a Laplacian fast
edge grower, or (2) a geodesic smoothing level set. Both level set types are implemented by
modifying the terms in Equation (1.1). These level set algorithms propagate segmentation
labels through an energy minimization of appearance, curvature, and propagation terms.
Appearance features are controlled by modifying the parameters shown in the following
equation:

E =
1

1 + (�(I ⇤ f) · )m , (1.2)

where ⇤ is the convolution operator, f represents a Gaussian smoothing kernel, and k and
m represent contrast parameters for contrast scaling and proximity.

1.4 Model Creation

The segmentation process results directly, or indirectly, in a boundary representation of the
blood flow domain (or other physical region of interest). The output of the 3D segmentation
process is a triangulated surface that serves as a discrete boundary representation. For the
lofted 2D segmentation approach, the segmentations must be lofted to construct a solid model
as described below, which can be represented as either a triangulated surface, or parametric
(CAD) model. See Chapter 2 for more details on modeling. Additional procedures are often
needed to make the solid model compatible with computational modeling. SimVascular
supports four di↵erent solid modeling approaches: (1) PolyData, (2) OpenCASCADE, (3)
Parasolid, and (4) Discrete.
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PolyData - The most extensive solid modeling package in SimVascular is PolyData.
Combining custom-developed procedures with filters available in VTK (www.vtk.org) and
VMTK (www.vmtk.org), the PolyData kernel provides multiple ways to create and manip-
ulate a geometry. The PolyData kernel is first used to generate a model from the ordered
2D segmentations. Splines are formed along the length of the vessel that connect the 2D
segmentations, resampled to a specified number of points, and then connected and triangu-
lated to form a complete PolyData surface. Each set of segmentations results in one lofted
vessel. Additional lofted vessels are then combined using an ordered Boolean addition. A
customized Boolean operation for triangulated surfaces is used for this operation [35]. Other
PolyData operations provided in SimVascular include smoothing, blending, decimation, sub-
division, remeshing, clipping, deleting cells, and filling holes. Many of these are available as
localized operations, which can confine operations to a subset of the model. Selection op-
tions include picking a spherical region, using single or multiple faces, identifying the region
between two faces (e.g., vessel junctions), or even clicking on individual cells on the model.

A PolyData model is an unstructured triangulated surface. Discrete models generated
in other segmentation programs (e.g. in STL format) can be imported into the SimVascular
modeling pipeline as a PolyData model (Fig. 1.7). After importing, one can identify faces
of the discrete model and perform the same set of operations that are available for models
created in SimVascular.

Figure 1.7: A geometry imported into SimVascular and prepared for meshing using the
PolyData module. (1) The imported geometry, (2) extra and undesired portions of the
geometry are removed and holes are filled, and (3) the geometry is smoothed, decimated,
and subdivided.

OpenCASCADE - The OpenCASCADE (www.opencascade.org) modeling kernel pro-
vides 3D solid modeling functionality found in most CAD software. OpenCASCADE is the
solid modeling package utilized in FreeCAD (www.freecadweb.org). Using this component,
one can use SimVascular to create a CAD model by lofting the 2D segmentations into a
non-uniform rational B-spline (NURBS) surface. This parametric format lends well to typi-
cal CAD procedures such as blending, cutting, and Boolean operations. These functions are
accessible through SimVascular’s GUI and console.

https://www.vtk.org
http://www.vmtk.org
www.freecadweb.org
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Parasolid - Parasolid (Siemens PLM Software, Plano, TX, USA) is an optional li-
censed solid modeling plugin, which is the solid modeling package utilized in SolidWorks
(www.solidworks.com). Using this licensed component, one can also perform lofting of 2D
segmentations into a NURBS surface and access typical CAD procedures through SimVas-
cular’s GUI and console. In general, much of the functionality between Parasolid and Open-
CASCADE is similar; however, Parasolid has generally been found to be more robust.

Discrete - The last solid modeling package, Discrete, is an optional plugin that sim-
ply provides a way to represent a discrete PolyData surface as a model that is usable by
SimVascular’s commercial mesher, MeshSim (Simmetrix, Inc., Clifton Park, NY, USA).

At the end of the model creation step, faces on the model are labeled with a user specified
name and identifier (ModelFaceID). These identifiers can later be used to specify boundary
conditions or material properties in the simulation steps. When a model is created using 2D
or 3D segmentation approaches in SimVascular, names and ModelFaceIDs are automatically
prescribed. Customized naming and prescription of faces can be accomplished using built
in functionality, which is also helpful if the model is created using an external program and
imported into SimVascular.

1.5 Meshing

After image segmentation and model construction, the next step for image-based blood flow
modeling is discretizing the volumetric domain through mesh generation. The most robust
meshing packages have traditionally been commercial codes, though in the past decade, high
quality open-source meshing tools have also become available.

SimVascular supports two meshing kernels for the user to choose from: (1) TetGen and
(2) MeshSim. The open-source TetGen kernel is actually a combination of functionality
from TetGen (www.tetgen.org), as well as custom code for adaptive meshing, code from
VMTK (www.vmtk.org) for boundary layer meshing and radius-based meshing, and MMG
(www.mmgtools.org) for fast and robust surface remeshing. The optional MeshSim kernel is
a licensed mesher by Simmetrix (www.simmetrix.com). Both MeshSim and TetGen kernels
provide a broad and similar range of meshing options (Fig. 1.8). See Chapter 3 for a more in
detail description of the meshing possibilities in SimVascular. Surface remeshing, local mesh
refinement, and cylindrical mesh refinement are a few of the options available in both pack-
ages. Also, boundary layer meshing is supported, which enables smaller, thinner elements
over near-wall regions where the gradient of the velocity normal to the surface changes most
drastically. Additionally, mesh adaption based on a-posteriori error estimates is supported
to provide a more e�cient discretization strategy. This is achieved by computing the sec-
ond directional derivative, or the Hessian, of the solution (e.g., blood velocity magnitude).
The eigenvalues of this Hessian matrix at each mesh point are used as an indication of how
much the solution is changing around this point, and the mesh is locally refined/coarsened
accordingly [36]. This enables the intelligent placement of mesh points that are both refined

www.solidworks.com
www.tetgen.org
www.vmtk.org
www.mmgtools.org
www.simmetrix.com
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enough to capture the dynamics of the solution where necessary, but coarse enough to be
computationally e�cient where possible. See Chapter 3 for more details.

Figure 1.8: A variety of meshing options are available in SimVascular. (A) Uniformly pre-
scribed element size on a mesh, (B) a boundary layer mesh, (C) a mesh with spherical
refinement, (D) and a radius-based mesh.

1.6 Simulation

The meshing procedure produces an unstructured volumetric mesh that can be used as
the computational domain for simulation of blood flow and pressure. The SimVascular
simulation module includes three parts: (1) Presolver (svPre), (2) Flowsolver (svSolver),
and (3) Postsolver (svPost).

1.6.1 Boundary Conditions

Boundary conditions are essential to obtaining valid, physiologically realistic cardiovascular
simulation results. The foremost boundary condition is the traction (no-slip, no-penetration)
boundary condition applied at the lumen surfaces (“walls”). The other boundaries can
be considered inflow (“inlet”) and outflow (“outlet”) boundaries, and it is important that
boundary conditions specified on these surfaces represent the physiology of the vasculature
outside the 3D computational domain. For example, boundary conditions are essential for
obtaining realistic values of pressure required for accurate fluid structure interaction sim-
ulations. SimVascular provides di↵erent options for boundary condition assignment at the
three boundary types. Dirichlet or Neumann boundary conditions can be applied at either
inlets or outlets of the model, which enables a broad range of options for boundary condition
specification. These values can be directly prescribed, or implicitly prescribed from reduced
order models of the upstream or downstream vasculature. Along these lines, inflow and
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outflow boundary conditions can be prescribed in an “open-loop” or “closed-loop” manner
(Fig. 1.9). For the latter, inflow conditions become coupled to the dynamics of the model
itself, which can be necessary in surgical planning applications where one virtually changes
the vascular geometry in a manner that may alter inflow conditions from the nominal or
measured values.

Inlets - At the inlet (or inlets), a flow rate or pressure waveform is typically prescribed.
The waveform is fit to a truncated Fourier series so that the flow rate (or pressure) at arbitrary
time points can be queried. When a volumetric flow rate is specified, it is mapped to the
inlet plane using a specified profile; plug, parabolic and Womersley profiles are currently
supported in SimVascular. This mapping can account for non-circular inlet planes. In
addition, SimVascular supports the ability to map planar phase contract magnetic resonance
imaging (PCMRI) velocity measurements to the inlet plane of the model for scenarios where
such measurements are available [37].

Outlets - There are a number of techniques used in SimVascular for outflow bound-
ary conditions that model the e↵ects of the downstream vasculature, including impedance
boundary conditions, Windkessel-type boundary conditions (resistance, RC circuit, RCR
circuit, etc.), and more complicated lumped parameter network (LPN) models like coronary
boundary conditions [38]. These boundary conditions e↵ectively model the pressure-flow
relationship at each outlet due to the respective downstream vascular bed. Impedance and
Windkessel-type boundary conditions are coupled implicitly to the 3D computational domain
by prescribing pressure in a weak manner in the flowsolver as described in detail in [39]. In
addition, the coupled LPN network can be modified without needing to recompile the solver,
thus making it very simple to implement a variety of boundary conditions.

We can view outlet boundary conditions as being specified by a lumped parameter (LP)
model of the downstream vascular domain. Unlike distributed models (such as the 3D com-
putational domain) that are governed by PDEs, LP models are governed by ODEs. There-
fore, providing the ability to couple ODEs that represent the dynamics of the downstream
vascular domain opens vast possibilities for modeling downstream physiology. In fact, such
models can represent the entirety of the circulation outside the 3D computational domain,
in which case one achieves a “closed-loop” model and the ODEs serve to both modulate
outflow conditions and inflow conditions (Fig. 1.9, right). Except for very simple LP models,
the ODEs cannot be solved analytically, and must be solved numerically. For such couplings,
SimVascular contains an e�cient and stable numerical scheme for implicitly coupling ODE
models with the flowsolver for the 3D domain without significantly increasing the overall
simulation cost [40, 41], which has been used in several recent applications [42, 43].

Walls - No-penetration, no-slip boundary conditions are applied for rigid wall simula-
tions. Alternatively, the flowsolver can be used to model fluid structure interaction (FSI).
For FSI simulations, the fluid and solid domains are coupled using the coupled momentum
method (CMM) [44], with the wall modeled as a linear elastic material, which can have
uniform or variable elastic modulus and thickness along each vessel.
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Figure 1.9: On the left, “open-loop” boundary conditions are prescribed on a model of an
aorta (from [30]). RCR circuits are applied to represent the downstream vasculature. On the
right, “closed-loop” boundary conditions are applied to a Hemi-Fontan model (from [43]).

1.6.2 Solver Methodology

Blood flow is modeled using the incompressible Navier-Stokes equations,

⇢v̇i + ⇢vjvi,j � p,i � ⌧ij,j = 0,

vi,i = 0, (1.3)

where ⇢ is blood density, vi is the ith component of the fluid velocity and v̇i its time deriva-
tive, p is the pressure, and ⌧ij is the viscous portion of the stress tensor. The flowsolver
inside of SimVascular evolved from the academic finite element code PHASTA (Parallel, Hi-
erarchical, Adaptive, Stabilized, Transient Analysis) for solving the Navier-Stokes equations
in an arbitrary domain with the streamline-upwind/Petrov-Galerkin (SUPG) and pressure-
stabilizing/Petrov-Galerkin (PSPG) methods [45].

The SUPG/PSPG formulation is defined on the finite-dimensional trial solution and
weight function spaces Sk

h, W
k
h, and P k

h . The domain is denoted by ⌦ 2 R3, and its boundary
by � = �D [ �N . Dirichlet boundary conditions are applied on �D, and, Neumann, or flux
type, boundary conditions are applied on �N . ⌦ is discretized by nel linear elements, ⌦e.
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The weak form of Eq. (1.3) becomes

BG(wi, q; vi, p) =

Z

⌦

{wi(⇢v̇i + ⇢vjvi,j) + wi,j(�p�ij + ⌧ij)� q,ivi} d⌦

+

Z

�N

{wi(p�in � ⌧in) + qvin} d� = 0, (1.4)

where w 2Wk
h and q 2 P k

h .
Momentum stabilization is required for advection dominated flows, and pressure stabi-

lization is otherwise required to support the use of linear tetrahedral elements (P1-P1) in
the SimVascular flowsolver for velocity and pressure, which is computationally e�cient in
terms of memory and mesh size. The following stabilized weak form is thus considered

B(wi, q; vi, p) = BG(wi, q; vi, p)| {z }
Eq. 1.4

+
nelX

e=1

Z

⌦e

{ ⌧M(vjwi,j + q,i)Li| {z }
momentum and pressure stabilization

+ ⌧Cwi,ivj,j| {z }
incompressibility constraint stabilization

} d⌦

+
nelX

e=1

Z

⌦e

{ wivjvi,j + ⌧ vjwi,jvkvi,k| {z }
compensation for the stabilization terms

} d⌦ = 0, (1.5)

where w 2Wk
h and q 2 P k

h . Li represents the residual of the ith momentum equation,

Li = v̇i + vjvi,j + p,i � ⌧ij,j. (1.6)

This formulation includes both the momentum and pressure stabilization [46], which are
controlled by the stabilization parameter, ⌧M . The incompressibility constraint is also stabi-
lized and is controlled by the stabilization parameter, ⌧C . The addition of these stabilization
terms causes inconsistencies in the conservation of momentum, so Taylor et al. [47] intro-
duced the final term of the weak form to compensate for the momentum imbalance. For
further details, see [45].

The above weak form contains stabilization terms for momentum, pressure, and the
incompressibility constraint. In addition, backflow stabilization as described in [48] has been
added to the SimVascular solver to prevent instabilities at Neumann boundaries that may
experience backflow due to flow reversal (either total reversal due to conservation of mass,
or partial reversal due to vortical structures near the outlet). This backflow stabilization
method has been shown to provide a more robust and e↵ective way to deal with numerical
divergence caused by flow reversals at Neumann boundaries compared to more common
methods [48].

The stabilized FEM formulation of Navier Stokes is discretized in time using the gen-
eralized alpha time-stepping scheme in the SimVascular flowsolver. A recently developed
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linear solver with specialized preconditioners tailored to handle large vascular resistances
coupled at outflow boundaries is used to handle cardiovascular simulations and reduce so-
lution time [49], providing an alternative to the original commercial linear solver LesLib
(Altair, Inc., Mountain View, CA). The flowsolver can be run with a single core or with mul-
tiple cores using the Message Passing Interface (MPI). A related version of the flowsolver
has demonstrated excellent scalability on large clusters [50], which can enable the study of
transiently or transitionally turbulent flow conditions.

1.6.3 Flow Analysis

SimVascular can post-process the simulation files to extract or calculate relevant hemody-
namic quantities such as velocity, pressure, wall shear stress (WSS), and oscillatory shear
index. Files can be exported to VTK formats to facilitate visualization of the data in leading
open-source scientific visualization softwares such as ParaView and VisIt, as well as more
custom post-processing by applying VTK classes and filters, which can be scripted using
Python. For example, recent studies have analyzed flow fields produced by SimVascular to
compute Lagrangian coherent structures [51, 52, 53, 54], residence times in aneurysms [55]
[56], and turbulent kinetic energy [30, 8]. Flow fields have also been used to perform particle
tracking [57, 58] and to model surface transport processes relevant for thrombosis [59, 60].

1.7 Case Studies and Validation

SimVascular has been used in a wide range of applications from studying blood flow in
the heart, brain, and lungs and for various disease and surgical planning scenarios (e.g.,
[6, 7, 8, 9, 10, 11, 12, 13, 14] among others). In vitro validation in the thoracic aorta
compared flow measurements from PCMRI in deformable phantoms to SimVascular FSI
simulations [61]. The average di↵erence between measured and simulated flow was approxi-
mately 13% (mean). The di↵erence between the measured and simulated mean pressure was
approximately 1.8%. Similar validation e↵orts were carried out in the coronary arteries and
found similar agreement between measured and simulated flows [62]. In vivo validation has
been performed by comparing fluctuating/turbulent kinetic energy computations obtained
with SimVascular with measurements obtained using 4D flow imaging in an aortic coarcta-
tion in [8] as shown in Figure 1.10. In that study the quantified mean di↵erences between
in vivo measurements and CFD predictions of fluctuating kinetic energy were on the order
of 10% and within expectations due to modeling and measurement errors. In addition, in
vivo measurements of flow velocities in abdominal aortic aneurysms were shown in [54] to
compare well to computations obtained using SimVascular, and simulated predictions of flow
in Y-graft Fontan procedures were compared to in vivo clinical data in [63]. SimVascular has
also been used in several recent CFD challenges for image-based hemodynamics modeling,
e.g. [64]. Moreover, simulation-derived designs from SimVascular have been translated to
clinical use, an example of which is the pilot study of the Fontan Y-graft [65, 66].
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Figure 1.10: In vivo validation of SimVascular’s finite element flow solver for an aortic
coarctation. (Left) Comparison of fluctuation intensity (TKE) fields from PCMRI and from
SimVascular (CFD) during systole. (Right, top) Percentage of the descending aorta (boxed
region) with fluctuation intensity above various thresholds at systole. (Right, bottom) In-
tegral of the fluctuation intensity field over the descending aorta (boxed region) vs. time.
Figures adapted from [8].

As a compelling exposition of SimVascular’s application to image-based hemodynamics
modeling, the Open Source Medical Software Corporation (OSMSC) has compiled models
and results from over 100 unique studies using SimVascular (Fig. 5.15). Figure 5.16 breaks
down the contents of the cardiovascular and pulmonary model repository available to users
at www.vascularmodel.com. We briefly present the results from two of these studies, as well
as an example where FSI has been used for simulation of a coronary artery bypass graft
(CABG).

Coronary Arteries: Coronary artery disease is the leading cause of death worldwide.
Flow in the coronary arteries is unique in that it is distinctly out of phase with other systemic
arterial beds due to high intra-myocardial pressure during systole, which e↵ectively increases
vascular resistance in the coronary beds. Figure 1.13 displays a model of the coronary arteries
built in SimVascular from cardiac-gated CT data of a 63 year old female. The model includes
the proximal aorta, and a typical aortic flow waveform was imposed at the aortic root, taken
from [67]. Including the aorta and specifying aortic flow, rather than coronary flow has
several advantages; aortic flow can be measured or estimated more easily; the left and right
coronary flows are more naturally coupled; and with this geometry a heart model can be more
naturally coupled [38]. The aortic waveform was scaled to a mean volumetric flow rate of 5
L/min with a period of 1 second (60 beats per minute). At the aortic outlet, a three element
Windkessel or RCR model was applied. The parameters in the RCR model were found by
setting the mean flow of the aortic outlet to 96% of the cardiac output, and 60/40 split for the

www.vascularmodel.com
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Figure 1.11: A sampling of the wide variety of model categories and simulation results
available online in the vascular model repository at www.vascularmodel.com.

left and right coronary arteries. Lumped parameter coronary bed models (Fig. 1.13, upper
left) were coupled at the model outlets using the coupled multidomain method [39, 68] with
time dependent intra-myocardial pressure Pim(t). Realistic systolic and diastolic pressures
for a healthy adult of 120 and 80 mmHg were achieved. Volume rendering of the velocity
field magnitude is displayed in Figure 1.13. One can observe highest flows in the coronaries
during diastole. Similar methods have been applied to model Kawasaki disease and coronary
bypass graft surgery using both open loop and closed loop circulation models [68, 9].

Pulmonary Arteries: The pulmonary arteries supply blood from the heart to the
lungs for oxygenation. Pulmonary arterial hypertension (PAH) and pulmonary embolisms
are common diseases associated with the pulmonary arteries. Image data from a woman
aged 67 was used to construct an extensive model of the pulmonary arteries from the main
pulmonary artery to various levels of branching in the left and right pulmonary pathways
(Fig. 1.14). A total of 100 arteries were modeled. The inflow waveform was adapted from [69]
to represent a typical resting pulmonary waveform. Resistance boundary conditions were
used at all outlets. Resistance values were distributed inversely to outlet area and with
total values chosen to match physiologic flow splits and pulmonary pressures. Wall shear
stress values in the proximal arteries were observed to match values in previous studies, and
flow rates through the main pulmonary arteries were consistent with measured values from
PCMRI [70]. This application was used to evaluate wall shear stress and other quantities
in normal and PAH patient specific models, revealing significant di↵erences between healthy
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Figure 1.12: The vascular mode repository combines the results of over 100 studies of varying
image data, model complexity, and simulation type.

and diseased states, which helped to reveal mechanisms for PAH progression [71].
Aortic and Femoral Arteries: The second example is a model extending from the

aortic root to the femoral arteries (Fig. 1.15). This model was constructed from a large CT
dataset of a 21-year old female subject. The aortic inflow waveform was taken from [72]
and averaged to a mean cardiac output of 4.6 L/min. Three element Windkessel models
were applied at each outlet with resistances and capacitances tuned to achieve desired flow
distribution amongst the various outlets and physiologic pressure pulse. Various literature
sources were used to support the distribution ratios to each model outlet. For example, 13%
of the cardiac output was distributed to the carotid arteries, 65% to the descending thoracic
aorta, and 22% to the subclavian arteries. Descending thoracic flow was further divided to
the remaining arterial beds based on target flow rates from the literature. Target arterial
pressures were based on typical pressures for a young healthy adult. The simulation results
match a target diastolic pressure of 80 mmHg and systolic pressure of 120 mmHg.

Coronary Artery Bypass Graft: Coronary artery bypass graft surgery is performed
in roughly 400,000 patients annually in the United States [74]. Vein graft failure continues to
be a major clinical challenge in patients post CABG surgery. Simulations including material
wall properties and vessel wall deformation may give insight into flow and wall mechanics
leading to vein graft failure and optimal choice of surgical method. In this example, a
model including the aorta, the coronary arteries, and the graft were constructed from CT
images with SimVascular. Vessel wall thickness and material properties were prescribed
based on literature values [75, 76]. For the boundary conditions at the aortic inlet and
outlet, a closed-loop LPN was used that included circuit blocks for the heart, the systemic
circulation, and the coronary circulation. Because flow in the coronary arteries is out of
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Figure 1.13: Model of the coronary arteries of a 63 year old female reconstructed from
CT. The upper left inset is a schematic of a LP distal coronary bed model, one of which
is coupled at each coronary outlet. The right two images show volume renderings of the
computed velocity magnitude fields at peak systole and end diastole.

phase with the systemic circulation, coronary specific boundary conditions were applied at
each of the coronary artery outlets. The model was tuned to send 4% of the cardiac output to
the coronary arteries [77]. In addition, target pressures and flow splits were matched using
values taken from literature. Velocity during end diastole and wall displacement during
peak systole are displayed in Figure 1.16. Significant di↵erences in biomechancial conditions
between venous and arterial grafts were identified [78].

1.8 Discussion

SimVascular provides a complete pipeline for image-based hemodynamics simulation. Many
custom features have recently been developed to enable e�cient and flexible computer model
construction from medical image data. While this software has benefited from more than a
decade of development and use in state-of-the-art cardiovascular modeling research studies,
the recent redevelopment of SimVascular has expanded and hardened its functionality and
ease of use. Moreover, these recent e↵orts have made SimVascular completely open source,
documented, and available on all major operating systems, which enables community use for
research and education for the first time. Many of these e↵orts are documented in following
chapters of this dissertation.

Because geometric fidelity and boundary conditions are of critical importance in accurate
cardiovascular simulation, new features have focused on providing enhanced functionality
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Figure 1.14: Time averaged wall shear stress and average pressure over one cardiac cycle for
the pulmonary arteries of a 67 year old woman.

for model construction, manipulation, and repair, as well as the specification and numerical
treatment of physiologic boundary conditions, multidomain modeling, and fluid structure
interaction. Many of these features are not possible in other softwares. The SimVascular
solver has undergone significant development to include support for multiscale boundary
conditions, backflow stabilization, and a new linear solver with specialized preconditioning
to improve performance. Significant e↵orts have also been made to refactor and harden the
SimVascular code for stable releases and standardized development.
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Figure 1.15: The image volume and the constructed model for the aortic and femoral arteries
of a 21 year old female (left two panels). Representative simulation results of the time-
averaged pressure field and oscillatory shear index (OSI) [73] field are shown (right two
panels).
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Figure 1.16: Model of the aorta, coronary arteries, and a bypass graft constructed from CT.
Velocity during end diastole (left) and wall displacements during peak systole calculated
from FSI simulation (right). Adapted from [78].
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Chapter 2

Vascular Modeling for Finite Element
Analysis

Parts of this chapter are published in [35] and in collaboration with Nathan M.

Wilson and Shawn C. Shadden.

2.1 Introduction

Patient-specific vascular models constructed from medical image data are geometrically com-
plex due to the natural winding and branching present in vascular structures. It is also very
common for vascular models to have large variations in size scale. For example, anatomic
models simulating blood flow in the coronary arteries typically include a portion of the aortic
arch which can be an order of magnitude larger than the coronary arteries. In addition, many
constructed geometries are diseased and contain abnormal anatomical structures such as an
aneurysm (vessel expansion) or a stenosis (vessel thinning). Another challenge in vascular
modeling arises from varying image modalities and quality. As an example, when using CT
image data, it may be di�cult to di↵erentiate bone from vasculature. Additionally, image
quality can be poor with many obstructing artifacts, and image resolution can also occasion-
ally be greater than one millimeter, making it di�cult to identify smaller vessel boundaries.
All of these factors combine to make modeling patient-specific vascular geometries a di�cult
challenge.

Moreover, the constructed vascular model has a profound impact on blood flow simulation
results and can be a major source of error. A manual construction process requires the
modeler to make many decisions that a↵ect the resulting model, which makes the model
highly dependent on the user. There are a variety of tools that have been developed to help
automate the process, [79, 80, 81, 82], and reduce the number of modeling decisions being
made. The downside to automation is the ability to customize a model is lost. For example,
adding a stent graft or varying the angle of a bifurcation would not be possible in a more
automated framework where the output model depends primarily on the image data. Thus,
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a set of e�cient, well-developed, and semi-automated tools is the best possible framework
for academic studies of the cardiovascular system. This chapter describes techniques for
open-source vascular model creation through the lofted 2D segmentation approach and a
variety of model modification tools. As described in section 2.2, there are many di↵erent
solid model representations. The two representations that are used heavily in SimVascular
will be discussed separately with an in depth discussion of the operations built around the
representations.

2.2 Solid Model Representations

Once a vascular geometry has been segmented through either the lofted 2D segmentation
technique, the direct 3D segmentation technique, or a combination of the two [83], the ge-
ometry can be represented in many di↵erent ways. There are a variety of di↵erent geometric
representations, and these are typically broken down into two main categories (Fig. 2.1).

Figure 2.1: Constructive Solid Geometry and Boundary Representations are fundamentally
di↵erent in object representation.

• Constructive Solid Geometry (CSG) - Constructive solid geometry is the combination
of geometric primitives (e.g. cube, cone, cylinder) through boolean operations (union,
intersect, di↵erence) to construct a solid.

• Boundary Representation (B-Rep) - A boundary representation is the union of a set
of non-overlapping geometric elements that define the exterior of a solid volume.

Constructive solid geometry can be useful when creating geometries of regular shapes; how-
ever, it is much more di�cult to represent a free form geometry like that of the human
vasculature with CSG. Though CSG was utilized in many early CAD frameworks, B-Rep is
by far the more popular representation today. The B-Rep will be the focus for the remain-
der of this work. There are many representations that can be used to make up the set of
non-overlapping geometric elements defining a B-Rep. Two of the most popular representa-
tions are triangulated surfaces and non-uniform rational B-splines (NURBS). Triangulated
surfaces are typically used for representation of free-form geometries, while NURBS are the
standard in many CAD frameworks and are commonly used in mechanical design. Although
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these representations can be used to represent the exact same geometry, they are very di↵er-
ent in nature. Triangulated surfaces are defined discretely as a set of points and connectivity
of those points as triangles, while NURBS are defined parametrically as a set of splines de-
fined on piece-wise basis functions. Thus, it is important to note some of the di↵erences in
discrete and parametric modeling.

• Discrete modeling - A model is represented using a point set and some sort of connec-
tivity of that point set. This is sometimes referred to as a piece-wise linear complex.
The most common representation is a triangulated surface mesh, although quadrilat-
eral surface meshes are also quite common. The discrete model focus here will be the
triangulated surface mesh. Typical file types used to store triangulated surfaces are
*.stl, *.ply, *.obj, and *.vtp.

• Parametric modeling - A model is represented as a set of multi-dimensional paramet-
ric splines. This is typically what is used in many Computer Aided Design (CAD)
frameworks. It is exact and models can be modified easily making it ideal for design.
The CAD standard is the non-uniform rational B-spline (NURBS) surface, thus the
parametric model of focus here will be NURBS. Typical NURBS file types are *.step
and *.iges.

2.3 Discrete Modeling

Many image-based segmentation methods result in a discrete surface representation of the
region of interest. For example, all direct 3D segmentation methods by nature result in a dis-
crete representation. However, due to the nature of the lofted 2D segmentation technique, it
is possible to form a discrete or parametric surface representation. As mentioned previously,
the representation of choice for discrete modeling is the triangulated surface.

2.3.1 Lofting 2D Segmentations

When forming a tubular surface from the group of segmentations, the segmentations need
to be connected in some manner to form a surface from the segmentations. The simplest
way would obviously be combining the segmentations linearly to form what is referred to as
a ruled surface. There are many advanced techniques for combining the segmentations and
are described in literature [84]. The following steps are taken to form a triangulated surface
from image data using the lofted 2D segmentation approach.

1. A pathline is created along the vessel/s of interest (Fig. 1.5(a)).

2. Each vessel pathline is traversed and a perpendicular slice plane called the segmentation
slice plane is used to create a local 2D segmentation of the vessel (Fig. 1.5(b)). There
are a variety of segmentation methods including thresholding, level set, and analytic.
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3. The group of segmentations for a given vessel are sampled (s1) to a uniformly dis-
tributed set of points given a user defined resolution. The points are then reordered
for each segmentation such that the initial point on each curve is the closest point in
3D space to the next adjacent curve. This leads to a series of “streaklines”, or piecewise
linear paths, along the length of the vessel. (Fig. 1.5(c))

4. The group of segmentations are either connected with a series of splines or a parametric
surface is solved for using the ordered segmentation points. The surface is triangulated
at a user-defined spacing and caps are added to the end of the vessel. More details of
these di↵erent methods are provided in Section 2.3.1.

5. If the model contains multiple vessels, the vessels are lofted individually and then
combined with a union operation. A common mistake in vascular modeling with lofted
2D segmentations is to not completely enclose a child vessel in a parent vessel. The
child vessel must be completely enclosed in the parent vessel in order to form a complete
union and form a valid vessel network.

2.3.2 Boolean Procedure

Step five above is a complicated procedure for discrete surfaces. This section expands on
the Boolean procedure and describes algorithms developed to perform Boolean operations
on triangulated surfaces. This custom Boolean operation was developed in order to have a
robust and succinct implementation that retained necessary information during the Boolean
procedure. There are a variety of Boolean algorithms for B-Reps described in the litera-
ture. They can be classified in four categories by the computational approach: (1) tolerance
and exact arithmetic, (2) approximate arithmetic, (3) volumetric, and (4) image space tech-
niques [85]. Tolerance and exact arithmetic methods both compute the intersection between
two solids on their exact boundary, but contain di↵erent techniques for dealing with geomet-
ric robustness. Tolerances restrict floating point numbers to a specified decimal place for
geometric tests; whereas, exact integer arithmetic methods convert floating point numbers
to an integer-based system in which computations can be carried out exactly [86, 87, 88, 89].
Approximate arithmetic methods reduce the computational complexity before running the
geometric algorithm [90, 91]. This will make the computation simpler and quicker, but lacks
the exactness of the previous approaches. Volumetric techniques represent the solids first as a
volume [92, 93], and then perform the Boolean [94]. This results in a robust implementation;
however, the boundary between the two solids is typically not resolved well in the output
and a loss of geometric detail is seen [95]. Lastly, image space techniques take advantage of
graphics hardware to quickly provide a boundary evaluation of the Boolean [96, 97]; these
methods are typically used for object collision detection. Many of these algorithms use Lay-
ered Depth Images (LDIs) to store information about the depth piercing of ray tracing from
the viewpoint and have the same pitfall as the volumetric methods in which the geometric
detail is not exact; however, they do provide a fast and robust method to obtain a visual of
the Boolean boundary [98, 99].
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The Boolean implementations in literature also di↵er by the type of data used in the
computation. Many implementations focus on NURBS surfaces [100, 85]; however, there
are others that investigate the procedure for polygonal surfaces [101], which have been the
leading representation for discrete solid models derived from image data. There are a lim-
ited number of libraries providing open-source, available, and usable Boolean operations
for polygonal surfaces. The Visualization and Computer Graphics Library (VCG) has an
implementation of the Boolean operation, which is implemented within the software Mesh-
Lab [102]. This is a volumetric implementation, and thus lacks the exactness of geometric
detail described above. Another implementation is the GNU Triangulated Surface Library
(GTS, http://gts.sourceforge.net), which is robust, but this package is no longer maintained
and is di�cult to include in software projects that require customization. VTK maintains an
implementation for the Boolean of triangulated surfaces [103], however the implementation
is not robust and often fails in various manners described below.

Rarely does the result of a Boolean give a surface that is ready for meshing and simula-
tion, and typically other surface preparation methods must be performed. Besides defining
faces for specification of boundary conditions or material properties, methods providing
smoothing, blending, and manipulation of surfaces are necessary to give a solid that both
accurately represents the image data and is valid for computational modeling. Moreover,
discrete solid models obtained through image segmentation are often limited in quality by
the resolution of the image data and inherent noise. Therefore surface manipulation tools
are also necessary to improve the quality and representation of discrete solid models that
serve the basis for quantitative postprocessing and simulation.

2.3.2.1 Boolean Overview

A Boolean procedure takes as input two objects and outputs some combination of these
objects. Henceforth, the first input object is denoted as A and the second object as B. The
possible Boolean operations between two objects are their union (A [ B), intersection
(A \ B), and di↵erence (A � B or B � A). For this work, the objects are assumed to
be two triangulated surface meshes. Moreover, these surfaces are considered B-Reps, or
exterior surfaces, of volumetric objects in 3D space. Thus, one may view the Boolean as the
union/intersection/di↵erence of the enclosed volumes, subsequently restricted to the surface
mesh. 1

To explain the Boolean procedure, it is helpful to introduce a couple of definitions In-
tersection loops define where one surface crosses the other. The sub-surfaces are the
portions of each surface that are separated by the intersection loops. The Boolean in general
consists of (1) finding the intersection loops between the two objects, (2) separating the ob-
jects into appropriate sub-surfaces, and (3) determining the appropriate combination of the
sub-surfaces for the desired Boolean. For a discrete polygonal Boolean, an additional step is
required. After the intersection loops are found, the two input surfaces are re-triangulated

1
This interpretation holds for water-tight surfaces. As discussed further below, for open surfaces the

Boolean is strictly between the surface objects.
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to conform to the intersection loops. In this way, the respective sub-surfaces can be com-
bined to give a valid output once the Boolean is performed. The following summarizes the
computational steps in the Boolean process for discrete polygonal surfaces:

Intersection. Determine where the input surfaces intersect in space. This step creates the
intersection loops that are used for re-triangulation and sub-surface determination (see
Section 2.3.2.2).

Re-triangulation. Re-triangulate each surface near the intersection loops. The intersection
loops are comprised of intersection points and lines on each surface, and each surface
is re-triangulated separately (see Section 2.3.2.3).

Boolean. Determine the correct combination of sub-surfaces for output. The sub-surfaces
are extracted based on their orientation relative to the intersection loops incident on
the surfaces (see Section 2.3.2.4).

2.3.2.2 Intersection

The first step in the Boolean is finding intersection loops. The methods used to find inter-
section loops of two surfaces follows the work described in [103] with some modifications.
Finding the intersection loops between two discrete surfaces is di�cult because all individual
intersecting cells between surfaces A and B must be found. Thus, intersections are found
with the help of vtkOBBTree, an oriented bounding box tree class found in VTK. An ori-
ented bounding box tree partitions space occupied by a discrete surface into subregions to
enable better location queries. An oriented bounding box (OBB) is the smallest volume box
that encloses a specified number of cells. The vtkOBBTree class contains a function ::In-
tersectWithOBBTree() that takes as input another vtkOBBTree to determine which OBBs
from each surface intersect. For intersecting OBBs, the callback function ::FindTriangleIn-
tersections() uses a function ::TriangleTriangeIntersection(), defined below, to find triangle
intersections. An example of two oriented bounding box trees is displayed in Fig. 2.2.

The function ::TriangleTriangleIntersection() is an existing function in the VTK class
vtkIntersectionPolyDataFilter, however this function does not provide information regarding
intersection points or origin surfaces, which are necessary for most Boolean implementations.
An intersection point is a point where two surfaces meet that is incident on the edge of a
triangle from either surface. The origin surface is the input surface containing the triangle
edge that the intersection point lies on (cf. Fig. 2.5). A new ::TriangleTriangleIntersection
function was developed in order to track and maintain the intersection points and origin
surfaces for later use, as described next.

The function ::TriangleTriangleIntersection() takes as input 2 sets of 3 points, with each
set representing a triangle from each surface. A check is first performed to determine if all
three points from one triangle lie on one side of the supporting plane of the other triangle,
excluding the possibility of intersection. The supporting plane is the plane containing the
triangle of interest. If intersection is possible, the intersection line is found and restricted
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Figure 2.2: Left: The triangulated surface representation of a vascular model that was
created by first developing a parent artery (blue) and branch artery (red) to be unioned.
Right: oriented bounding boxes for each respective surface mesh. Each bounding box is
specified to contain at most 10 surface triangles.

to the OBBs of the two triangles. The intersection line, l, is the line where the support-
ing planes of the two triangles intersect. Each edge, e, of each triangle from surface A is
intersected with l to give parametric values describing the intersection as shown in Fig. 2.3.
Equations (2.1) and (2.2) give the intersection point, P , of the two line segments, and the
parametric values (↵1,↵2) describe where the intersection occurs on each line segment. The
same procedure is followed with the triangles from surface B. The above procedure is only
performed for triangles contained in intersecting OBBs.

P = a+ ↵1(b� a) (2.1)

P = c+ ↵2(d� c) (2.2)

A necessary, but not su�cient, condition for two triangles to intersect is that l must be
intersected by at least 2 edges from each triangle. This can be determined by checking if the
parametric values ↵1 and ↵2 are between 0 and 1 for two edges on each triangle. While this
ensures both triangles intersect l, this does not ensure the triangles intersect each other. Let
↵A and �A denote the ↵2 value for the two intersecting edges from the triangle on surface A.
Similarly, let ↵B and �B denote the ↵2 value for the two intersecting edges from the triangle
on surface B. Triangle intersections are determined by comparing these values as shown in
Fig. 2.4 and Algorithm 1.
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Figure 2.3: Line segment e, which is an edge of the triangle from surface A, has endpoints a
and b. This intersects with intersection line l with endpoints c and d. The intersection gives
two parametric values to determine where the intersection occurs along each respective line.
Although the triangle from surface A intersects l, the triangles do not intersect because the
triangle from surface B does not also intersect l.

Figure 2.4: The di↵erent intersection types and how the parametric values determine the
origin surface of the intersection points. The dashed line, l, is the intersection line, and
the arrow indicates the order in which the points are considered. The blue triangle is from
surface A and the red triangle is from surface B.

Algorithm 1 ::TriangleTriangleIntersection()
if ↵A < ↵B

if �A < �B

1. First point originates from surface B, second point originates from surface A
else if �A >= �B

2. Both points originate from surface B
end if

else if ↵A >= ↵B

if �A < �B

3. Both points originate from surface A
else if �A >= �B

4. First point originates from surface A, second point originates from surface B
end if

end if
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An intersection point may originate from: (1) surface A, (2) surface B, or (3) both
surfaces. Fig. 2.5 demonstrates the origin surface IDs given to intersection points from
the intersection of two discrete spheres. These surface IDs determine whether a point is
part of the boundary of an intersected triangle, which is needed in the re-triangulation step
described below. The prior VTK implementation did not go through the process of finding
the surface IDs. Instead, a distance calculation was used in the re-triangulation to determine
whether a point is part of the triangle boundary. This calculation is an unnecessary step
and often leads to an incorrect surface origin determination. This approach provides a more
robust solution to this problem. Each intersection point is stored in a vtkPoints object with
its designated Origin Surface ID, and each intersection line is stored in a vtkCellArray. In
addition, intersected triangles are marked for re-triangulation.

For a Surface ID of 3, edges from each surface intersect. In this case, there are at least
two triangle-triangle intersections that will both locate this intersection point. Therefore,
duplicate intersection points are removed. A point is flagged as duplicated if its distance
from a prior intersection point is less than some specified tolerance (default 1e�6).

Figure 2.5: The intersection of two discrete spheres defined by intersection points with labeled
origin surface IDs. 1 - intersection originates from Surface A; 2 - intersection originates from
Surface B; 3 - intersection originates from both surfaces.

2.3.2.3 Re-Triangulation

The second step in the Boolean is the re-triangulation of both surfaces. The function
::SplitMesh() is the overarching re-triangulation function within the vtkIntersectionPoly-
DataFilter and the basic steps performed by this function are listed in Algorithm 2. This
function is called separately for each input surface after the intersection loops have been
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found. It calls a function ::SplitCell(), which carries out the re-triangulation for intersected
triangles. Algorithm 3 lists the general steps in the re-triangulation process. This new trian-
gulation is found by first finding the cell loops of the split triangle. Fig. 2.6 and Algorithm 4
demonstrate the process of finding cell loops for an intersected triangle.

Algorithm 2 ::SplitMesh()
for Each Input Surface Sin

for Each Cell (Ci) in Sin

if Ci is not an intersected triangle
Copy Ci to Sout

else
Call SplitCell(Ci)
Output Re-triangulated Ci to Sout

end if
end for

end for

Algorithm 3 ::SplitCell()

Call GetLoops(Ci)
for Each Loop (Lj) in Ci

Re-triangulate Lj with Delaunay 2D or Ear Clipping
end for
Attach information about new triangles in Ci to intersection lines
Return new triangles of Ci

Figure 2.6: A triangle with an intersection splitting the cell into two loops. The loops are
found using Algorithm 4.

The intersected cells are re-triangulated according to Algorithm 3, and these are added
to the re-triangulated surface along with the existing non-intersected cells. The IDs of all
cells adjacent to the intersection line are saved as vtkCellData for later use. At this point,
the intersection is finalized, and the surfaces can be checked to ensure a proper triangulation
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Algorithm 4 GetLoops()
while There are untouched cell vertices or lines

Start at one of the cell’s original vertices (vA) and move to next vertex (vnext)
while The next vertex (vnext) is not vertex vA

if vnext is connected to only two lines
lnext ! lconnected (l that is not lnext)
Follow along next line (lnext), comprised of lnext[v1] and lnext[v2]
vnext ! lnext[v2]

else
if The loop does not yet have an orientation

Find l that makes a minimum angle with current lnext
Calculate the orientation of the loop (CW or CCW)

else
Find l with minimum angle that follows the loops orientation

end if
lnext ! lmin

vnext ! lnext[v2]
end if

end while
end while
Return Cell Loops

was formed, i.e., that each edge adjoins an appropriate number of triangles. At the end of
re-triangulation, the VTK class vtkSVLoopIntersectionPolyDataFilter is completed.

2.3.2.4 Union, Subtraction, Intersection Determination

To obtain the correct Boolean output, a VTK class vtkSVLoopBooleanPolyDataFilter was
developed. The existing vtkBooleanOperationPolyDataFilter was found to have several de-
ficiencies, and a new class was written in its place using alternative methods as described
here. To begin the Boolean, the intersection loops are pre-processed to determine the type
of intersection occurring between the surfaces. There are 3 intersection types for discrete
polygonal surfaces [104], which are shown in Fig. 2.7. Each intersection loop is considered to
be discretely represented by intersection points connected by intersection lines, which corre-
spond to nodes and edges of triangles on each respective surface due to the re-triangulation
step above.

• Hard Closed Loop Intersection - Every intersection point is connected to two
intersection lines, and the beginning point of each loop is the end point. There can be
any number of intersection loops, but no intersection point can be connected to more
or less than two intersection lines.
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Figure 2.7: The di↵erent intersection loop types possible. Left: An intersection containing
6 hard closed loops, Middle: An intersection containing 2 soft closed loops, Right: An
intersection containing 1 open loop.

• Soft Closed Loop Intersection - Every intersection loop is closed; however, an in-
tersection point can be connected to more than two lines. For example, in the intersec-
tion between two cylinders of the same radius, there are two soft closed intersection
points that are connected to four intersection lines. The beginning point of each loop
is still the end point of the loop, but points within the loop may be attached to more
than, but not less than, two lines.

• Open Loop Intersection - Intersections do not form complete loops. There are
points on the intersection lines that are only connected to one intersection line, and
thus, are the ends of that loop. The beginning point is not the end point of the loop
as the intersection loop is not closed.

It is possible to have a Boolean that gives rise to multiple intersection types. It is also
worth noting that if the surfaces are water-tight it is not possible to have an Open Loop
intersection. This is only possible for surfaces with free edges. A water-tight surface is one
in which every cell edge has two neighbor triangles. An open surface has at least one edge
that has only one neighbor triangle; since portions of the surface are open, it may not be
considered as enclosing a volume.

As pre-processing, the number of intersection loops and the type of intersection loops
are found and stored. Then, each intersection loop is run through in an oriented manner
to obtain the intersected sub-surfaces partitioned by the intersection loops. The VTK
class vtkSVLoopBooleanPolyDataFilter has a function ::GetBooleanRegions() that obtains
the intersected sub-surfaces for each input, and is described in Algorithm 5.

The cells adjacent to the intersection loop lines are given an orientation based on their
alignment when the intersection loop is transversed in a specified direction. For example, in
Fig. 2.8, the intersection line is oriented bottom to top, making the cell to the left CCW and
the cell to the right CW. All cells attached to this first cell but not outside the containment of
the intersection lines are assigned this orientation with the use of a flood fill algorithm that
designates all connected elements inside the subsurface the same orientation. The boundaries
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Algorithm 5 GetBooleanRegions()

for Each intersection loop (Li)
for Each surface (Sj)

for Each intersection line (li) of loop Li

Get connected surface cells (C1 and C2) to li
for Each connected surface cell (Ck)

if Cell has not been given an orientation, O
Set cell orientation (CW or CCW) of Ck

Flood fill to assign O to all cells in respective subsurface of Sj

end if
end for

end for
end for

end for

Figure 2.8: Orientation of cells adjacent to an intersection line. Cell to the left is oriented
CCW and cell to the right is oriented CW

for the flood fill are the intersection loops. The flood fill algorithm only runs once for every
sub-surface–as initiated once the first element in that subsurface is considered. Fig. 2.9
displays the sub-surfaces defined by the intersection between a sphere and a cylinder. The
desired Boolean (union, intersection, subtraction) is some combination of the sub-surfaces.
The determination of which sub-surfaces to use is dependent on both the intersection loop
types and the Boolean operation being performed. For the case when all intersection loops
are hard closed loops, the determination is straightforward and follows the description in
Fig. 2.9. To demonstrate a more practical application, Fig. 2.10 demonstrates the union of
two arterial segments created from 2D segmentation [105] of medical image data.

2.3.2.5 Special Cases: Open Loops and Soft Closed Loops

The Boolean procedure is well defined for water-tight B-Reps since the inside and outside of
these surfaces are known. For open surfaces (i.e., there are cell edges with no neighbors), the
“inside” is less obvious. Therefore, for ease of understanding and to allow the possibility to
perform a Boolean on open surfaces, the outside of an open surface is defined by the direction
the normals are facing. The Boolean procedure implemented assumes that the direction of
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Figure 2.9: A sphere and cylinder intersection. The sphere and cylinder each have three
sub-surfaces, a, b, c and d,e,f . The sub-surfaces are colored by their Boolean orientation,
yellow is CW and cyan is CCW. A [B = b+ d+ f , A \B = a+ c+ e, A�B = b+ e, and
B � A = a+ c+ d+ f

Figure 2.10: The union of two arteries give the combined vascular model. First, the inter-
section lines are computed. Each surface is re-triangulated and sub-surface orientations are
determined. The sub-surfaces corresponding to a union operation are selected and unified
to give the output polygonal surfaces.

the normals is the exterior and the opposite direction is the interior. As shown in Fig. 2.7,
the Boolean operation on open surfaces can lead to the case of an open intersection loop.
This is one of the special cases considered in the Boolean procedure. The other special
case arises when surfaces have similar sizes and they intersect at an identical surface point
creating soft closed loops.

Open loop intersections. In this scenario there are additional steps required to ensure the
correct Boolean is output. The intersection and re-triangulation processes remain the same
regardless of intersection type. At the beginning of the Boolean step, the loop intersection
types (hard closed, soft closed, open) are characterized. In the case of one open loop, the
open loop(s) are sent to the back of the priority queue for sub-surface definition. In this way,
any closed or soft closed loops are processed first. The correct sub-surfaces are filled with
correct orientations from the closed loops. Subsequently, open loops are processed and any
remaining sub-surfaces are given an orientation in the same manner. Alternatively, in cases
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where there are only open intersection loops, the loops are processed sequentially; however,
one surface will contain a sub-surface with no cells. This means two things: (1) the surface’s
other sub-surface contains all the cells, and (2) this is the sub-surface that needs to be used
for the union. In this manner the union is specified to be composed of the larger portion
of the sub-surfaces. Fig. 2.11 demonstrates the Boolean outputs in the case of open loop
intersections. As shown, when open loop intersections occur, the Boolean is between the
actual surfaces, and not the enclosed volume.

Figure 2.11: Booleans that result in open intersection loops. The top Boolean results in a
union that has all of surface B and an intersection comprised of only surface A. The bottom
Boolean shows the case with two open intersection loops. The union retains all of both input
surfaces and the intersection is a NULL surface.

Soft closed intersection loops. This scenario is less common, but when it occurs there
are special procedures followed to ensure the correct Boolean output is achieved. Like the
open loop case, the intersection and re-triangulation process are not a↵ected. The specialized
procedures come into play during the determination of intersection loop types. A soft closed
intersection point (intersection point having more than two attached lines) indicates a soft
closed loop. When this point is identified, there are multiple loops possible, and the correct
intersection loops must be chosen. To do this, each of the attached lines are taken and the
loops completed as potential loop candidates. Note that each loop may contain multiple soft
closed intersection points and each possible route must be considered in forming potential
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loop candidates. Each possible loop is run through as is done during sub-surface determina-
tion (cf. Algorithm 5); however, there are two alterations. First, only cells of one orientation
are used to fill regions (CCW in our implementation). Second, the number of regions filled
is tracked. In the case that the loop candidate returns only one filled region, the correct loop
has been found, and the remaining loop candidates do not need to be tested. After loop
identification, the remaining steps are carried out in the same manner as hard closed loops.
Fig. 2.12 depicts examples in which a Boolean results in soft closed loop intersections.

Figure 2.12: Booleans that result in soft closed intersection loops. The top intersection has
two soft closed loops while the bottom intersection has four soft closed loops.

2.3.2.6 Performance Improvements

A brief analysis of the run time of Boolean procedures in 3D shows that the implementations
described above perform in reasonable time. The worst case run time for a Boolean of
polyhedral surfaces is O(n�2 + n log(�)) time, where n is the number of intersecting cells
on surface A and surface B. The density, �, is defined as the smallest number such that the
following holds true: Any ball R intersects � edges (e) belonging to the surface such that
length(e)  diam(R). � is the spread of surface A and B and is defined as � = D

d
, where

D is the size of the smallest quadrant of the binary space partition (BSP) built on the cells.
d is the diameter of the smallest ball that intersects k + 2NSD �+ 1 edges of the surface. k
is the maximum number of cells for BSP tree quadrant and NSD is the number of spatial
dimensions (in this case 3). See [106] for additional details on BSP trees and their use on
polyhedral surfaces.

Two performance tests are displayed. For the first test (Fig. 2.13), there is only one
intersection loop and the triangles on both input surfaces are of low aspect ratio (close to
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equilateral). In the second test (Fig. 2.13), there are two intersection loops and the triangles
have high aspect ratios. To test the scaling of the algorithm, the cells for each surface were
repeatedly subdivided as to increase the number of intersecting cells. In order to compute
the worst case runtime (solid curve with ⇤), the following assumptions were made. First,
upon each subdivision, � is is assumed to increase by a factor of 2. Second, upon each
subdivision, for test 1 (Fig. 2.13), � was assumed to increase by a factor of two. For test 2
(Fig. 2.13), because of the high aspect triangles used, � was assumed to increase by a factor
of 4 upon each subdivision. As shown in these figures, both prior and new implementations
perform better than the assumed upper limit. However, the new implementation scales
significantly better than the Boolean implementation in VTK version 6.2.0 [103] with an
increasing number of intersecting edges. This performance improvement is realized for both
test cases. In particular, for surfaces containing triangles of low aspect ratios, which is
often the case in model construction, the new implementation runs close to two orders of
magnitude faster for Booleans when a large number of intersections are present.

Figure 2.13: Performance plots for Boolean operations with one and two intersection loops.
The developed implementation is compared to the VTK version 6.2.0 [103] implementation
and the worst case performance for a discrete Boolean in 3D.

2.3.3 Uniting Multiple Vessels

In many anatomic models, the final model for CFD simulation typically is comprised of a
large number of vessels. In order to receive the full vascular network, a series of Boolean
procedures need to be performed. The vascular network can be as complicated as the pul-
monary artery network typically consisting of over 100 vessels. When building a model such
as this in SimVascular, users sometimes may not consider the order in which the vessels are
constructed. This sometimes leads to the case in which two consecutive branches do not
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intersect but are both part of the same final model. For this reason, it is desirable to have
this procedure consisting of multiple polydata union operations to be input order indepen-
dent. This along with passing intersection information from each individual union required
a custom method to be designed and implemented.

The first step in creating the entire vascular network requires a pre-processing step in-
volving the construction of an intersection table. Intersection Table - The creation of the
intersection table starts by calculating the bounding boxes for each of the input surfaces.
The intersection of the bounding boxes quickly indicates whether or not the surfaces may
intersect. Obviously, if the bounding boxes do not intersect, it is impossible for the surfaces
to intersect; however, if they do intersect, it is possible that they intersect and that will be
marked in the Intersection Table. The Intersection Table is a symmetric matrix consisting
of ones and negative ones. Each surface has a corresponding row and column. Where the
surfaces’ bounding boxes intersect, a one fills the entry of the table or matrix. If they do not
intersect, the entry in the matrix or table is negative one. Obviously, the union should not
be computed between an object and itself, so the diagonal of the matrix is populated with
negative ones.

Figure 2.14: Intersection between multiple vessels in a vascular network

A B C D
A -1 1 1 -1
B 1 -1 -1 -1
C 1 -1 -1 1
D -1 -1 1 -1

The procedure then uses this intersection table as a guideline for performing the full
Union of the vessels. The first row of the matrix is taken and the Union with each of the
possibly intersecting vessels is computed. When this happens, the symmetric location in the
matrix is converted to a negative one as well as the entire column (The surface does not need
to be processed again). In addition, the row of the newly added vessels is put in a priority
queue. This algorithm runs until the queue is empty, indicating all intersecting vessels have
been combined. In the case that a vessel does not intersect, it’s row is not crossed out and
it is not added to the priority queue.
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There are also a couple of special cases here that are dealt with according to user input.
It is possible that a vessel does not intersect any of the vessels in the network at all. In
this case, the user can specify whether to return nothing, everything, or the first group of
intersecting vessels. These procedures give a simple and e�cient method for providing the
Union of a large network of geometries that is independent of order.

2.3.4 Surface Manipulation Operations

A surface output from a Boolean operation, such as the one described in Section 2.3.2, typ-
ically has sharp angles where the two input surfaces are united. Also in many practical
applications, discrete B-Rep surfaces contain some amount of undesirable roughness since
they are often generated from image data where a parametric representation is not avail-
able. For either case, surface manipulation operations, which move points or alter point
connectivity, are necessary to improve the final surface for its subsequent use.

Before describing these methods and how they are used to improve surface quality, it is
important to define surface quality. Quality can be any sort of metric defined on the surface or
surface elements that can be altered through physical manipulation. Typical quality metrics
include area, element jacobian, aspect ratio, and maximum or minimum element angles. For
the purpose of this work, improving quality involves both achieving better element aspect
ratios as well as decreasing the angle between adjacent element normal vectors. Element
aspect ratio is simply the ratio of the largest edge to the smallest edge in an element; an
aspect ratio of 1.0 is the best possible aspect ratio. Fig. 2.15 compares the aspect ratio of
a “poor quality” surface with that of a “high quality” surface, while Fig. 2.16 demonstrates
the di↵erence in element normal vectors for a “poor quality” and “high quality” surface.

The most commonly used surface manipulation operations for discrete triangulated sur-
faces are (1) smoothing, (2) decimation (3) subdivision, and (4) remeshing. Smoothing
attempts to lessen the angle di↵erence between adjacent cells in the mesh. These smooth-
ing operations span from basic Laplacian smoothing [107] to more complicated methods
using weighted values such as Taubin smoothing [108] (Section 2.3.4.1). As part of this
doctoral work, a constrained smoothing method that seeks to retain volume was developed.
Decimation is the process of decreasing the number of triangles to represent the surface
(Section 2.3.4.2). Decimation is often desirable since it can decrease the number of poor
quality elements and decrease the complexity of the model. While decreasing the number of
facets, decimation also attempts to introduce the smallest amount of error possible. There
are di↵erent ways in which to define error and simplify the surface [109]. The methods de-
veloped as part of this dissertation use a quadric metric [110]. Subdivision works opposite
to decimation, in that it introduces more cells into an existing surface (Section 2.3.4.3). Like
most surface operations, subdivision also has multiple implementation techniques [111]. The
surface subdivision techniques developed as local operations for this dissertation are butter-
fly, loop, and linear subdivision. Remeshing typically consists of a combination of local cell
changes to systematically improve surface and element quality (Section 2.3.4.4). These local
cell changes are usually operations such as edge splits and edge removals.
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Figure 2.15: (left) The “high” quality simple bifurcation is triangulated with triangles of
very low aspect ratios which are all nearly 1.0. (right) The “low” quality model contains
triangles of higher aspect ratios.

In most applications, entire geometries do not need to be altered; thus, localized versions
of the presented discrete model operations were implemented. Often only a specific, localized
portion of a model needs smoothing. Localized methods were created for all mentioned
surface manipulation operations by altering existing VTK filters to perform these operations.
The exception to this was that an entirely new smoothing method was created, as described in
Section 2.3.4.1. To be able to perform localized methods, node and cell selection procedures
were created to identify portions of a model for manipulation (Fig. 2.17). The following four
methods have been developed as part of a user interface to be able to interactively select
regions: (1) A surface can be comprised of multiple faces and certain faces can be selected.
(2) Cells can be painted on a surface which designate them as cells to be used. (3) A sphere
with a specified radius and location can be placed and cells or nodes encapsulated within are
selected. (4) With specialized algorithms, the interface between two faces can be found and
then a sphere with a specified radius can be selected around this interface for selection. The
above methods were customized to suit this application of developing discrete solid models
for use with computational fluid dynamics (CFD).
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Figure 2.16: (left) The normals at a bifurcation di↵er less between triangles of a “high”
quality surface. (right) The normals have a larger di↵erence between triangles on the “poor”
quality surface.

Figure 2.17: Four di↵erent cell selection types developed: (1) Any face or combination of
faces can be selected. (2) Cells on the surface can be painted for selection. (3) A spherical
region can be chosen. (4) The interface between two faces (red and blue) can be found and
a sphere region with a specified radius can be selected around the interface.

2.3.4.1 Smoothing

Laplacian smoothing is often used on discrete geometries to decrease roughness; however
smoothing can also degrade the accuracy of the representation. Of particular concern is
that smoothing the B-Rep of an enclosed volume shrinks a geometry by nature. This occurs
because a typical Laplacian smoothing assigns the new location of a point to be an average
of the points sharing an edge with the specific point, which for one iteration is
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where n is the number of nodes sharing an edge with node i. The Laplacian operator is
defined as,
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(2.4)

Since all points are pulled toward their neighbors, as the number of smoothing iterations
increases, each point will be pulled toward every other point in the mesh, and the surface will
collapse inward. This is particularly a problem where the mesh object represents features
of di↵erent scales. In such cases, smoothing necessary to decrease roughness in locations
of large scale features degrades the representation of small scale features needing to be
preserved. For example, in vascular model construction, the shrinkage e↵ect on large vessels
may be insignificant over a few iterations, but the e↵ect on small vessels may alter vessel area
substantially, which can have dramatic consequences once the model is used for simulation.

A smoothing method that attempts to counteract the global mesh shrinkage is Taubin
smoothing [108]. In Taubin smoothing, a Laplacian mesh smoothing step is followed by an
“inflation step” step where a Laplacian mesh smoothing step is performed with a negative
weight,
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i

) (2.5)

where, �, is a weight that is applied to the Laplacian operator which is positive for one step
and negative for the next step.

A method that follows the same idea of counteracting the mesh shrinkage was developed.
This method minimizes the error between the original mesh and the Laplacian smoothed
mesh. Methods of this nature have recently been developed in work on computing watershed
ridges [112]. The location of a smoothed point on the surface becomes the minimum of two
equations in an optimization problem. Specifically, for each iteration, the coordinates of a
new point x

i

are described by the equations
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where wuser is a user defined weighting between 0 and 1 used to penalize deviations from
the original representation. These equations can be applied at every point to obtain the
following matrix equations,
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Matrix A2 is commonly known as the Laplace-Beltrami operator. Since each point’s
coordinates has 3 components, the total degrees of freedom of this system is 3 ⇤m, where
m is the number of points on the surface mesh. The weighting is only applicable if the
smoothing is done for more than one iteration. In many scenarios, it is desirable to have
certain points that do not move at all. This can be implemented by setting the weighting
for these points to 0, or by leaving these points out of Equation (2.9). More generally, the
weighting values can be varied among the points to locally constrain smoothing in a spatially
varying manner.

To solve the above matrix equations (2.8) and (2.9), these matrices are concatenated
vertically A = [A1;A2] and b = [b1; b2] and the extended system Ax = b is solved using the
conjugate gradient method. Namely, the conjugate system ATAx = AT b is solved, which
corresponds to the minimization of f(x) = hAx � b, Ax � bi. That is, when the quadratic
function f(x) is minimum, the gradient is equal to zero

rxf = 2AT (Ax� b) = 0 . (2.10)

Fig. 2.18 shows the e↵ect of the constrained smoothing on a select portion of a vascular
model. When combined with localized decimation operations, the blending between the
vessels increases. For a full blending of the branching vessel, these operations are also
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combined with decimation to give a smooth, natural transition between the vessels. Fig. 2.19
displays the e↵ect of using constrained and non-constrained smoothing, demonstrating that
constrained smoothing is able to create a smooth transition while maintaining otherwise high
fidelity with the original volume. Fig. 2.20 displays the percentage of the original volume for
the constrained smoothing as a function of the user-defined weighting (penalty) parameter.
The weighting maintains, and in some cases, increases the original surface area and volume
of the surface. As shown, the larger the number of smooth iterations, the lower the user
weighting should be to maintain the original volume.

Figure 2.18: The constrained smoothing is used on a model of a cerebral aneurysm. Com-
bined with localized subdivision and decimation, the overall shape is retained while removing
high frequency noise and undesired roughness. The four panels show the progression of the
smoothing, refinement and decimation process.

2.3.4.2 Decimation

Surface mesh decimation involves removing elements from the discrete surface in a systematic
manner in order to reduce mesh complexity. Decimation procedures typically follow four
steps in which (1) the surface and point topologies are evaluated, (2) an error is estimated
for removal of points or elements, (3) points or elements that provide the minimal amount of
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Figure 2.19: The original surface mesh (left) is smoothed using constrained smoothing. The
constrained smoothed model (middle) is displayed along with the original mesh demonstrat-
ing the ability to create a smooth transition while retaining the original volume. Application
of regular Laplacian smoothing (right) is not able to maintain the original volume.

Figure 2.20: Left: The percentage of the original volume when constrained smoothing is
performed for 1, 2, 5, and 20 iterations. Each case was attempted for user weightings from
0.1 to 1.0. Right: Constrained smoothing using a weighting of 0.1 compared to the regular
Laplacian smoothing.

error are removed, and (4) the mesh is re-triangulated or repaired where points or elements
have been removed. Average, median, and quadric error methods are some of the di↵erent
decimation algorithms. Quadric error algorithms have been proven to provide high quality
results, and VTK has implemented this algorithm. A localized version of this algorithm was
implemented (Fig. 2.21).
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Figure 2.21: Localized decimation allows the remove of triangles in a specific region.

2.3.4.3 Subdivision

Subdivision algorithms introduce complexity to the surface, but in doing so, help to improve
the quality of the surface. Linear subdivision is the most simple of these algorithms and a
point is added at the midpoint of each edge. This increases the complexity of the surface
by a factor of 4 as each triangle is converted into 4 smaller triangles. Alhough this increases
the number of elements on the surface, it does little in the way of improving the smoothness
of the surface. More advanced subdivision schemes, such as interpolating and approximat-
ing schemes, provide better results. Interpolating subdivision schemes generate new points
through higher order interpolation, while approximating subdivision both add new points
and then average both existing and new points. The most commonly used interpolating sub-
division scheme for triangulated surfaces is butterfly subdivision [113]. Butterfly subdivision
uses the scheme demonstrated by Fig. 2.22 and Equation 2.11.

n0 = (p0 + p1) + !(p2 + p3)�
!

2
(p4 + p5 + p6 + p7) (2.11)

The most commonly used approximating subdivision scheme for triangulated surfaces
is loop subdivision [113]. Loop subdivision uses the scheme demonstrated in Fig. 2.23 and
Equation 2.12.

n0 =
3

8
(p0 + p1) +

1

8
(p2 + p6) (2.12)

p00 = ↵np0 +
(1� ↵n)

n

nX

j=1

pj (2.13)

where ↵n = 3/8 + (3/8 + 1/4cos((2⇡)/n))2 and n is the number of connected vertices to
p0.

These algorithms work on the theory that there is an infinitely smooth limit surface
and every subdivision iteration brings the surface closer to the ideally smooth mesh. This
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Figure 2.22: The butterfly subdivision is an interpolating subdivision scheme that approaches
a G1 continuous surface.

Figure 2.23: The loop subdivision scheme is an approximating subdivision scheme that
approaches a G2 continuous surface.

theory is founded in the work of splines and the schemes are typically derived from di↵erent
types of splines. There are di↵erent schemes for di↵erent surface representations. Where
loop subdivision is the most commonly used subdivision algorithm for triangulated surfaces,
Catmull-Clark [113] is the most commonly used for quadrilateral meshes. In addition, there
is a whole category of surfaces referred to as subdivision surfaces in which the object is stored
as a minimal piece-wise linear complex with a specific subdivision rule to achieve the infinitely
smooth surface. These surfaces are now widely used in the animation industry as it is much
more e�cient to store large animated scenes with minimal data and apply the subdivision
rule to render and visualize the surface. Linear, loop, and butterfly subdivision algorithms



CHAPTER 2. VASCULAR MODELING FOR FINITE ELEMENT ANALYSIS 54

exist in VTK, and localized versions of these algorithms were implemented (Fig. 2.24).

Figure 2.24: Localized subdivision allows surface quality improvement in a localized region.

2.3.4.4 Remeshing

Remeshing algorithms vary widely in implementations, but typically combine a series of
edge splits, edge collapses, and edge flips. An edge split involves placing a new point at the
midpoint of an edge and splitting a triangle into two new triangles by connecting the new
point with the triangle point not on the edge (Fig. 2.25(a)).

Figure 2.25: Three common edge operations performed when remeshing a triangulated sur-
face involve (a) edge splits, (b) edge collapses, and (c) edge flips.

An edge collapse involves removing an entire edge and in essence removing triangles as
well. The two points of the edge are brought together and merged into one point and the
triangles containing the edge are squashed and removed (Fig. 2.25(b)). An edge flip involves
flipping the edges of two adjacent triangles. The edge between the two triangles is removed,
but the points remain in the same location. The four points of the two triangles form a
quadrilateral and a new edge is placed between them combining the points on the triangles
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that were not involved with the removed edge. An edge flip only requires a connectivity
change to the mesh and not a physical point change (Fig. 2.25(c)). These operations are
combined to produce higher quality elements and surfaces. Mesh size factors can be pre-
scribed to achieve locally refined surface meshes in which mesh sizes can be adapted to
resolve features of di↵erent size scales. Fig. 2.26 shows the result of a uniform mesh size
remesh while Fig. 2.27 shows the result of a remesh with a localized refined region in the
area of a stenosis. Robust tools for open-source remeshing exist, thus a new method was
not implemented into SimVascular. Surface remeshing was developed using a combination
of VMTK, MMG, and custom code (Chapter 3).

Figure 2.26: Uniform remeshing provides a higher quality triangulation.

2.3.4.5 Combining Surface Manipulation Techniques

In patient-specific vascular modeling, the main challenge comes in attempting to achieve a
smooth, realistic lumen or vascular wall. The lofted 2D segmentation technique results in
very sharp junctions where vessels have been combined with a union operation. The direct
3D segmentation technique creates a surface that has a voxelized appearance due to the
discrete nature of image data. Both of these require special treatment in order to prepare
the surface for finite element meshing and analysis. In addition, it is typically important to
preserve certain areas of the mesh, especially the artificial truncation boundaries where inflow
and outflow boundary conditions will be applied for blood flow simulation. Local surface
operations were developed in order to make this possible and allow for mesh operations to
be performed on a subset of the mesh. Though there are a variety of operations that can be
done and in many di↵erent combinations, the following set of operations typical results in a
smooth vascular surface with smoothed junctions.
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Figure 2.27: Regional refinement provides better resolution in localized areas where it may
be necessary to capture small size scale features.

• Global surface remeshing - This removes any poor quality elements on the surface so
succeeding operations aren’t e↵ected by skewed or thin elements.

• Local constrained surface smoothing - As discussed in section 2.3.4.1, many typical
smoothing operations, such as Laplacian smoothing, result in mesh shrinkage. Alter-
natively, the custom constrained smoothing method is used.

• Local surface decimation - This reduces the number of elements on the surface. In
doing this, the complexity of the surface is reduced, allowing the succeeding operations
to have a larger e↵ect on the surface.

• Local constrained surface smoothing - Another surface smoothing operation to relocate
nodes to a more ideal position.

• Local surface loop subdivision - This adds new nodes on the surface through the loop
subdivision scheme. It inherently increases smoothness of the surface by strategic
placing of new nodes.

• Global surface remeshing - After these operations to smooth the junction between
vessels or smooth out a voxelized surface, a global surface remeshing helps to provide
a more uniform surface mesh.

2.4 Parametric Modeling

As described in section 2.2, it is also possible to obtain a parametric model using the lofted 2D
segmentation approach. The parametric representation of choice is the non-uniform rational
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B-spline. Before describing vascular modeling with NURBS, the underlying definition of
NURBS is discussed.

2.4.1 NURBS

The industry standard for CAD is the non-uniform rational B-spline (NURBS) surface.
CAD developed out of the automotive industry when Bezier and Faget De Casteljau indepen-
dently used Bernstein polynomials to generate curves and surfaces for automobiles [114, 115].
Vesprille expanded on the work of Bezier and De Casteljau by using the concept of splines to
introduce rational B-splines, or what are now known as NURBS [116]. NURBS are spline-
based curves and surfaces based on piecewise and parametric polynomial basis functions.
A basic foundation for understanding NURBS is presented, starting with the definition of
the simplest parametric polynomial function - the power basis curve. From the power basis
curve, small steps are taken to build up to the full definition of NURBS.

Power Basis Curves A power basis curve is simply the summation of polynomials in
parametric form:

C(u) = (x(u), y(u), z(u)) =
nX

i=0

Piu
i, 0  u  1, (2.14)

where u is the parametric variable. The power curve, C(u), depends on n + 1 points, Pi,
which control the behavior of the curve. Each point has some influence on the curve at each
parametric location along u. The Pi are typically called control points, as they are not
actually on the geometric curve, but physically control the shape.

Figure 2.28: A power basis curve. Each control point, Pi, influences the curve. The lines
connecting the control points are typically called the control mesh.
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B-spline Curves Power basis curves approximate simple curves easily; however, it quickly
becomes di�cult to approximate complex geometries. In addition, as the number of control
points increases, so does the degree of the curve. Increasing the degree of the curve with
the addition of new control points is largely unnecessary and can lead to high frequency
oscillations when trying to represent a curve of lower inherent degree. To have local or
piecewise control of the curve, only a restricted set of control points should e↵ect the shape.
This local control is made possible with B-spline basis functions. The zero order B-spline
basis functions are step functions,

Ni,0(u) =

(
1 if ui  u < ui+1,

0 else,
(2.15)

where again u is the parametric variable and 0  u  1. Higher order basis functions are a
linear combination of the zero degree basis functions (Equation 2.16):

Ni,p(u) =
u� ui

ui+p � ui

Ni,p�1(u) +
ui+p+1 � u

ui+p+1 � ui+1

Ni+1,p�1(u), (2.16)

where p is the degree of the basis function. This recursion is known as the Cox-de boor
recursion [117, 118]. The basis functions in Equation 2.16 require a vector of parametric
values ui on which the basis functions are defined,

u = {u1, u2, ... , un+p+2}. (2.17)

Equation 2.17 is a vector of parametric values called the knot span. Figure 2.29 shows
the zero, first, and second degree basis functions for a simple knot span. Although the knot
span does not provide much intuition physically, it is what determines which basis functions
locally a↵ect the curve or surface. The knot span separates the parametric space of the
B-spline functions into discrete pieces. Thus, when isogeometric analysis (IGA) is discussed
in Chapter 4, it is helpful to understand that the knot span is essentially what separates
elements.

The B-spline curve then has the following representation:

C(u) =
nX

i=0

PiNi,p(u), (2.18)

where again Pi are the n + 1 control points of the curve, p is the degree of the curve, and
Ni,p(u) are the basis functions defined in Equation 2.16.

B-spline Surfaces Because a B-spline curve is a parametric curve, it is trivial to change
the dimension of the curve by simply changing the dimension of the control points. However,
it can be tough, for example, to control a shape in 3D space with only one parametric
variable. Thus, a new parametric variable can be incorporated to remedy this di�culty.
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Figure 2.29: Zero (top), first (bottom left), and second (bottom right) degree basis functions
for a knot span u = [0, 1, 2, 3, ...].

B-spline surfaces are the extension of B-spline curves to two parametric directions (a.k.a
bivariate splines):

S(u, v) =
nX

i=0

mX

j=0

Pi,jNi,p(u)Nj,q(v), (2.19)

where m+ 1 is the number of control points in the second parametric direction, v, and q is
the degree of the surface in v. The control points, Pi,j, are now essentially a 2D structured
grid of points.

NURBS Surfaces With B-spline surfaces, it is now easier to represent a wider range of
geometries in 3D space; however, it is impossible to represent spheres, ellipses, cones, and
other surfaces. Rational B-splines account for this shortcoming by incorporating a weighting
factor, wi,j, which are a grid of scalar weights corresponding to the control points, Pi,j. In
addition to this new weighting factor, Equation 5.28 is also normalized by the summation of
the entire surface. This normalization ensures that the basis functions satisfy the partition
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of unity. The partition of unity simply means that the basis functions for each parametric
value sum to 1, and it is important because it guarantees a smooth global curve or surface,

S(u, v) =
nX

i=0

mX

j=0

Pi,jNi,p(u)Nj,q(v)wi,j
nP

k=0

mP
l=0

Pk,lNk,p(u)Nl,q(v)wk,l

. (2.20)

If wi,j is equal to 1 at every control point, or even equal to the same scalar, Equation 2.20
reduces to Equation 5.28. Thus, B-splines are just a special case of NURBS. With varying
weights, geometric primitives like spheres and cylinders can be formed. In addition, varying
weights can also give certain control points more or less influence over the surface.

Equation 2.20 is the industry standard NURBS. Figure 2.30 demonstrates a cylindrical
NURBS surface, where the control points clearly outline the structure of the surface.

• NU: (non-uniform), the knot span is capable of being non-uniformly spaced.

• R: (rational), the surface weights can vary with the control points, constructing a
rational formulation.

• BS: (B-spline), uses spline basis functions.

Figure 2.30: A cylinder modeled with NURBS surrounded by the control grid.
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NURBS Volumes NURBS can vary in dimension by increasing or decreasing the dimen-
sion of the control points; however, it is di�cult to represent, for example, a volume with
two parametric directions. Therefore, a third parametric dimension is introduced to be able
to better define a volume with parametric B-splines. A B-spline volume takes the form:

V(u, v, w) =
nX

i=0

mX

j=0

lX

k=0

Pi,j,kNi,p(u)Nj,q(v)Nk,r(w), (2.21)

where l+1 is the number of control points in the parametric direction w, and r is the degree
of the volume in w. A NURBS volume could be constructed similar to Equation 2.20, but
in three parametric directions.

For clarification, spline surfaces are often called bivariate splines. In addition, spline
volumes are called spline solids and trivariate splines.

2.4.2 Lofting 2D Segmentations

The steps of creating paths and 2D segmentations along the vessel of interest are the exact
same as that described in Section 2.3.1. The NURBS surface is obtained from the series of
oriented 2D segmentations. It is easiest to fit to a NURBS surface with uniform weighting,
thus the NURBS is reduced to a B-spline surface (Eq. 5.28). The input to a fitting problem
consists of a set of ordered points which lends perfectly to using the series of ordered seg-
mentations. The ordered and aligned segmentation points are input into the surface fitting
algorithm as physical points that the surface will pass through, Qk,l(u, v), where k is the
number of segmentations and l are the number of points per segmentation. The data fitting
problem is discussed more in detail in Section 2.4.2.1. This method of global interpolation
using B-splines provides satisfying qualitative results for vascular modeling. Results can be
improved even more by providing derivative information at the end of the vessels. With a
general global surface fitting, there are no constraints in the direction of the vessel at the final
segmentations. However, the linear system can be expanded and derivative information can
be provided to constrain the direction of the vessel near the ends. Useful vector directions
can either be the position between the final two segmentation points or the normal at the
end of the vessel.

2.4.2.1 Data Fitting

There are both approximate and interpolation methods of data fitting. Interpolation involves
ensuring the resultant curve or surface passes directly through the given data points; whereas,
approximation involves finding the best fitting curve or surface of the data and it does
not need to pass directly through the given data points. For vascular modeling with the
lofted 2D segmentation approach, an interpolation approach is used to guarantee that the
surface passes through the given segmentations. In the most recent versions of SimVascular,
algorithms to update and display a new surface with an added segmentation make it possible



CHAPTER 2. VASCULAR MODELING FOR FINITE ELEMENT ANALYSIS 62

to achieve a surface that matches the image data very well. Using an approximation method
doesn’t guarantee that the surface lies on the 2D segmentations. Parametric surface fitting
is just an extension of parametric curve fitting, so that will be described first. A NURBS
curve is defined by Equation 2.18. The input is a set of data points, Qk, where k = 0, ..., n,
and n is the number of data points to fit. The curve that interpolates in between the input
data points is found by satisfying the NURBS curve equation, where the control points, Pi

are n+ 1 unknowns,

Qk(u) = C(uk) =
nX

i=0

Ni,p(uk)Pi. (2.22)

To satisfy the remainder of the equation, both parametric values, uk and a knot span,
U = {u1, ..., um}, are required. Choosing how to form both uk and U is important and can
drastically change the resultant fit curve.Though they can be formed through equal spacing,
a better choice is to base the parametric values o↵ the input data. One method is through
chord length,

d =
nX

k=1

|Qk �Qk�1|, (2.23)

where u0 = 0 and un = 1. The parameter values are then created using chord length,

uk = uk�1 +
|Qk �Qk�1|

d
, k = 1, ..., n� 1. (2.24)

Though this is the most commonly used and usually provides a good approximation of the
data, another method is the centripetal method:

d =
nX

k=1

p
|Qk = Qk�1|, (2.25)

where again u0 = 0 and un = 1. The parameter values are given using this modified chord
length,

uk = uk�1 +

p
|Qk �Qk�1|

d
, k = 1, ..., n� 1. (2.26)

This tends to provide better results for data with sharper curves. The knot spans also need
to be chosen. Again, equally spaced knot spans can be used, but tend to provide a worse
result. Averaging of the knot span is what is most commonly used and gives quality results,

uj+p =
1

p

j+p+1X

i=j

ui, (2.27)

where the first and last p + 1 points are repeated to create a clamped knot span. In this
way, the knot span similarly represents the parametric values and the given data. With the
parameter values and the knot span, the basis function can be evaluated to create a banded
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(n + 1) ⇥ (n + 1) system. When using chord length parameter values and an average knot
span, the system is positive and has a semibandwitdth that is less than the degree of the
curve. The same methods are carried out for a surface, but in multiple parameter directions.
As mentioned previously, it can be necessary to constrain the derivatives at the end of the
curve or surface. This is done by expanding the linear system by one or two equations and
modifying the parameter values and the knot span. Applying end derivatives to a curve will
increase the input data by two points,

C(u) =
n+2X

i=0

Ni,p(u)Pi. (2.28)

The parameter values are calculated using Equation 2.24 and the knot span using Equa-
tion 2.27. The two additional equations to add to the linear system involve derivatives at
the ends, D0 and Dn,

�P0 +P1 =
up+1

p
D0, (2.29)

�Pn+1 +Pn+2 =
1� um�p�1

p
Dn. (2.30)

This increases the system to (n+3)⇥(n+3) for a curve which is still a banded linear system.

2.4.3 Boolean

Again, for a vessel network, individual vessels must be united together with a union opera-
tion. The Boolean operation for NURBS is not described in detail here, and the reader is
referred to [119]. However, in a similar manner to section 2.3.3, all vessels are included to
create the entire vascular network.

2.4.4 Surface Manipulation Operations (NURBS)

A NURBS surface is modified very di↵erently than a triangulated surface. It is possible
to move control points and e↵ectively move the surface in this manner, but this requires
an interface that allows a user to interactively move control points. To smooth in between
vessel junctions, a blend or fillet operation is typically used. The reader is referred to [84] for
more information on fillets for NURBS surfaces. There are also a number of other operations
that can be applied to a NURBS object at a more fundamental level. These operations are
useful for manipulation of a parametric curve, surface, or volume, but are also necessary
for improving the finite element space when used for IGA. For these di↵erent fundamental
B-spline and NURBS operations, they are presented using curves of uniform weighting.
A parametric direction is added for each increase in dimension; thus, for a volume, two
parametric directions would be added. The following sub-sections describe various NURBS
operations implemented in the code developed as part of this dissertation.
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2.4.4.1 Change Degree

Increasing and decreasing the degree of a curve or surface can be useful for many applications.
In order to combine adjacent curves or surfaces, it may be necessary to have them represented
with the same degree. Specific to IGA, increasing the degree of a curve or surface can alter
the convergence and accuracy of a solution and is similar, but not identical to, p-refinement in
FEA. It is always possible to increase the degree of a curve or surface; however, it may not be
possible to decrease the degree. In addition, there is error introduced in decreasing the degree
of a parametric object, and this error can be calculated. The reader is referred to [84] for a
more in depth discussion on degree elevation and reduction. Fig. 2.31 demonstrates degree
elevation of a curve. Note that the curve stays identical geometrically and parametrically in
this process.

Figure 2.31: (Left) A B-spline curve of degree 2 with 8 control points defining it’s shape.
(Right) the same B-spline curve is elevated to degree 3. Despite the increase in degree, the
curves are geometrically and parametrically identical.

2.4.4.2 Knot Insertion/Removal

Knot insertion and removal involves increasing or decreasing the size of the knot span in
order to change the vector space of the curve or surface. Like with degree elevation, knot
insertion does not alter the curve or surface geometrically or parametrically. However, it may
not always be possible to remove a knot and removing a knot can alter the parametric object
geometrically with some known error. This is very similar, but not identical to, h-refinement
in FEA. Knot insertion is useful for taking derivatives of curves or surfaces and is necessary
for adding new control points. The reader is referred to [84] for a more in depth discussion
on knot insertion. Fig. 2.32 displays the altered control mesh for a curve of increased knot
span.
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Figure 2.32: ((Left) A B-spline curve of degree 3 and with the knot span u is displayed.
(Right) A knot with value 0.38 is inserted into the knot span. The B-spline stays geometri-
cally identical to the curve before knot insertion.

2.4.4.3 Bezier Extraction

Another operation that is useful is Bezier extraction, and this is a step that is necessary
for evaluation in IGA. In Bezier extraction, a parametric curve or surface is reduced to a
complete combination of Bezier curves or surfaces. A Bezier curve is the special case of
B-spline curve where p = n� 1, For example, if a B-spline curve has a degree of 3 and there
are 8 points along the curve, the B-spline curve would be extracted into two separate Bezier
curves of 4 points each. The reader is referred to [84] for a more in depth discussion on
Bezier extraction. Fig. 2.33 shows the Bezier curves making up a larger B-spline curve.

2.5 Discussion

Modeling is typically the most time consuming step in performing a study involving a patient-
specific blood flow simulation. Furthermore, the model can be one of the largest sources of
error in simulation. Thus, it is important to have accurate and e↵ective modeling tools
in a framework that enables construction of a model from medical image data. The tools
described here are a subset of the tools within SimVascular that have been improved upon
or developed as part of this dissertation.

The algorithms in this chapter are implemented in varying capacities. Though some of
the procedures are implemented and usable directly from the GUI of SimVascular, others are
typically not used in the SimVascular pipeline and thus remain as implementations solely
within vtkSV.

The remeshing algorithms are built directly into SimVascular using the libraries of VMTK
and MMG. It is also important to note that there are a variety of other softwares that provide
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Figure 2.33: (Left) A B-spline curve of degree 3 is displayed. (Right) Each Bezier segment
is extracted and displayed with a di↵erent color. The white points are shared control points
between two adjacent Bezier curves.

surface manipulation algorithms for discrete surfaces. MeshLab (http://www.meshlab.net),
OpenFlipper (https://www.openflipper.org), and MeshMixer (http://www.meshmixer.com)
all provide binaries with a suite of tools for discrete surface manipulation. Alternatively,
open-source tools for parametric modeling and modification are sparse. OpenCASCADE
(https://www.opencascade.com) is the most advanced parametric solid modeling kernel,
while FreeCAD (https://www.freecadweb.org) provides a user interface on top of Open-
CASCADE complete with python scripting.

http://www.meshlab.net
https://www.openflipper.org
http://www.meshmixer.com
https://www.opencascade.com
https://www.freecadweb.org
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Chapter 3

Vascular Meshing for Finite Element
Analysis

3.1 Introduction

In the early stages, meshing began with the formation of structured grids in 1 and 2 dimen-
sional studies. As numerical methods expanded and extended beyond 2 dimensions, meshing
procedures also expanded to provide discretized domains in 3D [120]. Likewise, to adapt to
more complicated domains, meshing expanded from structured grids to fully unstructured
grids. The progression of meshing included new and di↵erent techniques including advancing
front methods and delaunay tetrahedralization methods [121][122]. Meshing also adapted to
include a multitude of options to provide a better discretization for numerical solutions. For
example, mesh refinement and coarsening allows for the possibility to add more or take out
points in a specific region where a more or less refined solution is desired [123]. In addition,
custom meshing techniques developed around specific applications. For example, boundary
layer meshing is used heavily in CFD because it provides smaller, thinner elements on the
boundary where the gradient of the velocity normal to the surface is changing most drasti-
cally [124]. In addition, mesh adaption based on a-posteriori estimates is common and can
provide a mesh that is ideal in size for the simulation [36].

The ideal meshing procedure is robust, computationally e�cient, and provides a desired
element quality/shape. Most meshers that meet these requirements are commercial and
expensive. In the past decade, a variety of open-source tools have become available, and
although all desirable meshing options are not available in one package, a combination of tools
provides a strong and e�cient finite element mesher. This chapter describes the variety of
meshing options developed for vascular models using a combination of open-source tools and
custom code. The open-source tools include TetGen (http://www.tetgen.org), the Vascular
Modeling Tool Kit (VMTK; http://www.vmtk.org), and Mesh Modification and Generation
(MMG; https://www.mmgtools.org).

http://www.vmtk.org
https://www.mmgtools.org
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3.2 Uniform Isotropic Meshing

Uniform meshing prescribes the same mesh size everywhere within a domain. A quality
mesher attempts to achieve the same specified size for all elements of the mesh. Typically,
the size specified is either given in terms of desired element volume or element edge size. As
it is almost always impossible to obtain this exact size measure for all elements in irregular
domains, this is often taken to be the maximum size allowed. Thus, no element within the
mesh will have a volume or edge size larger than the one specified. In more rigorous meshing
applications, a minimum and maximum area constraint can bound the element size. This
measure drives the number of elements and nodes in a given mesh. Isotropic refers to the
way in which this size measure is specified. Isotropic means the same mesh size will be
applied the same in all directions. With certain meshers, anisotropic meshing is possible
where a di↵erent mesh size is specified for each coordinate direction. This gives a mesh in
which elements have a specified direction and is often used in CFD to align elements with
the flow. Figure 3.1 demonstrates a uniform isotropic mesh from the open-source meshing
module in SimVascular.

Figure 3.1: Uniform Isotropic Mesh generated from SimVascular 2.0: All elements have
nearly the same volume. An element edge size of 0.2 cm was prescribed giving element
volumes ranging from 0.0001 cm3 to 0.001 cm3

3.3 Boundary Layer Meshing

Boundary layer meshing applies a special layer of elements on the boundary of the mesh.
The elements on the boundary are thin and aligned along the boundary direction. This
provides a more refined and ideal mesh size on the wall where, in fluid simulations, the
velocity at the wall is changing drastically. An example of a boundary layer mesh is displayed
in Figure 3.2.
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Figure 3.2: Boundary Layer Mesh generated from SimVascular 2.0: Elements on the exterior
have a much smaller volume than the interior elements. An element edge size of 0.2 cm with
three boundary layers was prescribed. The radial edge size of the initial boundary layer is
0.5 cm, and the continuing layers decrease at 60% of the previous layer.

3.4 Spherical Mesh Refinement

Spherical Mesh Refinement applies a di↵erent mesh size in a specific region. This region
can be specified in a variety of ways, but the one implemented applies either a smaller or
larger mesh edge size in a specified spherical region. Fig. 3.3 demonstrates a smaller mesh
edge size within a spherical region at a vessel bifurcation.

3.5 Local Mesh Size Application

Local Mesh Size Application is useful when vessel geometries have a wide range of length
scales. For example, anatomic models for simulating coronary blood flow can include the
aortic arch, which can be an order of magnitude larger in diameter than the modeled coronary
arteries. This allows for the entire domain to still be meshed in a reasonable computational
time. This also allows the capability to specify a mesh size function at all nodes within
the mesh. VMTK has developed a robust algorithm for finding centerline paths of a surface
based on seed and target points [82]. Using these centerlines, it is possible to find the distance
from the centerline path. In order to mesh a vessel of smaller radius, it will obviously need
a smaller mesh size. Therefore, a mesh sizing function is set based on this radius size and
the mesh edge size specified by the user. The radius values on each point of the surface are
normalized by the minimum vessel radius size and then multiplied by the mesh edge size
given. An aorta with renal branches is shown with radius-based meshing in Figure 3.4.
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Figure 3.3: Mesh with spherical refinement produced by SimVascular 2.0. A uniform mesh
edge size of 0.2 cm was prescribed, and a mesh edge size of 0.1 cm was prescribed within
the spherical region.

Figure 3.4: Radius based mesh produced by SimVascular 2.0. Centerline paths of the vessels
are computed and then distances on the mesh from the centerline are computed to distribute
the mesh size based on the radius at each particular point.
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3.6 Multi-Domain Meshing

Multi-domain meshing is useful in a variety of applications. Specific to blood flow simu-
lations, it can be desirable to capture the mechanics within the vessel wall and couple this
to the blood flow mechanics through a fluid structure interaction simulation. In this case, a
separate mesh is required for the vessel wall. However, it is often necessary that the interface
between the domains share mesh nodes to aid in solution transfer. As is seen in Fig. 3.5, the
multi-domain meshing implemented creates a mesh in which the interface between the two
domains is consistent. It is also possible to prescribe di↵erent mesh sizes for the di↵erent
regions of the multi-domain mesh.

Figure 3.5: Multi-Domain Mesh generated from SimVascular 2.0: A multi-domain mesh is
created by meshing an internal cylinder to a mesh size of 0.1 cm, while an outer wall region
is meshed to 0.05 cm. Nodes are consistent at the interface between the two domains.

3.7 Meshing with Holes

Meshing with holes or voids in the mesh is similar to multi-domain meshing in some
cases; however, one or more of the domains are gaps or voids in the mesh rather than
another mesh region. This can be useful in blood flow, for example, to simulate the e↵ect of
some obstruction in the blood flow, say for instance an intra-arterial catheter or some other
medical device. In Fig. 3.6, a cylinder is meshed with a spherical void on the interior.
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Figure 3.6: A mesh with a hole generated in SimVascular 2.0: A cylindrical mesh with a
void demonstrates the capability of generating a volumetric mesh with one or multiple void
regions.

3.8 Isotropic Mesh Adaption

Mesh adaption uses a posteriori estimates to redefine a mesh that is more appropriate for
the solution. According to Sahni et. al [36], mesh adaption is a feedback process with three
key steps. With the addition of a fourth alternate step, the following describes the process
of mesh adaption.

1. Estimating error of the solution. [125].

2. Transforming the error information into a mesh applicable factor for all mesh nodes.

3. Recreating a mesh based on the local mesh size factors [126].

4. Interpolating the solution back onto the newly created mesh.

In the mesh adaption implemented (Figs. 3.7 and 3.8), the speed of the solution was used
to compute an error estimate. From this field metric, the Hessian, the second directional
derivative, is computed [127]. For a scalar value, such as velocity magnitude s, the Hessian,
H, is a symmetric 9 x 9 Tensor. H can be decomposed as in Equation (3.1) to give the
Eigen Vector Matrix, R, and the diagonal eigenvalue matrix, ⇤. The strategy then uses this
matrix, ⇤, which gives three independent eigenvalues, �k due to the symmetric nature of the
Hessian, where the eigenvalues provide information about the error in the flow field. The
higher magnitude eigenvalues indicate a larger error in the solution, and the mesh size in
this direction should be refined. Likewise, the lower magnitude eigenvalues indicate that the
mesh in that direction can actually be coarsened. In this way, the Hessian is computed for all
the nodes of the mesh. The only caveat comes when computing the Hessian on the boundary
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nodes where the solution is zero due to the no-slip boundary condition. This means in terms
of error estimation that the flow is changing infinitely and would suggest that the mesh be
refined infinitely at the wall. Therefore, the boundary nodes are treated specially and the
information from a node just interior to the boundary is interpolated to each boundary node.

H = R⇤RT (3.1)

The gradient of speed is given by the partial derivative in each coordinate direction (3.2),
and the Hessian is given by taking the gradient again (3.3).

rs = @s

@x
i+

@s

@y
j+

@s

@z
k (3.2)

H(s)ij(x) =
@2s

@xi@xj

(3.3)

After the eigenvalues for the Hessian are obtained, the transformation of this informa-
tion into a mesh size metric is necessary. The applied size metric is a modification of the
eigenvalues. First, bounds to the mesh size are supplied because it is possible to have points
where the error is nearly zero and the suggestion to create an unnecessarily large mesh size
is unwanted. These are defined as hmin and hmax in Equation (3.4). Then, the mesh size
metric, �̃k, is a function of the eigenvalues, �k, and these limits. Epsilon, ✏, is a user defined
tolerance on the error.

�̃k = min
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✏�1|�k|,
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,

1
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min

!
(k = 1, 2, 3) (3.4)

⇤̃ = diag(�̃k) (3.5)

M = R⇤̃RT (3.6)

This gives a mesh metric, M , in the principal directions corresponding to the eigenvalues.
In certain mesh cases, an anisotropic mesh size can be applied to the mesh to give this mesh
size alteration in each direction. In the implemented case, the meshing module used does
not provide anisotropic mesh adaption options, so the error estimate is done on a nodal
basis and prescribed isotropically. Based on these new mesh metrics, a re-meshed domain
is computed and the solution is interpolated onto the new mesh by just taking the solution
from the nearest node.

3.9 Comparison

To demonstrate the di↵erence in meshing algorithms and softwares, a brief comparison be-
tween MeshSim and TetGen is displayed. MeshSim is the robust commercial mesher inside
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Figure 3.7: On the left, a very coarse initial mesh on which the incompressible Naiver-Stokes
equations are solved. In the middle, the WSS magnitude displayed giving some interpretation
on what the solution is like within the domain. On the right, the adapted mesh based on a
posteriori estimates.

of SimVascular. In Figure 3.9, a section of the mesh is extracted to show the di↵erence of the
two meshing techniques when similar mesh options and mesh sizes are applied. A boundary
layer mesh was generated with three layers and a mesh edge size of 0.2 cm. Select meshing
statistics are given in Table 3.1. As shown in the table, a similar number of elements with
comparable mesh quality were generated using both meshing techniques.

Steady blood flow simulations were run using both meshes to compare the impact of the
meshing techniques on simulation results of interest. A physiologically reasonable steady
volumetric flow rate was applied to each mesh. Figure 3.10 displays the wall shear stress
magnitude after reaching steady state. The instantaneous wall shear stress was visualized
and compared favorably as shown. After running the steady simulation, each mesh was
adapted to the solution using techniques described previously; this information is displayed
in Table 3.1. Di↵erences in mesh elements and nodes are likely due to three factors:

1. MeshSim does not adapt within the boundary layer.

2. TetGen only refines and does not coarsen elements.
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Figure 3.8: On top, the original mesh prior to adaption with the velocity field visible. On
bottom, the adapted mesh is displayed. Where the solution is changing rapidly, it is easy to
see that the adaptor has refined in this region. An initial mesh size of 0.45 cm was applied.
The hmax and hmin bounds for adaption were then prescribed to be 0.45 cm and 0.05 cm
correspondingly.

Table 3.1: Comparison of MeshSim (A.) and TetGen (B.)

Mesh Metric MeshSim TetGen
Number of Elements 436,048 456,309
Number of Nodes 82,235 81,887
Min/Max Volume (cm3) 6.84e�6 / 2.57e�3 2.26e�5 / 1.59e�3

Min/Max Aspect Ratio 1.028 / 12.74 1.00 / 7.45
Min/Max Radius Ratio 1.00 / 21.29 1.00 / 8.37
Number of Elements after Adaption 453,142 481, 472
Number of Nodes after Adaption 83,220 85,880
Min/Max Volume after Adaption (cm3) 3.21e�6 / 1.74e�2 6.09e�6 / 1.59e�3

3. TetGen and MeshSim di↵er in adaption technique. MeshSim applies an anisotropic
mesh function (di↵erent based on direction); whereas, TetGen applies an isotropic
mesh function (same parameter for each direction).

3.10 Discussion

Meshing is the critical link between a computer model and performing numerical analysis.
Despite the obvious need for robust tools, many of the software meshing options are com-
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Figure 3.9: Comparison of a MeshSim mesh (A.) and a TetGen mesh (B.) on the same
geomety. A mesh edge size of 0.2 cm was applied with three boundary layers. The initial
boundary layer size in the radial direction was 0.1 cm with a decreasing ratio of 0.6 for each
continuing layer.

Figure 3.10: Comparison of WSS values from a steady flow simulation on the MeshSim mesh
(A.) and TetGen mesh (B.).
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mercial. Thus, the tools here were developed to provide a viable open-source alternative
for meshing of vascular anatomies. Although the primary application of these tools is for
patient-specific vascular modeling, the tools can be used and expanded to other applications.

The tools are implemented with VMTK, MMG, and custom techniques for surface
remeshing and TetGen for volumetric meshing. An alternate open-source meshing software
that is commonly used but was not included in this work is gmsh (http://gmsh.info).

http://gmsh.info
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Chapter 4

Vascular Modeling for Isogeometric
Analysis

4.1 Introduction

Finite element analysis (FEA) is a computational method used to solve a di↵erential equa-
tion, where that di↵erential equation typically represents a physical problem such as solid
deformation or fluid flow. FEA began as a technique to solve simple structural problems,
but it is now being used to analyze problems of increasing complexity. The increasing com-
plexity in FEA problems has led to much more time being spent in designing the geometry
of interest and creating the finite element mesh. In addition, it is common to iterate between
a computational model and the corresponding finite element mesh to achieve desirable nu-
merical results, further amplifying the time spent in modeling and meshing. However, with
the relatively new framework of isogeometric analysis (IGA) [128], it is possible to iterate
quicker between a geometric model and numerical analysis. This is made possible by using
the basis functions already used in a computer aided design (CAD) model definition. A new
mesh does not need to be created for small altercations to the geometry or when higher
refinement is desired. Despite the obvious attractiveness of IGA, it is still a major challenge
to obtain a model definition that is said to be analysis suitable for IGA. This is due to the
sti↵ restrictions required of a finite element space, and although many CAD models are de-
fined using basis functions that are valid for numerical analysis, the entire geometric model
definition does meet the requirements of a finite element space.

In design, the industry standard geometric representation is the non-uniform rational B-
spline (NURBS) surface. Thus, NURBS surfaces were the geometric representation initially
used and validated for IGA. NURBS, however, have inherent issues for use in analysis.
Namely, it is impossible to represent complex geometries with a single NURBS patch, and
NURBS do not support local refinement. Thus, almost every complex parametric model
designed in a CAD framework contains multiple NURBS patches, and often times those
patches are actually trimmed NURBS. For example, when two CAD objects are united
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through a Boolean operation, a trimmed NURBS is created to allow the objects to meet
at the object boundaries. Trimmed NURBS contain parametric curves that cut through
the parameterization, destroy the finite element space, and actually produce small gaps
in between NURBS patches. In addition, it is very rare for parameterizations of NURBS
patches to match at patch boundaries. Depending on the implementation of IGA, this can
be a major issue. Recent studies have developed techniques to utilize trimmed NURBS
and NURBS with mismatching parameterizations at patch boundaries in IGA [84]. These
studies still require quite special cases and the algorithms still need further development to
be a viable option. Alternatively, many studies have begun to investigate other geometric
representations than NURBS for IGA.

This chapter will discuss some of the newer geometric representations and assess their
viability in an IGA framework. First, a brief background of FEA is given with special
emphasis on how IGA is incorporated in an analysis framework in section 4.2. Then, some
of the more recently proposed geometric representations for both surfaces and volumes are
discussed in Section 4.3. Finally, conclusions about some of the geometric representations
and the future of IGA is discussed in Section 4.4.

4.2 Isogeometric Analysis

FEA began as a method to solve complex elasticity and structural problems in civil and
aeronautical engineering, and its origins can be attributed to the work of Hrennriko↵ and
Courant [129, 130]. They proposed a method to approximate a solution to a di↵erential
equation without analytically solving the equation. Clough then coined the term finite
elements in 1960 [131].

In FEA, there are two main steps: (1) developing a variational form of the di↵erential
equation, and then (2) discretizing or breaking up the equation and domain into smaller
spatial dimensions.

There are several classes of variational forms. These include collocation, least squares,
meshless, and Galerkin type methods. Galerkin type methods are both the most popular
variational methods and what was used originally for IGA; thus, a Galerkin formulation will
be presented. In the Galerkin method, the weighted average of a di↵erential equation is con-
structed, where the weighting functions to approximate the solution locally are intelligently
chosen. These weighting functions are typically polynomials and are where NURBS fit into
the framework. For a more detailed description of finite element methods, variational forms,
and discretization methods, see [132].

Discretizing the domain refers to breaking up the geometry into smaller elements onto
which the variational form can be prescribed (Chapter 3). As discussed previously, with FEA,
a finite element mesh is created from the domain. This finite element mesh is a discretization
choice. In IGA, there is a smarter way to discretize the domain based on how the domain
is already defined. We demonstrate this below. For a more complete understanding of the
integration of CAD geometries in IGA, see [133].
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To help demonstrate FEA, a simple example is presented. This demonstration is not
intended to be a rigorous explanation of FEA, but rather to give a simple and understandable
background to show how NURBS fit in. The example is a simple second order ordinary
di↵erential equation, where a solution for u is desired:

�u00(x) = f(x) in ⌦, (4.1)

u(0) = 0 on �D, (4.2)

u0(1) = g on �N , (4.3)

where ⌦ 2 R is the domain of the problem, and in this case, ⌦ = x 2 (0, 1). � is the boundary
of the domain. The total boundary can be broken up into two parts (@⌦ = � = �D [ �N)
for boundary condition application, and the boundary parts do not overlap (�D \ �N = ?).
On �D, a Dirichlet, or exact boundary condition, u(0) = 0, is applied. On �N , a Neumann,
or flux type, boundary condition, u0(1) = g, is applied, where g 2 R.

To start the Galerkin formulation, the weighted average is formed:

Z 1

0

�û00(x)w(x)dx =

Z 1

0

f(x)w(x)dx, (4.4)

where û is the approximate solution, and w(x) are the weighting functions. The variational
form is created through integration by parts. In this process, a derivative of the solution
is transferred to the weighting function, and a boundary term is formed. Integration by
parts results in the variational form on which it is easy to apply Neumann type boundary
conditions:

Z 1

0

û0(x)w0(x)dx� [û0(x)w(x)]10 =

Z 1

0

f(x)w(x)dx, (4.5)

Z 1

0

û0(x)w0(x)dx� û0(1)w(1) + û0(0)w(0) =

Z 1

0

f(x)w(x)dx. (4.6)

Part of the restrictions placed on the weighting functions make w(0) = 0 (Equation 4.9).
The boundary condition, u0(1) = g, can also be applied. Equation 4.7 is the full variational
or weak formulation for the example problem:

Z 1

0

û0(x)w0(x)dx =

Z 1

0

f(x)w(x)dx+ g · w(1). (4.7)

This formulation currently exists on the domain from 0 to 1. The domain can be split up
into smaller pieces of non-overlapping elements such that:

Eh = {K1, K2, ...}, (4.8)

where [Ki2Eh
= ⌦. In addition, the function space of the weighting functions on the elements

should also be restricted:
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Wh = {w 2 C0([0, 1]) : w|K 2 Pp(K) 8K 2 Eh, w(0) = w(1) = 0}. (4.9)

Pp(K) is the space of polynomials on K of at most degree p. Equation 4.9 says that the
weighting functions must be at least C0 continuous across elements on the entire domain
and the weighting functions are of degree p. The weighting functions can now be specified
by element-wise basis functions:

�i = �i(xj) 2 Wh, for i, j = 1, ..., n, (4.10)

where n is the number of elements. The approximate solution can also be discretized with
the basis functions:

û(x) = uh(x) =
nX

i=1

ui�i(x), (4.11)

and uh(xj) = uj for j = 1, ..., n. Equation 4.7 can now be written as:

Z 1

0

u0
h(x)w

0(x)dx =

Z 1

0

f(x)w(x)dx+ g · w(1), 8w 2 Wh. (4.12)

Equation 4.12 holds for w = �i, i = 1, ..., n. Substituting in the basis functions for uh and w
gives:

Z 1

0

 
nX

j=1

uj�
0
j(x)

!
�0
i(x)dx =

Z 1

0

fi(x)�i(x)dx+ g · �i(1), for i = 1, ..., n. (4.13)

Equation 4.13 is the Galerkin formulation discretized to an element space where the solu-
tion and the weighting functions are approximated with the element-wise, polynomial basis
functions �(x).

The polynomial basis functions are how NURBS fit in. The basis functions that were
talked about with respect to B-spline and NURBS curves and surfaces in Section 2.4.3 are
used as the polynomial basis functions. So, �i(x) = Ni,p(u) where u is a function of x for the
B-spline basis functions. In addition, the basis functions given in Equation 2.16 and defined
along the knot span in Equation 2.17 contain key features that make them viable for IGA:

1. Partition of unity:
nP

i=0

Ni,p(u) = 1, 8u.

2. Nonnegative pointwise over the entire domain: Ni,p(u) � 0, 8u.

3. Linear independence:
nP

i=0

↵iNi,p(u) = 0 where ↵k = 0, k = 1, 2, ..., n.

4. Local or compact support: {u| Ni,p � 0} ⇢ [ui, ui+p+2].
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5. Controllable continuity: Cp�m continuity between across a knot value. Where m is
the multiplicity of the knot, or the number of times the knot value is repeated (ui =
ui+1 = · · · = ui+m�1).

Numbers 1-4 guarantee that the finite element matrix is well-conditioned and sparse, and
number 5 provides controllable continuity. A higher degree of continuity will provide a
smoother basis which can provide better accuracy in finite element simulations.

4.3 Analysis Suitable Representations

NURBS are the industry standard for modeling, and they are easily extended for use in IGA.
However, NURBS have the following shortcomings in IGA:

1. Complex geometries cannot be represented as a single NURBS surface. Therefore, com-
plex geometries must be constructed with multiple connected NURBS surface patches,
which makes the definition much more complicated. In addition, material properties,
boundary conditions, and other attributes must be applied for each new surface patch.

2. It is very di�cult to avoid gaps and overlaps at intersections of surfaces. When this
di�culty is combined with the fact that most complex geometries cannot be constructed
with one NURBS surface, many problems arise. Gaps and intersections destroy the
continuity between surface patches, which leads to errors in analysis.

3. It is not possible to locally refine the surface. In a large class of realistic problems,
the geometry is deforming rapidly and needs to be adapted locally. Without local
refinement, these adaption problems are essentially impossible.

Despite these shortcomings in analysis, NURBS are not going anywhere. The CAD
industry has poured millions of dollars into NURBS, and they work very well for design.
Therefore, it is important that if a new geometric representation is to be established, it
should be in some form compatible with NURBS. Recent studies have attempted to come
up with new geometric representations that overcome the drawbacks of NURBS for IGA,
but still are representable as NURBS. First, various recent surface geometric representations
are discussed. Next, the more complicated volume geometric representations are discussed.
In many cases, there is an overlap in surface and volume geometric representations and
many studies evaluate both, but we will do our best to separate the two subjects, often
times referring to the same study in both cases. These are active areas of research, and
particularly with volumes, a satisfiable geometric representation for design and analysis is
yet to be found.

Surface Representations A geometric representation gaining a lot of attention in IGA
is T-splines. The T-spline was proposed by Tom Sedeberg in 2003, and it is both a gener-
alization and improvement of NURBS [134]. Where NURBS require a grid like structure of
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control points, T-splines allow a less grid-like structure with T-junctions, hence the name.
These T-junctions not only allow T-splines to capture complex geometries in a single patch,
but they also allow local refinement. Bazilevs et al. al [135] implemented T-splines in IGA
to study simple structural mechanics. In this study, a few drawbacks to T-splines arise.
Namely, T-splines do not necessarily satisfy the partition of unity, they lack e�cient refine-
ment algorithms, and they have poor treatment of singular points.

Another geometric representation that is growing in popularity is the subdivision sur-
face [136, 137]. A subdivision surface is a triangle or quadrilateral surface mesh with a rule
on how the surface mesh cells are subdivided iteratively to reach what is called the limit
surface. The most common rule is by Catmull-Clark subdivision proposed by Catmull in
1978 [138]. Like T-splines, subdivision surfaces are ideal for gap-free or water-tight surfaces.
In addition, there is no restriction on the topology of the original or control surface mesh.
These surfaces are very popular in visualization and are used in all Pixar animations be-
cause of the minuscule amount of data needed to store a surface. Subdivision surfaces have
previously been used to study the structure mechanics of thin shells [139]. Despite being so
popular in the visualization community, subdivision surfaces have failed to take hold in the
CAD community due to the lack of inherent compatibility with NURBS. However, subdi-
vision surfaces are useful for representing free form and naturally-shaped objects, and thus
warrant future investigations.

In another representation, Schillinger et al. recently extended the work of Forsey and
Bartels [140] on hierarchal B-splines to NURBS and T-splines [141]. Hierarchical B-splines
allow local refinement by computing what is called an overlay of the surface. The overlay
breaks down the basis functions in one knot span into more basis functions and control
points. This overlay is then linearly combined with the original B-spline surface definition.
Careful analysis in the way the overlay is constructed helps the hierarchical B-spline defi-
nition maintain important properties such as the partition of unity. Schillinger et al. used
hierarchical B-splines with immersed boundary and finite cell methods to solve structural
mechanics equations. They praise the reduction in complexity due to T-splines; however,
they mention that there will most likely be situations in which a traditional finite element
mesh is preferable. Drawbacks to these representations include the fact that they are not
outright representable as a NURBS surface. Conversion to the standard CAD representation
causes a loss of the locally refined portion.

Another spline representation was proposed by Deng et al. in polynomial splines over
hierarchal T-meshes or PHT splines [142]. PHT splines are essentially a generalization of
T-splines. PHT splines di↵er from T-splines in that they contain piecewise basis functions
of polynomials that extend over a mesh that allows T-junctions. PHT splines satisfy the
partition of unity, and they are very easily refined locally. Wang et al. [143] recently presented
a framework to solve a simple class of adaptive problems using the nice local refinement
properties of PHT splines. These surfaces still require much investigatory work; for example,
in the realms of e�cient boundary condition application and error estimation.

An even newer representation that focusses on overcoming refinement issues is the LR
(locally refined) B-spline [144]. LR B-splines are similar to T-splines; however, they di↵er in
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refinement technique. Whereas T-splines use a control point based refinement technique, LR
B-splines use a spline space refinement technique. Spline space refinement allows knot spans
to be broken into more polynomial segments while introducing fewer new control points
(refines while reducing added complexity). LR B-splines were extended for use in IGA by
Johannesen et al. [145]. Better local refinement provides a better representation for the large
class of realistic problems that require adaption.

Figure 4.3 displays the merging of design and analysis and the recent development of
geometric representations and their use in IGA. Surfaces not on this timeline that could be
investigated for use in IGA also include Gordon patches, Gregory patches, S-patches, A-
patches, and Coon patches. Lastly, the most recent geometric representation is the U-spline.
It is claimed that the U-spline solves the problem of local refinement and is usable in an
unstructured manner; however, it is an extremely new technology and the details have not
been published, so it is yet to be seen on whether the new geometric representation takes
hold.

Figure 4.1: Design and Analysis developed independently and merged with the invention
of IGA in 2005. Recent geometric representations and analysis on these representations are
pushing forward the field.

Volume Representations For surface and shell analysis, a surface representation is obvi-
ously su�cient for IGA; however, a wide class of analysis problems require a full volumetric
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domain (i.e. fluids). Developing a method and/or representation for a spline volume is
a di�cult task. Not much work has been done in this area as this has only recently come
about with the concept of IGA. For design and visualization research, surface representations
have been the key aspect of interest, and thus, little work has investigated spline volumes
or trivariate splines. Whereas computational topology of surfaces are more or less under-
stood, volumes are still an open book [146]. Recent work has attempted to make headway
in understanding spline volume representations.

As a start, NURBS have been extended to volume representations in a few studies [135,
147]. NURBS volume construction is not straight forward, and a wide range of methods
have been used. For example, Zhang et al. used sweeping methods for the construction of
patient-specific vascular models [148].

T-splines, although used increasingly for surface representations, have yet to be used
widely in volume representations. Escobar et al. provide methods to first generate a volu-
metric finite element mesh and then optimize this to obtain a T-spline volumetric represen-
tation [149]. Zhang et al. propose methods to convert a triangulated surface to a T-spline
solid by initially mapping the surface to a cube [150]. The nature of this mapping restricts
this method to only be useful for genus 0 surfaces or surfaces with no holes. Further inves-
tigations could look into directly converting a T-spline surface into a T-spline volume while
maintaining the exact T-spline surface topology.

There are a few studies investigating subdivision volumes [151, 152]; however, it has been
extended to IGA in a single study [153]. This study only investigates Catmull-Clark sub-
divisions and is restricted to only subdivision volumes of hexahedral elements. Subdivision
volumes provide an interesting avenue for research because of the flexibility in the control
mesh. New subdivision schemes can also be easily implemented and tested.

Because PHT splines are based on a 2D manifold T-mesh, they have not yet been extended
to the volumetric case. Future work would include constructing a 3D T-mesh for the base
structure of the polynomial splines.

In a single study, polycube splines have been extended to volumes with generalized poly-
cubes [154]. Generalized polycubes are advantageous because they are able to represent
complex geometries on a rigidly defined structure. This rigidly defined structure also makes
these representations easily editable. However, decomposition into generalized polycubes
brings extra singularities that can be di�cult to handle. Future investigations can work to
define an optimal generalized polycube representation that minimizes the number of singu-
larities.

Although LR B-splines are easily extended to higher dimensions, they have yet to be
extended to the volumetric domain for IGA. This should be a focus of future studies, as they
have demonstrated promising attributes in surface problems.

Another area of research involves attempting to convert existing finite element meshes
to spline volumes [155, 156, 157]. This is important work as there are large number of
studies that already have a computed finite element mesh. These studies also help to shed
light on the decomposition of a volume into a spline representation, which is very helpful in
understanding how a spline surface might be extended to a spline volume.
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Table 4.1 compares a few of the representations discussed in terms of their advantages
and disadvantages to be used for IGA.

NURBS T-splines Subdivision PHT
splines

LR
B-splines

Local
Refinement

No Yes Yes Yes Yes

Refinement
Strategy

N/A Control
Point
Addition

Arbitrary
Structure

Spline
Space
Division

Spline
Space
Division

Guaranteed
Partition of
Unity

Yes No N/A Yes No

Linear
Independence

Yes Yes N/A Yes Yes

Max
Continuity

Controllable Controllable C
1

and C
2

C
1

Controllable

Single
Watertight
Patch 1

No Yes Yes Yes No

NURBS
compatible

N/A Yes No Yes Yes

Extended to
Volume

Yes Yes Yes No No

Volume used
in IGA

Yes Yes Yes No No

Table 4.1: Comparison of geometric representations that have been or have the potential to
be used in IGA. Each representation has at least one drawback, which is highlighted in red
and bolded.
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Applications IGA is currently being used with varying geometric representations in many
di↵erent applications.

• Contact problems: In contact problems, it is very important to have a desired level
of continuity across surface boundaries. NURBS and T-splines already are an improve-
ment over finite element meshes for contact problems because they can obtain a higher
level of continuity across elements. It is important that new geometric representations
satisfy continuity requirements for high levels of accuracy in contact problems. Current
work in IGA for contact problems include [158, 159, 160].

• Optimization problems: In design optimization, a geometry that best satisfies a
solution is desired. With IGA, the geometry can change, and the basis functions can
be used immediately to run a new simulation. It is important that a slight change
in geometry will not alter the representation too drastically. For e�cient geometric
representations, the basis used in the simulation should actually stay the same while
only the control shape changes. Current work in optimization includes [161, 162, 163].

• Fluid-structure interaction (FSI): For FSI, it is important to have a high level of
continuity between the fluid and solid boundary. In addition, it helps if the boundary
between the two domains is smooth. With NURBS and newer geometric representa-
tions, this smooth boundary is much easier to capture than with a finite element mesh.
Future geometric representations should ensure smoothness across all boundaries. FSI
with IGA has been investigated in a couple studies [147, 164].

• Large deformation: Studies on large deformation with IGA show the true power
of adaption [165, 166, 167]. With large deformations, it is very important the the
geometric representation has the ability to refine and coarsen well both globally and
locally.

4.4 Discussion

IGA relies on a concrete geometric representation that is ideal for both design and analysis.
The CAD standard geometric representation NURBS is currently the most used geometric
representation in IGA, but has some drawbacks. Some of the recent developments in surface
and volume geometric representations show promising use in IGA, but further research is
required. Certain representations, such as T-splines, are ideal for modeling complex geome-
tries, but fail to extend well to volumes or do well in local refinement. There are certainly a
number of potential investigations into geometric representations that are possible.

• Improved refinement strategies for T-splines: T-splines are extremely powerful because
they can represent any geometry with one surface. Better refinement strategies will
make T-splines more useful in IGA.

1
The representation can model a complex geometry as a single water-tight surface patch.
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• Extension of T-splines to volumes: Very little work has been done to extend T-splines to
volumes. This is due to the wide range of possible T-spline volumes that can represent
the same object in combination with the extremely complex T-spline definition. A
set of rules defining how a a T-spline surface should be extended to a volume would
improve the field greatly.

• Combination of LR B-splines on the polycube spline parametric framework: As in-
dicated in Table 4.1, LR B-splines have many strengths; however, they have a fairly
significant weakness in the fact that they cannot represent complex closed geometries.
A combination of LR B-splines and polycubes would provide a better framework for
representing complex geometries while still maintaining the nice properties of LR B-
splines.

• Extension of LR B-splines to volumes: Although it is relatively trivial to extend LR
B-splines to volumes, this has not yet been implemented. This could be valuable work
and would allow a larger number of problems to be tackled.

• Conversion from subdivision surfaces to T-splines: In certain cases, subdivision surfaces
can, and have been, converted to NURBS surfaces. Unfortunately, the cases in which
subdivision surfaces can be converted to a NURBS surface are very limited because
of the rigid structure of NURBS. Algorithms indicating whether a subdivision surface
could be converted to a T-spline surface would advance research in this area greatly.
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Chapter 5

Vascular Meshing for Isogeometric
Analysis

Parts of this chapter follow work from [168] and are in collaboration with Nathan

M. Wilson and Shawn C. Shadden. The methods described here have been
extended to NURBS volumes and a manuscript is in preparation for journal
submission.

5.1 Introduction

Patient-specific image-based modeling is commonly used in academic research to investi-
gate physiological conditions where it is di�cult to accurately or easily measure a physi-
cal quantity. Such modeling involves constructing a geometric model that is used as the
computational domain for numerical simulations. For example, in image-based blood flow
modeling [169, 16], computed tomography, magnetic resonance, or ultrasound image data
is used to define a vascular region, which is volumetrically meshed and blood flow is simu-
lated through the meshed domain. Other applications include modeling biomechanics of the
airways [170], cerebrospinal fluid [171], bones [172], and joints [173] among others.

Medical image segmentation and model construction is a diverse and well-researched
topic [174, 175]. In this context, image segmentation is defined as the process of extracting a
manifold surface that encloses a region of interest from a 3D image. Image segmentation will
result in a boundary representation surrounding the region of interest. The resulting bound-
ary representation is typically a triangulated surface mesh, which is a discrete representation
of the geometry. Although discrete representations have nice properties, it can be desirable
to have a more design friendly representation. For example, a parametric representation,
such as the non-uniform rational basis spline (NURBS) surface, which is the computer-aided
design standard to represent a geometric model. A NURBS parameterization of a geometry
is attractive due to its precision, flexibility and mathematical properties, and NURBS mod-
els are easier to combine (e.g., virtually fit a medical device), or systematically manipulate
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(e.g., computationally optimize a surgical procedure).
When using an analytic or parametric computational model in design, it can be advan-

tageous to ensure that the representation is analysis suitable. For a representation to be
analysis suitable, the piecewise polynomial splines defining the model everywhere need to
satisfy the requirements of a valid finite element basis. This allows the model to be directly
supported in an isogeometric analysis framework. However, one of the main challenges of
IGA is generating an analysis suitable parameterization of a complex domain [176]. This
is a particular challenge for vascular geometries, which are geometrically complex due to
bifurcations, drastic changes in feature size, curvature, tortuosity, etc.

As a method to generate analysis suitable representations, [155] introduced a technique
that starts with a volumetric mesh and solves volumetric discrete harmonic equations to
form a B-spline on the resultant parameterization. However it is generally necessary and
desirable to form an analysis suitable volume from a boundary representation. In this regard,
Aigner et al. [177] proposed a method to form simple analysis suitable genus-zero geometries
by utilizing volume sweeping. [178] proposed methods to construct T-spline volumes from
an input genus-zero surface. These methods work well for simpler geometries, but appear to
break down for more complex geometries such as those encountered in image-based modeling.
To handle vascular models, Zhang et al. [148] introduced a template-based approach to form
analysis suitable volumes. While this method can e↵ectively handle bifurcations, it appears
to generally reduce the geometric detail of image-segmented geometries. For more complex
models, this can be significant to modeling blood flow since simulation results are highly
dependent on subtleties of the vascular morphology.

To generate a NURBS parameterization for more complex geometries, [179] generalized
the concept of a polycube structure to decompose a geometry into a series of cubes and
form volumetric splines from the generalized polycube structure. Akhras et al. [180] used
a similar approach to generate analysis suitable NURBS surfaces from a variety of complex
input surfaces by using a polycube decomposition. Using shape diameter functions and
direction fields respectively, both methods obtain a pants decomposition of an arbitrary
geometry. However, the pants decomposition is not unique, and depending on the technique
used to obtain the decomposition and the topology of the geometry, it can result in warped
patches. Updegrove et al. [168] provided a pipeline to create a NURBS surface of arbitrary
patient-specific geometries utilizing the geometry’s centerlines and an automatic axis-aligned
polycube generation method. Despite this progress, the axis-aligned polycube provided a
rigid parameterization domain and the final representation was a NURBS surface rather
than a NURBS volume.

Thus, this chapter introduces methods to construct NURBS volumes of complex geome-
tries starting from a triangulated surface mesh and utilizing a centerline structure. This
work provides the following contributions:

• A procedure to extract centerlines from a triangulated surface using a cell-thinning
method on the Voronoi diagram.
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• A method to decompose an arbitrary vascular model into a graph simplification based
on its centerlines.

• A novel and automated method to form a non axis-aligned polycube structure from
the graph simplification.

• A new approach to decompose tubular structures using a centroidal voronoi tesselation
based on the work of Hu et al. [181].

• A framework to convert a vascular geometry into an analysis suitable volumetric
NURBS using polycubes.

• An implementation that links against widely-available, open-source tools such as the
Visualization Tool Kit (VTK) [182] and the Vascular Modeling Tool Kit (VMTK) [82].

The main di�culty in converting an arbitrary discrete geometry into an analysis suit-
able parametric format is defining a globally valid parameter space. The CAD standard for
modeling is non-uniform rational B-splines (NURBS). Converting to NURBS is particularly
challenging due to the extremely rigid parameter space that is essentially a 2D structured
grid for surfaces and a 3D structured grid for volumes. To convert to a NURBS surface,
the discrete geometry needs to be decomposed into topological rectangles in which edges
of the rectangles match to other edges, corners match to other corners, and there are no
gaps in between rectangles. To convert to a NURBS volume, the volume encompassed by
the discrete geometry needs to be decomposed into topological cuboids in which faces of the
cuboids match to other faces, edges match to other edges, corners match to other corners,
and again there are no gaps in between cuboids. This is exceedingly di�cult for natural,
free-form surfaces like those of vascular geometries as it is di�cult to determine how and
where to decompose the geometry into topological cuboids. This decomposition is simplified
through the formation of a polycube structure. As part of this work, a novel method for
automatically constructing a non-axis aligned polycube structure from a geometry’s center-
lines is outlined and described in detail. Creating parameterizations of single vessels is fairly
straightforward, therefore the focus of this work is branched, bifurcating geometries. The
input is a genus-zero triangulated surface model, S = ({Ti}nt�1

i=0 ; {vj}nv�1
j=0 ), where nt is the

number of surface triangles T , and nv is the number of surface vertices v. The following
steps will be demonstrated using a model of the aortic arch with multiple branching vessels
(Fig. 5.1(a)): (1) centerlines of the model are extracted to provide insight into the branching
structure of the geometry, (2) radius information, classifier ids, and a local coordinate sys-
tem are defined on the centerlines to make them meaningful and usable, (3) a simplification
graph is created from the centerlines, (4) a non axis-aligned polycube structure is created
from the simplification graph, (5) triangles on the input model are labelled according to
the closest centerline, which defines surface groups, (6) each surface group is decomposed
into cuboid surface patches using a centroidal voronoi tesselation (CVT), (7) each surface
patch is mapped conformally to its corresponding cuboid patch on the polycube structure,
(8) a structured grid defined on each group of the polycube structure is mapped back to the
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Figure 5.1: The steps in converting a discrete triangulated surface (a.) into an analysis
suitable NURBS volume (b.).

input geometry, and (9) the structured grids are used as sca↵olds to define a globally-valid
volumetric non-uniform rational B-spline (NURBS) parameterization.

5.2 Centerline Extraction

Purpose:
The centerlines provide a simplified 1D representation of the geometry which aids in deter-
mining the branching structure of the geometry and where to place cuboid boundaries.
Methods:

Centerline, medial axis, or skeleton extraction refers to the well-known problem of ex-
tracting a one-dimensional representation of a geometry. It has garnered much research
attention due to its applicability in a wide range of applications including computer graph-
ics, mesh morphing, and solid modeling. There are a variety of methods to extract centerlines
including distance field based methods [183, 184], potential field based methods [185], and
cell-thinning methods [186]. Sobiecki et al. compare many of the di↵erent skeleton extrac-
tion methods for voxel shapes [187]. Though there are many useful techniques, cell-thinning
methods have many benefits: (1) source and target seeds are not explicitly required by the
user, (2) they are useful for non genus zero geometries, (3) they can produce medial axes of
multiple dimensions (i.e. one-dimensional medial lines and two-dimensional medial curves),
and (4) the extracted results do not heavily depend on the resolution of the input surface,
thus, for surfaces of high resolution, computation time can be greatly reduced by coarsening
the surface. The drawback to cell-thinning methods is that the resulting centerlines can be
quite rough and they do not necessarily fulfill the strict definition of a centerline in which



CHAPTER 5. VASCULAR MESHING FOR ISOGEOMETRIC ANALYSIS 93

Table 5.1: Inputs and Outputs for Centerline Extraction

Input Definition Data

Genus-zero triangulated surface model S = ({Ti}nt�1
i=0 ; {vj}nv�1

j=0 )

nt = number of surface triangles

nv = number of surface vertices

N/A

Output Definition Data

Raw Centerlines C = ({Li}nl�1
i=0 ; {pj}

np�1
j=0 )

nl = number of centerlines
np = number of centerline points

N/A

the minimal distance between centerline points and the surrounding geometry should be
maximal. However, the cell-thinning method can reliably provide locations where segments
of the geometry terminate and bifurcate. Thus, the cell-thinning method can be used to find
termination and bifurcation points and then a minimization problem utilizing the radius
values on the Voronoi diagram can be used to form true centerlines in between termination
and bifurcation points. The cell-thinning method utilized in this work operates directly on a
Voronoi diagram. The Voronoi diagram is the dual of the Delaunay triangulation in 2D and
the Delaunay tetrahedralization in 3D. The reader is referred to a standard computational
geometry textbook for the technical details of computing the Delaunay tetrahedralization
and Voronoi diagram of a point set [188]. The visualization toolkit (VTK) is used to generate
both the Delaunay tetrahedralization and its corresponding Voronoi diagram. Cell-thinning
algorithms reduce a cell complex or a connected set of explicit geometric elements (i.e. edges
and faces) to multi-dimensional medial axes. Because the Voronoi is the dual of the Delaunay
tetrahedralization, the Voronoi diagram contains faces (dual of Delaunay edges), edges (dual
of Delaunay triangles), and vertices (dual of Delaunay tetrahedrons). The Voronoi diagram
is triangulated, so the faces consist of three connected edges and each edge consists of two
connected vertices, making the Voronoi diagram a connected set of geometric elements and
a valid cell complex. A straight-forward cell-thinning procedure [186] produces a medial axis
of the input surface (Fig. 5.2).

During the cell-thinning procedure, edges and points on the outside of the Voronoi dia-
gram are removed iteratively until no more edges or points can be removed. In this process,



CHAPTER 5. VASCULAR MESHING FOR ISOGEOMETRIC ANALYSIS 94

Figure 5.2: The edges of the Voronoi diagram (a.) are used as the initialization for a cell-
thinning algorithm that produces a medial axis (d.)

the iteration at which an edge is exposed on the boundary, I, and the iteration at which an
edge is removed, R, is retained. An absolute and relative measure of the medial persistence
of each edge can be defined as

Mabs = R� I (5.1)

Mrel = 1� I

R
(5.2)

Thresholding with a high value of Mabs and a value close to 1 for Mrel provides the set
of medial edges that tend to lie near the center of the Voronoi diagram. This produces a
connected set of edges that lie near the interior of the Voronoi diagram; however, due to the
nature of the cell-thinning procedure, the output may contain small spurious bifurcations.
The small spurious bifurcations are removed when the number of points in the bifurcation
is less than a specified threshold. The termination points are then found and one is defined
as the source and all other as targets (Fig. 5.3). The source point is typically chosen to be
the termination point with the largest radius value. For arterial modeling, the termination
point of largest radius value typically corresponds to the inlet and is a valid assumption.
Even if the termination point of largest radius value does not correspond to the inlet, it still
is reasonable to use this point as the initialization point of the centerline tree.
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Figure 5.3: All termination and bifurcation points are located on the cell-thinned centerline.
One point is chosen as the source point (blue) and the targets (red) are processed one by
one to find the complete centerline paths for each target.

Starting at the chosen source point, the connected set of points and edges is processed
recursively to find the set of bifurcation points leading to each target point. In between each
consecutive set of points, a smooth and true centerline is found by solving a minimization
problem on the Voronoi diagram,

E(C(p)) =

Z p1

p0

G(C(p)) dp (5.3)

where C(p) is the set of points minimizing the energy E(C(p)) between two points on the
Voronoi diagram, p0 and p1, and G(·) is some cost function. In this case, the exact center
of the geometry is desired (i.e. the location of maximum radius value); therefore, the cost
function is the inverse of the radius function, G = 1

R(x)
, where R(x) is the radius value at

every point, x, on the Voronoi diagram. In this manner, the path of steepest descent between
two points will lie along the locations of maximum radius values. This minimization problem
can be rewritten into a minimal cost path problem using the Eikonal equation,

|r⌧(x)| = 1

R(x)
(5.4)
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Table 5.2: Inputs and Outputs for Centerline Processing

Input Definition Data

Raw Centerlines C = ({Li}nl�1
i=0 ; {pj}

np�1
j=0 )

nl = number of centerlines
np = number of centerline points

N/A

Output Definition Data

Merged centerlines with data M = ({Li}nm�1
i=0 ; {pj}

np�1
j=0 )

nm = number of merged centerlines

np = number of centerline points

Radius (p)

LocalCoordinateSystem (p)

GroupId (L)

where ⌧(x) is the time it takes to travel on the Voronoi diagram from some initialization
point. This method is implemented in the vascular modeling toolkit (VMTK) using the
Fast Marching Method [189] and more details on the centerline extraction method can be
found here [190]. The minimal cost path is found between each set of two consecutive points
to complete the entire centerline tree (Fig. 5.3). For example, for a path that has two
bifurcations between the source point and the target point, the minimal cost path problem
is computed three times: (1) source point to bifurcation point 1, (2) bifurcation point 1
to bifurcation point 2, and (3) bifurcation point 2 to the target point. Once the Eikonal
equation has been solved between all consecutive sets of points, the centerline pieces are
stitched together to form a structured, ordered, and smooth raw centerline structure in
which there is a line for each target point connecting it to the source point.

5.3 Centerline Processing

Purpose:
The raw centerlines can only be used minimally without additional information defined on
the centerlines. Radius information and local coordinate systems provide useful information
for geometric algorithms performed later.
Methods:

The raw centerline structure provides a nice visual of the medial axis of the geometry,
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Figure 5.4: Identification of bifurcation regions (blue spheres). Close bifurcations are merged
if bifurcation regions overlap.

but additional information is needed to use the centerlines for useful geometric processing
algorithms. Therefore, three additional steps are taken to get this information: (1) the
centerlines are processed into a format similar to VMTK with attached cell and point data
describing radius, branch, and bifurcation information, (2) the centerlines are merged to
reduce centerline complexity and provide one centerline per branch, and (3) a local coordinate
system is defined on the merged centerlines.

The data attached to the centerlines is very similar to what is provided in VMTK
(http://www.vmtk.org/tutorials/BranchSplitting.html), making it possible to use other cen-
terlines processing algorithms in VMTK. First, radius information is attached to all center-
line points. Because the centerline points were taken directly from the Vornoi diagram, it is
easy to pass the information onto the centerline points. Next, the centerlines are merged by
defining bifurcation regions on the centerlines. A bifurcation region encompasses the points
within a specified distance from each bifurcation point. The distance is specified by the user
and can either be an absolute distance or a percentage of the radius value at the bifurca-
tion point. At each bifurcation point, the centerline is then split up into three tracts: (1)
Points before the bifurcation region, (2) points within the bifurcation region, and (3) points
after the bifurcation region. Every tract is given a unique GroupId as well as information
indicating whether or not it is a bifurcation region. If bifurcation regions overlap, the bifur-
cations are merged into a trifurcation (Fig. 5.4). Thus, the user has control over whether
close bifurcations are merged into trifurcations, quadfurcations, etc. A larger user-specified
merged distance will result in more branches being merged together. Duplicate lines are
deleted, bifurcation tracts are removed, and the average bifurcation point is attached to all
touching centerlines at each bifurcation, trifurcation, etc. The GroupId defining the tracts
is carried over to define a unique id for each centerline branch. The result is a set of merged
centerlines, M = {Li}nl�1

i=0 , where nl corresponds to the number of branches in the geometry.

The final centerline processing step involves defining a local coordinate system. At each
bifurcation point, j, a coordinate frame, {êbj0 , êbj1 , êbj2}, is computed based on the parent and

child centerline directions. The parent direction vector, l̂parent, is the normalized di↵erence

http://www.vmtk.org/tutorials/BranchSplitting.html
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between the last two vertices of the branch. For each child, k, the child direction vector,
l̂childk , is the normalized di↵erence between the first two vertices. To determine how much
the child centerlines diverge from the parent centerline, the angle, ✓k, between the parent
and each child centerline k is computed, where

✓k = atan2

 
kl̂childk ⇥ l̂parentk
l̂childk · l̂parent

!
. (5.5)

The child centerline that diverges least (i.e. largest angle) from the parent branch is defined
as the aligning branch, while the child centerline that diverges most (i.e. smallest angle)
from the parent branch is defined as the diverging branch. The bifurcation coordinate frame
is then defined using these vectors. The first vector of the bifurcation orthonormal basis
is the parent centerline, ê0 = l̂parent. The remainder of the orthonormal basis is computed
using the diverging centerline,

ê2 = ê0 ⇥ l̂diverging

ê1 = ê2 ⇥ ê0

(5.6)

This defines a coordinate system at a every bifurcation point, but the entire centerline tree
needs to be populated with a connected and smooth coordinate frame. To do this, a parallel
transport frame is used, which is an orthonormal coordinate system computed by traversing
along the line or curve of interest and rotating the coordinate system to mimic the change
in direction of the curve [191]. Starting at the initial bifurcation point, the centerlines are
traversed in each direction until either a termination point or another bifurcation point is
reached (Fig. 5.5). At each point, i, along the centerline, the parallel transport frame is
defined as {~ti,~ni,~bi}, where ~ti is the di↵erence between two consecutive centerline points,
pi+1� pi, and ~ni and ~bi are the two normal components completing the orthonormal frame.
At each successive point, a vector ~vi is computed by rotating ~ni around ~ui = ~ti⇥~ti+1 by the
angle ↵i = acos

�
~ti · ~ti+1

�
. After the orthonormal frame is rotated, ~vi is projected onto ~ti+1

and the normal components are updated to the the new frame.

~ni+1 = ~vi � [~ti+1 · ~vi] ~ti+1

~bi+1 = ~ti+1 ⇥ ~ni+1

(5.7)

When another bifurcation point, j, is reached, the bifurcation coordinate system already de-
fined needs to match the parallel transport frame. The parallel transport frame is compared
to the bifurcation coordinate system, {êbj0 , êbj1 , êbj2}. Specifically, the normal component of
the parallel transport frame, ~n, is compared to the normal components of the bifurcation
coordinate frame, êbj1 and êbj2 (Fig. 5.6). The normal component of the bifurcation coordi-
nate frame that it aligns with most is used as the matching direction. In order to get the
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Figure 5.5: The local coordinate system is defined along the centerlines using a parallel
transport frame and comparing to the local coordinate system defined at each bifurcation
point.

traversed parallel transport frame to match, the angle between the parallel transport frame

and the matching direction is computed, � = atan2
⇣

kn̂⇥êmatchingk
n̂·êmatching

⌘
. The angle � is then

divided by the number of points along the centerline and this angle contribution factor is
added to the normal vector at each point during another traversal of the centerline. After
adjusting the parallel transport frame, the local coordinate system will transition smoothly
at the bifurcation (Fig. 5.7). This is done for each centerline until all termination points
have been reached and there is a local coordinate system defined on each centerline point.

5.4 Graph Simplification

Purpose:
The geometry needs to be abstracted into a polycube structure that recognizably represents
the input geometry. The simplification graph reduces the centerline structure to a set of
connected nodes in a tree-like structure that acts as a skeleton for the polycube. The
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Figure 5.6: The comparison between the parallel transport frame and a local bifurcation
coordinate system. The parallel transform will be update by angle � so that the coordinate
frames match at the bifurcation point.

Figure 5.7: (a.) The parallel transport frame is compared to the local bifurcation coordinate
system. (b.) The transport frame is adjusted by the angle � to match with the bifurcation
coordinate system.
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Table 5.3: Inputs and Outputs for Graph Simplification

Input Definition Data

Merged centerlines with data M = ({Li}nm�1
i=0 ; {pj}

np�1
j=0 )

nm = number of merged centerlines

np = number of centerline points

Radius (p)

LocalCoordinateSystem (p)

GroupId (L)

Output Definition Data

Simplification Graph G = {gi}
ng�1
i=0

ng = number of graph nodes

Parent (g)

Children (g)

GroupId (g)

DivergingChild (g)

AligningChild (g)

EndPoints (g)

Direction (g)

simplification graph also eases subsequent operations by providing a quick lookup of parent,
child, and sibling nodes as well as a variety of model attributes.
Methods:

Each node of the graph corresponds to a branch in the geometry and contains a parent
reference and two to three child references. The initial node or branch has no parent node (the
root), and termination nodes have no children. Data is contained on the node indicating the
corresponding GroupId, the diverging and aligning children, and start and end points for the
physical representation of the graph. The final piece of information contained on the graph
indicates the direction of the branch node. The direction refers to the direction in which the
cuboid for the branch will be built when the polycube is constructed. The cuboids will be
built at a specified angle from the the parent cuboid in one of four directions: (0) RIGHT, (1)
BACK, (2) LEFT, and (3) FRONT. Computing each branch direction follows two steps in
which the direction is first defined locally and then updated to a global direction. The same
computation carried out in section 5.3 is used to find the diverging child at each bifurcation.
The diverging branch is given the default direction of RIGHT. The other branches are then
compared to the diverging branch and given a corresponding direction based on the angle
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made with the diverging branch,

Direction =

8
>>><

>>>:

RIGHT, if ⇥ > 7⇡/4 or ⇥  ⇡/4

BACK, if ⇡/4 < ⇥  3⇡/4

LEFT, if 3⇡/4 < ⇥  5⇡/4

FRONT, if 5⇡/4 < ⇥  7⇡/4

(5.8)

where ⇥ is the angle between a child branch vector l̂child and the diverging child branch
vector l̂diverging.

These directions are sound locally, but need to be updated corresponding to the updates
made to the local coordinate system in section 5.3. Again, the same computation carried out
in section 5.3 is used to find the update to each bifurcation coordinate system, {êb0 , êb1 , êb2},
based on the comparison to the parallel transport frame, {~t,~n,~b}. Depending on how the
coordinate frames compare, an update to the direction may be required.

Update =

8
>>><

>>>:

0, if |~n · êbj1 | � |~n · êbj2 | and ~n · êbj1 � 0

1, if |~n · êbj1 | < |~n · êbj2 | and ~n · êbj1 < 0

2, if |~n · êbj1 | � |~n · êbj2 | and ~n · êbj1 < 0

3, if |~n · êbj1 | < |~n · êbj2 | and ~n · êbj1 � 0

(5.9)

The update number is added to the old direction to produce the new direction,

Directionnew = mod(Direction+ Update, 4) (5.10)

The physical end points are computed using this direction, the angle between parent and
child branches, and the length of the centerline. This centerline graph now contains all the
information to build a non-axis aligned polycube structure.

5.5 Polycube Generation

Purpose:
In order to define a globally valid parameterization, a polycube structure that is similar to
the input geometry needs to be constructed.
Methods:

A novel polycube structure is introduced in which the polycubes are not axis-aligned in
all three global coordinate directions. Instead, the child cuboids branch o↵ parent cuboids
at the same angle at which the child centerlines branch from the parent centerline. Freedom
in one direction reduces the distortion in the final parameterization, increases the flexibility
of the polycube structure, and provides a branching-type polycube that is ideal for vascular
geometries. Each cuboid attaches to the rest of the polycube structure at either one or
two locations. Termination branches attach to the polycube structure at just one location,
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Table 5.4: Inputs and Outputs for Polycube Generation

Input Definition Data

Simplification Graph G = {gi}
ng�1
i=0

ng = number of graph nodes

Parent (g)

Children (g)

GroupId (g)

DivergingChild (g)

AligningChild (g)

EndPoints (g)

Direction (g)

Output Definition Data

Surface Polycube Ps = {ci}nc�1
i=0

nc = number of cuboid faces
(i.e. number of patches)

GroupId (c)

PatchId (c)

Volumetric Polycube Pv = {si}ns�1
i=0

ns = number of structured grid volumes

(i.e. number of branches)

GroupId (s)

while connecting branches attach to the polycube at two locations (top and bottom). At
these attachment locations (bifurcations or trifurcations), information about the connecting
branches is needed. Based on the number and directions of the connecting branches, a
certain type of cuboid will be built. Bifurcations, in-plane trifurcations, and out-of-plane
trifurcations are all handled as part of this work (Fig: 5.9).

There are total of 11 di↵erent possible top cuboid types and 7 di↵erent possible bottom
cuboid types (Fig. 5.8). Using the end points of each graph node, a cuboid is built around
the graph node line (i.e. a 2D square is built at each end and the corners are connected).
At the top and bottom of the cuboid, points are added and shifted where needed to form
the correct end type. Each cuboid is built as a series of polygonal faces. On each face, the
corresponding GroupId is defined as well as the PatchId that will be used for that cuboid
face. All polygonal faces are added to an unstructured grid data structure, and this defines
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Figure 5.8: The di↵erent cuboid types. The wedge end types are used primarily for bifurca-
tions while the corner and side tetrahedrons are used primarily for trifurcations.
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Figure 5.9: Both bifurcations and trifurcations are handled as part of this work. Bifurcations
are straight forward and are all variations of polycube (a.). The trifurcations can contain
a third branch that is either in-plane with the other two child branches (b., c.) or a third
branch that is out-of-plane with the other two child branches (d.).

the surface polycube.
Now, the volumetric polycube of desired resolution is constructed on top of the surface

polycube. The height, width, and the number of divisions along the height and width is
specified by the user. The length varies from branch to branch and is calculated from the
length of the graph node line. For each cuboid, a structured grid is formed by looping
through the height, width, and length and adding points to match the specified resolution.
Each structured grid cuboid is concatenated together into one full polycube structure.

5.6 Graph Simplification

Purpose:
The geometry needs to be abstracted into a polycube structure that recognizably represents
the input geometry. The simplification graph reduces the centerline structure to a set of
connected nodes in a tree-like structure that acts as a skeleton for the polycube. The
simplification graph also eases subsequent operations by providing a quick lookup of parent,
child, and sibling nodes as well as a variety of model attributes.
Methods:

Each node of the graph corresponds to a branch in the geometry and contains a parent
reference and two to three child references. The initial node or branch has no parent node (the
root), and termination nodes have no children. Data is contained on the node indicating the
corresponding GroupId, the diverging and aligning children, and start and end points for the
physical representation of the graph. The final piece of information contained on the graph
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Table 5.5: Inputs and Outputs for Graph Simplification

Input Definition Data

Merged centerlines with data M = ({Li}nm�1
i=0 ; {pj}

np�1
j=0 )

nm = number of merged centerlines

np = number of centerline points

Radius (p)

LocalCoordinateSystem (p)

GroupId (L)

Output Definition Data

Simplification Graph G = {gi}
ng�1
i=0

ng = number of graph nodes

Parent (g)

Children (g)

GroupId (g)

DivergingChild (g)

AligningChild (g)

EndPoints (g)

Direction (g)

indicates the direction of the branch node. The direction refers to the direction in which the
cuboid for the branch will be built when the polycube is constructed. The cuboids will be
built at a specified angle from the the parent cuboid in one of four directions: (0) RIGHT, (1)
BACK, (2) LEFT, and (3) FRONT. Computing each branch direction follows two steps in
which the direction is first defined locally and then updated to a global direction. The same
computation carried out in section 5.3 is used to find the diverging child at each bifurcation.
The diverging branch is given the default direction of RIGHT. The other branches are then
compared to the diverging branch and given a corresponding direction based on the angle
made with the diverging branch,

Direction =

8
>>><

>>>:

RIGHT, if ⇥ > 7⇡/4 or ⇥  ⇡/4

BACK, if ⇡/4 < ⇥  3⇡/4

LEFT, if 3⇡/4 < ⇥  5⇡/4

FRONT, if 5⇡/4 < ⇥  7⇡/4

(5.11)

where ⇥ is the angle between a child branch vector l̂child and the diverging child branch
vector l̂diverging.

These directions are sound locally, but need to be updated corresponding to the updates
made to the local coordinate system in section 5.3. Again, the same computation carried out
in section 5.3 is used to find the update to each bifurcation coordinate system, {êb0 , êb1 , êb2},
based on the comparison to the parallel transport frame, {~t,~n,~b}. Depending on how the
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coordinate frames compare, an update to the direction may be required.

Update =

8
>>><

>>>:

0, if |~n · êbj1 | � |~n · êbj2 | and ~n · êbj1 � 0

1, if |~n · êbj1 | < |~n · êbj2 | and ~n · êbj1 < 0

2, if |~n · êbj1 | � |~n · êbj2 | and ~n · êbj1 < 0

3, if |~n · êbj1 | < |~n · êbj2 | and ~n · êbj1 � 0

(5.12)

The update number is added to the old direction to produce the new direction,

Directionnew = mod(Direction+ Update, 4) (5.13)

The physical end points are computed using this direction, the angle between parent and
child branches, and the length of the centerline. This centerline graph now contains all the
information to build a non-axis aligned polycube structure.

5.7 Surface Group Decomposition

Purpose: The geometry needs to be split into groups that match the centerlines and the
polycube structure.
Methods:

In the group decomposition, each triangle, T , on the surface is assigned a GroupId cor-
responding to the GroupId of the closest centerline. When computing the distance to each
centerline point, the radius is taken into account for a modified distance function,

dist(xc(Ti),pj) =
q
||xc(Ti)� pj||2 � rj2 (5.14)

where xc(Ti) is the centroid of ith triangle, pj is the jth centerline point, and rj is the radius
value at pj. The centerline point with the minimum value of the modified distance function is
found for every triangle on the surface. After a GroupId has been assigned to every triangle
on the surface, the surface group decomposition is compared to the polycube. Each group is
checked for consistency with the matching polycube group. The following rules apply to each
surface group: (1) the group should contain only one connected region, (2) the edges should
touch the same groups as the matching polycube group edges, and (3) the corner points
should touch the same groups as the matching polycube corner points. In most cases, the
surface group decomposition already matches the group topology of the polycube. However,
in cases of many close bifurcations and trifurcations, the group may di↵er from the polycube
topology, and it must be adjusted to be able to form a globally valid parameterization.

5.8 Surface Patch Decomposition

Purpose:
The surface of each group needs to be clustered into patches that match the sides of the
corresponding group cuboid in the polycube structure.
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Table 5.6: Inputs and Outputs for Surface Group Decomposition

Input Definition Data

Grouped genus-zero

triangulated surface model
Sg = ({Ti}nt�1

i=0 ; {vj}nv�1
j=0 )

nt = number of surface triangles

nv = number of surface vertices

GroupId (T)

Merged centerlines with data M = ({Li}nm�1
i=0 ; {pj}

np�1
j=0 )

nm = number of merged centerlines

np = number of centerline points

Radius (p)

LocalCoordinateSystem (p)

GroupId (L)

Surface Polycube Ps = {ci}nc�1
i=0

nc = number of cuboid faces
(i.e. number of patches)

GroupId (c)

PatchId (c)

Output Definition Data

Grouped genus-zero

triangulated surface model
Sg = ({Ti}nt�1

i=0 ; {vj}nv�1
j=0 )

nt = number of surface triangles

nv = number of surface vertices

GroupId (T )
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Table 5.7: Inputs and Outputs for Surface Patch Decomposition

Input Definition Data

Grouped genus-zero

triangulated surface model
Sg = ({Ti}nt�1

i=0 ; {vj}nv�1
j=0 )

nt = number of surface triangles

nv = number of surface vertices

GroupId (T )

Merged centerlines with data M = ({Li}nm�1
i=0 ; {pj}

np�1
j=0 )

nm = number of merged centerlines

np = number of centerline points

Radius (p)

LocalCoordinateSystem (p)

GroupId (L)

Surface Polycube Ps = {ci}nc�1
i=0

nc = number of cuboid faces

(i.e. number of patches)

GroupId (c)

PatchId (c)

Output Definition Data

Patched genus-zero

triangulated surface model
Sp = ({Ti}nt�1

i=0 ; {vj}nv�1
j=0 )

nt = number of surface triangles

nv = number of surface vertices

GroupId (T )

PatchId (T )
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Methods:
For decomposition into patches, a modified version of the skeleton-based harmonic bound-

ary enhanced centroidal Voronoi tessellation (HBECVT) [192] scheme with k-means clus-
tering is utilized. A k-means clustering algorithm partitions data into Voronoi regions,
V = {Vi}k�1

i=0 , based on a set of clusters or generators, C = {ci}k�1
i=0 , in which each piece

of data belongs to the cluster with the closest mean. In the HBECVT, every triangle,
T , is assigned to one of six clusters, k = 6, (corresponding to the six sides of a cube),
where the six clusters are the positive and negative vectors of the global coordinate system,
{ê0, ê1, ê2,�ê0,�ê1,�ê2}. To assign triangles to one of the six global coordinate clusters,
the set of normals, X = {n̂(Tj)}nt�1

j=0 , are compared to the coordinate directions, where n̂(Tj)
is the cell normal of the jth triangle. The Voronoi region corresponding to each cluster, ci,
is then defined as

Vi = {n̂(Tj) 2 X : dist(n̂(Tj), ci)  dist(n̂(Tj), cr), for r = 1, ..., k}, (5.15)

where the distance function is a modified distance function that contains an additional
component, ñi(Tj).

dist(n̂(Tj), ci) =
q

||n̂(Tj)� ci||2 + ⌘ñi(Tj). (5.16)

The ñi(Tj) weights the distance based on the neighborhood of Tj and ⌘ is positive weighting
factor controlling the influence of ñi(Tj). Specifically, ñi(Tj) indicates the number of elements
within a neighborhood N!(Tj) that do not belong to the same cluster as Tj. The size of the
neighborhood, N!(Tj), is controlled by !, where ! designates the number of rings around
Tj. A neighborhood of ! = 1 includes all triangles touching a vertex of Tj. All succeeding
neighborhoods, ! = k, for k > 1, include all triangles touching a vertex of the triangles in the
neighborhood ! = k � 1 as well as all triangles in neighborhoods ! < k. This contribution
allows the cluster of Tj to be influenced by its neighborhood. If there are many triangles in
N!(Tj) that have been assigned to a di↵erent cluster than Tj, then ñi(Tj) is large and the
distance function returns a larger value (i.e. the likelihood that it actually belongs to that
cluster is lower). Alternatively, if ñi(Tj) is small, then the likelihood that it belongs to that
cluster is high. The energy of the HBECVT can be written and defined in the normal space,

EH(C;U) =
n�1X

j=0

"
k/

 
k�1X

i=0

||n̂(Tj)� ci||2 + ⌘ñi(Tj)

!#
(5.17)

where U is any tessellation of the data. Once the energy is minimized, the clustering V = U .
The HBECVT provides a good decomposition of objects in which the sides of the object
align well with the global coordinate space; however, vascular geometries have a natural
winding structure that does not lend well to alignment in the global coordinate space. Thus,
Hu et al. introduced a skeleton-based HBECVT to decompose tubular structures with
an identifiable centerline or skeleton [181]. In section 5.3, a local coordinate system was
defined at every point on the centerline. To allow the clustering to follow the curvature of
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the centerlines, the surface normals are transformed to the closest centerline point’s local
coordinate system. Any unit vector, v̂, in the global coordinate system, {ê0, ê1, ê2}, can be
transferred to the local coordinate system, {ê00, ê01.ê02} through a transformation, v̂0 = Qv̂,
where Qij = cos(êi, ê0j) = êi · ê0j. Using matrix Q, every surface normal is converted to the
local coordinate system to define a new normal, n̂0(Tj) = Qn̂(Tj). The new normals are used
for the clustering algorithm, in which the skeleton-based HBECVT energy is

ES(C;U) =
n�1X

j=0

"
k/

 
k�1X

i=0

||n̂0(Tj)� ci||2 + ⌘ñi(Tj)

!#
(5.18)

This produces a clustering that follows the parallel transport frame defined on the centerlines
rather than the global surface normals. In situations where there are significant undulations
in the surface, the clustering may be influenced too much by the cell’s normals, and an
unusable clustering can occur (Fig. 5.10). Thus, a positionally influenced, skeleton-based
HBECVT is introduced as part of this work, which provides better results when tubular
surfaces have significant undulations. At each triangle, T , the vector between the triangle
centroid and the closest centerline point can be defined as ~d(Tj). The normalized position
vector, d̂ is combined with the normal vector, n̂, to provide a new vector

r(Tj) = �n̂(Tj) + (1� �)d̂(Tj) (5.19)

where � is a positive factor between 0 and 1 that controls the influence of the triangle
normal and position vector. The clustering energy now depends on the locally-transformed,
normalized combination vector, r̂0,

EP (C;U) =
n�1X

j=0

"
k/

 
k�1X

i=0

||r̂0(Tj)� ci||2 + ⌘ñi(Tj)

!#
(5.20)

A high value of � will put more influence on the normals of the triangles, while a low value
of � will put more influence on the position relative to the centerline (Fig. 5.10).

The clustering algorithm is performed on each group decomposing it into a set of patches
that matches the group’s polycube patches. Special care is taken to make sure that the
patches will match at boundaries in between groups. Prior to the patch clustering, the
boundaries in between groups, ridge lines, are traversed and slice points are defined to
indicate the locations where group patches should meet (Fig. 5.11).

Based on these slice points, the surface normals at group boundaries are modified to
force the patches to meet at these locations. The normals at the boundaries are set to one
of the six clustering directions that matches the direction of that patch. After the patch
clustering, the group boundaries are checked to verify that the patches interface correctly at
each boundary. If they were not met correctly, then slight modifications can be made to the
patch to correct for the inconsistency.
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Figure 5.10: The clustering can be weighted more towards the normal of the cell or more
towards the position relative to the centerline with factor �.
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Figure 5.11: The surface groups are compared to the polycube. Lines in between surface
groups are defined as ridge lines. The ridge lines are traversed to define matching slice points,
Psi , and corner points, Pci , on the surface.

5.9 Conformal Mapping

Purpose:
The points of the surface need to be mapped to the structured polycube space in order to
define a parameterization.
Methods:

With the triangulated surface mesh decomposed into patches, and the patch boundaries
well defined, mapping of each patch can be performed. Each patch is conformally mapped
to the planar base domain using a discrete conformal parameterization (DCP) [193]. A
conformal mapping preserves angle magnitude and direction, which helps ensure that the
final parameterization has minimal distortion. The conformal mapping is computed by
minimizing the Dirichlet energy function

E(f) =
X

vi,vj2S

wvi,vjkf(vi)� f(vj)k2, (5.21)

where vi and vj are the set of vertices for all oriented edges on the surface. The weight,
wvi,vj , determines the energy to be minimized. With wvi,vj equal to one at all vertices, the
Tutte energy is minimized. The harmonic energy is minimized if the weights are equal to
the harmonic edge weight

wvi,vj =
1

2
(cot(↵ij) + cot(�ij)), (5.22)

where ↵ij and �ij are the angles opposite the edge in the two connected triangles as in
Fig. 5.12. The energy is quadratic, and thus the derivation yields a linear system to be
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Table 5.8: Inputs and Outputs for Conformal Mapping

Input Definition Data

Patched genus-zero

triangulated surface model
Sp = ({Ti}nt�1

i=0 ; {vj}nv�1
j=0 )

nt = number of surface triangles

nv = number of surface vertices

GroupId (T )

PatchId (T )

Volumetric Polycube Pv = {si}ns�1
i=0

ns = number of structured grid volumes

(i.e. number of branches)

GroupId (s)

Output Definition Data

Conformally mapped triangulated

polycube surface model
Sc = ({Ti}nt�1

i=0 ; {vj}nv�1
j=0 )

nt = number of surface triangles

nv = number of surface vertices

GroupId (T )

PatchId (T )

Figure 5.12: Angles ↵ij and �ij used for the harmonic edge weights.

solved
4 f(vi) =

X

vj 2 neigh(vi)

wvi,vj(f(vj)� f(vi)) . (5.23)

The conformal mapping is done in three steps. First, the matching polycube patch face is
extracted from the polycube and rotated to the x-y plane and boundary vertices are placed
on the plane according to chord length. A fixed border parameterization is used rather than a
free border parameterization in order for the parameterizations to match up at patch borders
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and form a globally valid parameterization. Second, the weights of the interior vertices are
computed and inserted into the linear system

2

664
Ainterior

I

3

775

2

664
vinterior

vboundary

3

775 =

2

664
0

b

3

775 (5.24)

where

Ainteriorij =

8
>><

>>:

wvi,vj if j 2 n(vi)P
vk 2 n(vi)

�wvi,vk if i = j

0 otherwise,

(5.25)

where n(vi) refers to the neighborhood of vertices surrounding vi, the weights, wvi,vj , are
again calculated according to the energy to be minimized, and the vertices, b, are the fixed
boundary locations on the plane. For an initial step, the edge weights of all the interior
vertices are set to one, and the Tutte energy is minimized using conjugate gradients. This
provides a better initial condition for the final conformal mapping, which uses the harmonic
edge weights defined in Eq. (5.22). Therefore, the Tutte energy is first minimized and the
result is used as an initial condition for the minimization of the harmonic energy. This creates
a conformal map on the plane that can be used for texture mapping, parameterization, etc.

5.10 Volumetric Parameterization

Purpose:
A volumetric NURBS is defined on 3D structured grid, and that structured grid needs to be
defined on the input geometry.
Methods:

The conformal maps are now used to obtain a parameterization for the NURBS surface,
which can be extended to a volume parameterization by virtue of the polycube structure.
The rectangular grid of vertices at the specified resolution are mapped back to the original
triangulated surface mesh from the parameterization. Barycentric coordinates are used to
place the rectangular grid of vertices on the original triangulated surface mesh. Then, the
interior points are mapped using linear interpolation. The points are moved into the interior
of the geometry using a hexahedral mesh laplacian smoothing algorithm. After both surface
and interior points are mapped onto and into the original geometry, each group or branch is
defined by it’s own structured grid or hexahedral mesh.
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Table 5.9: Inputs and Outputs for Volumetric Parameterization

Input Definition Data

Conformally mapped triangulated

polycube surface model
Sc = ({Ti}nt�1

i=0 ; {vj}nv�1
j=0 )

nt = number of surface triangles

nv = number of surface vertices

GroupId (T )

PatchId (T )

Patched genus-zero

triangulated surface model
Sp = ({Ti}nt�1

i=0 ; {vj}nv�1
j=0 )

nt = number of surface triangles

nv = number of surface vertices

GroupId (T )

PatchId (T )

Volumetric Polycube Pv = {si}ns�1
i=0

ns = number of structured grid volumes

(i.e. number of branches)

GroupId (s)

Output Definition Data

Unstructured set of
volumetric hex meshes

Hc = {si}ns�1
i=0

ns = number of structured grid volumes

(i.e. number of branches)

GroupId (s)
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Table 5.10: Inputs and Outputs for Volumetric NURBS Creation

Input Definition Data

Unstructured set of
volumetric hex meshes

Hc = {si}ns�1
i=0

ns = number of structured grid volumes

(i.e. number of branches)

GroupId (s)

Output Definition Data

Volumetric NURBS
N = {Vi(u, v, w)}ns�1

i=0

ns = number of NURBS volumes

(i.e. number of branches)

GroupId (V)

5.11 Volumetric NURBS Creation

Purpose:
The goal is to obtain analysis suitable volumetric NURBS.
Methods:

The final volume is found using NURBS global interpolation techniques with uniform
weights, average knot spacing, and chord length parameter spacing [84]. A NURBS volume
is an extension of the CAD standard NURBS surface. With uniform weights, a NURBS
surface is identical to a B-spline surface,

S(u, v) =
nX

i=0

mX

j=0

Pi,jNi,p(u)Nj,q(v), (5.26)

where S(u, v) is the surface in two parameter directions, u and v, Pi,j are the control points
and Ni,p and Nj,q are the the B-spline basis functions in the u and v parameter directions of
p and q degrees respectively. The B-spline basis functions are defined accordingly,

Ni,0 =

(
1 if ui  u < ui+1

0 otherwise.
(5.27)

Ni,p =
u� ui

ui+p � ui

Ni,p�1(u) +
ui+p+1 � u

ui+p+1 � ui+1

Ni+1,p�1(u).
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Figure 5.13: The creation and involvement of di↵erent objects in the formation of a volu-
metric NURBS from a genus-zero triangulated surface model.

A NURBS volume with uniform weights then has a very similar definition with an additional
parametric direction,

V(u, v, w) =
nX

i=0

mX

j=0

oX

k=0

Pi,j,kNi,p(u)Nj,q(v)Nk,r(w) (5.28)

where Pi,j,k is now the structured grid of control points in three parametric directions, u, v,
and w, and Nk,r are the new B-spline basis functions in the w parameter direction of degree
r.

5.12 Results

The methods developed succeed in converting arbitrary complex triangulated surfaces of
vasculature to volumetric NURBS that are suitable for IGA. In addition, the framework
produces a volumetric, hexahedral mesh that is usable in FEA. Fig. 5.14 displays the final
NURBS parameterization (right) of the example patient-specific triangulated surface (left).

Qualitatively, the results are satisfying and the resulting representation matches the
original surface very well. Average distance, Hausdor↵ distance [194, 195] and the Dice co-
e�cient [196] are used to quantitatively evaluate the accuracy of the final NURBS geometry.
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Figure 5.14: Comparison of original triangulated surface mesh (left) with the surface NURBS
representation (right).

To calculate the Dice and Jaccard coe�cients, the input surface and a very high resolution
model of the output NURBS surface were converted to binary images at varying resolutions.
The Dice and Jaccard coe�cients were computed on binary images of increasingly higher res-
olution until the coe�cients converged. All metrics are displayed for the model of an Aorta
and results are displayed in Table 5.11. All the metrics indicate that the input triangulated
surface and the final representation are similar with a maximum error of 0.012 553.

To help put these distance measures in perspective, the resolution of the medical image
data for the aorta and other large arteries is typically around 0.1 cm. The average error is
around two orders of magnitude smaller than the image-resolution, and hence original model
fidelity. Thus, the conversion preserves the geometric detail of the model, while providing
a definition more suitable for engineering design. It is possible to vary the resolution of
the structured grid defined on the polycube that is mapped to the surface. In these cases,
a structured grid of lower resolution than the input surface was used to demonstrate the
e�ciency of using a NURBS definition. For example, in the aorta model, the input surface
contained 94,740 triangles and 47,372 vertices with an average edge size of 0.1 cm, and the
NURBS surface was populated with a total of 10,002 control points. The error between the
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Aorta Model

Avg. Dist. (cm) Haus. Dist. (cm) Dice Jaccard

0.000 734 0.012 553 0.983662 0.967849

Table 5.11: The average distance, Hausdor↵ distance, Dice metric and Jaccard coe�cient
between the NURBS representation and the original input surface mesh.

Figure 5.15: A sampling of the wide variety of model categories and simulation results
available online in the vascular model repository at www.vascularmodel.com.

output NURBS and the input mesh representation could be further decreased in many ways.
The input triangulated surface could be refined to a smaller mesh edge size. In addition, the
resolution of the control points could be decreased or redistributed to minimize an error field
between the input surface and the NURBS representation. This leads to a tradeo↵ between
resolution/complexity of the NURBS parameterization and the amount of error incurred by
the conversion. While the error for any given application will depend on the chosen NURBS
grid resolution and model morphology, we have shown for a typical example that a grid
size of reduced complexity as compared to the input surface achieves an error below the
resolution of the image data and preserves the geometric detail of the model.

To further demonstrate the usability and robustness of this framework, the conversion



CHAPTER 5. VASCULAR MESHING FOR ISOGEOMETRIC ANALYSIS 121

Figure 5.16: The vascular model repository combines the results of over 100 studies of varying
image data, model complexity, and simulation type.

was attempted on the 127 complex vascular geometries in the Open Source Medical Software
Corporation (OSMSC) repository of (Fig. 5.15). Figure 5.16 characterizes the breakdown of
this repository.

The current set of tools do not allow non genus-zero geometries or geometries with too
large of a size-scale di↵erence between adjacent vessels. Specifically, the cuto↵ for these
algorithms has been placed to return an error if a vessel is 5 times larger or smaller by
radius than an adjacent vessel. This is most often experienced in coronary models in which
both the aorta and the coronary are modeled. There are 22 non genus-zero geometries in
the repository and 24 geometries with too large of a size-scale di↵erence between adjacent
vessels, resulting in a total of 81 complex vascular geometries that are suitable for these
conversion tools. Triangulated surfaces of the 81 geometries were obtained through the open-
source pipeline in the new SimVascular 3.0 graphical user interface [29]. Segmentations in
the OSMSC repository of the 81 geometries were lofted using the lofted 2D segmentation
approach, triangulated, and remeshed to a coarse edge size. In this context, a coarse edge
size refers to a mesh edge size in which there are approximately 12-15 triangles around the
exterior circumferentially of the smallest vessel of the model. For the pulmonary model in
Fig. 5.17, this results in a triangulated surface of 170,000 triangles, 150,000 triangles for
the aortofemoral model in Fig. 5.18, and 110,000 triangles for the cerebrovascular model in
Fig. 5.19. It is important to note that the methods are more robust for finer triangulations;
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Figure 5.17: The pipeline for patient-specific volumetric NURBS creation on a pulmonary
model.

Figure 5.18: The pipeline for patient-specific volumetric NURBS creation on an aortofemoral
model.

however, this increases computation time.
Of the 81 geometries, 76 succeed in automatic conversion (94%) using the default pa-

rameters and a coarse model representation. The 5 remaining geometries require a finer
mesh, changes to the parameters for the centerline merge radius (Sec. 5.3), and/or changes
to the clustering vector factor (Sec. 5.8). It is also important to note that the models in the
open-source model repository represent a very complex set of models. Many vascular models
are of a smaller, more specific region, such as a cerebral aneurysm, carotid bifurcation, or
abdominal aortic aneurysm (AAA).

Lastly, because these methods mainly rely on the geometry containing a 1D center-
line structure, the algorithms are also applicable to a subset of non-vascular geometries.
Figs. 5.20-5.23 demonstrate the use of these automatic methods on a variety of non-vascular
geometries in the mesh segmentation benchmark dataset [197].
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Figure 5.19: The pipeline for patient-specific volumetric NURBS creation on a cerebrovas-
cular model.

Figure 5.20: The pipeline for NURBS creation of the teddy bear model.

Figure 5.21: The pipeline for NURBS creation of the bird model.
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Figure 5.22: The pipeline for NURBS creation of the pliers model.

Figure 5.23: The pipeline for NURBS creation of the ant model.
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5.13 Discussion

This chapter presents a novel framework to create analysis suitable volumetric NURBS rep-
resentations of complex vascular geometries that are suitable for fluids computation in an
IGA framework. The methods are promising; they result in a representation that is highly
accurate (average error 0.001 cm). Additionally, the methods have been tested on 81 com-
plex vascular models and 94% of the models achieve successful conversion with zero manual
intervention, while the remaining 5 models require minimal manual intervention. There are
drawbacks to the current methods and future work can improve them greatly. First, the
framework does not allow for non-genus zero geometries which can be present in a variety
of vascular geometries. For example, a complete circle of willis in the cerebral vasculature,
an aortic dissection, and a model of an artery with a bypass graft all have higher genus.
Future work would include modifying the centerline processing and polycube construction
algorithms to handle non-genus zero geometries. In addition, vasculature with very large
changes in size scale between adjacent vessels is an issue. Future work would require modify-
ing the polycube structure where large size-scale di↵erences occur, allowing smaller vessels to
additionally have smaller representations on the polycube structure. It is important to note
that the algorithms presented have been implemented in a very modular fashion. The break-
down within the methods is also present in the code, thus, it should be very easy to modify
and improve portions of the pipeline. For example, the current branch clustering algorithm
described in Sec. 5.7 simply uses a modified distance function to compute the closest center-
line point for each triangle on the surface and apply a corresponding label to that triangle.
There are variety of other decomposition and clustering algorithms [198, 199, 197] that could
be ported into the pipeline and used. Another potential improvement to the pipeline would
be including methods to smooth the parameterization after it is computed. Distortions in
the parameterization can lead to poor quality NURBS representations; thus, performing a
smoothing of the parameter space after mapping to the original input surface would improve
the results. Lastly, these tools are available in an open source github repository called vtkSV,
and specific functionalities will be added to the graphical user interface of SimVascular.
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Chapter 6

Summary

The major contributions of this body of work include the development of a revised Sim-
Vascular cardiovascular modeling software and new methods for the conversion of discrete
vascular geometries to analysis suitable representations. As open-source tools, the accurate
and e�cient techniques developed in this dissertation will help promote vascular modeling
and simulation for academic research and use in the clinic. The algorithms and methods
developed include a variety of tools for open-source modeling including Boolean techniques
and constrained smoothing methods for triangulated surfaces. Open-source meshing tools
were also implemented and include a range of options such as boundary layer meshing,
radius-based meshing, and adaptive mesh refinement. Finally, novel techniques to convert
discrete vascular geometries to analysis suitable representations were developed. It is also
important to note that these tools have been created specifically for a blood flow simulation
pipeline; however, many of the tools, such as the Boolean techniques and discrete surface
manipulation operations, are generally useful geometric tools and can easily be applied to
other disciplines. For example, the tools in SimVascular have been used in simulation parti-
cle deposition in the human lungs [57] and creation of structural lattices of cell growth [200].
Finally, to help emphasize the global impact of this work, a plot of the locations that have
visited the SimVascular webpage in the last 180 days is displayed in Fig. 6.1. In addition,
since the open-source release in 2014, SimVascular has garnered over 2,500 users and the
software has been downloaded over 9,000 times.
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Figure 6.1: A display of SimVascular webpage hits in the last 180 days.
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