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Seagrass ecosystems reduce disease risk and economic loss in 
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Seaweed farming comprises over half of global coastal and marine aquaculture produc-
tion by mass; however, the future of the industry is increasingly threatened by disease 
outbreaks. Nature-based solutions provided by enhancing functions of coinciding spe-
cies or ecosystems offer an opportunity to increase yields by reducing disease outbreaks 
while conserving biodiversity. Seagrass ecosystems can reduce the abundance of marine 
bacterial pathogens, although it remains unknown whether this service can extend to 
reducing disease risk in a marine resource. Using a meta-analysis of articles published 
over the past 40 y, we find that 17 known diseases of seaweeds are attributed to bacteria 
that have been previously shown to be lower when associated with seagrass ecosystems. 
Next, we surveyed over 8,000 individual seaweeds among farms in Indonesia and found 
that disease risk is reduced by 75% when seaweeds are co-cultivated directly within 
seagrass ecosystems, compared to when seagrass ecosystems were removed. Finally, we 
estimate that farming seaweed with seagrass ecosystems could increase annual revenue 
by $292,470 – $1,015,990 USD per km2 from yield loss due to disease reduction and 
that ~20.7 million km2 in 107 countries and 34 territories have suitable environmental 
conditions for farming seaweeds with seagrass ecosystems. These results highlight the 
global utility for nature-based solutions as an ecologically and economically sustainable 
management strategy.

blue economy | natural capital | sustainable development | coastal ecosystems |  
marine resources

 More than 35 million tons of seaweeds are harvested each year with a value of over USD 
$13 billion, comprising half of global marine and coastal aquaculture production by mass 
( 1 ). In addition to reducing global pressures on land-use and food security ( 2 ), seaweeds 
represent a major source of value with vast potential for further growth through the devel-
opment of products, including plastic alternatives, biofuels, and negative emission tech-
nologies ( 3 ,  4 ). Despite seaweed cultivation generating substantial social and economic 
benefits, yields are threatened by disease outbreaks ( 5 ). As seaweeds are primarily cultivated 
in open marine and coastal systems, traditional methods of disease management are often 
not effective or cost-efficient ( 6 ). Nature-based solutions—such as harnessing functions 
provided by coinciding species or ecosystems—may instead offer an ecologically sustainable 
and economically viable option. Successful examples of these facilitative interactions include 
applications ranging from marine food systems ( 7 ) to restoration ( 8 ). Coastal ecosystems 
provide filtration services that are widely used to improve water quality and health outcomes 
( 9 ), with mounting evidence indicating that seagrass ecosystems reduce the relative abun-
dance of marine bacterial pathogens and disease ( 7 ,  10 ,  11 ). Despite the globally expansive 
range of seagrass ecosystems ( 12 ), it remains unknown whether this ecosystem service can 
extend to reducing disease risk of marine and coastal aquaculture resources. 

Results

 Using a meta-analytical approach, we identified 567 unique seaweed host–pathogen com-
binations among 215 articles over a 41-y period from 1979 to 2020. We first filtered the 
dataset for marine bacterial pathogens that have been associated with a reduction in relative 
abundance where seagrass ecosystems are present in both temperate regions ( 7 ) and tropical 
regions ( 10 ), which specifically include the genera Corynebacterium, Flavobacterium, 
Rickettsia, Shewanella,  and Vibrio . From these, we identified 17 described diseases affecting 
12 species of aquacultured seaweeds and 4 species of wild seaweeds (Dataset S1 ). In par-
ticular, 39% of countries that currently report commercially harvesting one of the most 
globally important farmed seaweeds by mass (Kappaphycus ) ( 1 ) have been affected by an 
outbreak of a condition colloquially referred to as ice-ice disease (IID) (Dataset S2 ), where 
the suspected origin of infection is associated with opportunistic bacteria often in the 
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genus Vibrio , but also in the genera Aeromonas, Alteromonas, 
Bacillus, Cytophaga, Flavobacterium,  and Pseudoalteromonas  ( 13 ).

 The largest share of suitable ocean area for seaweed farming is 
located in the Indonesian exclusive economic zone ( 2 ) and cur-
rently the second largest global producer of farmed seaweed ( 1 ). 
Seagrass ecosystems are often removed for seaweed farming, pro-
viding a natural experiment to assess whether seagrass ecosystems 
influence disease levels in a co-cultivated marine resource. Here, 
we visually examined 8,876 individual seaweeds across 16 farms 
in Indonesia and found a 75% decrease in IID prevalence when 
farmers co-cultivated the seaweed Kappaphycus  directly within 
seagrass ecosystems (mean ± SE = 6.3 ± 1.2%, data range = 1.2% 
– 14.5%) compared to where seagrass ecosystems were removed 
(25.1 ± 6.9%, data range = 1.0% – 79.2%, generalized linear 
mixed model, Z = −4.608, P  < 0.001,  Fig. 1A  ).        

 Progressive disintegration of tissue associated with IID can reduce 
seaweed yield ( 12 ). Therefore, we estimated the difference in annual 
revenue of farming seaweed with seagrass ecosystems from reducing 

yield loss. By retaining seagrass ecosystems within seaweed cultiva-
tion areas, revenue generated per harvest increases by $292,470 
USD per km2  each year, where we estimate that seaweed farmed 
with seagrass ecosystems is valued at $1,015,990 ± $86,010 USD 
per km2  per harvest compared to $723,520 ± $72,840 USD per 
km2  per harvest for seaweed farmed without seagrass ecosystems 
( Fig. 1B  ). The number of harvests per year can vary depending on 
nutrient input, light, and temperature with known locations in 
India able to have four annual harvests and 45-d cultivation periods. 
Therefore, the annual increase in revenue could reach $1,169,880 
USD per km2  with four harvests.

 Our global model estimates that suitable environmental con-
ditions for cultivating Kappaphycus  encompass 347,821,713 km2 . 
From this, we find that 20,701,412 km2  (6.0%) overlaps with a 
naturally occurring seagrass ecosystem range, resulting in a poten-
tial co-cultivation area for 107 countries and 34 territories ( Fig. 2 ). 
We note that the estimated co-cultivation range does not exclude 
areas that are protected or gazetted for other uses.          
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Fig. 1.   Seagrass ecosystems reduce disease risk and associated yield loss of farmed seaweeds. (A) Box plots (median and 50% quantile) and whisker plots (95% 
quantile) of disease prevalence for the seaweed Kappaphycus from surveys conducted among farms cultivating in locations where seagrass ecosystems were 
present and locations where seagrass ecosystems naturally occur, but have been removed (n = 8,876 individual seaweeds, 8 farms each treatment), and (B) 
density distribution plots of production potential estimated from surveys conducted among farms followed by 100,000 simulations using a normal distribution. 
Revenue generated per km2 during each harvest was determined using the simulated density (m−1) and simulated prevalence of healthy individuals (%) and 
then estimated using the mean farm gate value (market value in USD minus selling costs) of dry Kappaphycus available from six countries in 2015, excluding 
inflation and the potential for other uses.
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Fig. 2.   Global overlap in suitability for co-cultivating seaweed with seagrass ecosystems. Suitability range of aquaculture for the seaweed Kappaphycus was 
determined in exclusive economic zones for each country using surface nitrogen (N) and phosphorus (P) concentrations (N:P ratio < 80:1) and then restricted by 
the thermal tolerance limit of Kappaphycus using a sea surface temperature tolerance range of 20 °C to 35 °C modified from (4). Seagrass ecosystem distributions 
were overlaid with the suitability of seaweed aquaculture to produce an overall global suitability map. The seaweed production dataset was synthesized using 
global capture production of Kappaphycus from 1950 to 2017. Published reports of disease affecting Kappaphycus are indicated by numbered points and 
represent nine reports in seven countries.
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Discussion

 Farmed seaweed represents a promising approach to reduce pres-
sures on land-use and offset atmospheric carbon dioxide emissions 
( 2 ); however, scaling coastal production can come at the expense 
of already threatened ecosystems. Seagrass meadows are among 
the most threatened ecosystems globally, with rates of loss esti-
mated as high as 7% per annum through impacts primarily asso-
ciated with coastal development ( 14 ). Valuing ecosystem services 
can support innovative approaches for addressing challenges asso-
ciated with sustainable development, although determining the 
full range of benefits is often limiting to these efforts. Managing 
disease outbreaks in intensively farmed seaweed can account for 
up to 50% of operating costs, with economic losses reaching US 
$310 million for a single outbreak ( 5 ). Here, we present evidence 
for a service provided by a coastal ecosystem to increase revenue 
by reducing disease levels in a globally important marine resource. 
While we are only beginning to recognize the high-value benefits 
provided by seagrass ecosystems and seaweed farming, coincidental 
services include carbon sequestration, nutrient cycling, acidifica-
tion mitigation, protection from coastal erosion, and biodiversity 
enhancement ( 12 ,  15 ). Our results provide one of the largest 
examples of a positive facilitative interaction in a marine farming 

production system ( 8 ), highlighting a global opportunity for mul-
tifunctional development strategies that support a blue economy, 
where ecological, social, and economic benefits support conserva-
tion initiatives and sustainable development targets.  

Materials and Methods

Fieldwork was conducted at 16 seaweed farms along the southwest coast of 
Sulawesi in Indonesia, where seaweed is currently co-cultivated in coastal areas 
directly within intact seagrass ecosystems and where seagrass ecosystems natu-
rally occur, but have been removed. The estimated economic value of disease risk 
reduction associated with the co-cultivation of seaweed with seagrass ecosystems 
and global geographic suitability is briefly described in each figure legend. Full 
Materials and Methods, including mechanisms of seagrass filtration, can be found 
in SI Appendix.

Data, Materials, and Software Availability. R script and data files have been 
deposited in the Dryad Digital Repository (16).
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