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ABSTRACT: We have recently proposed a novel drug
discovery approach based on biophysical screening of focused
positional scanning libraries in which each element of the
library contained a common binding moiety for the given
target or class of targets. In this Letter, we report on the
implementation of this approach to target metal containing
proteins. In our implementation, we first derived a focused
positional scanning combinatorial library of peptide mimetics
(of approximately 100,000 compounds) in which each element
of the library contained the metal-chelating moiety hydroxamic
acid at the C-terminal. Screening of this library by nuclear magnetic resonance spectroscopy in solution allowed the identification
of a novel and selective compound series targeting MMP-12. The data supported that our general approach, perhaps applied
using other metal chelating agents or other initial binding fragments, may result very effective in deriving novel and selective
agents against metalloenzyme.
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While initially introduced as a way to weed out false
positives, biophysical methods such as protein nuclear

magnetic resonance (NMR) spectroscopy have increasingly
played a major role in de novo drug discovery campaigns in the
past decade. These approaches have the invaluable advantage to
enable the unambiguous identification and characterization of
the binding properties of test molecules to a given protein
target, without relying on convoluted indirect biochemical
assays.1−4 Hence, these methods found fertile ground in
guiding the design of lead compounds and drug candidates in
recent years. In the well-known and clever application termed
“SAR by NMR” (Structure Activity Relationships by NMR),
pairs of low molecular weight and low affinity binders are
identified using NMR chemical shift mapping techniques.
Subsequently, guided by structural studies, these “fragments”
are chemically linked to obtain potent bidentate compounds.5,6

Recent successful implementations of the approach led to the
design of antagonists of Bcl-2 and Bcl-xL (ABT-737)7 that
culminated in the current clinical agent ABT-1998,9 (also
known as venetoclax, one of the first antagonist of protein−
protein interactions to reach the clinic and FDA approval). Of
note is that conventional high throughput screening (HTS)
campaigns using biochemical screens against the same targets
failed to produce viable hits.7 In its original implementation, the
SAR by NMR strategy was applied to the metalloproteinase
MMP-3, or stromelysin.5 In the approach, the first binding
fragment was simply acetohydroxamic acid, a common metal
chelator that binds with millimolar affinities to most zinc

metalloproteinases. Hence, in the presence of this small
molecule, an NMR-based second site screen was performed
to identify additional small molecules that bound in subpockets
adjacent to the acetohydroxamic acid. This screen led to a
biphenyl compound binding to MMP-3 with double-digit
micromolar affinity.
After structural characterization of the ternary complex using

NMR spectroscopy with 15N-labeled protein, the two fragments
were chemically linked to derive a low nanomolar inhibitor of
this enzyme. Arguably, this approach opened the way to what is
currently known as fragment-based drug discovery (FBDD)
that has since evolved with the inclusion of other biophysical
approaches, notably X-ray crystallography, surface plasmon
resonance (SPR), and isothermal titration calorimetry (ITC),
and computational docking. Fragment-hit optimization strat-
egies have also evolved including fragment-evolution and
fragment-merging strategies, which seem nowadays the
preferred optimization approaches compared to the above-
described fragment-linking.10−18As an alternative to these
strategies, we have recently proposed a novel approach, termed
HTS by NMR,19 in which the principles of positional scanning
combinatorial chemistry20−23 and fragment-based drug design
are combined with protein-NMR spectroscopy1 to iteratively
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identify and optimize antagonists from collections of >100,000
peptide mimetics.19,24−26

The approach seems also particularly effective in the
fragment-hit to lead optimization stages, when a positional
scanning library is generated from an initial weak binder,
perhaps common to a class of protein targets and/or previously
identified from a FBDD campaign,19,24,25 and tested by
biophysical methods including not only NMR but also ITC.27

Indeed, we recently demonstrated that testing a positional
scanned library using the HTS by NMR approach revealed
qualitatively a ranking that not only confirmed the known
binding consensus motif for the BIR3 domain of the X-linked
Inhibitor of Apoptosis Protein (XIAP), but also identified
compounds that closely resembled a clinical agent (GDC-
0152)25 that targets it. Hence, to assess if this approach could
be implemented to target metalloproteinases, we first derived a
focused positional scanning (POS) combinatorial library of
peptide mimetics (of approximately 100,000 compounds)
where each element of the library contained the metal-chelating
moiety hydroxamic acid at the C-terminal (Figure 1A). The

synthesis of these agents was easily attained using traditional
solid phase synthesis protocols and using an fmoc-hydroxyl-
amine-2-chlorotrityl resin that after cleavage with 94% of
trifluoroacetic acid (TFA) delivered the desired agents with the
hydroxamate at the C-terminus. In our implementation, we
used a combination of 46 natural and non-natural f n amino
acids (n = 1−46, Supplementary Figure S1) to generate 46
mixtures of f nXX-CONHOH, 46 mixtures of Xf nX-CONHOH,
and 46 mixtures of XXf n-CONHOH (Figure 1A), where X

represents all the 46 amino acids. Hence, each mixture
contained approximately 46 × 46−2100 compounds. Sub-
sequently, each mixture was tested against the metalloprotei-
nase MMP-12 using sensitive protein−NMR screening
methods,19 as these approaches present a number of unique
advantages over any other assays. The approach consists in
testing each mixture using 1D 1H aliphatic and 2D (15N,1H) so-
fast HMQC correlation spectra (Figure 1B) and report the
observed chemical shift perturbations and/or changes in
intensity as a function of given f n element at each of the
three positions (Figure 1C). Top ranking elements are
therefore selected and individual compounds are synthesized
and tested using NMR and subsequently also biochemical
assays to assess potency and selectivity (Figure 1D). In practice,
each mixture was dissolved in deuterated DMSO and diluted to
a final concentration of 500 μM (∼240 nM for each individual
peptide-mimetics) into a buffer containing 10 μM hMMP-12
catalytic domain.
The buffer consisted of 40 mM TRIS at pH 7.2, 300 mM

NaCl, 10 mM CaCl2, and 0.1 mM ZnCl2, and contained 200
mM of acetohydroxamic acid, a weak inhibitor of MMP-12 that
prevented the self-proteolysis of the target protein. For each
sample, NMR experiments were conducted including 1D 1H
NMR and 2D (15N,1H) so-fast HMQC (Figure 2). Rank
ordering of the mixtures (Figure 2; see also Supplementary
Figure S1 for the structure of each f1−f46 element) revealed
that several mixtures induced significant changes in the signal
intensity in both NMR spectra, typical of a slow exchange
regime suggesting tight binding of the positive mixtures. The
identified preferred library elements at each position were f17
(O-benzyl-L-serine) and f 9 (D-homophenylalanine) in P1; f 9,
f17, f 28 (D-phenylalanine), and f 38 (L-tryptophan) in P2; and
f 28 and f 9 in P3 (Figure 2). Mapping the chemical shift
perturbations on the three-dimensional structure of MMP-12
(PDB ID 5LAB) revealed that, as expected, most perturbed
signals corresponded to residues that were located in the
substrate binding site of the enzyme, around the metal ion
(Figure 3). Interestingly, and as expected, the XXf 28-
CONHOH mixture induced larger perturbations on residues
closer to the Zn2+, while the f17XX-CONHOH induced
perturbations in a region that is more distant.
Hence, based on these data, we synthesized compound 1

( f17-f 9-f 28-CONHOH; Figure 3C) and tested it first using
1D-1H aliphatic and 2D-(15N,1H) so-fast HMQC titrations
(Figure 3D,E). In addition, we subsequently tested the
compound in a biochemical assay against MMP-12, side by
side with the pan-MMP inhibitor 2 as a control (GM6001,
Figure 4A).28−30 Both 1D 1H aliphatic and 2D-(15N,1H) so-fast
HMQC titrations showed that the binding of compound 1 with
the target protein was in slow exchange in the NMR time scale.
Measuring the chemical shift differences of peaks in the free
versus bound forms (Figure 3), we estimated an upper limit for
the off rate for the complex, koff < 50 s−1. Assuming a diffusion
limited on the rate of 109 M−1 s−1, a dissociation constant value
for the complex can be estimated to be Kd < 50 nM.
Enzyme activity inhibition assay using MMP-12 and the

fluorescent substrate Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2
(Enzo Life Science) revealed that compound 1 was a
competitive inhibitor for MMP-12 with a remarkable IC50
value of 54.7 nM. As expected, the control compound 2
(GM6001), tested side by side, displayed an IC50 value of 5.2
nM, in close agreement with that reported in the literature for
this nonselective MMP inhibitor (Figure 4A). These data

Figure 1. Schematic representation of the HTS by NMR approach as
applied to metalloenzymes. (a) Focused positional scanning (fPOS)
library of tripeptoids is designed and synthesized. Our implementation
consisted of a three-position fPOS library, each with an hydroxamate
as metal chelating group. (b) Library is next screened by collecting
either 1D-1H-aliph, or 2D-(15N, 1H) correlation spectra of the target
macromolecule. (c) Significant perturbations in the NMR spectra of
the target are subsequently ranked as a function of the fixed fn element
at each position. (d) Finally, individual compounds are synthesized
with a proper combination of P1, P2, and P3 fn elements causing the
largest perturbations, and tested using NMR binding assays and/or
biochemical assays.
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clearly suggested that the approach was successful in identifying
a novel agent with nanomolar potency against the MMP-12 out
of 100,000 molecules within the combinatorial library.
Subsequently, in order to assess if the agent possessed also
enhanced selectivity compared to GM6001, we tested
compounds 1 and 2 side by side against a panel of closely
related MMPs. When tested at 1 μM, compound 2 (GM6001)
inhibited all the MMPs tested, again in agreement with the low
selectivity of this control agent (Figure 4B). Likewise,
compound 1 was very effective in inhibiting MMP-12 at 1
μM and at 55 nM. However, unlike compound 2 (GM6001),
our agent only minimally inhibited MMP-1, MMP-9, MMP-13,
and MMP-14 even at 1 μM, while it inhibited appreciably only
the most closely related metalloproteinase (MMP-3, with
∼78% inhibition at 1 μM and ∼19% at 55 nM, respectively;
Figure 4B).
To further rationalize the observed potency and selectivity of

our agent, we performed molecular docking studies using Gold
(Cambridge Crystallographic Data Centre; www.ccdc.cam.ac.
uk) and the X-ray structures of various MMPs. In particular,
compound 1 was docked into the binding pocket of hMMP-12
catalytic domain (PDB ID 5LAB), using constrain parameters
for the coordination of the hydroxylamine moiety with the Zn2+

atom. These constraints uniquely placed the ligands in the
binding site, hence avoiding the requirement of obtaining
further experimental constrains. The obtained docked model of
compound 1 was superimposed into the X-ray structures of the

other MMPs (the PDB IDs used for MMP-1, MMP-3, MMP-9,
MMP-13, and MMP-14, were 1HFC, 4G9L, 1GKC, 4JP4, and
1BQQ, respectively). While the surroundings of the metal ion
seemed fairly well conserved among these proteinases, hence,
because all able to accommodate the P3 residue close to the
hydroxylamine moiety, surface variations were more evident in
areas that would be occupied by the P1 residue. For example,
docking compound 1 in the X-ray structures of MMP-12 and
the closely related MMP-1 (50.8% sequence identity in the
catalytic domain) (Figures 4C,D), revealed that the sub-
structures in P3 and P2 could occupy equivalent sites in both
enzymes, close to the metal ion, while the P1 moiety of the
compound protruded in a more peripheral area that was quite
different within the tested MMPs (Figure 4C,D and
Supplementary Figure S2), hence likely conferring the observed
selectivity to our compound. Indeed, in the current pose, a poor
fit is found between the residues in P1 and even P2 of
compound 1 with MMP-1, corroborating the experimentally
determined selectivity of the agent (Figure 4C,D).
The search of novel potent and selective metalloenzyme

inhibitors has been fervid in the past two decades, and most
studies pointed at selectivity as one of the likely most desirable
properties of MMP inhibitors.31 Thus, novel technologies that
address potency and selectivity are still needed. In these
regards, active research in the field include the search for
allosteric inhibitors32 or in deriving novel metal chelating
groups.33−37 MMP-12 is involved in inflammatory processes in

Figure 2. Application of the focused HTS by NMR strategy for targeting MMP-12. 1D-1H-aliph and 2D-(15N, 1H) so-fast HMQC spectra of MMP-
12 collected in the absence and presence of the indicated mixture with one fixed position in P1 (a), P2 (b), and P3 (c), respectively. The spectra
were acquired with 10 μM hMMP-12 in the absence (blue) and presence (red) of 500 μM of each mixture. The mixture tested in panel (a)
contained O-Bzl-L-serine in position P1 ( f17XX-CONHOH); the mixture in panel (b) contained a D-homophenylalanine in position P2 (Xf 9X-
CONHOH); the mixture in panel (c) contained a D-phenylalanine in position P3 (XXf 28-CONHOH). At the bottom of panels (a−c) the
percentage of NMR peak intensity changes are reported as a function of the fixed f n element in position P1, P2, and P3, respectively, as described in
the experimental procedures.
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asthma and in chronic obstructive pulmonary disease (COPD),
and recent studies have reported the potential benefit of potent
inhibitors of this enzyme in reducing the inflammatory
response associated with exposure to cigarette smoke in
mice,38 while in humans with asthma and COPD,39 MMP-12
gene variant activation was associated with disease severity. In a
recent phase II trial, the dual MMP-12/MMP-9 inhibitor
AZD1236 was tested in a randomized short trial (6 weeks) on
moderate to severe COPD, and it showed an acceptable safety
profile, although the therapeutic efficacy could not be
demonstrated given the limited duration of the study.40 In
addition, FP-025 (Foresee Pharmaceutical) reported on an
ongoing phase I trial of their MMP-12 inhibitor to assess the
safety and pharmacokinetics. These studies and past experience
with MMP inhibitors, underline that novel strategies to derive
novel, potent, and selective MMP antagonists are still needed.
Hence, we believe that our general approach as described in
Figure 1, perhaps applied using other metal chelating
agents35,37 or other initial binding fragments, may support
these endeavors. Finally, we are confident that the identified
agent may be worthy of further iterative structure−activity
relationship (SAR) studies aimed at further optimizing potency,
selectivity, and ADME properties of this novel series for further
pharmacological and efficacy studies.
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