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Robust Statistical Tests for Evaluating the Hypothesis of Close Fit of Misspecified Mean

and Covariance Structural Models

Abstract

Model close fit is one key issue in the mean and covariance structure analysis. In this

article, we utilize the latest results on the general distribution of likelihood ratio statistic

in this methodology and propose several distribution free root mean square error of approx-

imation (RMSEA) tests for evaluating the hypothesis of close fit of misspecified models.

Simulation studies show that three of these tests have robust and desirable performance in

spite of severe nonnormality across the examples when sample size is as large as 300. A new

two-stage procedure which combines model exact fit tests and the proposed RMSEA tests

for model close fit is further proposed for overall model fit evaluation.

Keywords: Likelihood ratio statistic, RMSEA, model close fit, asymptotics, noncentral chi-

square distribution, model misspecification.



1. Introduction

In the last thirty years, since the publication of Goldberger and Duncan’s (1973) seminal

volume on structural equation modeling with latent variables, this methodology has become

a well-established research methodology in many disciplines such as biometrics, education,

marketing, psychology, and sociology. Illustrative overviews of applications are given by

Bollen and Curran (2006), Byrne (2006), Hays, Revicki, and Coyne (2005), Holbert and

Stephenson (2002), MacCallum and Austin (2000), Martens (2005), Peek (2000), Penny,

Stephan, Mechelli, and Friston (2004), and Smith and Langfield-Smith (2004). A short tech-

nical summary is given by Yuan and Bentler (in press), and a complete review of statistical

issues is given in the 18 chapters of S.-Y. Lee’s (in press) Handbook of Structural Equation

Models. See also Skrondal and Rabe-Hesketh (2004).

Among the variety of technical developments, methods for evaluating overall model fit

are critical for both statistical inference and practical applications. After all, without a

validated model, there is not much point to worrying about any kind of specific parameter

estimate within a model, such as a path (either within- or between-group paths, or within-

or across-level paths), or a variance or covariance. One way of model validation is to look

whether the model is correctly specified. Among the variety of model testing procedures,

in addition to the classical normal theory based likelihood ratio (NTLR) test, several ex-

tensions of Browne’s (1984) asymptotically distribution free (ADF) test statistics for mean

and covariance structures, such as the Satorra-Bentler scaled test (Satorra & Bentler, 1988,

1994) or residual-based tests (Yuan & Bentler, 1997, 1998, 1999), were developed for this

purpose. Simulation studies have shown that these methods can provide valuable informa-

tion for evaluating model exact fit even when the data is nonnormal with a reasonably small

sample size and some missing values (Yuan & Bentler, 1997, 1998, 1999, 2000).

Although model correctness is important, this way of model validation may not be real-

istic or complete in practice. It is likely that any model that we use in applications of mean

and covariance structure analysis in social sciences is nothing more than an approximation

to reality (e.g., Bentler & Bonett, 1980; Browne & Cudeck, 1993; de Leeuw, 1988). In dis-

cussing models generally, MacCallum (2003, p. 113) notes ”All of these models, in their
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attempt to provide a parsimonious representation of psychological phenomena, are wrong to

some degree and are thus implausible if taken literally.” In fact, no specific model may be

assumed to exist in population. Except for the saturated model, the population mean or

covariance matrix may not be reproducible precisely by any specific group of parameters as

assumed in exact fit model evaluation. A true population mean or covariance matrix with

some specific structure may only exist in simulation studies. On the other hand, a perfectly

fitted model may not be interpretable or parsimonious.

As a consequence, measures of model close fit, namely, so-called fit indices, were developed

years ago to assess the degree of fit or misfit of a model, and are often recommended for

practical use (e.g., Akaike, 1987; Bentler, 1990; Bentler & Bonett, 1980; Bollen, 1986, 1989;

James, Mulaik, & Brett, 1982; Joreskog & Sorbom, 1981; Marsh, Balla & McDonald, 1988;

McDonald, 1989; McDonald & Marsh, 1990; Steiger & Lind, 1980; Tanaka, 1987; Tanaka &

Huba, 1985; Tucker & Lewis, 1973). Today, model close fit indices are so popular that they

are extensively studied by many people, are provided as standard output of most software

packages, and are reported in most application articles. Only a few people are very critical

of their use (Yuan, 2005).

The popularity of model close fit indices reflects the fact that a model with some misspec-

ification is typical in practice. It also reflects the lack of reliable tests related to a misspecified

model. The main barrier to development of such tests is that the general or asymptotic dis-

tribution of existing exact fit test statistics under misspecification may be not suitable for

the testing of model misspecification or is not well understood. In the literature of mean and

covariance structure analysis, no distribution theory exists for some test statistics like the

Satorra-Bentler scaled statistic or the Yuan-Bentler residual based ADF test statistic (Yuan

& Bentler, 1998). While the ADF test statistic and Browne’s residual based ADF test

statistic (Browne, 1984) are asymptotically noncentral chi-square distributed, and the Yuan-

Bentler F statistic is asymptotically noncentral F distributed under misspecification (e.g.,

Browne, 1984; Shapiro, 1983; Yuan & Bentler, 1999), the noncentrality parameters of these

distributions contain an asymptotic covariance matrix which is based on the distribution of

the data and varies with its nonnormality. Such sample dependent noncentrality parameters
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clearly makes these distributions not ideal for testing model misspecification. Although the

NTLR statistic and the generalized least squares (GLS, Browne, 1974) test statistic do not

have this problem, derivations of their noncentral chi-square approximation (e.g., Satorra &

Saris, 1985; Steiger, Shapiro, & Browne, 1985) requires the following assumptions

1. the sample size is not too small

2. the discrepancy function is correctly specified for the distribution of the data

3. the population drift assumption (Wald, 1943). That is, the population value of the

mean and covariance matrix are regarded as being a function of sample size n and

converges at a rate of O(1/
√

n) to a point where the model is satisfied.

The first assumption is common. However, the second one is not consistent with the

NTLR statistic or the GLS test statistic when the data is not normally distributed. The

third one is also problematic. As a working assumption, it allows mathematical derivations

to work literally. But in practice, it is hard to imagine that the population value is sample

size dependent. It also hard to implement, e.g., in simulation studies. Notice that standard

deviations of sample moments are typically of order O(1/
√

n). An explanation of the pop-

ulation drift assumption is that model misspecification (nonstochastic error) is of the same

magnitude as the sampling error (stochastic error). A more understandable explanation that

is widely used in the literature is that the model misspecification is not too large. However,

there is no theory to tell us what size of model misspecification would allow the noncentral

chi-square approximation to be applicable in a specific case. More importantly, such an

explanation itself implies that the noncentral chi-square approximation is not a good enough

approximation in general.

Although the assumptions of normality and population drift are critical as well as hard to

satisfy or verify in practice, this has not prevented the noncentral chi-square distribution to

be used for the NTLR statistic and the GLS test statistic in some important issues in mean

and covariance structure analysis, such as development of confidence intervals for the root

mean square error of approximation (RMSEA) (Browne & Cudeck, 1993), or power analysis

(Satorra & Saris, 1985; MacCallum, Browne & Sugawara, 1996; Kano, 2001; Hancock, 2001;
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Kim, 2003). However, recently a few simulation studies with normally distributed data have

questioned the adequacy of the noncentral chi-square approximation for the NTLR statistic

and the GLS test statistic under model misspecification. For example, Curran et al. (2003)

found that when the misspecification is large, the confidence interval estimates of RMSEA

based on the noncentral chi-square distribution of the NTLR statistic do not perform well.

Olsson, Foss and Breivik (2004) further found that NTLR statistic more closely follows a

normal distribution than a noncentral chi-square distribution for a large model in spite of the

degree of misspecification. On the other hand, when the model is small, the NTLR statistic

does follow a noncentral chi-square distribution even with severe misspecifications.

Given the inadequacy of the noncentral chi-square approximation, Yuan, Hayashi and

Bentler (2005) applied the theory of Vuong (1989) to mean and covariance structure anal-

ysis and derived an ADF-type normal approximation to the NTLR statistic under model

misspecification. This approximation holds under some standard regularity conditions and

the assumptions of normality and population drift are not needed. Clearly, such an ADF-

type approximation should be useful in the general case and may provide a new foundation

for studying model misspecification. More importantly, the principle of the likelihood ratio

statistic is very general. So the results may be extendable to many other situations such

as multigroup data, multilevel data and so on. Although this approximation seems very

promising, Yuan, Hayashi and Bentler (2005) did not study the performance of the new

statistic in much detail. In their study, only 6 variables were used in the simulation and only

normal data were studied. Clearly, such limited evaluation can not give strong support for

the practical use of this approximation.

In this article we will first review the relevant statistical theories, especially Vuong’s the-

ory, and their application to the NTLR statistic. Then some new ADF-like test statistics

for evaluating model misspecification will be proposed. The several statistics are then com-

pared in simulation studies. The results from this comparison will be presented and some

suggestions for future studies will be proposed.

2. Theoretical background
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In classical single population mean and covariance structure analysis, the simultaneous

relationships among p-observed variables in a p× 1 random vector X = (x1, . . . ,xp)
′ and m-

unobserved factors are hypothesized to depend on q unknown structural parameters included

in a q × 1 parameter vector θ. The hypothesized model leads to the model-implied mean

µ(θ) and covariance matrix Σ(θ). Now let µ = E(X), Σ = cov(X), X̄ and S be the

corresponding mean and unbiased sample estimator and S∗ ≡ (n − 1) · S/n be the MLE

estimator of Σ, where n is the sample size. Let β denote the parameter vector of the

saturated model, then in this case β = (µ′, vech(Σ)′)′, where vech(·) is an operator which

transforms a symmetric matrix into a vector by stacking the nonduplicated elements of the

matrix. Further, β̂∗ ≡ (X̄ ′, vech(S∗)′)′ and β̂ ≡ (X̄ ′, vech(S)′)′ will be the MLE and unbiased

estimator of β separately. Although there is some difference between these two estimators,

such difference will become very slight when the sample size n is large (e.g., Anderson, 1984).

Suppose that the data Xi = (xi1, . . . , xip), i = 1, . . . , n = N + 1 are identically and

independently drawn from X, then the normal theory based log likelihood function of ob-

servations is given by

ln(β) =
n∑

i=1

logf(Xi; µ,Σ) = constant − n

2
log|Σ| − 1

2

n∑

i=1

(Xi − µ)′Σ−1(Xi − µ)

where f(Xi; µ,Σ) is the density function of the multivariate normal distribution for individ-

ual observation Xi. Obviously, β̂∗ is the maximizer of ln(β).

Let µ0, Σ0 denote the population counterpart to µ, Σ and β0 ≡ (µ′

0, vech(Σ0)
′). Let Γ

be the asymptotic covariance matrix of β̂ and thus β̂∗, then under some standard regularity

conditions (e.g., Kano, 1986; Shapiro, 1984), β̂∗ and thus β̂, will be strongly consistent and

asymptotically normally distributed, that is,

√
n(β̂∗ − β0)

a
=

√
n(β̂ − β0)

L−→ N(0,Γ) (1)

where
a
= refers to asymptotic equality (i.e., the difference between both sides of the equal-

ity tends to zero in probability as n → ∞). Further, Γ can be shown to be equal to

A−1(β0)B(β0)A
−1(β0) (e.g., Vuong, 1989; Yuan & Jennrich, 1998) and

A(β0) = −E

[
∂2li(β0)

∂β0∂β′

0

]
B(β0) = E

[
∂li(β0)

∂β0

∂li(β0)

∂β′

0

]
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where E(·) denotes the expectation with respect to the true distribution of X.

When µ and Σ are parameterized as µ = µ(θ) and Σ = Σ(θ), then the log likelihood

function becomes

ln(θ) =
n∑

i=1

logf(Xi; θ) = constant − n

2
log|Σ(θ)| − 1

2

n∑

i=1

(Xi − µ(θ))′Σ−1(θ)(Xi − µ(θ))

An estimator of θ can be obtained by minimizing the well-known normal theory maximum

likelihood discrepancy function (Browne & Arminger, 1995)

FML(X̄,S∗; µ(θ),Σ(θ)) = (X̄ − µ(θ))′Σ−1(θ)(X̄ − µ(θ)) + log|Σ(θ)| + tr(S∗Σ−1(θ))

−log|S∗| − p

The minimizer, θ̂NML, is the maximum likelihood estimator and the NTLR test statistic

TNML is given by

TNML = nFML(X̄,S∗; µ(θ̂NML),Σ(θ̂NML)) = 2
n∑

i=1

log

[
f(Xi; β̂

∗)

f(Xi; θ̂NML)

]
≡ 2LRn(β̂∗, θ̂NML) (2)

In practice, the discrepancy function FML(X̄,S; µ(θ),Σ(θ)) is used in most literature in-

stead of FML(X̄,S∗; µ(θ),Σ(θ)) . Its minimizer, θ̂ML, and the corresponding NTLR statistic

TML = NFML(X̄,S; µ(θ̂ML),Σ(θ̂ML)) are given in the standard output of typical software

packages (e.g., EQS, Bentler 2006; Mplus, Muthen & Muthen 2003). Although there is

some difference between θ̂NML and θ̂ML, and between TNML and TML, such differences will

become very slight when the sample size n increases to large (e.g., Bentler, 2006; Browne &

Arminger, 1995).

Now suppose that the model is correctly specified, or in other words, the null hypothesis

of model exact fit HE
0 : µ = µ(θ) and Σ = Σ(θ) holds, then there exists a θ0 by which µ0 =

µ(θ0), Σ0 = Σ(θ0) and FML(µ0,Σ0; µ(θ0),Σ(θ0)) = 0. Further, under the null hypothesis

of model exact fit HE
0 and some standard regularity conditions (e.g., Kano, 1986; Shapiro,

1984), θ̂NML, thus θ̂ML, will be strongly consistent and asymptotically normally distributed

(Vuong, 1989; Yuan & Jennrich, 1998), and

√
n(θ̂ML − θ0)

a
=

√
n(θ̂NML − θ0)

L−→ N(0, Ωθ0
)
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where Ωθ0
= A−1(θ0)B(θ0)A

−1(θ0). When normality is assumed, then Ωθ0
= A−1(θ0) and

the NTLR statistics TNML and TML are chi-square distributed with df = p∗ − q, where

p∗ = p(p + 3)/2.

3. Model misspecification and likelihood ratio statistic

There are two kinds of model misspecifications: overparameterized model misspecifica-

tion and underparameterized model misspecification. In an overparameterized model, more

structural parameters are used than necessary. The problem of such misspecification is pa-

rameter redundancy. The NTLR test can be used for this problem when the data is normally

distributed. The Wald test and a scaled difference chi-square test by Satorra and Bentler

(2001) can handle this problem in more general situations. Since this type of overparameteri-

zation is not a ”real” misspecification in some sense, in the text below ”misspecification” only

refers to the second misspecification: an underparameterized model misspecification. In this

case, the null hypothesis of model exact fit HE
0 does not hold any more and there are two pos-

sibilities. In one possibility, β0 is attainable and can be reproduced by a group of parameters

θ0. However, the model parameterized by such θ0 may be hard to find or has no inter-

pretability or substantive usefulness. In another possibility, β0 is unattainable and can not

be reproduced by any group of parameters, or in other words, FML(µ0,Σ0; µ(θ),Σ(θ)) > 0

for any possible value of θ except in a saturated model where θ0 is equal to, or is some

transformation of, β0.

No matter of what kind of possibility it is, suppose now we have a model parameterized

by a q × 1 structural parameter vector θ as we assumed before. Due to the misspecification

(parameter underrepresentation), the minimizer θ∗ of FML(µ0,Σ0; µ(θ),Σ(θ)) differs from θ0

in value and maybe in dimension too (see Yuan & Bentler, 2004; Yuan, Marshall & Bentler,

2003 for details). It also has been shown that under the same regularity conditions, the

θ̂NML, thus θ̂ML, will be strongly consistent for θ∗ and be asymptotically normally distributed

(Arminger & Schoenberg, 1989; Vuong, 1989; Yuan & Jennrich, 1998), and

√
n(θ̂ML − θ∗)

a
=

√
n(θ̂NML − θ∗)

L−→ N(0, Ωθ∗) (3)

where Ωθ∗ = A−1(θ∗)B(θ∗)A
−1(θ∗). When normality is also assumed, then Ωθ∗ = A−1(θ∗)
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Now let F0 = FML(µ0,Σ0; µ(θ∗),Σ(θ∗)). When the model is misspecified, it is well-

known that the NTLR statistic TML
L−→ χ2

df (NF0) under the assumption of normality and

the assumption of population drift, that is,

µ0 − µ(θ∗) = O(1/
√

n) and Σ0 − Σ(θ∗) = O(1/
√

n) (4)

Let σ∗ = (µ(θ∗)
′, vech(Σ(θ∗))

′)′ and σ̇∗ = ∂σ∗/∂θ′
∗
. Let Dp be the duplication matrix as

defined by Magnus and Neudecker (1988), W = diag
[
Σ−1

0 , 2−1D′

p(Σ
−1
0 ⊗ Σ−1

0 )Dp

]
, W∗ =

diag
[
Σ−1(θ∗), 2

−1D′

p(Σ
−1(θ∗) ⊗ Σ−1(θ∗))Dp

]
and U = W∗−W∗σ̇∗(σ̇∗

′W∗σ̇∗)
−1σ̇∗

′W∗. Then

it has been shown that under the population drift assumption (4) (Yuan & Marshall, 2004),

AE(TML) = NF0 + tr(UΓ) (5)

where AE represents the asymptotic expectation with respect to the true distribution of X.

When normality is assumed, (5) reduces to

AE(TML) = NF0 + df (6)

Theorem 1. Under the Assumptions A1-A5 of Vuong (1989),

AE(TNML) = nF0 + tr(A−1(β0)B(β0) − A−1(θ∗)B(θ∗))

where tr(A−1(β0)B(β0)−A−1(θ∗)B(θ∗)) reduces to tr(UΓ) if the population drift assumption

(4) is assumed or a correct model is specified and reduces to df if normality is assumed.

Proof. see the Appendix.

Yuan, Hayashi and Bentler (2005) applied the theory of Vuong (1989) to mean and

covariance structure analysis and derived the asymptotic distribution of TML under the al-

ternative hypothesis of model exact fit without the assumptions of normality and population

drift. Given the unfamiliarity of Vuong’s theory in the literature of mean and covariance

structure analysis, we give a brief explanation of Vuong’s theory and its application first.

The theory of Vuong (1989) focuses on TNML instead of TML. In (2), we notice that

1

2n
TNML =

1

n

n∑

i=1

log

[
f(Xi; β̂

∗)

f(Xi; θ̂NML)

]
≡ LRn(β̂∗, θ̂NML) (7)
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As mentioned above, θ̂NML is strongly consistent to θ∗ and θ̂NML − θ∗ = Op(1/
√

n) under

the misspecification and some standard regularity conditions. Another fact is that by (1)

β̂∗ is also strongly consistent to β0 and β̂∗ − β0 = Op(1/
√

n) in spite of the misspecification.

Given these properties of β̂∗ and θ̂NML, by using a Taylor expansion of LRn(β0, θ∗) around

(β̂∗
′

, θ̂′NML)′, we can get

1

n
LRn(β0, θ∗)

≡ 1

n

n∑

i=1

log

[
f(Xi; β0)

f(Xi; θ∗)

]
(8)

=
1

n

n∑

i=1

log

[
f(Xi; β̂

∗)

f(Xi; θ̂NML)

]
+

1

n
· V ·

[
(β′

0, θ
′

∗
)′ − (β̂∗

′

, θ̂′NML)′
]
+ Op(1/n)

where

V = ∂
n∑

i=1

log

[
f(Xi; β̂

∗)

f(Xi; θ̂NML)

]/
∂(β̂∗

′

, θ̂′NML)

Since β̂∗ and θ̂NML are MLE estimators, V = 0. Then by some algebra, we get

1

n

n∑

i=1

log

[
f(Xi; β̂

∗)

f(Xi; θ̂NML)

]
=

1

n

n∑

i=1

log

[
f(Xi; β0)

f(Xi; θ∗)

]
+ Op(1/n) (9)

Now assume that Xi is i.i.d. sampled from X, then log [f(Xi; β0)/f(Xi; θ∗)] is also i.i.d.

sampled from some unknown distribution H. By the Law of Large Numbers,

1

n

n∑

i=1

log

[
f(Xi; β0)

f(Xi; θ∗)

]
a.s.−→ E

[
log

[
f(Xi; β0)

f(Xi; θ∗)

]]

The term on the right side of the equation is the Kullback-Leibler (1951) Information Cri-

terion in statistical theory. Suppose E [log [f(Xi; β0)/f(Xi; θ∗)]]
2 is finite, then the second

central moment of this unknown distribution H is

ω2 = E

[
log

[
f(Xi; β0)

f(Xi; θ∗)

]]2

−
[
E

[
log

[
f(Xi; β0)

f(Xi; θ∗)

]]]2

By the Central Limit Theorem and (8),

√
n

{
1

n
LRn(β0, θ∗) − E

[
log

[
f(Xi; β0)

f(Xi; θ∗)

]]}
L−→ N(0, ω2) (10)

Combining (7), (9) and (10), we obtain

√
n

{
1

2n
TNML − E

[
log

[
f(Xi; β0)

f(Xi; θ∗)

]]}
L−→ N(0, ω2) (11)
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One point which should be mentioned is that this asymptotic approximation holds only when

ω2 6= 0. Vuong (1989) showed that ω2 = 0 and f(Xi; β0) = f(Xi; θ∗) in (11) are equivalent in

general (see Lemma 4.1 by Vuong). For nested models, like the saturated model and a nested

structural model, Vuong (1989) further showed that f(Xi; β0) = f(Xi; θ∗) and β0 = β(θ∗)

are equivalent to each other under standard regularity conditions (see Lemma 7.1 by Vuong).

So the rejection of model exact fit: β0 = β(θ∗) which is equivalent to f(Xi; β0) = f(Xi; θ∗)

is the way to establish ω2 6= 0 and model misspecification is necessary for the use of (11).

Lemma 1. The following identity holds

E

[
log

[
f(Xi; β0)

f(Xi; θ∗)

]]
=

1

2
F0

Proof.

E

[
log

[
f(Xi; β0)

f(Xi; θ∗)

]]

= E [logf(Xt; β0)] − E [logf(Xi; θ∗)]

=
1

2
E

[
log|Σ(θ∗)| + (Xt − µ(θ∗))

′Σ−1(θ∗)(Xt − µ(θ∗))
]

−1

2
E

[
log|Σ0| + (Xt − µ0)

′Σ−1
0 (Xt − µ0)

]

=
1

2

[
log|Σ(θ∗)| + tr(Σ0Σ

−1(θ∗)) + (µ0 − µ(θ∗))
′Σ−1(θ∗)(µ0 − µ(θ∗))

−log|Σ0| − p]

=
1

2
F0

Let F̂ML ≡ 1
N

TML = FML(X̄,S; µ(θ̂ML),Σ(θ̂ML)). Then by (5), (6), (11), Lemma 1 and

the asymptotic equivalence between TNML and TML, we obtain the following corollary (Yuan,

Hayashi & Bentler, 2005, Corollary 2 and 3)

Corollary 1. Under standard regularity conditions as in Yuan and Bentler (1997) and

model misspecification,

√
n

(
F̂ML − F0 −

tr(UΓ)

n

)
L−→ N(0, 4ω2)

when normality is assumed, this reduces to

√
n

(
F̂ML − F0 −

df

n

)
L−→ N(0, 4ω2)
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Notice that Corollary 1 has no conflict with (11) because the extra term tr(UΓ)/n and

df/n in Corollary 1 approach zero as n goes to infinity. Vuong (1989) further gave a consistent

estimator of ω2, that is,

ω̂2
Vuong =

1

n

n∑

i=1

[
log

[
f(Xi; β̂

∗)

f(Xi; θ̂NML)

]]2

−
[
1

n

n∑

i=1

[
log

f(Xi; β̂
∗)

f(Xi; θ̂NML)

]]2

Given the asymptotic equivalence between θ̂NML and θ̂ML, we obtain the following estimator

of ω2, that is,

ω̂2 =
1

n

n∑

i=1

[
log

[
f(Xi; β̂)

f(Xi; θ̂ML)

]]2

−
[
1

n

n∑

i=1

[
log

f(Xi; β̂)

f(Xi; θ̂ML)

]]2

(12)

Clearly, ω̂2 is also a consistent estimator of ω2.

Yuan, Hayashi and Bentler (2005) further derived the explicit form of ω2 under various

conditions and gave the corresponding estimators. Although their work is valuable, the

preliminary results from a simulation study of normal data show that there is no big difference

in performance between their estimators and ω̂2 in (12). More importantly, their estimators

are limited to single group mean and covariance structure analysis and are not as general as

ω̂2. So in this article, we only use ω̂2 for the tests that follow.

4. RMSEA and tests of close fit

As mentioned before, in the literature of mean and covariance structure analysis, many fit

indices have been proposed as measures of model misspecification. Despite their popularity,

most of them remain at the level of descriptive statistics of a sample. It does not seem

possible to use them for inference about misspecification in the population.

There is one well-known exception: RMSEA. The population RMSEA was proposed and

defined as (Steiger & Lind, 1980; Browne & Cudeck, 1993) as

RMSEA0 =

√
F0

df

where RMSEA0 denotes its true value. Clearly, RMSEA0 is greater than or equal to zero

and will be zero only if the model is correctly specified. On account of the asymptotic bias
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of TML as the estimator of NF0 in (6), the sample RMSEA is defined as (Steiger & Lind,

1980; Browne & Cudeck, 1993)

̂RMSEA =
√

max(F̂ML/df − 1/n, 0)

Notice that in the parenthesis we use 1/n instead of 1/N , used by most people. However,

the difference between 1/n and 1/N will be tiny as n goes to infinity, so this is not a big

problem. As mentioned before in (5), the asymptotic bias of TML differs from df in nonnormal

conditions. So it is not hard to define a robust sample RMSEA as follows

˜RMSEA =

√√√√max

(
F̂ML

df
− tr(ÛΓ̂)

n · df , 0

)

where Γ̂ is the consistent estimator of Γ (e.g., Bentler, 2006) and Û is a consistent estimator

of U obtained by replacing θ∗ by θ̂ML.

As stated before, misspecifications are inevitable in practice. So it is unrealistic to ask

RMSEA0, the measure of misspecification, to be zero. Instead, we set a small positive

value a for RMSEA0. If RMSEA0 is less than or equal to such a small value, then we can

say the model is closely fitted and still acceptable, even with some minor misspecification.

Otherwise, the model will be rejected. As a ”rule of thumb”, the value of .05 was suggested

as such a cutoff value of close fit and is widely used in the literature.

As a population value, RMSEA0 is unknown in practice. So we need a statistic to test the

null hypothesis H0 : RMSEA0 ≤ a against its alternative one H1 : RMSEA0 > a and decide

on rejection or acceptance of the model. The null and alternative hypotheses above can also

be written as H0 : F0 ≤ df · a2 against H1 : F0 > df · a2. Let χ2
df,.95(N × df × a2) be the 95

percent quantile of the noncentral chi-square distribution with NCP equal to N × df × a2

and the degree of freedom df . Suppose now H0 : F0 ≤ df · a2 is true and TML
L−→ χ2

df (NF0),

then Pr[TML > χ2
df,.95(N × df × a2)]

L−→ .05. So a test of close fit can be proposed. The null

hypothesis will be rejected in favor of the alternative if TML is greater than χ2
df,.95(N×df×a2).

Otherwise, the null hypothesis can not be rejected.

The close fit test proposed here actually is the same as one proposed by Browne and

Cudeck (1993). But they use a different terminology. The obvious drawback of this close fit
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test is that it is based on a noncentral chi-square distribution. It works only in normal data

with a misspecification satisfying the population drift assumption.

In the last section, the asymptotic distribution of TML under model misspecification is

derived in Corollary 1 and a consistent estimator of ω2 is given in (12). Based on these

results, the following two test statistics are proposed: Vuong’s test statistic (T1) which is:

T1 =

√
n

(
F̂ML − df · a2 − df/n

)

2ω̂1

and the robust Vuong’s test statistic (T2) which is

T2 =

√
n

(
F̂ML − df · a2 − tr(ÛΓ̂)/n

)

2ω̂1

Corollary 2. Under some standard regularity conditions as in Yuan and Bentler (1997)

and model misspecification (RMSEA0 6= 0),

T1
a
= T2

L−→ N(
√

nδ1, 1) and δ1 =
df

ω
·
[
a2

0 − a2

2

]

where a0 is the value of RMSEA0. Further,

1. When RMSEA0 = a, then δ1 = 0 and T1
a
= T2

L−→ N(0, 1).

2. When RMSEA0 > a, then δ1 > 0 and T1
a
= T2 −→ +∞ as n −→ +∞.

3. When 0 < RMSEA0 < a, then δ1 < 0 and T1
a
= T2 −→ −∞ as n −→ +∞.

Although the Corollary above states that T1 and T2 are asymptotically equivalent, they

differ from each other in nonnormal data especially when n is small. Let λ.95 be 95 percent

quantile of the standard normal distribution. Then under model misspecification and the

null hypothesis H0 : RMSEA0 ≤ a, Pr[T1 or T2 > λ.95]
L−→ .05. Clearly, T1 and T2 can be

used to test the hypothesis of close fit for a misspecified model. For each, the null hypothesis

H0 : RMSEA0 ≤ a will be rejected if it is greater than λ.95. Otherwise, it can not be rejected.

Although the theory of Vuong (1989) has been in the literature for a long time and has

been used in several areas (see Golden, 2003), and it has a nice distribution free property

theoretically, it is unknown in psychometrics and to practical users. One explanation for
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the unpopularity of Vuong’s method is that it is an asymptotic result. As noticed by Clarke

(2003, 2005), the convergence rate of Vuong’s test is very slow. A very large sample is needed

for satisfactory performance. Clearly, such slow convergence inevitably will prevent it from

practical use in psychology, in which small or medium sized samples are common. Although

Yuan, Hayashi, and Bentler (2005) reported a desirable performance of Vuong’s tests with

a small sample size, the examples they used have only 6 observed variables and were only

studied in normal data. Clearly, such limited simulation is inadequate to establishing Vuong’s

test for practical use.

In mainstream statistics, power transformations have a long history as methods for im-

proving the normality of a statistic. For example, Wilson and Hilferty (1931) applied the cube

root transformation to χ2 random variables for improvement towards normality. Recently

Chen and Deo (2004) developed a method of determining an appropriate power transfor-

mation to improve a normal approximation in small samples. However, they assumed that

population parameters such as mean and variance are known. So their methods still need

improvement before practical application.

Given the unavailability of a general method to determine the optimal power transforma-

tion for a specific statistic, and the popularity of RMSEA in mean and covariance structure

analysis, we make use of a square root transformation to hopefully improve the performance

of the above tests. This approach makes sense since RMSEA0 is a square root transforma-

tion of the standard NCP F0 divided by a constant
√

df . Now by Corollary 1 and the Delta

method, we obtain the following approximation

Corollary 3. Under some standard regularity conditions as in Yuan and Bentler (1997)

and model misspecification (RMSEA0 6= 0),

√
n

( ̂RMSEA − RMSEA0

)
L−→ N(0,

ω2

df × F0

)

or for the general case,

√
n

( ˜RMSEA − RMSEA0

)
L−→ N(0,

ω2

df × F0

)
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Proof.

√
n

( ̂RMSEA − RMSEA0

)
=

√
n

(√
max(F̂ML/df − 1/n, 0) −

√
F0/df

)

a
=

√
n

(√
F̂ML/df −

√
F0/df

)

L−→ N(0,
ω2

df × F0

) (Delta method)

The property of ˜RMSEA can be proved in the same way.

Clearly, by Corollary 3, two new test statistics can be defined as follows: the RMSEA

test statistic T3 which is

T3 =

√
n

( ̂RMSEA − a
)

ω̂
/√

df × (F̂ML − df/n)

and the robust RMSEA test statistic T4 which is

T4 =

√
n

( ˜RMSEA − a
)

ω̂
/√

df × (F̂ML − df/n)

Now let ĉ = (tr(ÛΓ̂) − df)/n, then we further define another two RMSEA test statistics T5

and T6 as

T5 =

√
n

( ˜RMSEA − a
)

√
ω̂2 − ĉ

/√
df × (F̂ML − df/n + ĉ)

and

T6 =

√
n

( ˜RMSEA − a
)

√
ω̂2 − 2.5 · ĉ

/√
df × (F̂ML − df/n + ĉ)

Clearly, ĉ is an estimator of c0 ≡ (tr(UΓ) − df)/n and converges to c0 in the order of

Op(n
−3/2). When the data is normally distributed, c0 is equal to zero and ĉ will converge

to zero in the order of Op(n
−3/2). So in this condition, T3, T4, T5 and T6 should have

similar performance. When the data is nonnormal, c0 and thus ĉ carry the information on

nonnormality of the data. So compared to T3, T4 has a correction in numerator and T5 and

T6 have a correction both in numerator and denominator. Even though such corrections

should not matter asymptotically, they may make a difference in performance with small

samples.
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Another point which should be mentioned here is that when one or several quantities

among F̂ML −df/n, F̂ML −df/n+ ĉ, ω̂2 − ĉ and ω̂2 − 2.5 · ĉ are less than or equal to zero due

to conditions such as a small sample size, then the corresponding test statistics T3, T4, T5

or T6 will be undefined respectively. So during the simulations below, replications with such

problems will be discarded and the number of these replications will be reported in Tables.

Corollary 4. Under some standard regularity conditions as in Yuan and Bentler (1997)

and model misspecification (RMSEA0 6= 0),

T3
a
= T4

a
= T5

a
= T6

L−→ N(
√

nδ2, 1) and δ2 =
df

ω
·
(
a2

0 − a · a0

)

Further,

1. When RMSEA0 = a, then δ2 = 0 and T3
a
= T4

a
= T5

a
= T6

L−→ N(0, 1).

2. When RMSEA0 > a, then δ2 > 0 and T3
a
= T4

a
= T5

a
= T6 −→ +∞ as n −→ +∞.

3. When 0 < RMSEA0 < a, then δ2 < 0 and T3
a
= T4

a
= T5

a
= T6 −→ −∞ as n −→ +∞.

Clearly, like T1 and T2 discussed before, T3, T4, T5 or T6 can be used to test the hy-

pothesis of close fit for a misspecified model too. For each of them, the null hypothesis

H0 : RMSEA0 ≤ a will be rejected if it is greater than λ.95. Otherwise, it can not be

rejected.

Corollary 5. Under H1 : RMSEA0 > a and some standard regularity conditions as in

Yuan and Bentler (1997), then T3, T4, T5 and T6 have more asymptotic power than T1 and

T2 to detect the overmisspecification.

Proof. By Corollary 2 and 4,

T1
a
= T2

L−→ N(
√

nδ1, 1) T3
a
= T4

a
= T5

a
= T6

L−→ N(
√

nδ2, 1)

where

δ1 =
df

ω
·
[
a2

0 − a2

2

]
δ2 =

df

ω
·
(
a2

0 − a · a0

)

Clearly, δ2 > δ1 when a0 > a > 0.
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5. Simulation studies

In the sections above, we discussed seven test statistics and their corresponding critical

values for testing. They are TML, T1, T2, T3, T4, T5 and T6. In order to establish these

statistics as reliable tools for testing H0 : RMSEA0 ≤ a, we first need to look at the

asymptotic approximation and one-sided type I errors of these statistics when RMSEA0 = a.

It is hard to manipulate the level of RMSEA0 to a specific value a such as the widely accepted

value a = .05. Instead, we set a equal to the value of RMSEA0 for all statistics since RMSEA0

is known in a simulation study. Thus, for each statistic, if it has a desirable approximation to

the corresponding theoretical distribution and its exceedance probability over the 95 percent

quantile of that distribution is close to .05 across conditions, then it can be suggested as a

reliable test of the hypothesis of close fit. Otherwise, it can not be used.

Since the statistics we proposed are asymptotically distribution free, we generated data

under three distribution conditions for each of two examples below. They are: normal,

mild nonnormal and severe nonnormal. In the mild nonnormal condition, the skewness and

kurtosis of each observed variable is set to 1.0 and 3.0 during the data generation. In the

severe nonnormal condition, they are set to 2.0 and 7.0. For our two examples, the sample

size levels are set to 150, 300, 400, 500, 1000 and 2500. So there are 3×6 = 18 data conditions

for each example. The number of replications is set to 2000 under each data condition.

The whole data generation and analysis were conducted by using EQS 6.1 (Bentler,

2006). In addition, we specified SE=OBS during the analysis. Thus, the term ( ˆ̇σ∗

′

Ŵ∗
ˆ̇σ∗),

the Fisher information estimator, in Û is replaced by the estimator of the Hessian or observed

information matrix.

Example 1. This example is a factor model used by Hu and Bentler (1992, 1998, 1999).

This is a classic example in model close fit research. The data are generated with the

covariance structure: Σ0 = ΛΦΛ′ + Ψ where

Λ =




.70 .70 .75 .80 .80 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .70 .70 .75 .80 .80 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .70 .70 .75 .80 .80




′
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Φ =




1.0 .50 .40
.50 1.0 .30
.40 .30 1.0




and Ψ =diag(.51,.51,.44,.36,.36,.51,.51,.44,.36,.36,.51,.51,.44,.36,.36)

In the fitted three-factor model, φ21 and φ12 are set to zero for misspecification and the

factor loadings of the 5th, 10th and 15th variables on their corresponding factors are set to

.80 for identification. All other nonzero parameters in the true model are set free during the

estimation. For this misspecified model, df = 88 and RMSEA0 = 0.0489.

The rejection rates of TML, T1 to T6 are presented in Table 1 (normal condition), Table

2 (mild nonnormal condition) and Table 3 (severe nonnormal condition). From Table 1, we

see that, except for a slight overrejection when n = 150, TML follows χ2
88(N × 88 × 0.04892)

perfectly in normal data across sample size levels. However, as shown in Tables 2 and 3,

when the data is nonnormal, TML always overrejects the model.

In Table 1, T1 and T2 always overaccept the model except when n = 2500. When the

data is nonnormal, T1 has good rejection rates across sample size levels in Table 2 (mild

nonnormal condition) but it overrejects model substantially too much in Table 3 (severe

nonnormal condition). As to T2, it overaccepts the model too much in both tables.

Under normality, T3, T4, T5 and T6 have very good rejection rates in Table 1 when n ≥ 300

even though they slightly overreject the model when n = 150. When the data is nonnormal,

T3 always overrejects the model especially in Table 3 while T4 always overaccepts the model

on the other hand (see Table 2 and 3). As to T5, it performs well when n ≥ 300 in Table 2

and 3. T6 also performs well in most cases in two tables when n ≥ 300 although it overrejects

a little bit when n = 300. So combining Tables 1, 2 and 3, we may conclude that T5 and T6

perform desirably across distribution conditions in this example when n ≥ 300.

In the discussion above, we set a = RMSEA0 = 0.0489 to examine the one-side type I

error of the statistics. In the next step, we set a back to .05 and look at the acceptance

performance of these statistics when a > RMSEA0 = 0.0489. Let TML,.05, T1,.05, T2,.05, T3,.05,

T4,.05, T5,.05, and T6,.05 denote the corresponding test statistics when a is set to .05. The

rejection rates of these statistics are presented in Table 4 (normal condition), Table 5 (mild

nonnormal condition) and Table 6 (severe nonnormal condition).
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Since in this example RMSEA0 is equal to 0.0489, which is slightly less than the cutoff

value .05, δ1 and δ2 by Corollary 2 and 4 should not be very large. Although there is more

model acceptance across these three tables, seven statistics do not reach complete acceptance

as expected according to Corollary 2 and 4 even when n = 2500.

Example 2. This example is a MIMIC model whose misspecification is due to the omission

of some paths from the covariates to factors. This example was used by Curran, Bollen, Chen,

Paxton & Kirby (2003) in their RMSEA study (see Misspecification 3 for their population

model 3). The data are generated by

y = Πη + ε

η = Bη + Λx + ζ

where x, ε and ζ are independent to each other with E(ε) = 0, Cov(ε)=Ψ, E(ζ) = 0,

Cov(ζ)=Ξ, E(x) = 0, Cov(x)=Φ. Moreover, Ψ = diag(.11, .11, .11, .11, .22, .17, .36, .75, .75),

Ξ = diag(.05, .11, .36),

Π =




1.0 1.0 1.0 .39 .00 .00 .00 .00 .00
.00 .00 .00 .91 1.0 1.2 .53 .00 .00
.00 .00 .00 .00 .00 .195 .95 1.0 1.0




′

, B =




.00 .00 .00
1.0 .00 .00
.00 1.0 .00


 ,

Λ =




.40 -.50 -.60
-.40 .00 .00
-.20 .25 .35
.20 .00 .00




′

, and Φ =




.25 .11 .30 .15

.11 .20 .18 .18

.30 .18 1.0 .50

.15 .18 .50 1.0




In addition, the values of φii here may be somewhat different from what Curran et al. (2003)

used. This is because they did not clearly provide these values.

In the fitted MIMIC model, λ21, λ23, λ31 and λ33 are set to zero for misspecification.

π21, π52 and π83 are set to 1.0 for identification. All other nonzero parameters in the pop-

ulation model are set free during the estimation. For this misspecified model, df = 54 and

RMSEA0 = 0.08345.

Tables 7–9 summarize the rejection rates of TML, T1 to T6 in normal, mild nonnormal

and severe nonnormal conditions, respectively. Again, TML shows good rejection rates across

sample size levels in the normal condition (see Table 7). However, for severe nonnormal data,

TML performs poorly (see Table 9).
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When the data is normal, T3, T4, T5 and T6 have good rejection rates across sample size

levels while T1 and T2 always overaccept the model except when n = 2500 (see Table 7).

When the data is nonnormal, T1 again has good rejection rates under mild nonnormality

across the sample size levels (see Table 8), but somewhat overrejects the model under severe

nonnormality (see Table 9). In Tables 8 and 9, when the data is (mild and severe) nonnormal,

T2 overaccepts the model most of the time, except in large samples. Unlike in Example 1, T3

has good rejection rates under mild nonnormality (see Table 8), but it overrejects the model

under severe nonnormality (see Table 9). In Table 8 and 9, only T4, T5 and T6 have good

rejection performance generally when n ≥ 300.

In this example, RMSEA0 is equal to 0.08345 which is between .08 and .10. So by the

rule of thumb, this model contains some serious misspecifications. Tables 10, 11 and 12

show that TML,.05, T1,.05 to T6,.05 receive very close to complete rejection with a sample size

of 300 across the distribution conditions. In addition, when n = 150, it is clear that T3,.05,

T4,.05, T5,.05 and T6,.05 have more rejection power than T1,.05 and T2,.05. This result agrees

with Corollary 5. Finally, from these three tables, TML,.05 has a similar rejection rate as

T3,.05, T4,.05, T5,.05, and T6,.05. This may suggest that they have a similar asymptotic rejection

power in evaluating misspecification.

6. Discussion

In this article, we apply the theory of Vuong (1989) and the results of Yuan, Hayashi and

Bentler (2005) to RMSEA in mean and covariance structure analysis and propose four ADF-

like RMSEA test statistics for evaluating a misspecified model without using the normality

and population drift assumptions. In our simulation studies, two of these statistics (T5 and

T6), in terms of type I error across the distribution conditions, can appropriately accept

the models when n ≥ 300. Another statistic (T4) also performs desirably in convergence

and model acceptance across distribution conditions when n ≥ 300, although compared

to T5 and T6, it is generally more conservative in rejection especially under nonnormality.

In contrast to these three statistics, T3 is not reliable across the conditions and examples

that we studied. Furthermore, the two test statistics T1 and T2, which are directly implied
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by Vuong (1989) and Yuan, Hayashi and Bentler (2005), also perform poorly. As to the

noncentral chi-square based TML, it always performs very well in normal data but poorly

in nonnormal ones. Since in this article the misspecifications in the examples vary from

minor to serious, the contrasting performance between normal and nonnormal data across

the examples suggests that the adequacy of the noncentral chi-square approximation is more

sensitive to the violation of normality than it is to the population drift assumption.

As mentioned before, some standard cutoff values have been established for the popula-

tion RMSEA. Given the desirable acceptance performance of T4, T5 and T6 demonstrated in

our simulation studies, we set the a in these statistics to be equal to some cutoff values, for

example a = .05 for close fit, and obtain T4,.05, T5,.05 and T6,.05. Clearly, T4,.05, T5,.05 and T6,.05

will be very useful in evaluating the null hypothesis of model close fit H0 : RMSEA0 ≤ .05 for

misspecified models. When RMSEA0 is exactly equal to .05, then T4,.05, T5,.05 and T6,.05 will

accept the misspecified model with some desirable alpha level of type I errors as long as the

sample size is reasonably large (e.g. n ≥ 300 according to our examples). When RMSEA0

lies between zero and the cutoff value .05, then T4,.05, T5,.05 and T6,.05 will tend to completely

accept the misspecified model as n increases as they did in Examples 1. In contrast, when

RMSEA0 is over the cutoff value .05, T4,.05, T5,.05 and T6,.05 will incline to completely reject

the misspecified model as n increases as they did in Examples 2. In Corollaries 2 and 4, we

give the general distribution of T1,.05, T2,.05, T3,.05, T4,.05, T5,.05 and T6,.05. Clearly, an analysis

of the power of rejecting misspecified models can be further studied for these test statistics

based on these general distributions.

One important point we want to emphasize again is that the RMSEA tests we propose

only work for misspecified models. These statistics do not apply to correctly specified models,

at least according to the theory. Since in practice nobody would know exactly if one model

is correctly specified or not, model exact fit should probably be evaluated first and RMSEA

tests would be applicable only after the rejection of model exact fit.

Fortunately, in mean and covariance analysis, many asymptotic distribution free tests

such as the Satorra-Bentler scaled test (Satorra & Bentler, 1988, 1994) or residual-based

tests (Yuan & Bentler, 1997, 1998, 1999) have been demonstrated to reliably evaluate model
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exact fit even when the data is nonnormal with a reasonably small sample size and some

missing values. As a result, these exact fit tests can be combined with the proposed RMSEA

tests for misspecified models. Thus, a sequential two-stage procedure is proposed for overall

model evaluation: accept the model if it satisfies the exact fit tests such as the Satorra-

Bentler scaled test or residual-based tests; or, accept the model if it is rejected by the exact

fit tests but still satisfies the RMSEA tests such as T4,.05, T5,.05 and T6,.05.

One potential problem of the two-stage procedure above is its significance level during

overall model evaluation. Notice that H0 : RMSEA0 ≤ a is a composite of HE
0 and H0−HE

0 .

Let TE denote some reliable exact fit test statistic such as the Satorra-Bentler scaled test

or a residual-based test, and let TC denote some reliable close fit test statistic such as T4,.05,

T5,.05 and T6,.05. Further, let A ≡ { TE > χ2
df,α} and B ≡ { TC > λα} . Then Pr[reject

H0|H0]=Pr[A ∩ B|H0] ≤max{ Pr(A ∩ B|HE
0 ), Pr(A ∩ B|H0 − HE

0 )} ≤max{ Pr(A|HE
0 ),

Pr(B|H0 − HE
0 )} . Let αE and αC be the asymptotic significance levels of TE and TC

respectively, then Pr(A|HE
0 ) → αE and Pr(B|H0 − HE

0 ) → αC . So the significance level of

the two-stage strategy is asymptotically bounded above by the maximum of the asymptotic

significance levels αE and αC .

The theory of Vuong (1989) is based on likelihood ratio principles. In Theorem 1, we

further demonstrate that tr(UΓ), which is widely used in the Satorra and Bentler procedure

and our RMSEA test statistics, is a special case of the more general term tr(A−1(β0)B(β0)−

A−1(θ∗)B(θ∗)) based on the likelihood ratio principle. Given the generality of the likelihood

ratio, and thus the results in Theorem 1, it seems that the Satorra-Bentler procedure, our

RMSEA test statistics, and hence their combined two-stage procedure of model evaluation

may be extendable to a wide variety of situations where the likelihood ratio principle applies.

Clearly, this will tremendously increase the scope of application of the proposed methodology.

Research on such extensions to a wide variety of model types or data types (e.g., multilevel

models, Liang & Bentler, 2004) should be very interesting.

Appendix
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Theorem 1. Under the Assumptions A1-A5 of Vuong (1989),

AE(TNML) = nF0 + tr(A−1(β0)B(β0) − A−1(θ∗)B(θ∗))

where tr(A−1(β0)B(β0)−A−1(θ∗)B(θ∗)) reduces to tr(UΓ) if the population drift assumption

(4) is assumed or a correct model is specified and reduces to df if normality is assumed.

Proof. From a Taylor expansion of ln(β0) around β̂∗, we can get

ln(β0) = ln(β̂∗) +
n

2
(β̂∗ − β0)

′

[
1

n
·

n∑

i=0

∂2li(β0)

∂β0∂β′

0

]
(β̂∗ − β0) + op(1)

Similarly, we have

ln(θ∗) = ln(θ̂NML) +
n

2
(θ̂NML − θ∗)

′

[
1

n
·

n∑

i=0

∂2li(θ∗)

∂θ∗∂θ′
∗

]
(θ̂NML − θ∗) + op(1)

Since LRn(β0, θ∗) = ln(β0) − ln(θ∗) and LRn(β̂∗, θ̂NML) = ln(β̂∗) − ln(θ̂NML), we obtain

2LRn(β̂∗, θ̂NML) = 2LRn(β0, θ∗) − n(β̂∗ − β0)
′

[
1

n
·

n∑

i=0

∂2li(β0)

∂β0∂β′

0

]
(β̂∗ − β0)

+n(θ̂NML − θ∗)
′

[
1

n
·

n∑

i=0

∂2li(θ∗)

∂θ∗∂θ′
∗

]
(θ̂NML − θ∗) + op(1) (A-1)

It is clear that

[
1

n
·

n∑

i=0

∂2li(β0)

∂β0∂β′

0

]
L−→ −A(β0)

[
1

n
·

n∑

i=0

∂2li(θ∗)

∂θ∗∂θ′
∗

]
L−→ −A(θ∗) (A-2)

In addition, by (10) and Lemma 1, we obtains 2LRn(β0, θ∗) → nF0. Combining this with

(1), (2), (3), (A-1) and (A-2), we obtain

AE(TNML) = nF0 + tr(A−1(β0)B(β0) − A−1(θ∗)B(θ∗)) (A-3)

By (1), we know that Γ = A−1(β0)B(β0)A
−1(β0). Magnus and Neudecker (1988, p.318)

also showed that A(β0) = W. Thus we obtain

A−1(β0)B(β0) = A(β0)A
−1(β0)B(β0)A

−1(β0) = WΓ (A-4)

. As the asymptotic covariance matrix of β̂ ≡ (X̄ ′, vech(S)′)′, Γ can be partitioned as

Γ =

[
Σ ΓX̄,vech(S)′

Γ′

X̄,vech(S)′ Γvech(S),vech(S)′

]
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(see Browne & Arminger, 1995). In addition, it is also clear that

∂li(θ∗)

∂θ∗
=

∂σ′

∗

∂θ∗
· ∂li(σ∗)

∂σ∗

∂2li(θ∗)

∂θ∗∂θ′
∗

=
∂σ′

∗

∂θ∗
· ∂2li(σ∗)

∂σ∗∂σ′

∗

· ∂σ∗

∂θ′
∗

+
∂σ∗

∂θ∗∂θ′
∗

· ∂li(σ∗)

∂σ∗

∂li(θ∗)

∂θ∗

∂li(θ∗)

∂θ′
∗

=
∂σ′

∗

∂θ∗
· ∂li(σ∗)

∂σ∗

· ∂li(σ∗)

∂σ′

∗

· ∂σ∗

∂θ′
∗

When the population drift assumption (4) is assumed, β0 − σ∗ = O(1/
√

n),

∂2li(θ∗)

∂θ∗∂θ′
∗

=
∂σ′

∗

∂θ∗
· ∂2li(β0)

∂β0∂β′

0

· ∂σ∗

∂θ′
∗

+
∂σ∗

∂θ∗∂θ′
∗

· ∂li(β0)

∂β0

+ O(1/
√

n) (A-5)

∂li(θ∗)

∂θ∗

∂li(θ∗)

∂θ′
∗

=
∂σ′

∗

∂θ∗
· ∂li(β0)

∂β0

· ∂li(β0)

∂β′

0

· ∂σ∗

∂θ′
∗

+ O(1/
√

n) (A-6)

Clearly,

E

[
∂2li(β0)

∂β0∂β′

0

]
= −A(β0) = −W (A-7)

Since

∂li(β0)

∂µ0

= Σ−1
0 (Xi − µ0),

∂li(β0)

∂vech(Σ0)
= −1

2
D′

pvec
[
Σ−1

0 − Σ−1
0 (Xi − µ0)(Xi − µ0)

′Σ−1
0

]

, so

E

[
∂li(β0)

∂β0

]
= 0 (A-8)

and

E

[
∂li(β0)

∂µ0

· ∂li(β0)

∂µ′

0

]
= Σ−1

0 (A-9)

and

E

[
∂li(β0)

∂µ0

· ∂li(β0)

∂vech(Σ0)′

]

= −1

2
E

{
Σ−1

0 (Xi − µ0) · vec
[
Σ−1

0 − Σ−1
0 (Xi − µ0)(Xi − µ0)

′Σ−1
0

]
′

Dp

}

=
1

2
E

{
Σ−1

0 (Xi − µ0) · vec
[
Σ−1

0 (Xi − µ0)(Xi − µ0)
′Σ−1

0

]
′

Dp

}

=
1

2
E

{
Σ−1

0 (Xi − µ0) · vec [(Xi − µ0)(Xi − µ0)
′]
′

(Σ−1
0 ⊗ Σ−1

0 )Dp

}

=
1

2
Σ−1

0 E
{

(Xi − µ0) · vec [(Xi − µ0)(Xi − µ0)
′]
′
}

(Σ−1
0 ⊗ Σ−1

0 )Dp

=
1

2
Σ−1

0 ΓX̄,vech(S)′D
′

p(Σ
−1
0 ⊗ Σ−1

0 )Dp (A-10)
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and

E

[
∂li(β0)

∂vech(Σ0)
· ∂li(β0)

∂vech(Σ0)′

]

=
1

4
E

[
D′

pvec
[
Σ−1

0 − Σ−1
0 (Xi − µ0)(Xi − µ0)

′Σ−1
0

]
·

vec
[
Σ−1

0 − Σ−1
0 (Xi − µ0)(Xi − µ0)

′Σ−1
0

]
′

Dp

]

=
1

4
D′

pE
[
vec

[
Σ−1

0 (Xi − µ0)(Xi − µ0)
′Σ−1

0

]
·

vec
[
Σ−1

0 (Xi − µ0)(Xi − µ0)
′Σ−1

0

]
′ − vec(Σ−1

0 )vec(Σ−1
0 )′

]
Dp

=
1

4
D′

pE
[
(Σ−1

0 ⊗ Σ−1
0 )vec [(Xi − µ0)(Xi − µ0)

′] vec [(Xi − µ0)(Xi − µ0)
′]
′ ·

(Σ−1
0 ⊗ Σ−1

0 ) − (Σ−1
0 ⊗ Σ−1

0 )vec(Σ0) · vec(Σ0)
′(Σ−1

0 ⊗ Σ−1
0 )

]
Dp

=
1

4
D′

p(Σ
−1
0 ⊗ Σ−1

0 )E [vec((Xi − µ0)(Xi − µ0)
′)vec((Xi − µ0)(Xi − µ0)

′)

−vec(Σ0) · vec(Σ0)
′] (Σ−1

0 ⊗ Σ−1
0 )Dp

=
1

4
D′

p(Σ
−1
0 ⊗ Σ−1

0 )DpΓvech(S),vech(S)′D
′

p(Σ
−1
0 ⊗ Σ−1

0 )Dp (A-11)

where vec(·) is the operator of transforming a matrix into a vector by stacking the columns

of the matrix one underneath the other. Then under the population drift assumption (4),

A(θ∗) = −E

[
∂2li(θ∗)

∂θ∗∂θ′
∗

]
a
= σ̇′

∗
Wσ̇∗

a
= σ̇′

∗
W∗σ̇∗ (A-12)

by (A-5), (A-7) and (A-8), and

B(θ∗)

= E

[
∂li(θ∗)

∂θ∗

∂li(θ∗)

∂θ′
∗

]

a
= σ̇′

∗

[
Σ−1

0

2−1D′

p(Σ
−1
0 ⊗ Σ−1

0 )DpΓ
′

µ,vech(Σ)′Σ
−1
0

2−1Σ−1
0 Γµ,vech(Σ)′D

′

p(Σ
−1
0 ⊗ Σ−1

0 )Dp

4−1D′

p(Σ
−1
0 ⊗ Σ−1

0 )DpΓvech(Σ),vech(Σ)′D
′

p(Σ
−1
0 ⊗ Σ−1

0 )Dp

]
σ̇∗

= σ̇′

∗
WΓWσ̇∗

a
= σ̇′

∗
W∗ΓW∗σ̇∗ (A-13)

by (A-6), (A-9), (A-10) and (A-11), and then

AE(TNML) = nF0 + tr(WΓ − A−1(θ∗)B(θ∗))
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a
= nF0 + tr(W∗Γ − (σ̇′

∗
W∗σ̇∗)

−1σ̇′

∗
W∗ΓW∗σ̇∗)

= nF0 + tr(UΓ)

by (A-3), (A-4), (A-12) and (A-13). When the model is correctly specified, the equation

above can be proved similarly. In addition, under normality, A(β0) = B(β0) and A(θ∗) =

B(θ∗), then

AE(TNML) = nF0 + df
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Table 1. Rejection rate of different statistics

with α = .05 for Example 1, normal condition, NR=2000

Sample Size 150 300 400 500 1000 2500

TML 154 112 110 88 93 97

T1 59 50 58 53 67 91

T2 79 52 60 54 67 92

T3 129/1980 89 82 77 85 103

T4 148/1980 91 89 75 86 103

T5 139/1969 90 88 77 86 104

T6 137/1969 90 88 77 85 104

Table 2. Rejection rate of different statistics

with α = .05 for Example 1, mild nonnormal condition, NR=2000

Sample Size 150 300 400 500 1000 2500

TML 464 336 307 278 236 174

T1 118 84 100 101 108 112

T2 44 25 30 24 44 52

T3 236/1991 169 153 149 138 133

T4 127/1991 62 68 59 70 71

T5 160/1993 81 87 81 76 74

T6 174/1993 91 99 91 85 82

Table 3. Rejection rate of different statistics

with α = .05 for Example 1, severe nonnormal condition, NR=2000

Sample Size 150 300 400 500 1000 2500

TML 1272 1113 1024 903 718 514

T1 324 270 282 282 271 252

T2 17 6 11 14 21 46

T3 682/1998 491 448 416 364 285

T4 129/1998 52 51 47 54 71

T5 235 98 90 83 75 90

T6 274 132 112 96 95 94
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Table 4. Rejection rate of TML,.05, T1,.05 to T6,.05

with for Example 1, normal condition, NR=2000

Sample Size 150 300 400 500 1000 2500

TML,.05 132 83 73 56 47 27

T1,.05 51 34 36 35 38 24

T2,.05 62 35 41 35 39 23

T3,.05 103/1980 57 58 47 44 26

T4,.05 126/1980 67 60 50 44 27

T5,.05 117/1969 62 58 50 44 27

T6,.05 110/1969 61 58 49 44 27

Table 5. Rejection rate of TML,.05, T1,.05 to T6,.05

with for Example 1, mild nonnormal condition, NR=2000

Sample Size 150 300 400 500 1000 2500

TML,.05 420 276 223 209 134 48

T1,.05 102 61 72 66 63 34

T2,.05 35 19 21 17 24 17

T3,.05 208/1991 129 122 104 80 39

T4,.05 112/1991 40 45 32 33 22

T5,.05 136/1993 59 59 44 37 23

T6,.05 153/1993 65 68 53 41 26

Table 6. Rejection rate of TML,.05, T1,.05 to T6,.05

with for Example 1, severe nonnormal condition, NR=2000

Sample Size 150 300 400 500 1000 2500

TML,.05 1222 1027 894 775 558 282

T1,.05 295 224 229 213 185 125

T2,.05 15 4 7 6 11 11

T3,.05 637/1998 415 367 332 233 142

T4,.05 108/1998 40 42 30 28 23

T5,.05 204 71 67 56 44 31

T6,.05 245 98 87 74 55 32
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Table 7. Rejection rate of different statistics

with α = .05 for Example 2, normal condition, NR=2000

Sample Size 150 300 400 500 1000 2500

TML 92 91 88 67 76 78

T1 54 72 64 56 75 81

T2 72 81 68 58 75 80

T3 90 94 86 71 89 89

T4 112 99 93 74 89 89

T5 102/1999 97 92 73 89 89

T6 95/1999 97 92 73 89 89

Table 8. Rejection rate of different statistics

with α = .05 for Example 2, mild nonnormal condition, NR=2000

Sample Size 150 300 400 500 1000 2500

TML 166 129 121 115 108 110

T1 82 70 85 81 100 115

T2 64 53 64 58 82 94

T3 127 106 107 109 111 128

T4 102 74 84 85 96 107

T5 108/1999 83 84 87 98 107

T6 114/1997 88 91 90 100 109

Table 9. Rejection rate of different statistics

with α = .05 for Example 2, severe nonnormal condition, NR=2000

Sample Size 150 300 400 500 1000 2500

TML 390 317 256 272 190 150

T1 145 139 129 146 134 130

T2 81 49 37 51 66 86

T3 233 199 165 188 150 139

T4 139 86 68 84 91 97

T5 152/1993 105 80 102 102 100

T6 170/1988 116 93 109 108 105
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Table 10. Rejection rate of TML,.05, T1,.05 to T6,.05

with for Example 2, normal condition, NR=2000

Sample Size 150 300 400 500 1000 2500

TML,.05 1561 1952 1997 2000 2000 2000

T1,.05 1280 1905 1986 2000 2000 2000

T2,.05 1368 1909 1987 2000 2000 2000

T3,.05 1518 1942 1997 2000 2000 2000

T4,.05 1579 1943 1997 2000 2000 2000

T5,.05 1550/1999 1942 1997 2000 2000 2000

T6,.05 1533/1999 1943 1997 2000 2000 2000

Table 11. Rejection rate of TML,.05, T1,.05 to T6,.05

with for Example 2, mild nonnormal condition, NR=2000

Sample Size 150 300 400 500 1000 2500

TML,.05 1679 1975 1996 2000 2000 2000

T1,.05 1342 1937 1989 2000 2000 2000

T2,.05 1287 1911 1980 2000 2000 2000

T3,.05 1601 1965 1992 2000 2000 2000

T4,.05 1560 1954 1992 2000 2000 2000

T5,.05 1581/1999 1961 1991 2000 2000 2000

T6,.05 1585/1997 1962 1991 2000 2000 2000

Table 12. Rejection rate of TML,.05, T1,.05 to T6,.05

with for Example 2, severe nonnormal condition, NR=2000

Sample Size 150 300 400 500 1000 2500

TML,.05 1818 1987 1999 2000 2000 2000

T1,.05 1413 1956 1995 2000 2000 2000

T2,.05 1109 1858 1973 1996 2000 2000

T3,.05 1703 1980 1998 2000 2000 2000

T4,.05 1512 1942 1993 2000 2000 2000

T5,.05 1585/1993 1964 1995 2000 2000 2000

T6,.05 1627/1988 1970 1997 2000 2000 2000
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