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Abstract 

Semantic knowledge can facilitate or distort new memories, 
depending on their alignment. We aimed to quantify 
distortions in memory by examining how category 
membership biases new encoding. Across two experiments, 
participants encoded and retrieved image-location 
associations on a 2D grid. The locations of images were 
manipulated so that most members of a category (e.g. birds) 
were clustered near each other, but some were in random 
locations. Memory for an item’s location was more precise 
when it was near members of the same category. 
Furthermore, typical category members’ retrieved locations 
were more biased towards their semantic neighbors, relative 
to atypical members. This demonstrates that the organization 
of semantic knowledge can explain bias in new memories. 
Keywords: episodic memory; semantic memory; category 
membership; typicality; distortion 

Introduction 
Episodic and semantic memory are commonly studied as 
distinct cognitive phenomena, the former defined as 
memory for ‘personal experiences and their temporal 
relations’ and the latter as memory for the ‘meaning of 
words, concepts, and classification of concepts’ (Tulving, 
1972). While this distinction has led to important 
characterizations of both memory systems, it also 
oversimplifies the complexity in memories that comprise 
both episodic and semantic elements. In other words, it 
neglects the critical notion that new experiences are made 
up of re-combinations of objects, places, and people for 
which we already have semantic knowledge. We aimed to 
probe interactions between the two systems by quantifying 
how semantic knowledge distorts new episodic learning. 

Research on schemas, a type of semantic knowledge 
defined as a structure of associated information (Bartlett, 
1932; Ghosh & Gilboa, 2014), sheds some light on how 
prior knowledge influences new episodic memory 
formation. The benefit of prior knowledge for episodic 
memory is widely documented (Bransford & Johnson, 1972; 
Alba & Hasher, 1983). Similarly, the presence of prior 
knowledge accelerates the integration of novel words into 
existing memory networks (Coutanche & Thompson-Schill, 
2014). However, new encoding can also be biased by prior 
knowledge, resulting in false memories or confabulation 
(Warren, Jones, Duff, & Tranel, 2014; Webb, Turney, & 
Dennis, 2016). Taken together, these findings suggest that 
whether prior knowledge helps or hinders encoding depends 
on the match between the old and new information. 

One weakness of this work is that the operationalization 
of prior knowledge often ignores its rich, hierarchical 
structure (Collins & Loftus, 1975). In such a structure, 
concepts vary in the similarity of their features, giving rise 
to categories. Typical category members are defined as 
items that share the greatest number of features with other 
members, and thus are the best examples of that category 
(Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976). As 
a result, typical items are thought to be more strongly 
associated with category neighbors, relative to atypical 
items. The consequences of these strong associations are 
well documented: typical items are more quickly 
categorized, more efficiently recognized, and less resistant 
to disruption by brain damage (Patterson, 2007). 
Furthermore, the features of typical items are more often 
attributed to category neighbors (Osherson, Smith, Wilkie, 
López, & Shafir, 1990; Rips, 1975). As an example, if a 
typical item, rather than an atypical item, is accompanied by 
a shock, participants are more likely to anticipate shocks 
with other category members (Dunsmoor & Murphy, 2014). 
Examining how new memories are formed in the context of 
this structure may lead to a better understanding of the 
interactions between episodic and semantic memory. 

One promising approach to examining such interactions is 
by considering retrieval as a construction of different 
sources of information. According to this view, retrieval is 
not a veridical recapitulation of past events, but instead an 
imperfect recombination of event-specific details and other 
knowledge (Addis, Pan, Vu, Laiser, & Schacter, 2009). 
Because episodic memories are often noisy and incomplete, 
successful remembering is thought to combine these partial 
representations with knowledge from prior experiences 
(Huttenlocher, Hedges, & Vevea, 2000). Integrating prior 
knowledge with episodic memories can thus be thought of 
as a way to improve the ‘signal’ of a memory. Yet, it also 
introduces systematic errors if there are discrepancies 
between a new memory and prior knowledge. For example, 
exposure to semantically related words (e.g., sour, candy, 
sugar) often produces a false memory for a non-studied 
word (sweet; Roediger & McDermott, 1995). Such errors 
are also captured with continuous measures of bias; for 
example, memory for the color of shapes is biased towards 
canonical hues (Persaud & Hemmer, 2014), and estimates of 
the size of fruits and vegetables are biased by both their 
superordinate and subordinate mean sizes (Hemmer & 
Steyvers, 2009). However, it is unknown whether other 
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properties of semantic knowledge, like category typicality, 
exert similar distortions on new encoding. 

We aimed to quantify distortions in episodic memories 
due to prior knowledge by examining how differences in 
category typicality bias new memories for item-location 
associations. In two experiments conducted on Amazon 
Mechanical Turk (AMT), participants encoded and retrieved 
image-location associations on a 2D grid. Critically, the 
locations associated with each image were determined by 
semantic relatedness ratings, such that most members of the 
same category (e.g. birds) were located near each other, but 
some typical and atypical members were located elsewhere. 
With this design, participants could learn that items from a 
certain category tended to be located in a certain area as 
they encoded item-specific locations. 

We used a continuous retrieval measure to disentangle 
biases driven by semantic knowledge from errors due to 
forgetting. Critically, these two measures varied 
independently such that memory for an item could be biased 
towards or away from category neighbors regardless of its 
precision. In both experiments, we used these measures to 
test two predictions. First, we predicted more precise 
memory for items located near category members, relative 
to those located farther away, which would replicate past 
observations that new memories can benefit from prior 
knowledge if they are aligned. Second, for those typical and 
atypical items located far from category neighbors, we 
predicted that their direction of error would be different, 
such that retrieval of typical items would be more biased 
towards category neighbors relative to atypical items. Such 
a bias would reflect stronger associations between typical 
category members and their category neighbors. We did not 
have strong predictions about precision by typicality, except 
for the critical notion that any observed differences in bias 
would be independent of differences in precision. 

Experiment 1: Stimulus Development 
In the first experiment, we developed a data-driven 
approach to create item-location associations for the 
memory task. Specifically, we used semantic relatedness 
ratings from a separate set of participants to define the 
images’ locations and sort them according to their typicality. 

Method 
Participants 24 participants (23 – 49 years old, 9 female) 
completed semantic relatedness judgments. The University 
of Pennsylvania Institutional Review Board (IRB) approved 
all consent procedures. 

 
Materials Stimuli comprised 70 100x100-pixel color 
images on white backgrounds (35 animals, 35 objects). 
Based on pilot data, we selected images with equivalently 
high recognition across these two superordinate categories.  
 
Odd-Man-Out Procedure On each trial, participants were 
presented with three images from a superordinate category 
and were instructed to click on the image that was least 

similar to the other two. Once an image was chosen, the 
images faded away and three new images were displayed 
after a 200-ms interval. Participants were encouraged to 
respond in 2 – 4 seconds. They were instructed to make 
their decisions based on many factors, like whether animals 
belonged to the same family or shared similar habitats, and 
whether objects served a similar purpose or tended to be in 
similar locations. Based on prior piloting, participants 
completed a random sample of 2,620 combinations per 
superordinate category, of the 6,545 possible combinations 
(choose 3 of 35). The trials were divided into 20 separate 
batches, expected to take 12 - 15 minutes each, and 
participants were given 1 week to complete them. Of the 35 
invited to participate, 24 completed it and 3 were excluded.  

The responses were used to create similarity matrices for 
each participant and superordinate category. Starting with a 
35 x 35 matrix of zeros, for every trial on which an odd 
image was chosen, the value for the other two increased by 
1. The summed values across all trials were then divided by 
the number of times the two images appeared in the same 
trial. Cells in the matrix thus ranged from 0 to 1, with higher 
values corresponding to greater similarity between the 
items. We computed split-half correlations as a test-retest 
reliability measure for each participant (group mean r = .60, 
SD = .24). The reliability of the 3 excluded participants was 
>3 SD lower than the group mean (all r’s < .04). Matrices 
from the 21 remaining participants were averaged into a 
separate matrix for animals and for objects. 
 
Image-Location Associations Each image was paired with 
a spatial location on a white 600x1200-pixel rectangle with 
gray gridlines forming a 50x50-pixel grid. The locations 
were determined by applying multidimensional scaling 
(MDS) to the similarity matrices from the odd-man-out 
procedure. Each matrix was projected into two dimensions, 
where the x and y coordinates of an item determined its 
location on the grid. Thus the locations of items represented 
participants’ 2D organization of animals and objects. 

We then used k-means clustering of these projections to 
determine the categories within animals and objects that 
were captured in the 2D locations. The animal and object 
locations were separately entered into 10 k-means clustering 
algorithms with 1 to 10 clusters. The optimal number of 
clusters was chosen by plotting the sum of within-cluster 
squared error as a function of the number of clusters used in 
the algorithm. The ‘bend’ in this elbow plot signifies the 
fewest number of clusters that minimize the distance 
between items in the same cluster. This procedure revealed 
3 animal categories (birds, mammals, and sea creatures) and 
3 object categories (kitchen, tools/personal care, and office). 
These clusters were used to identify typical and atypical 
category members. The center of each cluster was defined 
as the average x and y coordinate of its constituent items. 
Then the items were sorted by their distance to its center. 
The closest 20% were labeled ‘typical’ and the furthest 20% 
‘atypical’. 
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Experiment 1: Memory Task 
The item-location associations developed in the prior 
section were used in an episodic memory task. We probed 
whether the precision of participants’ location memory was 
related to the consistency between an item’s spatial location 
and the locations of its category neighbors, and whether bias 
was influenced by its category typicality. 

Method 
Participants There were 25 participants in the experimental 
group (21 - 65 years old, 9 female) and 35 in the control 
group (20 - 61 years old, 16 female). The University of 
Pennsylvania IRB approved all consent procedures. 
 
Materials See Stimulus Development section. 
 
Image-Location Associations The locations paired from 
each image were derived from semantic relatedness 
judgments such that category neighbors were clustered 
together (see Stimulus Development). The locations of the 
typical and atypical items were manipulated to be 
inconsistent with the semantic relatedness ratings. 
Specifically, they were randomly assigned locations closer 
to one of the other two cluster centers from the same 
superordinate category (Figure 1A). In total, 42 images were 
associated with locations consistent with the ratings 
(‘consistent’), and 28 were associated with a random 
location (‘inconsistent). Of the inconsistent items, 14 were 
typical and 14 were atypical category members. The 
projections for animals and objects were arranged side-by-
side, randomized for each participant (Figure 3A). 
 

 Figure 1 (A) Consistency and typicality for ‘birds’. Black 
indicates ‘consistent’ and red indicates ‘inconsistent’ items. 
Inconsistent items were either typical or atypical category 
members. (B) Retrieval measures for an item biased towards 
its category neighbors. Solid red line indicates error. Solid 
blue line indicates bias. 
 

In the control group, all image-location pairings were 
randomly shuffled within superordinate category. This 
group viewed the same locations as the experimental group, 
but the images assigned to the locations did not cluster by 
category. In other words, the locations that had originally 
been associated with (in)consistent or (a)typical images 
could be associated with any image in that superordinate 
category, rendering these conditions meaningless. 

Memory Procedure The memory experiment comprised an 
encoding phase and a retrieval phase, separated by a 5-
minute break. On each encoding trial, participants viewed 
an image beneath the grid and a red dot corresponding to 
that image’s location. They were instructed to drag the 
image onto the dot, click the mouse button once it was 
positioned over the dot, and memorize its location for a later 
memory test. Images were presented three times, in three 
rounds of encoding separated by 1-min breaks. The retrieval 
task was identical to encoding, but with no dot. Participants 
were instructed to drag the image to its associated location. 
The trial order was randomized1. 
 
Statistical Analyses Two dependent measures were 
established to quantify error and bias for each image (Figure 
1B). Error was defined as the distance between an image’s 
encoded and retrieved location, where greater values 
indicate less precision. Bias was defined as the relative 
difference in distance between an item’s cluster center and 
its encoded versus retrieved location: (encoded – center) – 
(retrieved – center). Thus, values > 0 indicate that retrieval 
was biased towards the cluster center, and < 0 indicate bias 
away from the cluster center. Both measures were averaged 
across trials by consistency with the relatedness ratings 
(consistent vs. inconsistent) and by typicality (atypical vs. 
typical) and entered into two-tailed paired t-tests and 
repeated measures ANOVAs. 

Results 
Error We computed a group (experimental, control) x 
consistency (consistent, inconsistent) ANOVA to examine if 
memory precision was modulated by the consistency of item 
locations with those of other category members. This 
revealed a main effect of group, F(1,58) = 7.04, p = .01, and 
consistency, F(1,58) = 8.46, p = .005. These effects were 
qualified by an interaction, F(1,58) = 5.82, p = .02 (Figure 
2A), driven by less error for consistent items relative to 
inconsistent items in the experimental group, t(24) = 4.11, p < 
.001, but not the control group, t(34) = 0.63, p = .54.  

We next asked whether, among the inconsistent items, 
there were differences in precision by typicality. A group x 
typicality (typical, atypical) ANOVA revealed a main effect 
of group, F(1,58) = 4.16, p = .046, but no reliable effect of, or 
interaction with, typicality (both F’s < 2.03, p’s > 0.16). 
 
Bias We next asked whether the direction of error differed 
for typical versus atypical category members. We computed 
a group x typicality ANOVA amongst the inconsistent 
items, with bias as the dependent variable (Figure 2B). We 
found a main effect of group, F(1,58) = 9.89, p = .003 and 
typicality, F(1,58) = 5.46, p = .02, and a group x typicality 

                                                             
1Due to a bug, the trial order and locations of the inconsistent 

items were randomized identically in all participants. Findings 
from this cohort are reported in this proceeding. After finding the 
error, we ran a replication experiment (N = 35) where both were 
randomized individually. All findings were successfully replicated.  
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interaction, F(1,58) = 14.12, p < .001. This interaction was 
driven by greater bias towards category neighbors for 
typical items relative to atypical items in the experimental 
group, t(24) = 6.76, p < .001, but not the control group, t(34) = 
0.55, p = .59. 

As predicted, typical items were retrieved as closer to 
their category neighbors relative to atypical items. It could 
be the case, however, that this bias was driven by an 
unrelated difference in how typical and atypical items’ 
locations were retrieved – one possibility is that typical 
items were retrieved more centrally in the display. To test 
this possibility, we computed each item’s average bias 
towards the two other clusters in the superordinate category 
and entered it into a group x typicality ANOVA. There was 
no main effect of or interaction with typicality (both F’s < 
.34, both p’s > .56). This suggests that retrieval of typical 
items was specifically biased towards category neighbors. 

 

 
Figure 2 Experiment 1 results. (A) Average error by 
consistency. (B) Average bias by category typicality. 
Condition labels in the control group indicate the locations 
to which (in)consistent and (a)typical items had been 
assigned in the experimental group; these locations were 
randomly assigned images in the control group. Lines 
indicate participants. Error bars signify standard error of the 
mean (SEM). *** p < .001. 

Discussion  
We found that participants’ retrieval was more precise for 
items located near category neighbors, replicating prior 
observations of enhancements in memories that are 
consistent with prior knowledge. Furthermore, of the items 
that were located far from category neighbors, typical items 
were more biased towards their category neighbors relative 
to atypical items, despite no reliable differences in 
precision. Together, these results suggest that differences in 
typicality govern the extent of distortion in new memories. 

Experiment 2: Stimulus Development 
In Experiment 1, we developed data-driven methods to sort 
items by category typicality and assign them to spatial 
locations based on their semantic relatedness. We next 
developed a conceptual replication, using different stimuli, 
to investigate whether we would observe the same effects 
with more standard procedures to define category 
membership and typicality. 

Method 
Participants 216 participants (27 per category) completed 
an item ranking procedure. The University of Pennsylvania 
IRB approved all consent procedures. Demographics were 
not collected due to experimenter error. 

 
Materials Stimuli comprised 160 100x100-pixel color 
images on white backgrounds (80 animals, 80 objects). 
These superordinate categories were divided into 4 
categories with 20 images each: birds, insects, sea creatures, 
mammals, clothes, furniture, kitchen, and office. The 
categories were selected from prior studies investigating 
categorization norms (Deyne et al., 2008; Uyeda & 
Mandler, 1980). 
 
Ranking Procedure We modified a validated item ranking 
task (Djalal, Ameel, & Storms, 2016) to sort category 
members by their typicality. Extensive instructions with 
examples were given to ensure participants understood the 
sorting procedure. For each category, participants viewed 20 
images in a box labeled ‘Sort these’. Underneath, there were 
two empty boxes labeled ‘Typical’ and ‘Atypical’. 
Participants were instructed to drag 10 images into each 
box. They were allowed to drag images freely across the 
three boxes in any order. This resulted in a row of 10 images 
per box. Then, within each box, participants sorted the 10 
images on a scale ranging from most (a)typical to less 
(a)typical. Arrows and labels in the two boxes indicated the 
direction that images were to be sorted. The resulting spatial 
positions in the two boxes were concatenated into a ranked 
list of category typicality and averaged across participants. 

Experiment 2: Memory Task 
Results from the ranking task were used in Experiment 2 to 
define category membership and typicality for a memory 
task identical to that of Experiment 1. We also aimed to rule 
out the possibility that memory was more precise for 
consistent items because they were more densely clustered, 
increasing the likelihood of guessing the correct location. 

Method 
Participants 35 participants were in the experimental group 
(22 - 70 years old, 14 female) and 35 in the control group 
(24 - 72 years old, 16 female). The University of 
Pennsylvania IRB approved all consent procedures. 
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Materials See Stimulus Development section. 
 

Image-Location Associations To generate items’ locations, 
the memory grid was divided into halves with animals on 
one side and objects on the other, randomized across 
participants. Each side was divided into four quadrants. 
Within each quadrant, items from one of the four categories 
were spaced roughly uniformly apart, resulting in an even 
distribution of items across the grid (Figure 3B). 

As in Experiment 1, some items were assigned locations 
away from category neighbors. The 15% most typical and 
15% most atypical items were swapped across categories, 
where each quadrant had an equal number of typical and 
atypical items from the other three quadrants from the same 
superordinate category. In total, 112 images were located in 
the quadrant consistent with their category (‘consistent’), 
and 48 in a different quadrant (‘inconsistent). Of the 48 
inconsistent items, 24 were typical and 24 were atypical 
category members. In the control group, images were 
randomly assigned to locations within each superordinate 
category, identically to the procedure in Experiment 1. 

 
 

Figure 3 Example memory displays for Experiment 1 (A) 
and Experiment 2 (B). Each word represents the location of 
its corresponding image. Colors indicate categories. Black 
dots indicate a category’s cluster center. Each image-
location association was presented and tested one at a time. 
 
Memory Procedure The timing and instructions were 
identical to those of Experiment 1, with an additional 
confidence measure that will not be discussed. 
 
Statistical Analyses The analyses were identical to those in 
Experiment 1. 

Results 
Error We computed a group (experimental, control) x 
consistency (consistent, inconsistent) ANOVA and found a 
main effect of consistency, F(1,68) = 38.63, p < .001, but not 
of group, F(1,68) = 0.01,  p = .91. Critically, there was also a 
group x consistency interaction, F(1,68) = 35.33, p < .001 
(Figure 4A). This interaction was driven by less error for 
consistent items relative to inconsistent items in the 
experimental group, t(34) = 7.35, p < .001, but not the control 
group, t(34) = 0.24, p = .81. As in Experiment 1, memory 
precision was modulated by the consistency of an item’s 
location with those of its category neighbors. 

We next asked whether, among the inconsistent items, 
there were differences in error by typicality. A group x 
typicality (typical, atypical) ANOVA revealed no main 
effect of group, F(1,68) = 1.24, p = .27. Interestingly, in 
contrast to Experiment 1, we found a main effect of 
typicality, F(1,68) = 9.65, p = .003, qualified by a group x 
typicality interaction, F(1,68) = 5.77, p = 0.02. This 
interaction was driven by increased error for typical items 
relative to atypical items in the experimental group, t(34) = 
3.43, p = .002, but not the control group, t(34) = 0.59, p = .56. 

 
Bias We next focused on differences in bias by typicality 
and computed a group x typicality ANOVA amongst 
inconsistent items. We found no reliable main effect of 
group, F(1,68) = 1.47, p = .23 and a trending effect of 
typicality, F(1,68) = 3.10, p = .08. There was a reliable group 
x typicality interaction, F(1,68) = 5.91, p = .02 (Figure 4B). 
This interaction was driven by greater bias for typical items 
relative to atypical items in the experimental group, t(34) = 
2.56, p = .01, but not the control group, t(34) = 0.58, p = .56, 
replicating the observed difference in bias by typicality in 
Experiment 1. 

 

 
Figure 4 Experiment 2 results. (A) Average error by 
consistency. (B) Average bias by category typicality. Lines 
indicate participants. Error bars signify SEM. *** p < .001. 
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General Discussion 
Across two experiments, we found that manipulating the 
match with prior semantic knowledge – by leveraging 
differences in category typicality – can influence the 
precision and distortion of new memories. Participants were 
able to learn associations between an image’s category 
membership and its location on a grid, and this knowledge 
enhanced their memory of the locations of specific items. 
Precision of this memory was greater if the items clustered 
near others from the same category. For items that were 
located away from category neighbors, participants made 
systematic errors: typical category members were retrieved 
closer to category neighbors than atypical category 
members. These results were observed in two experiments 
despite differences in the number and type of categories, 
method of determining typicality, and mapping between 
category membership and spatial location. 

Our findings that consistent items were more precise than 
inconsistent items (in both experiments), and that precision 
was greater in the experimental group (in Experiment 1 
only), are consistent with a large and diverse body of work 
showing that prior knowledge facilitates memory for related 
stimuli (Alba & Hasher, 1983). Our findings extend these 
results by showing that prior knowledge can improve 
encoding of new, unrelated features of an item. In our 
experiment, participants mapped items onto spatial locations 
on a grid. These locations were not intrinsically related to 
the items (e.g., nothing about the concept of a ‘spatula’ 
implies that it should be located on the top right corner of a 
grid). However, by associating these locations with the 
semantic organization of the items, participants treated 
location as a new ‘feature’ of items that was explained well 
by their category membership. Thus, prior knowledge can 
help to organize the encoding of unrelated contextual 
details. 

When locations did not match expectations, participants’ 
memory was prone to systematic biases. In both 
experiments, retrieval of typical category members was 
more biased towards category neighbors relative to retrieval 
of the atypical category members. While it is well known 
that memory can be easily distorted (Loftus & Palmer, 
1974; Roediger & McDermott, 1995), much of this past 
work is focused on discrete differences in memory retrieval 
(e.g. was a word recalled or not). Using continuous reports 
allows retrieval to be broken down into item-specific error 
and systematic influences of a particular category or 
structure (Huttenlocher, Hedges, & Duncan, 1991; Hemmer 
& Steyvers, 2009; Persaud & Hemmer, 2014). This prior 
work also demonstrates that new encoding can be biased 
towards similar stimuli, for example, that memory for the 
color of an object is biased towards a canonical color. We 
extended this work by showing that semantic knowledge 
can exert a stronger or weaker influence on new encoding 
depending on semantic properties like the typicality of 
category members, and that such bias can operate 
independently of memory precision. 

What can these biases tell us about how category 

members are organized; specifically, why is memory for 
typical members more biased towards neighbors? One 
possibility is that typical items are more strongly ‘pulled’ by 
neighboring items on account of their stronger associations. 
This interpretation would mirror observations that 
participants are more likely to cluster the recall of typical 
items relative to atypical items (Bousfield, Cohen, & 
Whitmarsh, 1958). Alternatively, because typical items are 
more similar to other category members, it may be easier to 
confuse their locations with other item locations that happen 
to be near the cluster center. This explanation is not specific 
to category membership but could be applied to any set of 
memoranda that vary in similarity. Yet another possibility is 
that because typical items are the closest match to their 
category, they are more efficiently encoded, but at a cost to 
in-depth processing of their novel details (Sweegers, 
Coleman, van Poppel, Cox, & Talamini, 2015) – like their 
associated location. As we cannot adjudicate between these 
interpretations with the present design, we have developed 
follow-up experiments to examine these alternatives. 

In summary, we have presented an investigation of the 
biases that semantic knowledge exerts on episodic encoding. 
This work demonstrates that semantic knowledge and 
episodic memory are closely intertwined and offers an 
opportunity to better understand the interactions between the 
two systems. 
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