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Predicting Emergency Visits and Hospital 
Admissions During Radiation and 
Chemoradiation: An Internally Validated 
Pretreatment Machine Learning Algorithm

INTRODUCTION

An estimated 10% to 20% of patients with can-
cer undergoing outpatient radiotherapy (RT) or 
chemoradiotherapy (CRT) require emergency 
department (ED) evaluation or hospitalization 
because of symptoms from treatment, disease, 
or comorbidities, affecting treatment outcomes 
and health care costs.1-6 During RT, patients are 
routinely seen weekly by their treating oncolo-
gists who often manage and triage acute health 
events. Identification of high-risk patients may 
direct supportive care and prevent such events,2 
and it has been estimated that approximately 

half of ED visits during cancer therapy are poten-
tially preventable.7 A recent literature review rec-
ommended identification of high-risk patients 
as a best practice to direct interventions and 
resources to reduce unplanned acute care for 
patients with cancer.6 Given the predictive com-
plexity of this actionable, unmet clinical need, 
there is an opportunity to leverage artificial 
intelligence and machine learning (ML), which 
has recently demonstrated successes in many 
areas of medicine.8-12 ML and data processing 
techniques have increasingly gained traction as 
potential tools in the physician’s clinical workflow 

Purpose Patients undergoing radiotherapy (RT) or chemoradiotherapy (CRT) may require emer-
gency department evaluation or hospitalization. Early identification may direct preventative sup-
portive care, improving outcomes and reducing health care costs. We developed and evaluated a 
machine learning (ML) approach to predict these events.

Methods A total of 8,134 outpatient courses of RT and CRT from a single institution from 2013 
to 2016 were identified. Extensive pretreatment data were programmatically extracted and pro-
cessed from the electronic health record (EHR). Training and internal validation cohorts were ran-
domly generated (3:1 ratio). Gradient tree boosting (GTB), random forest, support vector machine, 
and least absolute shrinkage and selection operator logistic regression approaches were trained 
and internally validated based on area under receiver operating characteristic (AUROC) curve. 
The most predictive ML approach was also evaluated using only disease- and treatment-related 
factors to assess predictive gain of extensive EHR data.

Results All methods had high predictive accuracy, particularly GTB (validation AUROC, 0.798). 
Extensive EHR data beyond disease and treatment information improved accuracy (delta AUROC, 
0.056). A Youden-based cutoff corresponded to validation sensitivity of 81.0% (175 of 216 courses 
with events) and specificity of 67.3% (1,218 of 1811 courses without events). Interpretability is 
an important advantage of GTB. Variable importance identified top predictive factors, including 
treatment (planned RT and systemic therapy), pretreatment encounters (emergency department 
visits and admissions in the year before treatment), vital signs (weight loss and pain score in the 
year before treatment), and laboratory values (albumin level at weeks before treatment).

Conclusion ML predicts emergency visits and hospitalization during cancer therapy. Incorporating 
predictions into clinical care algorithms may help direct personalized supportive care, improve 
quality of care, and reduce costs. A prospective trial investigating ML-assisted direction of in-
creased clinical assessments during RT is planned.
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by synthesizing and processing large volumes 
of routine clinical data in the electronic health 
record (EHR) to form accurate predictions.13-16

Although various models, including ML algo-
rithms based on EHR data, have been developed 
for addressing comparable problems in noncan-
cer settings such as postoperative admission or 
hospital readmissions,10,17-20 there have been no 
prior studies incorporating ML to predict such 
events during outpatient cancer therapy. The  
objective of this study was to create an algo-
rithm with automated data processing and high- 
performance ML techniques21 on routinely col-
lected pretreatment EHR data to predict ED 
visits or hospitalization during RT or CRT. This 
could be implemented in real time in the clinic 
before or in parallel with treatment to direct per-
sonalized supportive care, improve quality of 
care, and reduce health care costs.

METHODS

This single-institution, retrospective cohort study  
was approved by the Duke University Medical  
Center Institutional Review Board (Pro00082776). 
All adult patients who underwent outpatient 
external-beam RT with or without concurrent 
systemic therapy (chemotherapy, immunother-
apy, or hormonal therapy) from January 2013 to 
December 2016 were identified. Total-body irra-
diation was excluded, given planned admission 
for transplantation.

ML models were trained to identify the occur-
rence of any ED visit or hospitalization from day 
2 of RT to the completion of RT in each course 
of CRT or RT alone. A fixed temporal end point 
(i.e., 30-day admission rate from the start of 
treatment) was considered to normalize for the 
increased opportunity of admission with longer 
treatments. However, the clinical objective of our 
algorithm was to maximize on-treatment clinical 
management to prevent both emergency visits 
or hospitalizations during the full duration of 
therapy. All emergency evaluations and hospi-
tal admissions were included, cancer and non-
cancer related, given that treating oncologists 
are typically the primary providers during ther-
apy and manage or triage other comorbidities. 
Planned admissions for systemic therapy were 
excluded.

Data Source and Processing

The Duke Enterprise Data Unified Content Explorer 
was used to extract pretreatment EHR data from 
the institutional data warehouse (Table 1),22 
including demographics, vital signs, laboratory 
values, medications, health care encounters 
(including ED visits and hospitalizations), and 
medical history on the basis of the International 
Classification of Diseases (ninth and tenth revi-
sions [ICD-9 and ICD-10]) codes.

ICD diagnosis codes were unified by convert-
ing ICD-9 to ICD-10 with the 2018 Centers for 
Disease Control and Prevention General Equiv-
alence Mappings and consolidated into diagno-
sis subchapters.23,24 Subchapters are reflective 
of broader disease categories, such as malig-
nant neoplasm of digestive organs or malignant 
neoplasms of the lip, oral cavity, and pharynx. 
Medication names were unified into standard 
RxNorm names and Medical Subject Headings 
pharmacologic action classes with the National 
Library of Medicine RxMix.25 Agency for Health-
care Research and Quality categories were used 
to define procedures. Vital sign data from the 
year before treatment were summarized into a 
priori physician-defined parameters, including 
weight loss from maximum weight and presence 
of hypertension, hypotension, tachycardia, bra-
dycardia, hypoxemia, fever, or pain score of ≥ 4. 
All patients had baseline data, including demo-
graphics, disease and treatment, and social his-
tory variables. To represent the amount of data 
for patients before their radiation, duration and 
density of encounters (encounters per 100 days) 
in the EHR before RT were also assessed for 
each course.26

Treatment information included treated disease 
diagnosis (by subchapter and three-digit codes, 
with the exception of metastases, which were 
included as full codes to differentiate site), RT tech-
nique (2D, 3D conformal RT, intensity-modulated  
RT, stereotactic radiosurgery, stereotactic body 
RT, total skin irradiation), planned RT dose and 
number of fractions, concurrent systemic ther-
apy (given in the first 2 weeks of RT), and recent 
systemic therapy (given in the 6 months before 
RT but not concurrently). Systemic agents were 
identified by the Medical Subject Headings phar-
macologic action antineoplastic class, which was 
physician-reviewed for appropriate agents.
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Table 1. Variables Used to Train Machine Learning Algorithms

Variable
No. of Levels 
or Variables

Demographic

Sex (male, female) 2

Race 12

Age at start of treatment Continuous

Ethnic group 8

Marital status 7

Religion 46

Zip code 1,248

Disease and treatment

Primary treatment diagnosis (by subchapter/by three-digit ICD code with metastatic sites based 
on full ICD code)

59/172

Planned RT dose (Gy) Continuous

Planned No. of RT fractions Continuous

RT techniques used (2D or 3D conformal RT, intensity-modulated RT or volumetric modulated 
arc therapy, stereotactic radiosurgery/stereotactic body RT, total skin irradiation)

5

Any concurrent antineoplastic drugs (first 2 weeks of radiation) Indicator

Concurrent antineoplastic drugs by MeSHPA class/RxNorm agent 51/86

Any recent antineoplastic drugs (6 months before radiation) Indicator

Recent antineoplastic drugs by MeSHPA class/RxNorm agent 58/109

Treating radiation oncologist 26

Recent encounters before treatment in EHR

Time since most recent admission and emergency visit before start of radiation Continuous

No. of admissions in the month and year before start of radiation Continuous

No. of days admitted in the year before start of radiation Continuous

No. of emergency visits in the month and year before start of radiation Continuous

Started RT as inpatient Indicator

Medical history known at start of radiation

All prior diagnosis and problem list ICD history (by ICD subchapter) 269

All prior CPT history 9,236

All prior level-3 Agency for Healthcare Research and Quality category history 323

Medications before and at start of therapy

All recent medications (6 months before radiation; MeSHPA class) 298

All active medications at start of radiation (MeSHPA class) 295

Social history

Reported tobacco use 5

Reported alcohol use 3

Reported illicit drug use 3

Reported sexually active 4

Recent laboratory values

Presence of any abnormally flagged laboratory studies in the 4 weeks before start of radiation 737

Recent vital signs in the year before start of treatment

Weight loss from maximum weight Continuous

Presence of hypertension (SBP ≥ 130 mm Hg, DBP ≥ 80 mm Hg) Indicator

Presence of hypotension (SBP < 90 mm Hg, DBP < 60 mm Hg) Indicator

(Continued on following page)
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Machine Learning

Training (6,107 courses; 75%) and testing 
(2,027 courses; 25%) cohorts were randomly 
generated preserving the proportion of events 
for major treated diseases.27 Training and testing 
cohorts are separated subsets of the study pop-
ulation to allow model generation in the former 
and separate validation in the latter. Gradient tree 
boosting (GTB),28 random forests,29 and support 
vector machine (SVM)30 were trained on the 
training set and evaluated on the testing cohort 
by the area under the receiver operating charac-
teristic curve (AUROC).29 For comparison, logis-
tic regression using least absolute shrinkage and 
selection operator (LASSO) was also performed, 
which uses regularization to select a subset of 
the expansive set of available variables to gen-
erate a logistic regression model.31 Low variance 
variables (ratio of most common to second most 
common values over 95:5 and percentage of 
unique values less than 10%) were removed 
from ML training inputs.27 Hyperparameters for 
GTB were tuned by five-fold cross validation and 
SVM inputs were preprocessed by centering, 
and scaling. LASSO logistic regression was per-
formed with 10-fold cross validation.

To assess the predictive benefit of extensive EHR 
data, the ML approach with greatest AUROC was 
used to compute a model with only disease and 
treatment-related variables (Table 1). GTB vari-
able importance, the relative improvement in 
accuracy by the addition of each variable, was 
assessed.28 In addition, the ML approach with 
greatest AUROC was also assessed by incorpo-
rating variables reflecting the duration and den-
sity of encounters in the EHR before treatment.

Cutoffs for ML models can be selected based 
on preferred trade-offs between sensitivity and  
specificity. For the purposes of this study, potential 

candidate cutoffs and corresponding sensitivity 
and specificity were calculated for the model 
with highest AUROC on the basis of the Youden J  
statistic and top-left approaches.32,33 On the 
basis of these candidate cutoffs, false positives 
and negatives were inspected for gross patterns 
in major variables.

Calibration of the model with the highest AUROC 
was also evaluated using the Hosmer-Lemeshow 
test, as well as visual inspection of the correla-
tion plot using deciles of fitted risk values in the 
testing cohort.34 Analyses were performed in R 
version 3.3.2 (R Foundation).23,28-30 Up-to-date 
source code is available online.35,36

RESULTS

A total of 8,134 RT courses for 6,879 patients 
were identified (Table 2). The most common 
treatment courses were to any metastatic site 
(2,032; of which 1,206 were brain metastases), 
followed by primary thoracic (1,092) and breast 
(1,080) cancers. Most courses were for female 
patients (54%), 27% included concurrent sys-
temic therapy, and 28% included recent sys-
temic therapy. Admissions or emergency visits 
occurred during 878 courses (11%). There was 
a wide range of EHR history before the start of 
RT (median, 64.0 months; IQR, 7.0 to 177.0 
months). Similarly, there was a wide range of 
density of encounters per 100 days (median, 
4.9; IQR, 1.9 to 20.4).

Internal validation indicated that all ML tech-
niques generated strong predictive models, 
although the GTB model (AUROC, 0.798) had 
greater AUROC than random forests (0.770), 
SVM (0.759), and LASSO logistic regression 
(0.768). All had greater AUROC compared with 
the GTB trained exclusively on disease and  
treatment-related variables (AUROC, 0.742; Fig 1). 
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Table 1. Variables Used to Train Machine Learning Algorithms (Continued)

Variable
No. of Levels 
or Variables

Presence of tachycardia (HR > 100 BPM) Indicator

Presence of bradycardia (HR < 50 BPM) Indicator

Presence of hypoxemia (O2 saturation ≤ 90) Indicator

Presence of fever (temperature ≥ 38°C) Indicator

Presence of pain score of ≥ 4 out of 10 Indicator

Abbreviations: BPM, beats per minute; CPT, Current Procedural Terminology; DBP, diastolic blood pressure; EHR, electronic health 
record; HR, heart rate; ICD, International Classification of Diseases; MeSHPA, Medical Subject Headings pharmacologic actions; RT, 
radiotherapy; SBP, systolic blood pressure.
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Candidate cutoffs for GTB were 81.0% sensitive 
and 67.3% specific by the Youden approach and 
75.0% sensitive and 73.4% specific by the top-
left approach. The Youden cutoff corresponded 
to accurate prediction of 175 of 216 courses 
resulting in ED encounters or admissions and 
1,218 of 1,811 courses without an event in the 
validation set. The top-left cutoff reflected accu-
rate prediction of 162 of 216 courses resulting in 
an event and 1,330 of 1,811 without an event.

GTB relative variable importance showed relative 
predictive gain from the inclusion of diverse EHR 
data. The variables providing the greatest contri-
bution to predictive accuracy included treatment 
factors (planned radiation dose and number 
of fractions, concurrent systemic therapy) and 

pretreatment encounters (number and recent-
ness of ED visits and admissions), vitals (weight 
loss and pain score), and laboratory values 
(albumin; Fig 2). Among these, no variables 
individually accounted for more than 7.5% of the 
model. The comparison LASSO logistic regres-
sion model indicated similar predictive variables. 
GI malignancies were over-represented among 
false positives compared with other disease sites. 
EHR encounter history duration and density as 
variables did not affect model performance and 
were omitted in the final model. Assessment of 
calibration with the Hosmer-Lemeshow test and 
visualization of the calibration plot for the GTB 
model suggested no evidence of poor calibration 
(P = .21; Fig 3).
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Table 2. Major Characteristics of Training and Validation Cohorts (per course)

Characteristic Total (n = 8,134) Training (n = 6,107) Validation (n = 2,027)

Sex, No. (%)

Male 3,714 (46) 2,805 (46) 909 (45)

Female 4,420 (54) 3,302 (54) 1,118 (55)

Median age, years (IQR) 63.1 (53.3-70.9) 63.0 (53.4-70.8 63.3 (53.1-71.3)

Race, No. (%)*

White 6,038 (74) 4,516 (74) 1,522 (75)

Black 1,598 (20) 1,209 (20) 389 (19)

Other 498 (6) 382 (6) 116 (6)

Total distinct patients, No. 6,879 5,383 1,908

Courses with admissions or emergency visits, No. (%) 878 (11) 662 (11) 216 (11)

Admission only 207 (3) 157 (3) 50 (2)

Emergency visit only 292 (4) 213 (3) 79 (4)

Both admission and emergency visit 379 (5) 292 (5) 87 (4)

Select disease sites, No. (%)

Brain metastases 1,206 (15) 898 (15) 308 (15)

Respiratory/intrathoracic cancer 1,092 (13) 822 (13) 270 (13)

Breast cancer 1,080 (13) 818 (13) 262 (13)

GI cancer 908 (11) 680 (11) 228 (11)

Bone metastases 830 (10) 629 (10) 201 (10)

Genitourinary cancer 336 (3) 260 (4) 76 (4)

Gynecologic cancer 264 (3) 200 (3) 64 (3)

Lip, oral cavity, pharynx cancers 242 (3) 183 (3) 59 (3)

Systemic therapy, No. (%)

Recent systemic therapy 2,311 (28) 1,722 (28) 589 (29)

Concurrent systemic therapy 2,176 (27) 1,635 (27) 541 (27)

EHR history before RT

Median duration, months (IQR) 64.0 (7.0-177.0) 64.4 (6.6-177.0) 62.7 (8.3-177.0)

Median encounters per 100 days, No. (IQR) 4.9 (1.9-20.4) 5.0 (1.9-20.4) 4.8 (1.9-20.6)

Abbreviations: EHR, electronic health record; IQR, interquartile range; RT, radiotherapy
*EHR uses 12 distinct values for race that were used to train machine learning models.

Downloaded from ascopubs.org by Dr. Julian Hong on August 30, 2018 from 107.015.251.082
Copyright © 2018 American Society of Clinical Oncology. All rights reserved.

http://ascopubs.org/journal/cci


DISCUSSION

Our internally validated ML algorithm trained 
on pretreatment and treatment parameters 
had high predictive value for ED evaluation or 
admission during outpatient cancer therapy 
and compared favorably with readmission and 
postsurgical admission models.10,17-20 This auto-
mated, personalized approach may be quickly 
implemented and trained using institution- 
specific data with minimal manual data curation 
to help physicians optimize supportive care, 
which may improve outcomes and reduce health 
care costs.1,2,6,13 This could be applied before 
or in parallel with treatment to identify patients 
who may benefit from more aggressive sup-
portive care during their routine management 
to mitigate a high rate of potentially preventable 
hospital encounters.2,6,7

Prior early data suggest that increased frequency 
of routine assessment by implementing a symp-
tom management clinic in unselected patients 
undergoing RT for head and neck cancer 
reduces the frequency of emergency visits and 
hospitalization.2 In a clinical setting, our algo-
rithm would be implemented in an automated 
fashion to assign an acute risk probability to 
patients. Patients with higher probability would 
be selected for a directed program with more 
frequent clinical evaluation. This personalized 
care would reduce overall costs by preventing 
acute care. In addition, although we present 

candidate cutoffs on the basis of Youden and 
top-left approaches, the threshold for designat-
ing high-risk patients could be institution spe-
cific, allowing clinics to balance sensitivity and 
specificity on the basis of clinical judgment or 
available resources. Calibration suggests that 
estimated risk of an acute event by our model is 
consistent with outcome and thus could also be 
incorporated into clinical judgment. Study of the 
clinical results of ML-directed intervention is the 
objective of a planned clinical trial.

A number of studies have recently applied arti-
ficial intelligence and ML to classification ques-
tions in other medical subspecialties, with high 
predictive accuracy.8-12 Among these, Rajkomar 
et al10 described the use of ML on EHR data to 
predict clinically relevant end points in admitted 
patients, including 30-day unplanned readmis-
sion (AUROC, 0.75 to 0.76). To our knowledge, 
our data represent the first application of ML to 
assessing emergency evaluation or hospitaliza-
tion risk in patients undergoing outpatient can-
cer therapy. Prior ML models in oncology have 
focused on RT-associated toxicities on the basis 
of normal tissue doses37-42 or clinical decline of 
admitted patients with hematologic malignan-
cies.43 Non-ML models of acute events during 
cancer therapy have been developed for chemo-
therapy toxicity.44-48 The most comparable prior 
study was the development of a logistic regres-
sion model on the basis of more labor-intensive, 
manually curated data predicting chemothera-
py-related hospitalization in patients undergo-
ing palliative chemotherapy, with an AUROC of 
0.71.48 Overall, our internally validated results in 
this distinct clinical question compare favorably 
with prior work.

Although ML interpretation is limited because of 
complex nonlinear and interacting relationships 
and the presence of correlated factors, inclu-
sion of extensive noncancer variables improved 
accuracy. In contrast to more black box meth-
ods, GTB has the advantage of balancing strong 
predictive ability with assessment of relative vari-
able importance. This allows for the calculation 
of the predictive benefit of incorporating each 
variable. In addition to disease and treatment- 
related variables such as planned RT fractions 
and dose and concurrent systemic therapy, 
variable importance also identified pretreatment 
encounters (ED and admissions history), vital 
signs (weight loss and pain score), and abnormal 
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Validation ROC curves
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Fig 1. Validation 
receiver operating char-
acteristic (ROC) curves 
for machine learning 
techniques. Although all 
three methods yielded 
strong predictive results, 
gradient boosted trees 
(GTB; 0.798) had greater 
area under the ROC 
curve than random forest 
(0.770; not shown), 
support vector machine 
(0.759; not shown), and 
least absolute shrinkage 
and selection operator 
(LASSO) logistic regres-
sion (0.768) methods. All 
had greater area under 
the ROC curve compared 
with GTB trained on only 
disease and treat-
ment-related characteris-
tics (0.742).
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laboratory values (albumin) as major contribu-
tors to prediction. No individual variables domi-
nated the model. Planned RT dose and number 
of fractions likely reflect a combination of both  
treatment intensity as well as a greater opportunity 
window for admission or emergency evaluation 
and thus emphasize the importance of active 
management in patients who may undergo a 
long treatment course. Our algorithm includes 
and approximates previously described asso-
ciated clinical variables associated with admis-
sions.1 It is important to reiterate that these 
variables may have correlative relationships with 

other variables and often a complex nonlinear 
relationship with the rate of events. For example, 
specific treatment regimens and diseases are 
highly correlated. Thus, cautious interpretation 
of ML models is best practice. It was also grossly 
observed that there was a higher representation 
of GI malignancies among the false positives. 
This may reflect patient heterogeneity or impor-
tance of potentially uncaptured variables in a 
disease with high admission rates.

This study is potentially limited by underascer-
tainment of emergency visits or hospital admis-
sions given that only data from a single health 
care system was available. This may reduce the 
sensitivity of the model (by missing patients who 
experienced an event at an outside institution). 
However, Duke’s catchment net spans multiple 
facilities that share a single EHR across a wide 
geographic area. Moreover, RT, by nature of 
its daily treatments, is geographically limiting. 
Given this, our representation of admissions is 
likely greater compared with prior studies using 
a broader population, which may be more prone 
to admissions outside of the studied hospital sys-
tem.18,19 In addition, we were unable to compare 
model performance with gold standard clini-
cian evaluation. Retrospective review of patient 
records to generate physician-based assessment 
of admission risk would likely be inaccurate, 
given the lack of the feasibility of a true clinical 
assessment. However, ROC results compare 
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gradient tree boosting 
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included treatment factors 
(planned radiation dose and 
number of fractions, concur-
rent systemic therapy) and 
pretreatment encounters 
(number of and recentness 
of emergency department 
[ED] visits and admissions 
in the year before treat-
ment), vitals (weight loss 
and pain score in the year 
before treatment), and 
laboratory values (abnormal 
albumin in the 4 weeks 
before treatment).
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Fig 3. Validation 
calibration plot for the 
gradient tree boosting 
model. Assessment with 
the Hosmer-Lemeshow 
test suggested no evi-
dence of poor calibration 
(P = .21).

Downloaded from ascopubs.org by Dr. Julian Hong on August 30, 2018 from 107.015.251.082
Copyright © 2018 American Society of Clinical Oncology. All rights reserved.

http://ascopubs.org/journal/cci


favorably with prior models in other medical spe-
cialties.10,17-20 Comparison with clinician evalua-
tion and the clinical impact of increased clinical 
assessments during treatment are components 
of a planned prospective clinical trial.

The potential external accuracy of the model, 
although strong in our internal validation cohort, 
may be limited by the structure of data, as auto-
mated data extraction requires diagnoses, lab-
oratory tests, and medications conformable to 
unified terminology. It is also possible that data 
that are systematically collected in other clinical 
settings may incrementally improve on our pre-
dictive accuracy (such as treatment intent, which 
is not consistently documented in our data). 
Similarly, data structure may vary institutionally, 
potentially limiting generalizability of the specific 
model. Sufficient similarity, however, would allow 
individual institutions to apply our algorithm to 
institution-specific data, and we have made our 
source code available online.35,36 Finally, it may 
be difficult to predict how altering cancer ther-
apy treatment recommendations themselves 
may alter a patient’s risk of acute events; thus, 
we favor applying the model to direct supportive 
care.

External validation is required to fully assess our 
model. This is currently planned at an outside 
institution in an alternate EHR system. Future 
work will include iterative improvements through 
the incorporation of additional variables, includ-
ing those obtained by the application of natu-
ral language processing to clinical text. Future 
updates will continue to be available online.35,36 
A prospective clinical trial investigating ML- 
assisted direction of increased clinical assess-
ments during cancer treatment is planned to 
assess both model accuracy and clinical impact. 
In addition, prospective data would enable the 
opportunity to identify which acute visits are 
potentially preventable, which remains a clinical 
need.7

In conclusion, ML offers accurate predictions of 
emergency evaluation and hospital admission 
during outpatient cancer therapy. Incorporation 
of these predictions into clinical care may direct 
personalized care to improve the quality of care 
and reduce health care costs.
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