
UC Davis
IDAV Publications

Title
Computer-Aided Geometric Design Techniques for Surface Grid Generation

Permalink
https://escholarship.org/uc/item/2423612r

Authors
Hamann, Bernd
Jean, B. A.
Razdan, A.

Publication Date
1999

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2423612r
https://escholarship.org
http://www.cdlib.org/

COMPUTER-AIDED GEOMETRIC DESIGN

TECHNIQUES FOR SURFACE GRID GENERATION

Bernd Hamann y ;�, Brian A. Jean z and Anshuman Razdan +

1. INTRODUCTION

This chapter focuses on three computer-aided geometric design (CAGD) techniques that are often needed

to \prepare" a complex geometry for grid generation. Standard grid generation methods, as discussed in

[George '91], [Knupp & Steinberg '93], and [Thompson et al. '85], assume that parametric surfaces are well

parametrized and free of undesired discontinuities. We describe CAGD techniques that are extremely helpful

for the preparation of complex geometries for the grid generation process.

Surface re�nement and reparametrization. One problem that has plagued most grid generation

systems is that poorly parametrized surfaces create a poorly distributed grid. This is due to the fact

that the grid distributions are performed in the parametric domain and then mapped back to physical

space. It is desirable that the parametrization re
ect the geometry of the surface in physical space, i.e., the

parametrization should mimic the surface in physical space. The more a distribution of points in parametric

space resembles the corresponding distribution of points in physical space the better the parametrization

is. Imagine using a uniform parametrization on a sample of points that are not distributed evenly; if one

distributes points evenly in parameter space, they are not uniform in physical space. There are ways to

achieve a uniform distribution in physical space, but most approaches are based on iterative procedures.

To eliminate the need for such iteration procedures, a chord length parametrization can be used { it best

represents the surface in physical space.

Approximation of discontinuous geometries. Grid generation is concerned with discretizing sur-

faces and surrounding volumes in three-dimensional (3D) space { in this context, it is important that a given

geometry is continuous. Before one can generate grids for geometries containing discontinuities, one must

approximate the geometry by a set of surface patches which are continuous. The most common problems

y
Department of Computer Science, University of California, Davis, CA 95616-8562, USA;

e-mail: hamann@cs.ucdavis.edu
� Corresponding author, Co-Director of the Center for Image Processing and Integrated Computing

(CIPIC)

z
NSF Engineering Research Center for Computational Field Simulation, Mississippi State University,

P.O. Box 9627, Mississippi State, MS 39762-9627, USA; e-mail: brian@erc.msstate.edu
+

Partnership for Research in Stereo Modeling (PRISM), Arizona State University, Tempe, AZ 85287-

5106, USA; e-mail: razdan@asu.edu

1

are gaps between neighbor patches, surfaces with undesired intersections, and overlapping surfaces. We have

developed an interactive technique that can be used to approximate a faulty, i.e., discontinuous, geometry

by a continuous one. One obtains approximating surface patches by projecting local approximants, Coons

patches, onto the discontinuous geometry, see [Coons '74]. Each approximating surface patch is constructed

by specifying four boundary curves, computing a Coons patch interpolating the four curves, and projecting

the Coons patch onto the given geometry. In the end, one has replaced the entire geometry by a new set of

continuous surface patches.

Surface-surface intersection. Accurate computation of surface-surface intersection (SSI) curves is

essential in many engineering applications including numerical grid generation. SSI curves represent im-

portant features that must be captured by the grid. These curves are typically used to trim surfaces; for

example, the location where an airplane wing meets the fuselage would be given in terms of the intersection

of the wing and the fuselage. Often, geometries de�ned in terms of standard data exchange formats either do

not contain the needed intersection curves, or the curves given in the �le may not be in a form that is suitable

for the grid generator. A good SSI algorithm must be capable of treating analytic surfaces (e.g., cylinders,

cones, etc.), parametric surfaces (e.g., NURBS { non-uniform rational B-splines), surfaces described by dis-

crete data points (e.g., resulting from stereo lithography, Plot3D surface grids, etc.), and combinations of

these types. Accuracy must be good enough for packing of grid points allowing high-aspect-ratio cells near

the intersection curves, which typically requires that the curves be accurate to at least 10�6 units. A good

method should be robust and should require a minimum of user input. A user should have to specify only

the surfaces to be intersected and the requested tolerance. Use in an interactive environment requires that

the method be reasonably fast, i.e., the solution of all but the most demanding problems should take only

a few seconds on a state-of-the-art workstation.

2. SURFACE REFINEMENT AND REPARAMETRIZATION

{ UNDERLYING PRINCIPLES AND BEST PRACTICES

The relationship between the parametrization and the control point net of a NURBS surface re
ects the

relationship between parameter space and range. Each B�ezier segment of a curve, for example, may have

a normalized local parametrization (t; 0 � t � 1:0). However, there exists a global parametrization which

determines the relationship between each segment and the whole curve. The requirements for C2 continuity

between two segments are that the second derivatives at the common break point should match { \from

the left and right." The notion of Cr; r � 1 depends on the interplay between the domain and range

con�gurations. In other words, the �rst and the second-order derivatives are dependent on the global

parametrization of a NURBS curve. As a rule of thumb, a better curve is obtained if the geometry (range) of

the NURBS curve is incorporated into the parametrization. Several parametrization schemes exist, such as

uniform, chord length, centripetal and one due to Nielson and Foley, see [Foley & Nielson '89]. Each scheme

has some favorable aspects, see [Foley '86, '87] for a detailed discussion.

2

In the context of grid generation, the grid can be smoothed to correct problems resulting from bad under-

lying parametrization, but this procedure is rather time-consuming. The other alternative is to reparametrize

the surface. The process does not change the geometry in physical space. Without going into the detail,

we state that reparametrization is independent of the degree of the rational-polynomial basis functions of

NURBS, see [Farin '95]. The reparametrization will then create a \smooth" parametric domain that will

promote high quality grids without jeopardizing accuracy.

The goal then is to re�ne a given, poorly parametrized surface, i.e., to construct a surface which is

chord length parametrized. A surface s(u; v) with knot sequence fu0; : : : ; uL+2n�2g and fv0; : : : ; vM+2m�2g

is said to be chord length parametrized if it has the following properties:

k s(u
i+1; vj)� s(u

i
; v

j
) k

k s(u
i�1; vj)� s(u

i
; v

j
) k

�
�u

i

�u
i�1

(1)

and
k s(u

i
; v

j+1)� s(u
i
; v

j
) k

k s(u
i
; v

j�1)� s(u
i
; v

j
) k

�
�v

i

�v
i�1

; (2)

where

�u
i
= u

i+1 � u
i
; �v

i
= v

i+1 � v
i
;

and jj jj denotes the Euclidean norm, see [Farin '97].

For interrogation and analysis of a surface, it is desirable that the parametrization and control points

re
ect the above situation. This is to enable the surface evaluation parameter values to be used as input for

subsequent analysis. The question then is: Can the surface be rede�ned, within a given tolerance, such that

the parametrization is in tune with the geometry of the surface? In other words, given a poorly parametrized

NURBS surface, can one construct a rede�ned NURBS surface that approximates the given surface within

a given tolerance such that it has the properties of a chord length parametrization.

Some of the related research in the areas of reparametrization and curve and surface approximation is

reviewed in the following. Previous work related to this research can be categorized in two areas, the �rst

being reparametrization and the second being curve and surface approximation/interpolation methods.

Some work has been done in the area of reparametrization of curves. In [Fuhr et al. '82], a method

is described for interpolating a monotone data sequence with a C1 monotone rational B-spline curve of

degree 1. If the original curve C and the reparametrization function f are rational B-splines, then the

reparametrized curve ~C = CÆf is also a rational B-spline. The degree of ~C is the product of the degrees of C

and f . This results in a C1-continuous spline. We need to achieve C2 continuity. The algorithm mentioned

above ensures that the degree is not raised. This is useful in coming up with a common parametrization for

opposite boundary curves on a surface.

In [Crampin et al. '85] an algorithm is described to transmit a curve by sending discrete points o� the

original curve, such that the curve can be regenerated at the other end. In order to interpolate a curve

e�ectively, few points should be placed where the radius of curvature is large, but many where it is small.

3

Yu and Soni, see [Yu & Soni '95], use reparametrization to create grids with di�erent parameter dis-

tributions. The reparametrization in the curve case is achieved as follows: Let us consider a NURBS curve

with resolution n (number of points), and let

1. s1(i); i = 1; :::; n; be the parametric values associated with the desired distri-

bution of the curve in physical space and

2. s2(i); i = 1; :::; n; be the normalized chord length of the curve evaluated at

parametric values s1(i); 1 = 1; :::; n.

The s2(i) values are known, and the s1(i) values are to be determined such that ks2(i)� s1(i)k is minimized

for all i = 1; :::; n. This is accomplished by an iterative process. The initial values of s1(i) are set to be the

same as those at which s2(i) and s3(i) are evaluated. If the absolute di�erence s2(i)� s3(i) is smaller than

a certain tolerance, s1(i) is set as the desired parametric value. If the di�erence of s2(i) � s3(i) is negative

and the absolute value of this di�erence is greater than the tolerance, s1(i) should be shifted to a value

between s1(i� 1) and s1(i). The same strategy is applied to the case where s2(i)� s3(i) is positive. In this

case, the value of s1(i) should be shifted to a value between s1(i) and s1(i + 1). The algorithm is further

extended to deal with reparametrization of surfaces. Nevertheless, this approach cannot be used directly for

the reparametrization of surfaces, it leaves many questions open.

Kim, see [Kim '93], has attempted to come up with knot placement for NURBS interpolation. He

plots the distance between the interpolation points as a monotonically increasing function f(s) over its

parametrization. The parametrization is obtained from one of the several methods commonly used. The

function can be piecewise linear, piecewise rational-quadratic, or piecewise linear-rational B-spline interpo-

lation. Knot placement is done by dividing the function space into equal number of segments and projecting

the division onto the parametric space. This is then used for determining the parametrization.

Approaches to solving the problem. Although many di�erent approaches may be applied to solve

the problem at hand, the following two are considered:

1. Modify the control parameters of the given surface, with only minimal changes

to the surface, i.e., change weights, control points, etc., with the result that

the surface exhibits the property of chord length parametrization.

2. Construct a new NURBS surface which approximates the given surface, within

a given tolerance, such that the surface is chord length parametrized.

Modifying the existing surface. There are four design parameters available in the NURBS case

that control its behavior (it is assumed that the knot sequence does not have any multiplicities except at the

4

ends); these are: degree, control points, weights associated with the control points (we will only deal with

the case w
i
> 0), and parametrization.

Raising (or lowering) the degree does not a�ect the parametrization and therefore is a non-issue in

our case. However, if one were to represent a NURBS curve with its approximation, the approximating

polynomial should be at least a cubic. This is due to the fact that cubics are the lowest degree which can

represent true space curves.

Modifying the control points modi�es the surface itself. It is very diÆcult to predict the behavior of the

surface when its control points are modi�ed. Let us consider the curve case. Moving a control point means

a�ecting (degree�1) segments on each side. In order to not change the curve itself, the a�ected neighboring

segments would also have to be changed (by moving their control points). This can start a \chain reaction"

and convergence might be a problem.

Changing the weights is similar to changing the control points. However, in conjunction with the

parametrization, it is possible to keep the curve or surface the same. Thus, it would be a matter of �nding

the new parametrization (the desired one), and we could possibly change the poorly parametrized curve to

a chord length parametrized one without changing the curve itself. Here, the problem is to �nd the desired

knot sequences themselves. This approach, although theoretically appealing, requires as input something

that is not known. This �rst approach, though ideal, does not always result in a convergent solution.

The surface approximation scheme. The second approach is to �nd another surface as close

as possible to the original surface. Let E
max

be the value which indicates the maximum Euclidean dis-

tance the two surfaces are apart from each other. If s(u; v) is the given surface with knot sequence

fu0; : : : ; uMg; fv0; : : : ; uNg, and r(u; v) with knot sequence fu0; : : : ; uKg; fv0; : : : ; uLg is the approximation

to the surface, then we want:

max
ui;vj ;uk;vl

fminfks(u
i
; v

j
)� r(u

k
; v

l
)kgg < �; (3)

where r(u
k
; v

l
) is the closest point on r(u; v) for a given point s(u

i
; v

j
) on s(u; v) and � is the E

max
bound

placed on the healing process.

This approach is used in [Razdan '95] to solve the problem at hand. The approximation is based on

the assumption that adequate points can be found on the surface, such that when an interpolating surface

is passed through them, the resulting surface will be very close to the original surface. The problem then

reduces to �nding these interpolation points. If, however, the number of points is insuÆcient, then the

error estimation process identi�es the point s(u
i
; v

j
) on s(u; v) where the maximum deviation, E

max
, occurs

between s and r. This information can be used to insert a knot in surface r such that r is now forced to

interpolate to s(u
i
; v

j
).

The construction of the new surface is a two-step process. First, the four boundary curves are deter-

mined, then the interior is �lled. The reason for tackling the boundary curves �rst is twofold. The boundary

curves provide the spatial bounds to the �lling process. Second, it works out well to �ll using the outside-in

5

approach. All computations are based on how well the surface is discretized. We have found that surface

evaluation at a density of 10�10 points per knot segment is suÆcient.

Boundary curve approximation. Approximation of the boundary curves is the �rst step towards

approximating the surface. Each boundary curve is treated individually. The steps for approximating a

NURBS curve are:

1. Estimate the number of interpolation points needed.

2. Find interpolation points on the given curve (while keeping such points to a

reasonable number).

3. Pass a C2-continuous interpolating NURBS curve through these points.

The technique for choosing interpolation points uses arc length and curvature distribution characteristics

of the given curve. It also uses the adaptive knot selection scheme to properly place the knots on the

interpolating curve. Details on how this is done can be found in [Razdan '95]. The underlying principle is to

capture as much of the geometric properties of the original curve as possible while trying to keep the number

of interpolation points to a minimum. Figure 1 is an example of a NURBS curve and its approximation

using this technique.

6

Figure 1. NURBS curve interpolation using arc length and curvature.

7

Finding an interpolating surface. The next step in the process is to combine information (parame-

trization) of opposite boundary curves into one. Although the interpolation points required to describe each

of the two boundary curves independently are available, the distribution of these points will not, in general,

be satisfactorily represented by a common knot sequence (parametrization). This is due to the fact that the

distributions of points in each set depends on the individual curves' curvature and arc length distributions.

Choosing a knot sequence of either one of the boundary curves will result in the same initial problem.

However, if somehow both curves and the interior surface did have the same distribution of interpolation

points, a single parametrization could be used without a problem. But at this time the interior interpolation

points are not �xed. This is dealt with as follows. First, a reconciliation process of the opposite boundary

curves is performed to resolve the inequitable interpolation points distribution on the two boundary curves.

This ensures that the knot sequences computed after the reconciliation step of the opposite boundary curves

will be the same. Two knot sequences result, one for each parametric direction of the approximated surface.

Second, the interior interpolation points on the surface are located such that they satisfy the parametrizations

in both directions that resulted from the reconciliation process.

We describe brie
y the reconciliation process between boundary curves. The distance (arc length)

between neighboring interpolation points of one boundary curve is computed and tabulated. The same is

done for its counterpart, the opposite boundary curve. Next, distances in each set are represented as the

fraction of the total arc length of the respective curves. Once the two sets are compiled, they are reconciled.

For every point in one set, a corresponding point is sought in the second set (and vice-versa) that is the same

fraction of distance away from the starting end of the curve it belongs to. If there is no such point within a

tolerance, then an auxiliary point is inserted into the set that does not have the point. At the end of this

process, both sets have points that are similarly distributed along the length of the original boundary curves.

Similarity in distribution means that the ratio of distances between the neighboring points is similar in the

two sets. In other words, we have inserted auxiliary knots into the curves so that both curves have the right

distribution of knots or points for interpolation. This in turn is nothing but chord length parametrization.

This process is applied to the other set of opposite boundary curves. The set of interpolation points is

now �xed for all four boundary curves. Figures 2 and 3 show two sets of interpolation points before and

after the reconciliation process. This process of adaptively generating knot sequences based on curvature

information and arc length (chord length) is called the RCA parametrization (Reconciled Curvature Arc

length parametrization).

8

Figure 2. Boundary interpolation points before reconciliation.

Figure 3. Boundary interpolation points after reconciliation.

9

1,1

2,1

1,2

2,2

Domain of Original Surface Domain of Approximated Surface

u

v

2,1 2,2
1,2

1,1

Figure 4. Surface and its domain rectangle.

Finding interior interpolation points. Once the outer framework of the boundary curves is ac-

complished, the interior of the surface is constructed. This is an iterative process. The parameter values at

which the points on the boundary curves will be interpolated are marked on the domain rectangle of the

original surface. The corresponding points on the opposite edges are joined with straight lines in the domain

rectangle. The intersections of these lines provide (u; v) values values in the parameter space of the original

surface. This leads to an initial guess for the internal points of the new surface. In Figure 4, these points

are marked as (1,1), (1,2), (2,1), and (2,2). As is evident from the �gure, these points do not re
ect the

parametrization of the surface. For example, let u0 = 0:0, u1 = 0:33, and u2 = 0:66. In general, point (1,1)

will not be half the distance between points (1,0) and (1,2). In an ideal situation the process would stop

here. However, for a poorly parametrized surface, this is the starting point for the iterative process.

We describe an algorithm to �nd the interior points. As stated above, the �rst guess of internal inter-

polation points will probably not satisfy the chosen parametrization. The algorithm iteratively moves each

interior point x
i;j

a �nite distance in the domain and evaluates its relationship (distance) with its immediate

four neighbors, x
i�1;j ;xi+1;j ;xi;j�1, and xi;j+1, with respect to the new parametrization. It attempts to �nd

the local minimum for placing this point. The points are always moved in the domain. This is important as it

is guaranteed that the corresponding point in the range will always lie on the given surface. The evaluation,

10

whether a particular choice (point location on the surface) is good or bad, is done based on a penalty factor.

A high penalty factor means \not good." The penalty factors of all the interior points are computed and

sorted in descending order. The point with highest penalty factor is tackled �rst, since it is most likely to

be moved. The algorithm keeps track of points moved in an iteration in a two-dimensional array. In the

iterative process, a point is a candidate for relocation if any of its four neighbors have moved since the last

iteration. In the case when none of the four neighbors have moved, then local conditions have not changed

and repeating the process will not improve the situation. On the other hand, if the local conditions have

changed, i.e., one or more of the neighbors has moved since the last iteration, then it is likely that the current

point is not the optimum point any more. Thus, it makes sense to apply the algorithm again. The iterative

process is terminated when all the points occupy optimum positions. Figure 5 shows an example before and

after this procedure is applied.

11

Figure 5. Surface before and after healing.

12

3. APPROXIMATION OF DISCONTINUOUS GEOMETRIES

{ UNDERLYING PRINCIPLES AND BEST PRACTICES

3.1. The algorithm and references

The essential procedure used to approximate a geometry is the construction of a single local approximant.

This procedure consists of these steps:

1. Creating four (or selecting four existing) curves as boundary curves for an

initial local approximant (Coons patch)

2. Constructing a bilinear Coons patch from the four boundary curves

3. Projecting a curvilinear grid on the Coons patch onto the original geometry

4. Determining \arti�cial projections" for those points in the curvilinear mesh

that cannot be projected { due to possible gaps in the original surface

5. Interpolating the points resulting from steps 3 and 4

One has to perform step 1 interactively, while all other steps can be performed without user interaction.

The local surface approximant obtained as the result of this procedure is a bicubic B-spline surface, which

is guaranteed to lie within a certain distance of the original surfaces. The distance measure is based on

shortest (perpendicular) distances between points on an approximant and the original surfaces. We compute

this distance measure only in regions where there is a \clear" correspondence between an approximant and

the original surfaces and do not compute it for those parts of an approximant covering a discontinuity.

Once all local approximants are determined and their topology (connectivity) is known, a �nal step

ensures that the overall resulting approximation is continuous by enforcing continuity along shared boundary

curves of the local approximants.

The methods that we rely on to approximate a discontinuous geometry are covered in great detail in the

literature dealing with CAGD methods for curves and surfaces. References include [Farin '95, '97], [Faux &

Pratt '79], [Piegl '91a, '91b], and [Piegl & Tiller '96].

3.2. Computing the initial Coons patch

The initial local approximant is used to smooth rough data, guide the choices of interpolation points, and

serve as a reference for �lling in gaps. A user has to specify four continuous curves whose end points meet

to form a single closed curve { the boundary of a Coons patch. The four boundary curves can span across

multiple original surface patches; they can even be above or below the given geometry.

In order to obtain a reasonable surface grid for the Coons patch implied by the four boundary curves,

we use a discrete Coons patch construction. First, we compute points on the boundary curves distributed

13

uniformly with respect to arc length. We then associate parameter values (u
I;0; vI;0); (uI;N ; vI;N); (u0;J ; v0;J);

and (u
M;J

; v
M;J

); I = 0; :::;M , J = 0; :::; N , de�ning the uniformly distributed points on the boundary curves

in 3D Euclidean space. The points x
I;J

= (x
I;J

; y
I;J

; z
I;J

) on the discrete Coons patch are thus de�ned as

x
I;J

= [(1� u
I;J

) u
I;J

]

�
x0;J
x
M;J

�
+ [x

I;0 x
I;N

]

�
(1� v

I;J
)

v
I;J

�

� [(1� u
I;J

) u
I;J

]

�
x0;0 x0;N
x
M;0 x

M;N

��
(1� v

I;J
)

v
I;J

�
; (4)

where u
I;J

; J = 0; :::; N; varies linearly between u
I;0 and u

I;N
and v

I;J
; I = 0; :::;M; varies linearly between

v0;J and v
M;J

; respectively. In general, the points x
I;J

do not lie on the given surface patches.

3.3. Projecting the Coons patch onto the original surfaces

In order to project each point x
I;J

on the Coons patch onto the original surfaces one must know the

approximate surface normal at x
I;J

, which is used as projection direction. We approximate the unit normal

vector at x
I;J

by

n
I;J

�
(x

I+1;J � x
I�1;J)� (x

I;J+1 � x
I;J�1)����(x

I+1;J � x
I�1;J)� (x

I;J+1 � x
I;J�1)

���� : (5)

The points x
I;J

; their associated normal vectors n
I;J

; and an absolute o�set distance d de�ne points on an

upper and a lower o�set surface of the initial Coons approximant. The points on the upper o�set surface

are denoted by a
I;J

and the ones on the lower o�set surface by b
I;J

:

a
I;J

= x
I;J

+ d n
I;J

and b
I;J

= x
I;J

� d n
I;J

: (6)

We relate the o�set distance d to the extension of the Coons patch by setting

d =
1

8

�
jjx

M;0 � x0;0jj+ jjx
M;N

� x
M;0jj+ jjx0;N � x

M;N
jj+ jjx0;0 � x0;N jj

�
: (7)

The choice of d is very important, since it determines the set of original surfaces to be considered for the �nal

local approximation. It is not clear at this point what is the best value for d given an arbitrary geometry.

The o�set surface construction is shown in Figure 6.

14

x0,0

x0, N

xM, N

xM, 0

bI,J

xI,J

nI,J

aI,J d

Figure 6. Local o�set surface construction.

It is assumed that the convex set S de�ned by all the points a
I;J

and b
I;J

contains the original surfaces

that must be considered by the local approximation procedure. The convex hull of S is approximated by

computing the 3D bounding box for all the points a
I;J

and b
I;J

. Original surfaces are considered for the local

approximation procedure only if they lie partially inside this bounding box. The surfaces lying inside the

bounding box are evaluated, using some prede�ned resolutions, and the resulting point sets are triangulated.

The resulting triangles are then also clipped against the same bounding box { one needs to consider only

those triangles lying inside the bounding box when projecting a point x
I;J

onto the original surfaces. This

is illustrated in Figure 7.

15

�
���	�� �
�

��� ������� ��	�����

	��
��� ������� ��	�����

Figure 7. Clipping original surfaces and surface triangles.

Next, each point x
I;J

is projected in direction of n
I;J

onto the triangles inside the bounding box. The

projection of x
I;J

must satisfy the condition that it lie between a
I;J

and b
I;J

: In general, it is possible to

obtain zero, one, or multiple projections for each point x
I;J

. If more than one intersection is found, the

point closest to the point x
I;J

is identi�ed and used in the subsequent steps. If no intersection is found, a

bivariate scattered data approximation method will be used later to derive \arti�cial projections."

If the parametric representation of the original surfaces is known the projections, computed as projec-

tions onto triangles in a surface triangulation, can be mapped to points that lie exactly on the given surfaces.

A projection obtained from intersecting a line segment a
I;J
b
I;J

and a surface triangle can be expressed as a

barycentric combination of the vertices of this triangle. Let p
I;J

be a projection, and let p1; p2; and p3 be

the vertices of the triangle containing the projection. We can express the projection in barycentric form as

p
I;J

= u1p1 + u2p2 + u3p3 (8)

and can use the barycentric coordinates in this expression to compute the parameter tuple

(u; v) = u1(u1; v1) + u2(u2; v2) + u3(u3; v3); (9)

where (u
i
; v

i
) is the parameter tuple of vertex p

i
We can now evaluate the associated original parametric

surface s(u; v) using the parameter tuple (u; v) and replace p
I;J

by s(u; v). We will denote the points obtained

by this \map-onto-real-surface step" by y
I;J

. (If the parametric representation of the original surfaces is

not known, we simply use the intersections with the surface triangulations as �nal approximation conditions

y
I;J

.)

16

3.4. Computing additional approximation conditions

Due to existing discontinuities, gaps, in the original surfaces the projection strategy might not yield any

intersection points for certain line segments a
I;J
b
I;J

. We must estimate \arti�cial projections" to obtain a

complete (M+1)�(N+1) array of points required later in the construction of a local B-spline approximant.

We use a bivariate scattered data approximation technique, called Hardy's reciprocal multiquadric method,

see [Franke '82].

Each intersection point p
I;J

, obtained by intersecting line segment a
I;J
b
I;J

with the surface triangles,

can be written as a linear combination of a
I;J

and b
I;J

; i.e.,

p
I;J

= p(t
I;J

) = (1� t
I;J

) a
I;J

+ t
I;J

b
I;J

; t
I;J

2 [0; 1]: (10)

The values t
I;J

are computed (and stored) when projecting points on the surface triangulation. These

values remain unchanged, even if intersection points are mapped onto the real parametric surfaces. Hardy's

reciprocal multiquadric method is used to compute a bivariate function t(u; v) that interpolates all parameter

values t
I;J

corresponding to intersection points that have been found. We must consider these conditions:

t
I;J

= t(u
I;J

; v
I;J

) =
X

j2f0;:::;Ng

X
i2f0;:::;Mg

c
i;j

�
R+ (u

I;J
� u

i;j
)2 + (v

I;J
� v

i;j
)2
��

; (11)

I 2 f0; :::;Mg; J 2 f0; :::; Ng;

where R and
 are �xed parameters and only those values t
I;J

; u
I;J

; u
i;j
; v

I;J
; and v

i;j
are considered for

which an intersection point has been found. Denoting the \mean parameter spacing" in the two parameter

directions by Æ
u
=
�
1=2M

�P
M

I=0
(u

I+1;0 � u
I;0) + (u

I+1;N � u
I;N

) and Æ
v
=
�
1=2N

�P
N

J=0
(v0;J+1 � v0;J) +

(v
M;J+1 � v

M;J
); we have found that the values R = 0:5(Æ

u
+ Æ

v
) and
 = 0:001 yield good results. Further

investigation is necessary regarding appropriate choices for these parameters.

This global approach, considering all projections that have been found, is generally too ineÆcient.

Therefore, we localize Hardy's reciprocal method by considering only a relatively small number of found

projections to determine an \arti�cial projection." If there is no intersection between a line segment a
I;J
b
I;J

and the surface triangulations, we use the K closest found projections. For this purpose, we identify the K

found projections whose associated index tuples are closest to the index tuple (I; J). We have found that

values for K between �ve and ten yield good projection estimates. Thus, one has to solve the linear system

t
k
=

KX
i=1

c
i

�
R+ (u

k
� u

i
)2 + (v

k
� v

i
)2
��

; k = 1; :::;K; (12)

where (u
k
; v

k
) and (u

i
; v

i
) are parameter values for which projections are known. One must solve such a

linear system for each missing projection.

Having determined parameter values t
I;J

for all line segments a
I;J
b
I;J

for which no projections are

known, we obtain each needed \arti�cial projection" as the linear combination

z
I;J

= (1� t
I;J

) a
I;J

+ t
I;J

b
I;J

: (13)

17

The union of all points y
I;J

and z
I;J

de�nes an (M + 1) � (N + 1) curvilinear mesh which we use for the

construction of a local B-spline surface approximant.

3.5. Constructing a local surface approximant

We use the (M + 1) � (N + 1) points y
I;J

and z
I;J

to de�ne a cubic B-spline surface interpolating these

points and locally approximating the given surfaces. We denote this B-spline surface as

s(u; v) =

nX
j=0

mX
i=0

d
i;j

N4

i
(u) N4

j
(v) ; (14)

where d
i;j

is a B-spline control point, N4
i
(u) and N4

j
(v) are the normalized B-spline basis functions of order

four, and m = 3M and n = 3N . The (normalized) knot vectors are de�ned by values �
i
(�
i
< �

i+1) and �
j

(�
j
< �

j+1) and have quadruple knots at both ends and triple knots in the interior, i.e.,

u = (u0; u1; :::; um+4) = (0; 0; 0; 0; �1; �1; �1; :::; �M�1; �M�1; �M�1; 1; 1; 1; 1) and

v = (v0; v1; :::; vn+4) = (0; 0; 0; 0; �1; �1; �1; :::; �N�1; �N�1; �N�1; 1; 1; 1; 1): (15)

For more details regarding B-splines, see, e.g., [Bartels et al. '87], [Farin '97], and [Piegl & Tiller '96]. Here,

we are using the indexing scheme used in [Bartels et al. '87]. We are currently using a uniform knot spacing,

i.e., �
i
= i=M and �

j
= j=N .

Our construction yields local B-spline approximants degenerating to C1-continuous, piecewise bicubic

B�ezier surfaces. The control points d
i;j

are derived by �rst using a C1 cubic interpolation scheme for all

rows and columns of points to be interpolated and, second, applying C1 continuity conditions to obtain the

four interior B�ezier control points of each bicubic patch constituting a single B-spline approximant. The

interior B�ezier control points of all bicubic patches are de�ned by the equations

d3i�1;3j+1 = d3i�1;3j +
�
d3i;3j+1 � d3i;3j

�
and

d3i�1;3j�1 = d3i�1;3j +
�
d3i;3j�1 � d3i;3j

�
: (16)

3.6. Error estimation

Roughly speaking, the error between a locally approximating B-spline surface s(u; v) and the given geometry

is the maximum of the minimum distances between points on the approximant and the original geometry.

The existence of discontinuities and overlapping surfaces in the given geometry makes a precise de�nition of

error impossible. We estimate the maximum distance by a discrete error measure. We use the points

e
I;J

= s
��
0:5(�

I
+ �

I+1); �J
��
; I = 0; :::; (M � 1); J = 0; :::; N;

f
I;J

= s
��
�
I
; 0:5(�

J
+ �

J+1)
��
; I = 0; :::;M; J = 0; :::; (N � 1); and (17)

g
I;J

= s
��
0:5(�

I
+ �

I+1); 0:5(�J + �
J+1)

��
; I = 0; :::; (M � 1); J = 0; :::; (N � 1)

18

to compute this discrete error measure. An approximating B-spline surface most likely has its greatest

deviation from the given geometry in the interior of its constituting bicubic B�ezier patches due to the

oscillation characteristics of bicubic spline surfaces.

We compute shortest (perpendicular) distances between points on the B-spline approximants and the

original surfaces by solving the implied bivariate minimization problem to identify closest points. We do

not compute shortest distances for all points e
I;J

; f
I:J

; and g
I;J

; whenever one of these points is associated

with a gap in the given geometry we do not compute a closest point for it. If the resulting error estimate

is too large for a particular B-spline approximant, the resolution parameters M and N are increased and a

new B-spline approximant is computed. In principle, there is no guarantee that this process will converge

for arbitrary geometries. Therefore, this iteration is terminated when a maximum resolution is reached. In

practice, however, one does not have to worry about this problem as long as the user speci�es a \reasonable"

set of boundary curves for the initial Coons patch that is projected onto the geometry.

3.7. Connecting the local B-spline approximants

Topologically, all B-spline approximants are four-sided entities that can have at most four neighbors. Two

B-spline surfaces are neighbors when they share a common boundary curve. Bifurcations (more than two

surfaces sharing the same boundary curve) in the set of all B-spline approximants are not allowed. In

summary, the B-spline approximants must satisfy these topological conditions:

� Each boundary curve is shared by at most two B-spline approximants.

� A corner point of a B-spline approximant can be common to any number of

approximants.

� If a corner point of B-spline approximant is shared by a second approximant

then this point is also a corner point of the second approximant (full-face

interface property).

All B-spline approximants used in the �nal approximation must be compatible, i.e., they must be

bicubic B-spline surfaces, must have the same number of control points, and must have the same knots along

common boundary curves. For an arbitrary con�guration, this implies that one must use one global number

of control points in both parameter directions, one global knot vector used in both parameter directions,

and one global order.

However, it is suÆcient for practical grid generation purposes to know the connectivity among all B-spline

approximants and to know that the distance between two neighbor B-spline approximants is smaller than

some prede�ned tolerance. In this context, a distance is implied for two neighbor B-spline approximants by

the physically existing gap between the two distinct boundary curves that, topologically, de�ne the common

boundary. As long as the gaps between all neighbor B-spline approximants are negligible, then one can use

19

them directly for the generation of a mesh. In the context of mesh generation, we must emphasize that an

initial mesh is generated for the set of approximating B-spline surfaces and that this mesh is �nally projected

onto the original surfaces { unless an initial mesh point is in a gap region of the given geometry.

The conditions that must be satis�ed by the B-spline approximants in order to obtain an overall tangent

plane continuous approximation, also called gradient-continuous approximation, are described in [Faux &

Pratt '79]. Essentially, the conditions are coplanarity conditions for certain B-spline control points along

shared boundary curves and around shared corner points of B-spline approximants.

This approximation scheme for the \repair" of discontinuous geometries is explained in much more detail

in [Hamann '94] and [Hamann & Jean '94, '96].

3.8. Examples

Figures 8 through 11 show single B-spline surfaces approximating various geometries with discontinuities.

One can see that the approximating surfaces are lying partially above and partially below the original surfaces.

The approximating B-spline surfaces were obtained by specifying combinations of points and curves on the

original geometries. Figures 8 and 9 show the line segments used to obtain sample points.

20

Figure 8. Approximation of part of single patch.

Figure 9. Approximation of surfaces with gap.

21

Figure 10. Approximation of intersecting surfaces.

Figure 11. Approximation of highly oscillating surfaces.

22

Figures 12 and 13 show real-world geometries and their approximations (car body and aircraft con-

�guration). Both �gures show the original surfaces (top) and their approximations (bottom) consisting of

multiple B-spline surfaces.

Figure 12. Approximation of car body.

Figure 13. Approximation of aircraft.

23

4. SURFACE-SURFACE INTERSECTION

{ UNDERLYING PRINCIPLES AND BEST PRACTICES

A good surface-surface intersection (SSI) algorithm should have the following characteristics:

� Accuracy. Grid generation for problems with high-gradient regions (such as

viscous
uid
ow) require a high degree of precision; a good algorithm must

yield precise results.

� EÆciency. In an interactive environment, all but the most demanding cases

should require only a few seconds to solve.

� Robustness. The algorithm should correctly determine multiple intersections

among multiple surfaces.

� Simplicity. The only action required by the user should be the speci�cation

of the surfaces to be intersected and a requested tolerance.

At present, no single algorithm possesses all of these properties. This is due to the fact that an optimal

algorithm for a particular intersection problem depends on the type of surfaces involved. For example, the

intersection of two planes is a line, while the intersection of two quadrics can be a curve of degree four. The

representation of the surfaces must also be considered (i.e., implicit, polyhedral, or parametric). The reader

can �nd a good survey of several types of intersection algorithms in [Hoschek & Lasser '93].

The intersection algorithm. The SSI algorithm we are describing can operate on surface triangula-

tions, on analytically de�ned surfaces such as NURBS, or combinations thereof, see [Jean & Hamann '98]. If

the intersection is performed on surface triangulations, then the re�nement step described below is skipped,

and the piecewise linear curve produced from the intersection of triangles is the end result. If an analytical

surface description is known for one or both of the surfaces involved then the re�nement step is included.

Surface triangulations are frequently encountered in the form of unstructured surface grids and are rapidly

becoming a standard for data exchange using the StereoLithography format (see [3D Systems, Inc. '89]).

These are the basic steps of the algorithm:

1. Triangulate the surfaces to be intersected.

2. Store each triangulation in a space partitioning tree structure.

3. Intersect the trees to obtain a list of intersecting regions.

4. Intersect the individual triangles within each set of intersecting regions to ob-

tain a collection of line segments.

24

5. Sort the line segments.

6. Find a starting point for an \intersection loop."

7. Trace the loop storing sample points which are the end points of the line seg-

ments.

8. If an analytic surface representation is known, re�ne the sample points.

9. Interpolate the sample points with a spline curve in 3D physical space, 2D

parameter space, or both spaces.

The actual intersection algorithm can only operate on two surfaces at a time. When more than two

surfaces are to be intersected, the driver calls the intersection operator with successive pairs of surfaces until

all possible surface pairs are processed. If the desired result is the intersection of several surfaces, then

additional curve-curve intersections may be necessary.

Triangulation. Parametric surfaces are discretized using an adaptive triangulation technique based

on recursive subdivision (see [Anderson et al. '97] and [Samet '90]). This method triangulates the surface

within a speci�ed tolerance without using an excessive number triangles. An example of this method is

shown in Figure 14. This \adaptive" feature allows the SSI algorithm to more accurately capture important

intersection features such as singular points, i.e., points where the normals of the two surfaces are collinear

or nearly collinear.

Figure 14. Adaptive surface triangulation.

Triangles are stored as a list of vertices and a connectivity table. Each vertex in the triangulation is

stored only once in order to reduce memory requirements and to eliminate the possibility of slight edge

25

mismatches due to numerical error. A separate list of associated uv parameter values and uv connectivity

(connectivity in parameter space) is maintained to allow re�nement of the calculated intersection curves.

Triangle intersection. The �rst step in the intersection process is to intersect the triangulations of

the two surfaces being considered. The result of this process will be a set of line segments which, when

arranged properly, will provide a piecewise linear approximation to the intersection curves. The end points

of the line segments will be used later as an initial guess for the sample points on the true intersection curves.

The line segment information is used to determine the topology of the intersection curves and to order the

sample points on the curves.

The method intersects two triangles by �rst performing a bounding box test to see if there is the

possibility of the triangles intersecting. If this test is passed, then the edges of the �rst triangle are intersected

with the plane de�ned by the second triangle and vice versa. The points resulting from the edge-plane

intersections are then tested to determine if they lie inside the respective triangles. Figure 15 illustrates the

test which determines whether a point lies inside a triangle. If the area of each of the subtriangles shown is

positive then the point is inside the triangle.

Figure 15. Test used to determine whether a point is inside a triangle.

The triangle intersection can yield one of three possible results:

1. No points are found that lie within either of the triangles, i.e., the triangles do

not intersect.

2. Only one unique point is found, i.e., the triangles intersect only along the edges

or at a vertex.

26

3. Two unique points are found, i.e., the intersection is a line segment.

The SSI method only considers intersections which result in line segments.

Intersection preprocessing using a tree structure. The number of triangles needed to represent

a surface may be quite large. The bounding box test discussed above is very fast. However, each triangle

of the �rst surface must be compared with each triangle of the second surface. If steps were not taken to

reduce the number of comparisons, this step would dominate the running time of the algorithm. There is a

need to eÆciently cull triangles which will not be involved in the intersection process. This is achieved by

storing the triangles in a tree structure. The tree partitions the space occupied by the triangles and provides

quick access to the set of triangles which inhabit a particular region. The tree type we use is a k-d tree (see

[Samet '90] and [Bentley '75]). Given N triangles, the k-d tree will have at most 2N nodes with N leaf

nodes, each containing exactly one triangle. A node is composed of a bounding box and an integer tag. The

bounding box is speci�ed by two points in space and is just large enough to contain the bounding boxes of

all its children; the bounding box of a leaf node is just large enough to contain its associated triangle. We

use a tag for leaf nodes to identify the triangle which is contained in the leaf.

A separate tree is constructed for each surface. One tree is chosen { it does not matter which one { as

the base tree and the remaining tree is referred to as the target. The two trees are intersected as follows:

1. Pick a leaf node in the base tree.

2. Intersect base leaf with target tree using recursive bounding box tests.

3. Associate each base leaf with each target leaf that intersects it. If the base leaf

does not intersect any target leaf then the base leaf is not considered.

4. Repeat this procedure for each leaf in the base tree.

The result of the intersection is a set of associations which encompass all possible triangle intersections

for the given surfaces. Note that target leaves may be associated with multiple base leaves. However, each

base leaf appears only once. This relationship is depicted in Figure 16. Note that a two-dimensional quadtree

is used to simplify the �gure. The k-d tree is a binary tree and can be searched in logarithmic time. Hence,

for two surfaces represented by M and N triangles, the tree intersection can be performed in M log2(N)

time.

27

1

Figure 16. Intersection of quadtrees and resulting node association list.

Data structure, loop detection, and curve tracing. The points and line segments resulting from

the triangle intersection step are stored in a special topology data structure. This data structure provides

explicit connectivity between the line segments and allows intersection curves to be easily identi�ed and

traced.

The Point structure stores the coordinates in physical space, xyz space, for the point as well as its

associated parameter values for each of the two surfaces. A Point also has an associated circular linked

list of PointUses. PointUse structures contain connectivity and other topological information about the

Point. Each Point in the system is unique. If a new Point is computed having the same coordinates as an

existing point, then a PointUse with the appropriate information is added to the list of uses for the existing

Point. This list of unique points and uses builds the topology of the intersection curves as the triangles are

intersected and does not depend on the order in which the intersections occur.

The PointUse structure contains topological information associated with a Point and a Segment. The

Segment data structure provides Point connectivity information using PointUses. A Point which is shared

by both Segments has two PointUses. Since both of these PointUses belong to the same Point, they are

linked and hence the line segments are linked as well.

The PointUse structure contains a location �eld, which indicates where the PointUse is located on its

associated Segment structure. This location is either zero or one indicating the start point or end point

of the line segment. The P �eld and SSISeg PTR �eld are links to the associated Point and Segment

structures. So-called prev and next �elds link the PointUse to others (if any) in the circular linked list of

PointUses. The InUse �eld is a boolean
ag used in the process of tracing the intersection curves.

Detection of individual intersection curves, loops, is based on PointUses. In this method, an end point

of a curve is de�ned as a point with a number of PointUses not equal to two (closed curves are a special case

where all points have two PointUses). If more than two PointUses are present then the end point is a singular

point (where three or more curves meet). Intersection curves are automatically broken at a bifurcation point.

28

4

Figure 17. Data structure used to represent SSI curve topology.

Figure 17 illustrates this concept. We depict the intersection of four triangles, belonging two two di�erent

surfaces, resulting in four intersection points, p1, p2, p3 and p4. This example yields one loop whose two

end points are p1 and and p4. This is a basic outline of the overall curve tracing algorithm:

1. Find a Point with a number of PointUses 6= 2 and at least one PointUse with

its InUse
ag set to FALSE. If none can be found, stop.

2. Go to the PointUse with InUse set to FALSE.

3. Set PointUse!InUse = TRUE and add the Point to the ordered list of sample

points on the curve. (Remark: The two triangles used to generate the segment

are also stored for use in re�nement steps.)

4. Go to the Segment associated with the PointUse and set Segment!InUse =

TRUE.

5. Go to the opposite PointUse on the Segment.

6. Set PointUse!InUse = TRUE and add its associated Point to the ordered list

of sample points on the curve.

29

7. If the number of PointUses associated with the present Point is two, step to

the other PointUse associated with the Point (PointUse!next) and go to step

4; otherwise, continue below.

8. Store the ordered list of sample points for re�nement.

9. Repeat.

Should this algorithm terminate and leave certain Segments unused, then one or more of the intersection

curves are closed. Closed curves are a special case and are treated separately. Closed curves are found by

picking a random starting PointUse from the remaining \unused" PointUses and proceeding with the same

basic algorithm. The di�erence is that the algorithm terminates when the curve is traced back to its starting

point.

Re�nement. Once all possible curves have been traced, the result is an ordered set of sample points

for each intersection curve. In general, these points lie on the triangulation, or, to be more speci�c, on the

piecewise linear surface approximations, but not on the exact analytical surface. The re�nement procedure

described below maps the points to the surfaces and matches them, within a given tolerance, to the \true"

intersection.

�

P2 � S(u2,v2)

P3 � S(u3,v3)

P1 � S(u1,v1)

d3

d1 d2

A1A2

A3

Figure 18. Stencil of data required to obtain intersection point on exact surface.

The �rst step in the re�nement process is the mapping of the intersection points onto each surface.

Each intersection point on the triangulation has references to the triangles containing it. Figure 18 shows

30

the stencil of data required to map a point r (inside a triangle) to the exact underlying surface. The procedure

to do this follows these steps:

1. Find vectors d1, d2, and d3 emanating from r and stopping at the respective

triangle vertices P1, P2, and P3.

2. Calculate the sub-triangle areas A1, A2, and A3.

3. Normalize the sub-triangle areas by dividing A
i
by the total triangle area A1+

A2 +A3.

4. The normalized sub-triangle areas A
i
are the barycentric coordinates of r with

respect to the original triangle de�ned by P1, P2, and P3. Denoting the

parameter values of P
i
by (u

i
; v

i
), we compute

�P3

i=1
A
i
u
i
;
P3

i=1
A
i
v
i

�
, which

is the parameter value that we use to compute a point on the exact surface

replacing r.

Fq

q0

p0

Fp

Fn

r(w, t)

s(u, v)

x

Figure 19. Point re�nement using Auxiliary Plane Method.

The re�nement technique used is the Auxiliary Plane Method (see Figure 19) described in [Hosaka '92].

The basic steps of this method are:

31

1. Denote the two \images" of r on the two underlying parametric surfaces s(u; v)

and r(w; t) by q0 and p0; let p0 = s(u0; v0) and q0 = r(w0; t0), where u0, v0,

w0, and t0 are the associated parameter values.

2. Calculate the unit normals n
p
and n

q
at p0 and q0.

3. Let F
p
and F

q
be the tangent planes at p0 and q0.

4. Calculate the distance values d
p
and d

q
for the distances between F

p
(F

q
) and

the origin:

d
p
= n

p
� r(w0; t0); d

q
= n

q
� s(u0; v0): (18)

5. Construct a plane F
n
which is orthogonal to both F

p
and F

q
and passes through

p0. The unit normal nn of F
n
and its distance from the origin d

n
are:

n
n
=

n
p
� n

q

jjn
p
� n

q
jj
; (19)

d
n
= n

n
� r(w0; t0): (20)

6. Calculate the intersection point x of the planes F
p
, F

q
, and F

n
as

x =
d
p
(n

q
� n

n
) + d

q
(n

n
� n

p
) + d

n
(n

p
� n

q
)

[n
p
;n

q
;n

n
]

; (21)

where [v1;v2;v3] is the scalar triple product (v1 � v2) � v3 of three 3D vectors,

see [Hosaka '92]. (Remark: The point x is an approximate intersection point

and, in general, will lie neither on s(u; v) nor on r(w; t).)

32

7. The point x must be mapped back to the exact surfaces and new points p0 and

q0 calculated. We compute the di�erence vectors Æp0 = x�p0 and Æq0 = x�q0

and compute the values

�r
w
= r

w
� n

p
; �r

t
= r

t
� n

p
(22)

and

�s
u
= s

u
� n

q
; �s

v
= s

v
� n

q
; (23)

where r
w
, r

t
, s

u
, and s

v
are the partial derivative vectors (not normalized)

at p0 and q0. Considering that for in�nitesimally small increments the two

equations r
w
Æw+ r

t
Æt = Æp0 and suÆu+ svÆv = Æq0 hold, we can compute the

increments for the parameter values as

Æw =
�r
t
� Æp0

�r
t
� r

w

; Æt =
�r
w
� Æp0

�r
w
� r

t

; (24)

Æu =
�s
v
� Æq0

�s
v
� s

u

; Æv =
�s
u
� Æq0

�s
u
� s

v

: (25)

The updated values of p0 and q0 are thus given by

p0 = r(w0 + Æw; t0 + Æt); q0 = s(u0 + Æu; v0 + Æv): (26)

8. Steps 2 through 7 are repeated until jjp0�q0jj is within a speci�ed tolerance.

Convergence of this method is very good, even for \poor" initial values of p0 and q0. The curve de�ned

by the triangle intersections may or may not meet the requested tolerance. Intersection points can be added

or deleted as necessary. Additional intersection points are obtained using the re�nement algorithm with

starting points based on the known intersection points. The �nal representation of the curve depends on

the requirements of a particular application. Common representations are piecewise linear or cubic curve

representations in physical and/or parameter space.

5. RESEARCH ISSUES AND SUMMARY

In conclusion, we summarize the presented techniques, describe possible improvements, and point out re-

maining research issues.

Surface re�nement and reparametrization. We have given techniques for re�ning the parametriza-

tion of a NURBS surface. The surface approximation method performs best when the interior surface geom-

etry more or less follows the geometry of the boundary curves. Future work could be directed at the analysis

33

of geodesic curvature distribution of isoparametric curves on the surface and using it as an interrogation

tool. Data reduction is another research issue. In some cases, this is achieved as a side e�ect. Torsion

characteristics of the boundary curves are not exploited. Torsion could be incorporated into the scheme in

the same way as curvature and arc length to �nd \key interpolation points" where torsion may be a factor.

Approximation of discontinuous geometries. The interactive method for the approximation of

discontinuous geometries allows the \replacement" of entire 3D geometries while preserving original boundary

curves of given surfaces, if so desired. The method can be used to approximate geometries with gaps,

transverse surface overlaps, and undesired surface intersections. The �nal approximation is a set of bicubic

B-spline surfaces determining an overall continuous surface approximation { with negligible gaps between

neighbor B-spline surfaces. One should explore whether it is possible to reduce the required user input

further, i.e., whether one can construct local approximants automatically without having a user specify the

boundary curves of the initial Coons approximants. Currently, the resulting B-spline surfaces approximating

the given discontinuous geometry are stored as NURBS surfaces { with all control point weights being one.

Choosing control point weights in a more \clever way" might allow to generate equally good approximants

with fewer control points.

Surface-surface intersection. The SSI algorithm discussed above is only one of many possible ap-

proaches to solving this diÆcult problem. The advantages of this algorithm are its speed and accuracy and

the ability to operate automatically. The method relies on triangles which are locally planar approximations

to the underlying surface; therefore, the algorithm can have diÆculties when resolving intersection curve

topologies near critical points, where critical points occur when the normals of both intersecting surfaces are

exactly or nearly collinear. In the region around critical points, the intersection of the surface triangulations

may not accurately re
ect the intersection of the underlying surfaces, hence causing the algorithm to fail.

6. ACKNOWLEDGMENTS

This work was supported by the National Grid Project consortium and the National Science Foundation

under contract EEC-8907070 to Mississippi State University. Special thanks go to all members of the research

and development team of the National Grid Project, which was performed at the NSF Engineering Research

Center for Computational Field Simulation, Mississippi State University. Part of the work was carried out

by the CAGD research group at Arizona State University.

34

7. REFERENCES

Anderson, J., Khamayseh, A. and Jean, B. A. (1997), Adaptive resolution re�nement, Technical Report, Los

Alamos National Laboratory, Los Alamos, NM.

Bartels, R. H., Beatty, J. C. and Barsky, B. A. (1987), An Introduction to Splines for Use in Computer

Graphics and Geometric Modeling, Morgan Kaufmann Publishers, Inc., Los Altos, CA.

Bentley, J. (1975), Multidimensional binary search trees used for associative searching, Communications of

the ACM 18(9).

Coons, S. A. (1974), Surface patches and B-spline curves, in: Barnhill, R. E. and Riesenfeld, R. F., eds.,

Computer Aided Geometric Design, Academic Press, San Diego, CA, pp. 1{16.

Crampin, M., Guifo R. and Read, G. A. (1985), Linear approximation of curves with bounded curvature

and a data reduction algorithm, Computer Aided Design 17(6), pp. 257{261.

Farin, G. (1995), NURB Curves and Surfaces, A K Peters, Ltd., Wellesley, MA.

Farin, G. (1997), Curves and Surfaces for Computer Aided Geometric Design, fourth edition, Academic

Press, San Diego, CA.

Faux, I. D. and Pratt, M. J. (1979), Computational Geometry for Design and Manufacture, Ellis Horwood

Publishers, Ltd., New York, NY.

Foley, T. (1986), Local control of interval tension using weighted splines, Computer Aided Geometric Design

3(4), pp. 225{230.

Foley, T. (1987), Interpolation with interval and point tension controls using cubic weighted �-splines, ACM

Trans. on Math. Software 13(1), pp. 68{96.

Foley T. and Nielson G. M. (1989), A survey of applications of an aÆne invariant norm, in: Lyche, T. and

Schumaker, L. L., eds., Mathematical Methods in Computer Aided Geometric Design, Academic Press,

San Diego, CA, pp. 445{467.

Franke, R. (1982), Scattered data interpolation: Tests of some methods, Math. Comp. 38, pp. 181{200.

Fuhr, R. D. and Kallay, M. (1982), Monotone linear rational spline interpolation, Computer Aided Geometric

Design 9, pp. 313{319.

George, P. L. (1991), Automatic Mesh Generation, Wiley & Sons, New York, NY.

Hamann, B. (1994), Construction of B-spline approximations for use in numerical grid generation, Applied

Mathematics and Computation 65(1{3), pp. 295{314.

Hamann, B. and Jean, B. A. (1994), Interactive techniques for correcting CAD/CAM data, in: Weatherill,

N. P., Eiseman, P. R., H�auser, J. and Thompson, J. F., eds., Numerical Grid Generation in Computational

Fluid Dynamics and Related Fields, Pineridge Press Ltd., Swansea, U.K., pp. 317{328.

Hamann, B. and Jean, B. A. (1996), Interactive surface correction based on a local approximation scheme,

Computer Aided Geometric Design 13(4), pp. 351{368.

Hosaka, M. (1992), Modeling of Curves and Surfaces in CAD/CAM, Springer-Verlag, New York, NY.

Hoschek, J. and Lasser, D. (1993), Fundamentals of Computer Aided Geometric Design, A K Peters, Ltd.,

Wellesley, MA.

Jean, B. A. and Hamann, B. (1998), An eÆcient surface-surface intersection algorithm based on surface

triangulations and space partitioning trees, to appear in Mathematical Engineering in Industry.

Kim, T.-W. (1993), Knot placement for NURB interpolation, M.S. thesis, Department of Computer Science

and Engineering, Arizona State University, Tempe, AZ.

Knupp, P. M. and Steinberg, S. (1993), Fundamentals of Grid Generation, CRC Press, Boca Raton, FL.

Piegl, L. A. (1991a), On NURBS: A survey, IEEE Computer Graphics and Applications 11(1), pp. 55{71.

Piegl, L. A. (1991b), Rational B-spline curves and surfaces for CAD and graphics, in: Rogers, D. F. and

Earnshaw, R. A., eds., State of the Art in Computer Graphics, Springer-Verlag, New York, NY, pp. 225{

269.

Piegl, L. A. and Tiller, W. (1996), The NURBS Book, second edition, Springer-Verlag, New York, NY.

Samet, H (1990), The Design and Analysis of Spatial Data Structures, Addison Wesley, New York, NY.

Thompson, J. F., Warsi, Z. U. A. and Mastin, C. W. (1985), Numerical Grid Generation, North-Holland,

New York, NY.

3D Systems, Inc. (1989), StereoLithography Interface Speci�cation.

Yu, T. and Soni, B. K. (1995), Application of NURBS in numerical grid generation, Computer Aided Design

27, pp. 147{157.

35

8. FURTHER INFORMATION

The following journals, magazines, and conference proceedings frequently cover topics related to the problems

discussed in this chapter: Computer-Aided Design (ELSEVIER), Computer Aided Geometric Design (EL-

SEVIER), Journal of Computational Physics (Academic Press), Transactions on Graphics (ACM), Trans-

actions on Visualization and Computer Graphics (IEEE), The Visual Computer (Springer-Verlag), Com-

puter Graphics and Applications (IEEE), SIGGRAPH proceedings (ACM), and Supercomputing proceedings

(ACM/IEEE). In addition, the SIAM Conference on Geometric Design, which is organized every other year,

is an excellent source of information.

36

