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Analysis of community structure in networks of correlated data
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We present a reformulation of modularity that allows the analysis of the community structure
in networks of correlated data. The new modularity preserves the probabilistic semantics of the
original definition even when the network is directed, weighted, signed, and has self-loops. This is
the most general condition one can find in the study of any network, in particular those defined
from correlated data. We apply our results to a real network of correlated data between stores in
the city of Lyon (France).

PACS numbers: 89.75.Hc, 02.10.Ox, 02.50.-r

Complex networks are graphs representative of the in-
tricate connections between elements in many natural
and artificial systems [1–4], whose description in terms
of statistical properties have been largely developed in
the curse for a universal classification of them. However,
when the networks are locally analyzed, some characteris-
tics that become partially hidden in the global statistical
description emerge. The most relevant perhaps is the dis-
covery in many of them of community structure, meaning
the existence of densely (or strongly) connected groups of
nodes, with sparse (or weak) connections between these
groups [5].

The study of the community structure helps to elu-
cidate the organization of the networks and, eventually,
could be related to the functionality of groups of nodes
[6]. The most successful solutions to the community de-
tection problem, in terms of accuracy and computational
cost required, are those based in the optimization of a
quality function called modularity proposed by Newman
and Girvan [7] that allows the comparison of different
partitioning of the network. The extension of modularity
to weighted [8] and directed networks [9, 10] has been the
first steps towards the analysis of the community struc-
ture in general networks.

Very often networks are defined from correlation data
between elements. The common analysis of correlation
matrices uses classical or advanced statistical techniques
[11]. Nevertheless an alternative analysis in terms of net-
works is possible. The network approach usually consist
in to filter the correlation data matrix, by eliminating
poorly correlated pairs according to a threshold, and by
keeping unsigned the value of the correlation, produc-
ing a network of positive links and no self-loops (self-
correlations). Recently, some authors pointed out the
possibility to analyze these networks via spectral decom-
position [12, 13] . We devise also the possibility to ana-
lyze them in terms of modularity to reveal the community
structure (clusters) of the correlated data. However, any
of these approaches can be misleading because of two
facts: first, the sign of the correlation is important to

avoid the mixing of correlated and anti-correlated data,
and second, the existence of self-loops is critical for the
determination of the community structure [9]. Here we
propose a method to extract the community structure in
networks of correlated data, that accounts for the exis-
tence of signed correlations and self-correlations, preserv-
ing the original information. To this end, we extend the
modularity to the most general case of directed, weighted
and signed links. We will show the performance of our
method in a real network of correlations between com-
mercial activities obtained from a simple physical model
[14].

Given an undirected network partitioned into commu-
nities, the modularity of a given partition is, up to a
multiplicative constant, the probability of having edges
falling within groups in the network minus the expected
probability in an equivalent (null case) network with the
same number of nodes, and edges placed at random pre-
serving the nodes’ strength, where the strength of a node
stands for the sum of the weights of its connections [15].
In mathematical form, being Ci the community to which
node i is assigned, modularity is expressed in terms of
the weighted adjacency matrix wij , that represents the
value of the weight in the link between i and j (0 if no
link exists), as [15]

Q =
1

2w

∑

i

∑

j

(

wij −
wiwj

2w

)

δ(Ci, Cj) , (1)

where the Kronecker delta function δ(Ci, Cj) takes the
values, 1 if nodes i and j are into the same community,
0 otherwise, the strengths wi =

∑

j wij , and the total
strength 2w =

∑

i wi =
∑

i

∑

j wij .
The larger the modularity the best the partitioning is,

cause more deviates from the null case. Note that the
optimization of the modularity cannot be performed by
exhaustive search since the number of different partitions
are equal to the Bell [16] or exponential numbers, which
grow at least exponentially in the number of nodes N .
Indeed, optimization of modularity is a NP-hard (Non-
deterministic Polynomial-time hard) problem [17]. Sev-
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FIG. 1: Network with well-defined community structure and
its correlation matrix.

eral authors have attacked the problem proposing differ-
ent optimization heuristics [18–23].

To demonstrate the flaws of modularity when trying
to extract the community structure of correlated data
we show the following example. Suppose we have a net-
work with a well defined community structure as the one
presented in Fig. 1. Let us pretend that each community
is indeed a functional community, in such a way that
nodes in every group have different states. To simplify
the mathematics we will consider that the nodes in com-
munity A are in a state +1, and nodes in community B
are in a state −1. After, we define the correlation be-
tween these data as, for example, Rij = SiSj being Si

and Sj the corresponding states of nodes i and j. The
question is: can we infer communities A and B from the
correlated data represented in matrix R? The answer is
that applying modularity, no. Let us sketch the proof,
the matrix R is blockwise composed of submatrices RAA,
RAB, RBA, and RBB. The blocks RAA and RBB are all
valued +1, and RAB and RBA are valued −1. Any ma-
trix of this form results in zero modularity Eq. (1) for all
partitions, since Rij =

wiwj

2w
for all pairs.

To reveal the community structure in the network pre-
sented in Fig. 1 from its correlation matrix, it is nec-
essary to revise the formulation of modularity. Let us
suppose we have a weighted undirected complex network
with weights wij as above. The relative strength pi of a
node

pi =
wi

2w
, (2)

may be interpreted as the probability that this node
makes links to other ones, if the network were random.
This is precisely the approach taken by Newman and Gir-
van to define the modularity null case term, which reads

pipj =
wiwj

(2w)2
. (3)

The introduction of negative weights destroys this
probabilistic interpretation of pi, since in this case the
values of pi are not guaranteed to be between zero and
one. The problem is the implicit hypothesis that there is
only one unique probability to link nodes, which involves
both positive and negative weights. However, if we sup-
pose there are two different probabilities to form links,

one for positive and the other for negative weights, the
problem disappears.

Let us formalize this approach. First, we separate the
positive and negative weights:

wij = w+
ij − w−

ij , (4)

where

w+
ij = max{0, wij} , (5)

w−

ij = max{0,−wij} . (6)

The positive and negative strengths are given by

w+
i =

∑

j

w+
ij , (7)

w−

i =
∑

j

w−

ij , (8)

and the positive and negative total strengths by

2w+ =
∑

i

w+
i =

∑

i

∑

j

w+
ij , (9)

2w− =
∑

i

w−

i =
∑

i

∑

j

w−

ij . (10)

Obviously it is satisfied that

wi = w+
i − w−

i (11)

and

2w = 2w+ − 2w− . (12)

With these definitions at hand, the connection prob-
abilities with positive and negative weights are respec-
tively

p+
i =

w+
i

2w+
, (13)

p−i =
w−

i

2w−
. (14)

Now there are two terms which contribute to modular-
ity: the first one takes into account the deviation of ac-
tual positive weights against a null case random network
given by probabilities p+

i , and the other is its counterpart
for negative weights. Thus, it is useful to define

Q+ =
1

2w+

∑

i

∑

j

(

w+
ij −

w+
i w+

j

2w+

)

δ(Ci, Cj) , (15)

Q− =
1

2w−

∑

i

∑

j

(

w−

ij −
w−

i w−

j

2w−

)

δ(Ci, Cj) . (16)

The total modularity must be a trade off between the
tendency of positive weights to form communities and
that of negative weights to destroy them. If we want that
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Q+ and Q− contribute to modularity proportionally to
their respective positive and negative strengths, the final
expression for modularity Q is

Q =
2w+

2w+ + 2w−
Q+ −

2w−

2w+ + 2w−
Q− . (17)

An alternative equivalent form for modularity Q is

Q =
1

2w+ + 2w−

∑

i

∑

j

[

wij −

(

w+
i w+

j

2w+
−

w−

i w−

j

2w−

)]

×δ(Ci, Cj) . (18)

The main properties of Eq. (18) are: without negative
weights, the standard modularity is recovered; modular-
ity is zero when all nodes are together in one commu-
nity; and it is antisymmetric in the weights, i.e. directed
Q(C, {wij}) = −Q(C, {−wij}) .The extension to directed
networks is simply obtained by the substitutions

w±

i → w
±,in
i =

∑

k

wki , (19)

w±

j → w
±,out
j =

∑

k

wjk . (20)

We now turn to an example of community structure
detection using our method in a specific social network.
We deal with the spatial distribution of retail activities
in the city of Lyon, thanks to data obtained at the Lyon’s
Commerce Chamber [29]. We have shown in [14] how to
transform data on locations into a matrix of correlated
data, in this case of attractions/repulsions (i.e. positive
and negative links) between retail activities. To compute
the interaction between activities A and B, the idea is to
compare the concentrations of B stores in the neighbor-
hood of A stores to a reference concentration obtained by
locating the B stores randomly. To compute the random
reference, the idea [24] is to locate the B stores on the ar-
ray of all existing store sites. This is the best way to take
into account automatically the geographical peculiarities
of each town. The logarithm of the ratio of the actual
concentration to the reference concentration gives the in-
teraction coefficient, which is positive for attractions and
negative for repulsions, as anticipated.

More precisely, the (self) interaction of NA A stores
embedded in a larger set of Nt locations is

aAA(r) = log10

Nt − 1

NA(NA − 1)

NA
∑

i=1

NA(Ai)

Nt(Ai)
, (21)

where NA(Ai) and Nt(Ai) represent the number of A
stores and the total number of stores in the neighborhood
of store Ai, i.e. locations at a distance smaller than r.
Similarly, the coefficient characterizing the spatial distri-
bution of the Bi around the Ai is

aAB(r) = log10

Nt − NA

NANB

NA
∑

i=1

NB(Ai)

Nt(Ai) − NA(Ai)
, (22)

TABLE I: Comparison between the different partitions and
the Lyon Chamber of Commerce classification.

original modularity new modularity

Rand Index 0.6168 0.6952

Jaccard Index 0.1336 0.1426

NMI 0.1458 0.2310

where NA(Ai), NB(Ai) and Nt(Ai) are respectively the
A, B and total number of locations in the neighbour-
hood of point Ai (not counting Ai). Both aAA and aAB

are defined so that they take value 0 when there are
no spatial correlations. In the case of the aAB coeffi-
cient, this means that the local B spatial concentration
is not perturbed, on average, by the presence of A stores,
and is equal to the average concentration over the whole
town, NB

Nt−NA
. Only coefficients which deviate signifi-

cantly from 0, using a Montecarlo sampling, are taken
into account in the adjacency matrix.

We analyze the community structure of the resulting
network using the modularity defined in Eq. (18). The
optimization method used is Tabu search [9] that for this
case gave the highest modularity when compared to oth-
ers [25]. We perform a comparison between the different
partitions obtained optimizing Eq. (1) (4 communities)
and Eq. (18) (6 communities), against the Lyon’s Com-
merce Chamber retail activities classification (9 commu-
nities), in terms of the Rand Index [26], Jaccard In-
dex [27], and normalized mutual information (NMI) [28]
(see Table I). All indices show a better performance of
Eq. (18) discriminating the actual communities provided
by the Lyon’s Commerce Chamber.

Once the best partition has been obtained, we ana-
lyze the role of different retail stores within communities
using the z-score [20]. The basic idea consists in to com-
pute the z-score (Z) of the internal strength of each node
with respect to the internal strength of the community
to which is assigned. To be consistent with our approach
along the paper both quantities should be evaluated con-
sistently with the sign of the interactions, and with the
directionality of links, then

Z
±,in/out
i =

w
±,in/out
i − w

±,in/out
int

σ
±,in/out
int

, (23)

where subindices ‘int’ express averages restricted to the
community to which node i belongs; and ‘in/out’ refer to
the direction of links.

Using the z-score we can answer some questions about
the role of nodes in their communities, as for example, for
each community, which are: the most attractive retailers
(max Zin

+ ), the most repulsive retailers (max Zout
− ), the

most attracted retailers (max Zout
+ ), and the most re-

pelled retailers (max Zin
− ). In Table II we show the two

highest results of these z-scores obtained for the largest
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TABLE II: Roles of retailers within communities.

+ atractive + repulsive + attracted + repelled

Gas Station Dairy products Funeral Services Gas Station

Sports facility Cake shop Sports facility Flea market

community found (containing 33 retail stores). It is very
significant the situation found for gas stations, the data
tell us that gas retailers tend to have their location close
to the rest of retailers in the community, while retailers do
not want to have a gas station close to them. The case of
sport facilities is also interesting to mention, they tend
to have their location close to the rest of retailers and
at the same time are very welcomed to be close. Dairy
products shops and cake shops, tend to isolate from the
rest of retailers, and Flea markets are repelled by the re-
tailers within the community. Curiously, funeral services
are centrally situated in the city and are welcomed by
the retailers of its community.

Summarizing, we have proposed a new formulation of
modularity that allows for the analysis of any complex
network, in general with links directed, weighted, signed
and with self-loops, preserving the original probabilistic
semantics of modularity. With this definition one can af-
ford the analysis of networks coming from correlated data
without the necessity to symmetrize the network, or skip-
ping auto-correlation, or considering the unsigned value
of the correlations. We have analyzed within the scope
of the new modularity an interesting model of attraction-
repulsion of retail stores in a large city, previously re-
ported in [14]. The results overcome those obtained using
the original definition of modularity when compared to
the Lyon Chamber of Commerce classification, and also
point out the necessity of defining new roles of nodes
based on directionality and sign of the weights of links,
as we have proposed for the z-score.

Note added.After this work was finished, the authors
became aware of a recent preprint [? ] of h?1T were
reported. In the constituent quark model [91] and in the
covariant model [93] the relation Eq. (36) was found to be
satisfied, see Refs. [99,100]. In a variant of the spectator
model it was found invalid [101]. It would be interesting
to formulate the general conditions a quark model must
satisfy such that the relation (36) holds.
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