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Influence of the Distribution Function on 

Eigenoscillations and Stability of a Beam 

Ingo Hofmann* 

Lawrence Berkeley Laboratory,University of California 

Berkeley,California 

Abstract 

HI-FAN-79 

Eigenfrequencies are calculated for the transverse oscillations 

of ~l round beam radially confined in a solenoidal magnetic field. 

Under the asurnption of a linear restoring force in the equilibr

ium beam, with partial or total neutralization by an immobile 
' 

background charge, the influence of different distribution func-

tions on stability is investigated. It is found that the well

known extended instabilities of a microcanonical (Kapchinskij

Vladimirsky) distribution are replaced by apparently insignific

cant patches of instability if the distribution function is 

broadened, hence the loss-cone partially filled up. The water-

bag distribution indicates transition to only stable eigenfre

~cies and it is found that this transition is accompanied by 

suppression of negative energy oscillations, which are responsible 

for the instabilities of loss-cone or non-monotonically decreasing 

distributions. T~ method employed consists of infinite series 

expansion for the eigenfunctions and approximating the infinite 

determinant dispersion relation by rapidly converging finite order 

sub-determinants. 

*on leave from Max-Planck-Institut fUr Plasmaphysik 
8046 Garching, Fed.Rep.of Germany 



I. Introduction 

Stability of a plasma contained in an external potent~al well has 

been investigated in a variety of models and approximations in 

the e.ttempt to meet requirements posed by different experimental 

situations. Such situations may occur in electrostatic or magnet

ic confinement schemes and also in connection with electron or 

ion beams fo?ussed by a solenoidal magnetic field.· In the latter 

case opposite' charges are often absent and one may speak of a 

non-neutral plasma if the beam intensity is sufficiently close to

the space charge limit (assuming non-relativistic flow} to make 

collective effects dominate over single particle effects. In view 

of the recent interest in Heavy Ion Fusion stability of intense 

ion beams has received·increased attention 1 >. If such a beam is 

launched from a shielded cathode and drifting along a solenoidal 

magnetic field there is a mean rotation with the Larmor frequency 

or half the cyclotron frequency 

( 1) 
1 1, eB

0 
wL = we = 

2 2 M•C 

In a frame moving with the drift velocity of the ions and rotating 

with wL the uniform sol~noidal field is equivalent to a linearly 

varying radial electric field which gives rise to a harmonic. po-

tential well. The Hamiltonian in the Larmer frame is then 

1 M 2 
2 2 we 2 (r2) (2} H = (pr + Pe> + r + v sp.ch. 0 2M 2 4 

where V is the space charge induced potential if the beam 
sp.ch. • 

is non-neutral in equilibrium. The question arises whet:her a given 

equilibrium distribution f (H ) is stable, or how the choice of 
0 0 

f affects the stability properties . 
. 0 

The above defined problem of Vlasov stability of a charge dis

tribution in four-dimensional phase space is of rather general 

interest. For monotonic decreasing distributions f it is possible 
0 

to prove stability on the basis of the Newcomb-Gardner theorem 2,3 ) • 

. ~~ile f
0

' < 0 is a sufficient stability condition for a neutral 

or a non-neutral case, the theorem does not permit any conclusion 

if the distribution is non-monotonic. In this case one has to in-

-•' 



vestigate the spectrum of eigenoscillations. This problem was 

solved in connection with the stability of proton beams 4 >, 
assuming a rnicrocanonic or Kapchinskij-Vladimirsky (K-V) dis

tribution, f rv o(H -E), which results in a uniform unper-o 0 0 

turbed density and an unperturbed Hamiltonian 

1 
(3) 

2 2 N 2 2 
(pr + p 8 ) + - v r 

2l-l 2 

with the space charge depressed radial "tune" 

2 w 
(4) v 2 = v~ - _E 

2 

2 2 
and v

0 
= wc/4 and the 

While the ex~stence of 

0 < 2 < 2 t b'l't = v = v
0

, s a 1 1 y 

(5) 
w2 
_£ < 11.5 
v2 

plasma frequency defined by fJl
2 = 41Tn e 2 /l·1. p 0 

an equilibrium reouires 0 ~ ~2 ~ w2/2 or 
~ - p - c 

imposes the more stringent condition 

and the tune depression is limited to v/v
0 

> 0.385. With an 

inunobile neutralizing background of opposite charges the eigen

oscillations of the K-V beam are unchanged and condition (5) is 

replaced by w2;v2 = 4 w2;w2 < 11.5~ p 0 p c 

It is clear that the unstable pscillations of a K-V beam are 

velocity space instabilities, which are absent in a macroscopic 

fluid model. One may suspect that the loss cone nature of the 

K-V distribution is.responsible for these instabilities and the 

question arises how the eigenfrequency pattern changes if the 

distribution is broadened and the loss cone partially filled up • 

. The problem of hdW to determine eigenfrequencies of a non K-V 

beam is complicated by the following circtimstances: 

(a) The beam is of finite tra~sverse extent, c_omparable with the 

maximum gyroradius, as opposed to an extended plasma with 

physical dimension much larger than a gyroradius. In the 

latter case it is possible, for sufficiently short wave-

·lengths, to· adopt a uniform (neutralized) plasma model and 

use plane waves as electric field perturbations. The re

sulting problem of cyclotron harmonic waves has been in

vestigated by different authors s,G) who found that a 

. 
. i 

' 



o-function distribution o(~ -a~) was unstable beyond a 

threshold w2/w 2 ~ 7.3 (for comparison the threshold is 
2 2 p c . 

w /w ~ 11. 5/4 ~ 2. 88 for a neutral c-function beam) , p c 
while broadened distributions could have higher thresholds 

or be stable at all. For the beam case the strong spatial 

inhomogeneity requires infinite series expansion for the 

electric field perturbations. Since we know that for a 

K-V beam the eigensolutions can be expressed in terms of 

hypergeometric functions 4 >, we may use these as a con

venient basis set for our expansion and obtain an infinite 

system of linear equations for the expansion coefficients. 

The eigenfrequencies then result from the roots of the de

terminant of the system. 

(b) An additional difficulty arises if there is no neutralizing 

background, in which case the unperturbed space charge po

tential in (2) is non-quadratic {except for a K-V beam) and 

we obtain anharmonic zero-order orbits which prohibit 

straight forward integration of the Vlasov equation along 

zero-order orbits. 

It is the purpose of this paper to study the effect on eigen

frequencies of a broadening of the distribution function and 

solve the problem described under {a}. Such a broadening is the 

main stabilizing mechanism, because it reduces the strong positive 

slope of the radial velocity distribution, which acts as source 

of energy for the K-V beam instabilities. Since we are unable to 

deal with the difficulty in (b) our results pertain in a strict 

sense to either 

1. a beam plasma with immobile neutralizing background in 

(6) 

• 
which case de-scaling of the numerical results expressed 

in the dimensionless intensity parameter 1/R{O ~ 1/R < ~> 

requires, through use of an averaged plasma frequency wp, 

1=~-2~ 
R 



2. an unneutralized beam where only the nonlinear part of the 

unperturbed space charge f6rce due to the non K-V distribu

tion has been cancelled by fictitious sources. De-scaling 

requires 

1 
(7} 

R 

w 
=~ 

There is some evidence, however, that the nonlinear part in the 

zero order space charge force and the resulting spread in v can 

act as a source for Landau damping and thus provide for additional 

stabilization. Hence, taking the full space charge force the dis

tributions studied here are likely to be more stable rather than 

more unstable, if we apply the above de-scaling with averaged w 
p 

and v. 

We proceed, in section II, with a presentation of the basic equa

tions within the Vlasov framework and, in section III, with the 

series expansion that results in an infinite determinant as dis

persion relation. We limit the analysis on azimuthally symmetric 

modes, because they were the only unstable modes found for a 

K-V beam. In section IV we shall present eigenfrequencies for the 

following distributions: (A)I a K-V distribution (derived else

where 4 ,?)); (B), a broadened non-monotonic distribution; (C), a 

water-bag distribution, which is uniform in four dimensional 

phase space and (D), a center-peaked monotonic distribution. The 

results will be discussed in section V in terms of coupling of 

positive and negative energy oscillations induced by the positive 

slope of the distribution function. 

We remark that in the existing literature eigenfrequencies of 
' bounded charge distributions have been calculated for 1:he K-V 

beam in two dimensions, while several distributions have been 

ex~~ined in one dimension: a water-bag model s,g), a Gaussean 

distribution 1 ~>. and the one~dimensional analogue to the KV-dis-

! • 
l 

' :· 
; . 
' ~ ., 
i. 
! 
I 

' 

tribution with uniform density in the unperturbed beam 11 > 1 



II. Basic Equations 

For the unperturbed beam in.the Larmor fram~ we employ the 

quadratic Hamiltonian from Eq.(3) with r-1 = 1 and adopt an 

arbi t:rary zero order distribution which we write as super

position of a continuum of K-V beams with radius a 

(8) f (H ) = 
0 0 

and average beam radius 

(9) <a2> = Jg(a2 ) a 2 da2 

With Jg(a2 ) da2 = 1 the energy distribution g(a2} is given by 

<a2>n2v2 fo (v22a2)· 
( 10) g = 

N 

F~r azimuthally symmetric electrostatic p·erturbations the 

linearized Vlasov equation can be written as 

df1 
( 11 ) 

dz 
= 

2 . 
w av J 2 2 

P 2 Pr-- g(a ) o' da 
2en ar 

with z the longitudinal coordinate z 

and Poisson's equation 

1 a 
( 12) (r V) = 

r ar ar 

2 = v • t and wp _ 

We integrate Eq.(11) along zero-order orbits, which we con

veniently expres~ in angle-amplitude variables ~, A and the 

canonical angular ~omentum P8 

2 
r 

(13) d<p 

dz 

A2 A4 . P 2 1/2 

[ e] . . 
= 2 + ~ - v2 s~n tP 

= 2v 

and obtain, for f 
1 

I'V eiwz, a perturbed density 

.. -~ 



2 

n1 (r) =- 2::2 Jg(a2) [JJo• [v2(A2-a2)] (1-e-iwvn)-1· 

(14) 2n 

J ei¥v [ ~~L<:> du dpr dp6 ] da
2 

0 

2 2 If we take g(a} = o(a -1) the problem is reduced to that of a 

K-V beam as treated in Ref.4. Eqs. (12), (14} then have eigen-. . . 
functions that can be expressed in terms of hypergeometric fun

tions. For azimuthally symmetric modes we obtain specifically 

2 2 . 2 . 
(15) Vj (r) = a (r -1) [Pj (1-2r ) + Pj-_1(1-2r ) 1 

with P. Legendre polynomials and a the step function. The eigen
J 

value w is found to satisfy the following dispersion relation 4 ,?) 
2 

w ( w. 
(16) 1 = _£ N. --) 

v 2 J\2v 

where N. (s) 
. J 

are the following polynomials: 

1 1 

[s2-1] 

' 

N1 = (envelope oscillation) 
4 
1 ( 4 3 . 

N2 = [1-s
2 
-- - --)l ("fourth 

\ 2 2 
( 17) 32 s -1 s -4 

1 ( 3 6 5 . 
N3 = [s2 -- - + __ \ - 21 2 2 2 

96 s -1 s -4 s -9} 
1. 2( 24 20 40 

N4 = [9-s \-2- - -2-· + --2 1024 s -1 s -4 s -9 

III. Expansion of Eigenfunctions 

order", nonuniform) 

("sixth order" ,nonunifODn) 

35 . 

2 )1 etc. 
s -16 

J 

For general g(a2 ) with g(a2 ) = 0 for a2 > 1 we can expand the 

eigenfunctions as infinite series 

Cl) 

(18) V(r) = I: E;. [P.(1-2r2 ) + P. 1 (1-2r2 )J 
j=1 J . J J-

which satisfies., term by term, the correct boundary condition 

V' (r) = 0 for r > 1. The momentum integration in (14) can be 



done most elegantly if we expand (18) in terms of the solutions 

for a K-V beam with boundary at r = a and then use the same pro

cedure as for the K-V beam problem, where the addition theorem 

for Legendre polynomials can be applied. Hence, we take 

co co - 2 2 
2 r r (19) V(r) = I: ~. I: a . (a ) [P (1-22)+P 1 (1-22 )] 

j=1 J m=1 m, J m a m- a 

With (12), (14) we obtain the following equation 

2 
co co co 2 2 w co 

I: ~· j[P.(1-2r )-P. (1-2r )] = -E I: I: I: ~· m • 
j=1 J J J-1 - v 2 j=1 m=1 n=1 - J 

(20) 1 

• N (\~\)·[P (1-2r2 )-P 1 C1-2r2)l·Jg(a2)a .{a2 )ii (a2 )•da2 
m 2v n n- . m,J n,m 

- 0 -

with the coefficients a defined by the expansion n,m 

r 2 r 2 
co 

(21) S(r-a) [Pm(1-22)-Pm_1 (1-22) ]= I: iin,m[P (1-2r2 )-P 1 (1-2r2)] 
a a n=m n n-

Using the orthogonality properties of Legendre polynomials we can 

convert (20) into an infinite system of linear equations 

co 

I: ~J· • SJ.i = 0 (i = 1,2 ••• ) 
j=1 

(22) 2 1 
w co (w' I 2 - 2- 2 2 

sji- ~ m!1 mNm 2v) g{a )amj(a )anm(a )da - 1 • oji 
0 

and the eigenvalue w is determined by det{Sji} = 0 

IV. Numerical Evaluation of the Dispersion Relation 

The functions a, a can be determined from Eqs. (19), {21) with 

the help of the orthogonality properties of Legendre polynomials. 

If g(a2 )=o(a2-1),we use a .(1):ii .(1):omJ· and {S.n} is diagonal-. rnJ mJ J~ 

ized with Eq. {16) as dispersion relatiC?n. Another special case 

arises for the water-bag distribution g(a2) : 6(a2-1) in which 

case {Sji} is symmetric and Sji = 0 for lj-il > 1. 



.. 

Approximate solutions of the system (22) can be obtained by 

replacing the infinite determinant by a finite sub~determinant 

(1 ~ j,£ ~ T). We found rapid convergence if g(a2) was suf

ficiently smooth within 0 < a 2 
< 1, for instance a low order 

polynomial. Increasing T by 1 allows for new eigerunodes with 

one additional zero of the eigensolution dV(r)/dr in 0 < r < 1. 

In the subsequent·examples we present the eigerunodes with zero, 

one arid two zeroes which originate from matrices with rarik 

T = 1, 2, 3. In some cases we have also calculated higher order 

modes to show their coupling with the lower order modes. We· had 

·excellent convergence, for these modes, if we went as far as 

T = 5. Clearly, one would have to go to larger T if g(a2) had 

rapid variations in 0 < a 2 < 1, and convergence would presumably 

break down if there were any discontinuities in 0 < a 2 < l. 

In order to apply results to either case 1 or 2 (see Introduction) 

we use the dimensionless intensity parameter 1/R2 defined accord

ing to Eqs.(6) or (7) and express eigenvalues in terms of a as 

given by 

w 1 2v
0 

case 

(23) { a -
w 

2v case 2 

For zero intensity, 1/R2 = O, the eigenvalues are simply harmon

ics of the cyclotron frequency, i.e. a= 1, 2, 3 ••• The degen

eracy at these values is removed for finite intensity. We denote 

the modes by w. rsp. a. , where j - 1 stands for the number of 
Jn Jn 

zeroes of the corresponding dV(r)jdr _in 0 < r < 1 and n = 1 ••• j 

gives the harmonic of the cyclotron frequency in the limit 

1/R2 ~ 0. The foliowing distribution functions g(a2 ),defined in 

0 :S.· a 2 
:S. 1, have been investigated in more details (see Fig.1): 

(A) K-V distribution, g ~ 5(a2-1), (Fig.2) 

For completeness we present the results for the modes j = 1, 2, 3 

which were calculated by other authors (see ref.?). The most 
2 striking feature is, for 1/R ~ 11.5, the onset of an extended 

instability as a result of a confluence between the eigenvalues 

w31 and w32 belonging to the same electric field perturbation. 

I 
l 
; 

! ' 

I 
I 

I 
I 
I 
I 
t 
I 

i 
! 

' ·• 
' I 



The instability persists for 1/R ~ co with consider~le growth 

rate (Im a). The w21 branch gets unstable, with w~ 1 < 0, for 

1/.R2 > 32. For j > 3 there is a similar confluent instability 

between w. . 1 , wJ. ·. 
2 

and w. . 3 , w . . 4 etc., while for even ),)- ,]- ),)- ),J-
j the lowest frequency branch w. 

1 
can become unstable through 

w~, 1 < 0. The limitation 1/R2 ~)~1.5 or v/~0 ~ 0.39 is suf

ficient to avoid all of these instabilities. 

(B) Broadened loss-cone distribution, g: 6(a4 ;a6 ), (Fig.3) · 

With a partially filled loss-cone there are still instabilities, 

yet of different origin and with substantially reduced growth 

rates. For the modes with n < j the~e is now a much weaker de

pendence of a on 1/R and the previously observed confluences or 

~~ 
1 

< 0 cases are no longer found. There is, instead,· the 
J , 

possibility of confluence between the mod~s w11 with w32 or w
43 

etc. and similar for w22 , w
33 

etc. This coupling of modes to 

different j-values is characteristic for non K-V distributions 

for \-lhich the electric field perturbation to. a given frequency 

branch is no longer independent of intensity as in case {A). 

(C) Water-bag distribution, g: 1, (Fig.4) 

No instabilities have been found for this case of a uniformly 

filled phase space volume. We note that th~ branches .w21 , w32 , 

w43 , which were involved in instabilities in the previous cases 

are not found here. There are, instead, only branches for which 

a. is increasing monotonically with increasing intensity. 
J ,n 

(D) Mon6tonic decreasing function, g : ~ - a 4 , (Fig.S) 

Again no instabiiities and only·rnonotonically increasing cr. . J,n 
For completeness we note that the branches w21 , w32 w4 :l etc. 

(absent in (C)) are now al-so monotonically increasing, contrary· 

to (A) , (B) . 

i 
"I 
I 

' i 
' t-
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v. Conclusion 

Comparing results for different distribution functions we rec

ognize peculiarities of the eigenrnodes of the K-V distribution. 

While the unperturbed K-V beam has uniform density up to a sharp 

bound~ry, the round eigen oscillations are charac~erized by 

electric field perturbations which we write in terms of Legendre 

polynomials and which we label by an integer j, where j-1 gives 

the number of radial zeroes in the interior of the beam. A second 

integer n with n = 1 •.• j indicates the harmonic of the cyclotron 

frequency at the zero intensity limit. We now observe that for 

j > 1 instability is connected with the occurrence of modes for 

which the normalized frequency a. is decreasing with increasing 
)n 

intensity. One can show on the basis of the small signal energy 

of quasimonochromatic oscillations {see Ref.13) that a total en

ergy density can be associated with this oscillation according 

to 

1 d 
[we:(j,w)] 'E1 (24) u = 

81r dw 

where e:(j,w) is the dielectric response function, the zeroes of 

which give the eigen frequencies. From Eq.(16) or {22) one can 

see that the sign of de:/dw is given by the sign of dcr/d(1/R2), hence 

decreasing a corresponds to negative signal energy. Coupling of 

positive and negative energy oscillations (for example w
31 

and 

w
32

> O{)ens the possibility of growing modes leaving the total

energy content of the beam unchanged. 

For non K-V distributions the electric field eigen solutions are 

represented as infinite series of Legendre polynomials and trun

cation of the series is justified by the strong convergence for 

smooth distribution functions. Eigenmodes are again labelled by 

j, n as in the K-V case, though we find that the electric field 

perturbation of a given branch is no longer independent of inten

sity and coupling may occur now among modes belonging to differ

ent j. The broadened loss-cone distribution still has negative 

energy oscillations (w
21

, w32 , w43 etc.) but with considerably 



. ,, 

weaker depression of a by intensity. Instability therefore only 

arises if these modes coup1e with the positive energy oscilla-

tions w22 , w
33 

etc., 

they are approaching 

pling possibility is 

which we consider plasma oscillations since 

w for.1/R ~~.Though this additional cou
p 

a new feature of the broadened distribution 

it appears harmless since growth is restricted to very short 

patches of instability with growth rates L~at are by an order of 

magnitude smaller than in the K-V case. We conclude that broad

ening of the K-V distribution suffices to obtain a practically 

stable situation. 

The water-bag distribution is marginal in the sense that the 

mo~es with negative energy of the previous cases no longer exist. 

They turn out to be positive energy modes for the monotonic de

creasing distribution, with crjn very close to n hence very small 

coherent frequency shift. It is the complete absence of negative 

energy-modes which causes stability of distributions without loss

cone, i.e. ·distributions without energy inversion. This is in 

agreement with the stability of monotonic decreasing distr.ibution 

functions as concluded frorn the theorem of Newcomb-Gardner, which 

can be applied to situations with or without neutralizing back

ground. 
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Figure Captions · 

Fig. 1 

Energy,Distribution profiles investigated subsequently 

Fig.2 

Plot of normalized mode frequencies ajn against intensity para

meter 1/R for j = 1, 2, 3 and K-V distribution (A). The modes 

for j > 3 have been dropped; they lead to similar unstable 

situations. 

Fig.3 

Normalized mode frequencies a. against 1/R for j = 1, 2, 3 and 
Jn 

interaction ~ith higher order modes_w42 , w43 , w53 in case of a 

broadened loss-cone distribution (B). 

Fig.4 

Normalized frequencies a. against 1/R for j = 1, 2, 3 and 
Jn 

(stable) interaction with w42 , w53 in case of a water-bag dis-

tribution {C). 

Fig.S 

Normalized frequencies a. against 1/R for j = 1, 2, 3 and 
' Jn 

(stable) interaction with w42 , w
53 

in case of a monotonic 

decreasing distribution {D); the branches w21 and w32 almost 

coincide with the lines n = 1 rsp. 2 and have been dropped. 
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?~q.2 Plot of normalized mode freque~cies crjn against intensity para

meter.1/R for j = 1, 2, 3 and K-V distribution (A). The modes 

for j > 3 have been dropped; they lead to similar unstable 

situations~ 
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Fig.4 
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)n 
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tribution (C). 
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Jn 
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decreasing distribution (D); the branches w21 and·w almost 32 
coincide with the lines n = 1 rsp. 2 and have been dropped. 
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