UC Davis UC Davis Previously Published Works

Title

Modeling Ammonia and Its Uptake by Secondary Organic Aerosol Over China

Permalink https://escholarship.org/uc/item/2413d0kz

Journal Journal of Geophysical Research: Atmospheres, 126(7)

ISSN 2169-897X

Authors

Wu, Kai Zhu, Shupeng Liu, Yiming <u>et al.</u>

Publication Date 2021-04-16

DOI

10.1029/2020jd034109

Peer reviewed

1	Modeling Ammonia and Its Uptake by Secondary Organic Aerosol over China
2	Kai Wu ^{1,2} , Shupeng Zhu ^{2,3*} , Yiming Liu ^{4,5} , Haolin Wang ^{4,5} , Xianyu Yang ⁶ , Lei Liu ⁷ , Donald
3	Dabdub ³ , Christopher D. Cappa ^{8*}
4	¹ Department of Land Air and Water Resources University of California Davis CA USA
5	² Advanced Power and Energy Program, University of California, Irvine, CA, USA,
6 7	³ Computational Environmental Sciences Laboratory, Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA.
8	⁴ School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong, China
9 10 11 12	⁵ Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
13 14	⁶ Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, China.
15	⁷ College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China.
16	⁸ Department of Civil and Environmental Engineering, University of California, Davis, CA, USA
17	Corresponding author: S. Zhu (sz@apep.uci.edu), C. D. Cappa (cdcappa@ucdavis.edu)
18	Key Points:
19 20	(I) Impacts of ammonia uptake mechanism on particle matters over China are presented and analyzed.
21 22	(II) The reduction of gas-phase NH ₃ engenders a decrease of ammonium nitrate but has little impact on the ammonium sulfate concentration.
23	(III) The inclusion of ammonia uptake mechanism shows moderate changes in aerosol acidity

24 and small effects on SOA formation.

25 Abstract

26 Atmospheric ammonia (NH₃) can affect nitrogen deposition, particle acidity, and gas-particle 27 partitioning. Although the inorganic chemistry of NH₃ in fine particulate (PM_{2.5}) formation are 28 well-constrained, the understanding of interactions between NH₃ and secondary organic aerosol 29 (SOA) are rather insufficient until recently. Laboratory studies indicate that NH₃ molecule can 30 react with SOA then forms nitrogen-containing organic compounds (NOCs), which can further 31 react to form heterocyclic organic compounds. In this study, we use a modified version of the 32 CMAQ model to simulate the potential importance of the SOA-ammonia uptake mechanism on 33 air quality over China in summer and winter 2017, considering a range of assumed NH₃ uptake 34 coefficients (10⁻³-10⁻⁵). Our results show that uptake of NH₃ by SOA leads to a decrease in gasphase NH₃ mixing ratio, by as much as 27.5% and 19.0% for the highest uptake coefficient 35 36 scenario (10^{-3}) in summer and winter, respectively. The largest reduction of ammonia occurs 37 over the Sichuan Basin and the North China Plain. The reduction of gas-phase NH₃ engenders a 38 decrease of ammonium nitrate, by up to 30%, but has little impact on the ammonium sulfate 39 concentration. Uptake of NH₃ does not significantly affect SOA concentrations owing to overall 40 moderate changes in aerosol acidity, and thus small effects on SOA formation from isoprene. 41 Altogether, NH₃ uptake led to a reduction in the average PM_{2.5} concentration up to 8.9% and 42 8.7% for the highest uptake coefficient (10^{-3}) in summer and winter, respectively. These results highlight the need for better constraints on the NH₃-SOA interactions. 43 44 Index terms and keywords: ammonia uptake, particle matter, heterogeneous chemistry, SOA,

45 CMAQ

46 **1 Introduction**

47 As the most abundant alkaline gas in the atmosphere, ammonia (NH₃) plays an important 48 role in atmospheric chemistry (Behera et al., 2013; Heald et al., 2012). According to L. Zhu et al. 49 (2015), NH₃ emissions from anthropogenic sources have become a major environmental concern 50 around the world. Ammonia affects air quality and regional climate change through its role in the 51 formation and composition of tropospheric aerosols (Reiss et al., 2007). The aerosol-phase 52 products of NH₃, including ammonium nitrate and ammonium sulfate, make up a large fraction 53 of fine particulate matter (Jimenez et al., 2009). Moreover, ammonia also influences aerosol pH 54 and total reactive nitrogen deposition (Guo et al., 2018; Li et al., 2016; Weber et al., 2016).

55 Fertilizer applications associated with agricultural activities and livestock operations are 56 the major sources of NH₃ emissions to the atmosphere. NH₃ emissions in China have nearly 57 reached 10.0 million tons annually owing to the recent ramp-up of intensive agricultural 58 activities and livestock operations, significantly exceeding the NH₃ emissions in the European 59 Union (3.7 million tons) and the United States (3.9 million tons) (Paulot et al., 2014; L. Zhang et 60 al., 2018). Recent studies have suggested that the atmospheric NH₃ concentrations in China has 61 increased significantly between 2008 and 2016 based on satellite and surface NH3 observations 62 (S. Chen et al., 2020; L. Liu et al., 2017). Furthermore, the ammonia-rich environment in China 63 is expected to continue since the emissions of its primary neutralizer (SO₂ and NO_x) has been 64 dropping rapidly due to more stringent regulation in recent years, while the NH₃ emissions have 65 not been regulated by the Chinese government (Pan et al., 2018).

Sulfate (SO₄²⁻), nitrate (NO₃⁻) and ammonium (NH₄⁺) are the main secondary inorganic 66 67 aerosol (SIA) components in particulate matter (PM), mainly existing in forms as ammonium 68 sulfate and ammonium nitrate. In the presence of HNO3 and H2SO4, NH3 is first neutralized by 69 the stronger acid H_2SO_4 to form ammonium sulfate ((NH₄)₂SO₄) or ammonium bisulfate 70 (NH₄HSO₄) in particulate phase (Baek et al., 2004). The remaining NH₃ reacts with HNO₃ to 71 form NH4NO3 in particulate phase (Walters et al., 2019). The formation of ammonium nitrate 72 and ammonium sulfate in the atmosphere are reasonably well understood. In contrast, the role of 73 NH₃ on the formation, chemical composition, and optical properties of organic aerosol, and 74 especially secondary organic aerosol, is poorly established and has received little attention in air 75 quality models. However, laboratory evidence has emerged in recent years offering new clues for 76 understanding the interactions between NH₃ and SOA. Montoya-Aguilera et al. (2018) 77 summarized laboratory findings of how ammonia can affect SOA formation and properties. In 78 general, ammonia can react with SOA compounds heterogeneously via two chemical pathways. 79 It can react with organic acids to form ammonium salts or react with certain carbonyl compounds 80 to form heterocyclic nitrogen-containing organic compounds (NOCs). In addition, observations 81 suggest that ammonia actively participates in SOA formation and leads to chemical compounds 82 in SOA that have unique optical properties (Updyke et al., 2012). While these processes remain 83 uncertain, it is nonetheless important to assess the potential influence of ammonia-SOA 84 interactions on atmospheric SOA, SIA, and ammonia concentrations. Focusing on the United 85 States, S. Zhu et al. (2018) included heterogeneous NH₃ uptake by SOA in an air quality model.

86 Their results suggest that ammonia uptake may substantially decrease atmospheric ammonia

87 concentrations, thus indirectly decreasing the formation of SIA, and also increase SOA

88 concentrations. However, to our knowledge, there has been no consideration of ammonia-SOA

89 interactions in other locations. Given the large NH₃ emissions in China, coupled with the

90 substantial reduction of SO₂ and NO_x emissions since 2011, ammonia-SOA interactions may

91 play an important role in determining air quality over China.

92 In this study, we consider the impact of heterogeneous ammonia uptake onto SOA on 93 surface-level atmospheric NH3 mixing ratio, SOA, SIA, and PM2.5 concentrations over mainland 94 China using the U.S. EPA Community Multiscale Air Quality (CMAQ) model (Byun & Schere, 95 2006). We used the framework developed by S. Zhu et al. (2018), which treats ammonia uptake 96 onto SOA as an irreversible first-order loss process, and consider the importance of this process 97 as a function of the assumed reactive uptake coefficient. The objective of this study is to 98 understand how the inclusion of irreversible NH3 uptake to SOA affects SOA and SIA 99 concentrations and aerosol acidity in China. Section 2 introduces the updated ammonia uptake 100 module and configuration of model simulations. Section 3 presents the model performance 101 evaluation against surface observations. The simulation results under different uptake coefficient 102 scenarios are analyzed in Section 4.

103 2 Methodology

104 2.1 WRF-CMAQ model

105 In this study, there are eight simulation cases conducted including the base case for the 106 winter (29 December, 2016 to 28 February, 2017), the base case for the summer (28 June, 2017) 107 to 31 August 2017), and three cases under different NH₃ uptake coefficients for each season. To 108 minimize initial-condition influence, the first 3 days in all cases were treated as spin up time and 109 were not analyzed in this study. Meteorological fields are simulated by the Weather Research 110 and Forecasting (WRFv3.9.1) model (Skamarock et al., 2008). The model domain covers the 111 whole of China with horizontal resolution of 27 km, as shown in Figure 1. Model configurations for the WRF-CMAQ modeling system are summarized in Table 1 and the provinces in China 112 113 categorized by different regions are shown in Table 2 and Figure S1. The initial and boundary 114 conditions for the WRF simulation were obtained from the National Centers for Environmental

- 115 Prediction (NCEP) Final (FNL) $1.0^{\circ} \times 1.0^{\circ}$ reanalysis data
- 116 (http://dss.ucar.edu/datasets/ds083.2/). CMAQ v5.2 was used to simulate air pollutants. The
- 117 initial and boundary conditions for the CMAQ simulations were taken from default CMAQ
- 118 profiles provided with the northern hemispheric CMAQ results. The Carbon-Bond chemical
- reaction mechanism (CB06) and a modified version of the Aerosol 06 (AERO6) mechanism, to
- 120 account for NH₃ uptake, were applied in the CMAQ model. We used the Multi-resolution
- 121 Emission Inventory for China (MEIC, available at <u>http://meicmodel.org/</u>, last accessed:14th
- 122 Febrary, 2021) in 2016 to provide the anthropogenic emissions of air pollutants, with a grid
- resolution of $0.25^{\circ} \times 0.25^{\circ}$ (Zheng et al., 2018). The biogenic emissions are estimated by Model
- 124 of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.1 (Guenther et al., 2012).

125 In this study, the AERO6 module in CMAQ was modified to include the process of 126 heterogeneous uptake of NH₃ by SOA. In AERO6, particles are divided into three log-normal 127 modes based on their size distributions: the Aitken mode ($<0.1 \mu m$), the accumulation mode (0.1 128 to 2.5 µm), and the coarse mode (size between 2.5 to 10 µm) (Binkowski & Roselle, 2003). The 129 particles are assumed to be internally mixed in each mode. In the CMAQ AERO6 module, three 130 integral properties of the size distribution are calculated for mode *j*: the total particle number 131 concentration (N_i) , the total surface area concentration (S_i) , and the total mass concentration (m_{ij}) 132 of each individual chemical component *i*. The surface area concentration of SOA (S_{SOA}) can be 133 formulated by equation (1) (we assume a uniform density across different chemical components 134 and don't consider the SOA hygroscopic growth in model simulations):

$$S_{SOA} = \sum_{j=1}^{x} \left(S_j \times \frac{\sum_{i=1}^{y} m_{ij}}{\sum_{k=1}^{z} m_{ij}} \right)$$
(1)

135

136 In equation (1), x, y, and z represent the total number of modes that contain SOA species, 137 the total number of SOA species in mode j and the total number of aerosol species in mode j, 138 respectively. Because SOA species only exist in the Aitken mode and the accumulation mode, 139 the value of x is setting to 2. Then the first-order rate of NH₃ uptake is calculated by equation 140 (2):

$$k = \gamma \times \frac{v_{NH_3} \times s_{SOA}}{4}$$
(2)

141

142 In equation (2), γ represents the uptake coefficient for ammonia and $v_{\rm NH3}$ represents the average speed of NH₃ molecules under the condition of 298 K. The first-order rate constant of 143 144 NH₃ uptake in each grid cell is calculated by using above equations and then multiplied by the NH₃ concentration to determine the NH₃ taken up by SOA. The parameterization used in this 145 146 study assumed that one NH₃ molecule that reacts with SOA forms nitrogen-containing organic 147 compounds (NOCs), which can further react to form heterocyclic organic compounds with two 148 H₂O molecules as the by-product. The reaction of NH₃ and formation of NOC products generally 149 leads to only small direct changes in the SOA mass concentration given the much larger 150 molecular weight of typical SOA compounds, close to 200 g mol⁻¹, compared to NH₃ (17 g 151 mol⁻¹), and the offsetting loss of two H₂O molecules (The change of SOA mass concentration is $2 \times 18 - 17 = 19$ g mol⁻¹). Thus, we could reasonably neglect the mass loss in the particle 152 organic matters directly due to the implementation of NH3 uptake. However, assuming that the 153 154 aerosols have a single phase for both organic and inorganic constituents, irreversible NH₃ uptake 155 by SOA can indirectly influence the concentration of SIA and the SOA mass concentration by 156 altering the particle acidity, which can be attributed to the change of acid-catalyzed 157 heterogeneous reactions. More details about the parameterization of NH₃ uptake can be found in 158 S. Zhu et al. (2018). The rate of NH₃ uptake to SOA depends on the assumed chemical uptake 159 coefficient (γ) of ammonia by all SOA species, which is not especially well established. Based 160 on chamber experiments, Y. Liu et al. (2015) reported that ammonia uptake coefficients (γ) are with a range of 10⁻⁵ to 10⁻², whereas our initial modeling result for the $\gamma = 10^{-2}$ scenario leads to 161 162 extremely low NH₃ mixing ratio which indicates that unrealistic amount of NH₃ taken up by 163 SOA. Besides, experiments results in Y. Liu et al. (2015) show that less than 10 % of SOA 164 molecules can react with NH₃ to form NOCs and the largest uptake coefficient was observed at 165 the initial time of reactions then significantly decreased. Thus, ammonia uptake coefficients with $\gamma = 10^{-3}$ may be a more reasonable upper limit value for model simulations rather than $\gamma = 10^{-2}$. 166 Based on the discussion above, four simulations were performed for each period to investigate 167 168 the sensitivity of NH₃ removal to changes in the uptake coefficient: (a) base case without NH₃ uptake to SOA, (b) NH₃ uptake coefficient of $\gamma = 10^{-3}$, (c) NH₃ uptake coefficient of $\gamma = 10^{-4}$, and 169 (d) NH₃ uptake coefficient of $\gamma = 10^{-5}$. 170

Figure 1. Map showing the simulation domain.

Table 1. Configuration of the WRF-CMAQ modeling system.

WRF/MCIP				
Version	ARW v3.9.1	Shortwave radiation	RRTMG scheme	
Horizontal	27km × 27 km	Longwave radiation	RRTMG scheme	
resolution		Surface layer physics	Noah LSM scheme	
Vertical layers	30 layers	Microphysics Cumulus	Morrison	
Initial condition		parameterization	Kain-Fritsch scheme	
Boundary condition	NCEP-FNL			
PBL scheme	YSU scheme			
CMAQ				
Version	v5.2	Biogenic Emission	MEGAN v2.1	
Horizontal	Same as WRF	Anthropogenic	MEIC 2016	
resolution		emission		
Initial condition	Default	Aerosol module	AERO06	
Boundary condition	Default	Gas-phase	CB06	
		mechanism		

Region	Province list
North China Plain	Beijing, Hebei, Tianjin
Yangtze River Delta	Zhejiang, Shanghai, Jiangsu
Pearl River Delta	Guangdong
Central China	Shanxi, Henan, Anhui, Hubei, Hunan, Jiangxi
Sichuan Basin	Sichuan, Chongqing
Northeastern China	Jilin, Heilongjiang, Liaoning
Western China	Xinjiang, Qinghai, Ningxia, Tibet, Guizhou

174 **Table 2.** List of the provinces in China categorized by different regions.

175 2.2 Statistical metrics for model evaluation

176 The mean bias (*MB*), normalized mean bias (*NMB*), normalized mean error (*NME*), and

177 root mean square error (RMSE) calculated based on simulation results and observation data, were

178 used to evaluate the CMAQ model performance. The calculations of the MB, NMB, NME and

179 *RMSE* are defined by equations (3) - (6), respectively. The *M* represents the model results, *O*

180 represents the observations, and *N* represents the number of data points.

181
$$MB = \frac{1}{N} \sum_{i=1}^{N} (M_i - O_i)$$
(3)

182
$$NMB = \frac{\sum_{i=1}^{N} (M_i - O_i)}{\sum_{i=1}^{N} O_i} \times 100\%$$
(4)

183
$$NME = \frac{\sum_{i=1}^{N} |M_i - O_i|}{\sum_{i=1}^{N} O_i} \times 100\%$$
(5)

184
$$RMSE = \left[\frac{1}{N}\sum_{i=1}^{N} (M_i - O_i)^2\right]^{\frac{1}{2}}$$
(6)

185

186 **3 Results and discussion**

187 3.1 Evaluation of model performance

188The capability of the WRF model to reproduce meteorological conditions has already

189 been evaluated by comparison with observations at 824 national meteorological sites in China

and it is described in much greater details in Wu et al. (2020). They found that the 2-m

191 temperature and downward shortwave radiation were generally well reproduced by the WRF

model, although both were slightly underestimated likely owing to overestimation of the cloudcoverage.

194 The simulated $PM_{2.5}$ concentrations in all scenarios by CMAQ model were evaluated 195 against observations in 74 cities (536 sites in total) from the national monitoring network 196 operated by the China National Environmental Monitoring Center (CNEMC). The hourly PM_{2.5} 197 mass concentrations are measured using the micro-oscillating balance method and/or the β 198 absorption method (MEE, 2012). Daily average PM_{2.5} values are used to compare the 199 measurements against simulations. The MB, NMB, NME and RMSE are calculated to evaluate 190 the model performance on PM_{2.5} concentration at the monitoring sites, as shown in Table 3.

201 The model results from the base scenario reasonably agree with observed PM_{2.5} concentrations, with MB of 1.7 µg m⁻³ and -5.5 µg m⁻³, NMB of 10.3% and -12.4%, NME of 202 36.8% and 42.0%, and RMSE of 22.3 μ g m⁻³ and 30.1 μ g m⁻³ for summer and winter, 203 204 respectively. The CMAQ model performance in this study compares well with other studies (Hu 205 et al., 2016). The model performance in summer is somewhat better than for the winter, with the 206 model predicted wintertime PM_{2.5} systematically lower than the observations for winter. This 207 seasonal difference may be attributed to allocation bias for emission inventories and challenges 208 in simulating relevant changes in meteorological conditions (B. Zheng et al., 2015). Overall, the 209 base case CMAQ simulation reproduced the seasonally averaged PM_{2.5} concentration 210 successfully and the spatial pattern of simulated PM_{2.5} concentration agrees well with 211 observations over China. However, it should be noted that NH₃ is not the criteria pollutant 212 monitored by the CNEMC network and the NH₃ observations of Ammonia Monitoring Network-213 China (AMoN-China) were not publicly available, thus there was not monitoring data of NH₃ 214 can be used to compare against modeled NH₃ levels by CMAQ simulations. Nonetheless, the 215 MEIC emission inventory for the year of 2016 used in this study was the closest year with 216 updated information on local emission activities and emission factors across China. Extensive 217 studies have been conducted to evaluate the NH₃ emissions in MEIC inventory and those results 218 show excellent agreement with satellite-derived NH3 column and ambient NH3 measurements 219 (Kong et al., 2019; M. Li et al., 2017; L. Zhang et al., 2018; Q. Zhang et al., 2019). Additional

investigation focused on evaluating the modeled NH₃ mixing ratio against observations should
 be considered in future work.

222	When the process of NH ₃ uptake to SOA was included, the simulated PM _{2.5}
223	concentrations decreased in both seasons, with the magnitude of the decrease increasing with the
224	assumed uptake coefficient. For winter, this exacerbated the underestimation of PM _{2.5} , with the
225	NMB changing from -12.4% (base case) to -18.6% ($\gamma = 10^{-3}$). For summer, the simulated PM _{2.5}
226	in base case exceeded the observed value. Consequently, the small overestimation in
227	summertime PM2.5 for the base case decreased with NH3-SOA uptake, with best agreement for
228	the $\gamma = 10^{-4}$ scenario; when $\gamma = 10^{-3}$, the model underestimates the summertime PM _{2.5} . In the
229	sections that follow, the specific factors that control these changes in the total $PM_{2.5}$
230	concentrations are examined.

231 **Table 3.** Comparison between simulation results for PM_{2.5} and observations from the CNEMC

232 monitoring network for seasonal averages. (Obs. stands for observation. Sim. stands for

simulation).

Scenario	Period	Obs.mean	Sim.mean	MB	NMB	NME	RMSE
		µg m⁻³	μg m ⁻³	μg m ⁻³	%	%	µg m⁻³
Base	Summer	28.5	30.2	1.7	10.3	36.8	22.3
$\gamma = 10^{-5}$	Summer	28.5	29.6	1.1	8.7	44.9	18.2
$\gamma = 10^{-4}$	Summer	28.5	28.3	-0.2	-2.8	33.0	15.9
$\gamma = 10^{-3}$	Summer	28.5	26.4	-2.1	-6.4	52.4	36.8
Base	Winter	74.0	68.5	-5.5	-12.4	42.0	30.1
$\gamma = 10^{-5}$	Winter	74.0	67.4	-6.6	-14.9	46.8	33.2
$\gamma = 10^{-4}$	Winter	74.0	66.9	-7.1	-17.1	49.1	36.0
$\gamma = 10^{-3}$	Winter	74.0	63.7	-10.3	-18.6	52.3	42.1

234

3.2 Base case spatial distribution of simulated ammonia mixing ratio

235 There is substantial spatial variability in the simulated NH₃ mixing ratio, and a large 236 difference between summer and winter (Figure 2). In particular, the NH₃ mixing ratio is more 237 than doubled in summer than in winter due to the elevated anthropogenic emissions and higher 238 temperature, which promotes the NH₃ emission from vegetation and fertilized soils (Meng et al., 239 2018). In summer, high NH₃ mixing ratio are observed over southwestern China (the Sichuan 240 Basin) and central China (Hebei, Shandong and Henan provinces), reflecting intensive 241 agricultural activities over these areas. Besides, there are also some NH₃ hotspots in the North 242 China Plain (including Beijing, Tianjin, Hebei, Shandong, eastern Henan and northern Anhui

243 regions). According to national estimation from the Ministry of Ecology and Environment of 244 China (MEE), the fertilizer used in these regions exceeds 30% of the total national consumption 245 (Gu et al., 2015). Additionally, intensive livestock framing also contributes to the high NH₃ 246 mixing ratio in the North China Plain (Bai et al., 2018; Gao et al., 2013). In winter, some highly 247 localized ammonia hotspots pop up in eastern China (See Figure 2b). In addition to the regions in 248 southwestern China and central China, it should be noted that high NH₃ mixing ratio are also 249 observed over northeastern China and, to a lesser extent, the province of Xinjiang in Northwest 250 China in both seasons, likely from animal grazing related emissions. The seasonal variation and 251 location of NH₃ hotspots are consistent with the findings reported by L. Zhang et al. (2018) and 252 Kong et al. (2019), which backs up our emission inventory and simulation results.

Figure 2. Spatial distribution of simulated surface NH₃ mixing ratio (unit: ppb) in the base case
for (a) summer and (b) winter.

256 3.3 Impact of ammonia uptake on gas-phase NH₃ and HNO₃

257 The impact on NH₃ mixing ratio and HNO₃ concentration due to NH₃-SOA uptake is presented in Figure 3, with the difference between the base case and the $\gamma = 10^{-3}$, 10^{-4} and 10^{-5} 258 cases. The NH₃ mixing ratio are found decreased when including the NH₃-SOA uptake 259 260 mechanism. The magnitude of reduction increased as the uptake coefficient increase. 261 Specifically, in the summer, the spatially averaged NH₃ mixing ratio for the base case is 1.49 ppb. For the largest uptake coefficient considered, $\gamma = 10^{-3}$, the summertime spatially averaged 262 NH₃ mixing ratio decreased to 1.08 ppb (-27.5 %). For the $\gamma = 10^{-4}$ and $\gamma = 10^{-5}$ cases, the NH₃ 263 mixing ratio decreased to 1.36 ppb (-8.8%) and 1.46 ppb (-2.0%), respectively. In the wintertime, 264

265 the spatiotemporally averaged NH₃ mixing ratio for the base case is 0.21 ppb, it decreases to 0.20 ppb (-4.8 %) for $\gamma = 10^{-5}$, 0.19 ppb (-9.5 %) for $\gamma = 10^{-4}$, and 0.17 ppb (-19.0 %) for $\gamma = 10^{-3}$. 266 After applying the NH₃-SOA uptake mechanism, NH₃ mixing ratio in the North China Plain 267 268 (including Beijing, Tianjin, Hebei, Shandong, eastern Henan and northern Anhui regions) 269 decreased significantly both in summer and winter. Spatially, the maximum decreases of NH₃ 270 mixing ratio occur in regions where the ammonia mixing ratio is highest (see Figure 2). The 271 largest decrease occurred in the North China Plain. The decrease of NH₃ mixing ratio resulting 272 from its uptake to SOA is also significant in the Sichuan Basin, which has the second highest 273 NH₃ emissions after the North China Plain, reflecting the dense livestock farming in this area. 274 Some regions in Hunan, Hubei and Henan provinces also shows decreases in NH₃ mixing ratio.

Figure 3. Spatial distribution of the difference in surface NH₃ mixing ratio (unit: ppb) between the $\gamma = 10^{-3}$ case, $\gamma = 10^{-4}$ case, $\gamma = 10^{-5}$ case and the base case for summer and winter. Negative values represent decreases in mixing ratio compared with the base case.

278

282 The gas-particle partitioning of HNO₃ directly depends on the relative abundance of NH₃. For constant total nitrate (HNO_{3(g)} + NO_{3(p)}), it is expected that the gas-phase HNO₃ 283 284 concentration will increase in response to decreased NH₃ mixing ratio. The base case simulation 285 results show strong seasonal variation in HNO₃ concentration, reflecting differences in NO_x 286 emissions, production and loss pathways, and gas-particle partitioning (Figure 4). In summer, the 287 HNO3 concentrations are highest in the North China Plain and northern region of Henan Province. In winter, the highest HNO₃ concentrations mainly occur in southern Sichuan Basin 288 289 and southern China.

290 Figure 5 shows the difference of HNO₃ levels between the base case and three NH₃ 291 uptake scenarios for summer and winter. In summer, the average percent change in the HNO3 concentration is 5.7% for $\gamma = 10^{-3}$, 1.5% for $\gamma = 10^{-4}$, and 0.6% for $\gamma = 10^{-5}$. In winter, the average 292 percent increase in the HNO₃ concentration is 9.3% for $\gamma = 10^{-3}$, 1.9% for $\gamma = 10^{-4}$, 1.2% for $\gamma =$ 293 294 10⁻⁵. For all the NH₃ uptake cases, the HNO₃ concentrations in the North China Plain increased, 295 corresponds to the significant NH₃ reduction in this region (Figure 3). In summer, the HNO₃ 296 concentrations peaks over the North China Plain thus the change of magnitude also reaches 297 highest in the North China Plain due to the NH₃ reduction. However, the spatial pattern of HNO₃ 298 concentrations over the North China Plain is quite different between winter and summer, where a 299 substantial increase in HNO₃ emerged in the North China Plain even though the absolute HNO₃ 300 concentrations is low in this region. And the similar pattern is also found over Henan and

- 301 Shandong Province. This phenomenon can be attributed to high NO_x emissions across these
- 302 regions with low NH₃ mixing ratio in winter which promotes gas-phase HNO₃ accumulation (Fu
- 303 et al., 2020). Additionally, this condition also illustrated that the HNO₃ concentrations over these
- 304 regions are more sensitive to changes in NH₃ compared with other regions.

306 Figure 4. Spatial distribution of simulated surface HNO₃ concentrations (unit: $\mu g m^{-3}$) in the

- 307 base case for (a) summer and (b) winter.
- 308

305

Figure 5. Spatial distribution of the difference in surface HNO₃ concentrations (unit: $\mu g m^{-3}$) between the $\gamma = 10^{-3}$ case, $\gamma = 10^{-4}$ case, $\gamma = 10^{-5}$ case and the base case for summer and winter. Negative values represent decreases in concentration compared with the base case.

316 3.4 Impact of ammonia uptake on inorganic PM

312

317 As noted above, changes in gas-phase NH₃ mixing ratio influence the gas-particle partitioning of atmospheric compositions, such as HNO₃ and H₂SO₄. The spatial distribution of 318 319 simulated surface NH4⁺ concentrations in the base case are shown in Figure 6. In summer, high NH4⁺ concentrations are found in the Sichuan Basin, Shandong Province and North China Plain. 320 321 There are some hotspots presented in Henan, Hubei and Hunan Provinces. It is noteworthy that 322 the summertime distribution of NH₄⁺ is similar with the distribution of combination of the NH₃ 323 and HNO₃ maps, which indicate sufficient NH₃ neutralizers (e.g., HNO₃ and H₂SO₄) and 324 abundant NH3 emissions from intensive agricultural activities (as shown in Figure 2). In winter, 325 the Sichuan Basin, eastern and central China exhibits high NH4⁺ concentrations, largely due to the enhanced anthropogenic emissions. Compared with the NH₃ distribution in winter, the spatial 326 distribution of NH4⁺ concentrations in winter is spreading out more than the NH₃ owing to the 327 328 longer lifetime of NH4⁺ compared to NH3.

Figure 7 compares the difference in NH4⁺ concentrations between the $\gamma = 10^{-3}$ case, $\gamma = 10^{-4}$ case, $\gamma = 10^{-5}$ case and the base case for summer and winter. The reduction in gas-phase NH3 from uptake to SOA, which converts NH3 to NOCs, results in a decrease in particle phase NH4⁺. The NH3 uptake caused NH4⁺ concentrations to decrease in most areas of China. In summer, the average percent decrease in NH4⁺ is 4.0% for $\gamma = 10^{-5}$, 8.0% for $\gamma = 10^{-4}$, and 20.0% for $\gamma = 10^{-3}$ while the average percent decrease is 1.7% for $\gamma = 10^{-5}$, 3.4% for $\gamma = 10^{-4}$, and 13.8% for $\gamma = 10^{-3}$ in winter, respectively.

Figure 8 presents the simulated SO_4^{2-} concentrations in the base case. In summer, high 336 337 SO₄²⁻ concentration peaks in Sichuan Basin and there are some hotspots distributed in eastern 338 China and central China. In winter, the (NH4)₂SO₄ concentration was higher over the 339 southwestern and central China compared with the summer, indicating that there is sufficient 340 NH_3 to neutralize most H_2SO_4 in these regions because NH_3 is first neutralized by the H_2SO_4 in the presence of HNO₃ and H₂SO₄. It should be noted that the impacts of NH₃ uptake on SO₄²⁻ 341 342 concentrations in all scenarios are very small (Figure not shown) because of the rich NH3 environment which makes SO₄²⁻ insensitive to moderate changes in NH₃. 343

344 In contrast to sulfate, the NH₃ decrease from uptake to SOA can have a notable impact on 345 the gas-particle partitioning of the weaker acid HNO₃ and the particulate nitrate concentrations. 346 Figure 9 presents the spatial distribution of simulated surface NO₃⁻ concentrations in the base 347 case for summer and winter. In summer, the areas with high NO₃⁻ concentrations of $\sim 5 \,\mu g \,m^{-3}$ are limited to the North China Plain and the Sichuan Basin while all other regions have 348 concentrations less than 3 µg m⁻³. In winter, the NO₃⁻ concentrations are much higher than 349 summer, reaching approximately 20 µg m⁻³ in the North China Plain, the Yangtze River Delta, 350 and central China. Compared to the spatial distribution of SO4²⁻, which generally occurs as 351 352 localized hotspots located in the Sichuan Basin and northeastern China, NO3⁻ pollution is more 353 widely distributed, especially in the North China Plain, Yangtze River Delta and the Sichuan 354 Basin. This phenomenon likely reflects different sources, lifetimes, and conversion processes for 355 SO₂ and NO₂ (see Figure S2). Figure 10 shows the spatial distributions of the difference between 356 the NH₃ uptake scenarios and the base case for NO₃⁻ for winter and summer. Compared with the 357 changes in NH₄⁺, greater percent changes are observed for NO₃⁻, especially in winter. In summer, the average percent decrease in NO₃⁻ is 8.1% for $\gamma = 10^{-5}$, 13.5% for $\gamma = 10^{-4}$, and 29.7% for γ 358 =10⁻³ while in winter the average decrease is 3.0 % for $\gamma = 10^{-5}$, 4.0 % for $\gamma = 10^{-4}$, and 15.0% for 359 360 $\gamma = 10^{-3}$. While the absolute magnitudes of the changes depend on the assumed γ , the spatial patterns of the changes are similar between the cases. In general, the reduction of NO₃⁻ mainly 361 362 concentrated in regions with high NO3⁻ concentrations, such as North China Plain, Yangtze River 363 Delta and central China. However, neither NH4⁺ concentrations nor NO₃⁻ concentrations change 364 much in the Sichuan Basin where NH₃ mixing ratio are very high. This may be associated with 365 the source emission to form NO₃⁻ is very low compared to NH₃. Besides, it should be noted that the decrease in NH4⁺ is much larger around Hubei and Henan provinces than it is in the Sichuan 366

367 Basin, which illustrated the regional differences in sensitivity response of NH_4^+ and NO_3^- to the 368 reduction in NH_3 .

Figure 7. Spatial distribution of the difference in surface NH₄⁺ concentrations (unit: μ g m⁻³) between the $\gamma = 10^{-3}$ case, $\gamma = 10^{-4}$ case, $\gamma = 10^{-5}$ case and the base case for summer and winter. Negative values represent decreases in concentration compared with the base case.

384 385

383

389 390

Figure 9. Spatial distribution of simulated surface NO₃⁻ concentrations (unit: $\mu g m^{-3}$) in the base 391 392 case for (a) summer and (b) winter.

between the $\gamma = 10^{-3}$ case, $\gamma = 10^{-4}$ case, $\gamma = 10^{-5}$ case and the base case for summer and winter. 399 400 Negative values represent decreases in concentration compared with the base case.

401

402 3.5 Impact of ammonia uptake on secondary organic aerosol

403 Figure 11 shows the time-averaged spatial distribution of SOA in the base cases. In 404 summer, the simulated SOA concentrations are largest in the Sichuan Basin, North China Plain, 405 and central China, with SOA concentrations reaching more than 12 µg m⁻³. The high SOA 406 concentrations in these regions can be partly attributed to strong biogenic VOC emissions, which 407 plays an essential role in SOA formation in summer (Qin et al., 2018; Wu et al., 2020). In 408 addition, the high temperature and strong solar radiation in summer also favors faster 409 photochemical production of SOA over China. In winter, the highest SOA concentrations reach over 20 µg m⁻³ in the Sichuan Basin, northeastern and central China. Other populated areas in the 410 411 North China Plain, Pearl River Delta, and Hunan and Hubei provinces have SOA concentrations in the range of 8-10 µg m⁻³ in winter. For the North China Plain and northeastern China, the 412 413 wintertime SOA is largely attributed to the enhanced residential emissions of VOCs especially 414 from coal combustion related to cooking and collective heating (Wang et al., 2018). For the 415 Sichuan Basin and other regions located in southern China, high wintertime SOA concentrations 416 are mainly caused by the joint effects of industrial emissions and unfavorable meteorological 417 conditions which are characterized by high relative humidity, low atmospheric boundary layer 418 height, and weak winds (Yang et al., 2020).

419 Even though the direct effect of the NH₃ uptake parameterization applied in this study on 420 SOA concentration should be small, as the NH₃ uptaken is offset by the water loss. However, the 421 changes in chemical composition could alter the particle acidity, which can indirectly influence 422 SOA concentration by changing the rate of acid-catalyzed heterogeneous reactions associated 423 with SOA formation from isoprene oxidation products (Pye et al., 2013). Figure 12 illustrates the difference in SOA concentrations between the $\gamma = 10^{-3}$ case, $\gamma = 10^{-4}$ case, $\gamma = 10^{-5}$ case and the 424 425 base case for summer and winter. In all scenarios, the implementation of NH₃ uptake mechanism 426 has little influence on the SOA concentration. Interestingly, unlike the SIA components that only 427 decrease, the SOA concentrations can either increase or decrease with consideration of NH₃-428 SOA uptake. In summer, NH₃ uptake results to slight decreases in SOA concentrations over the 429 Sichuan Basin and central China for all γ , but the SOA concentrations increase by 10% for the southeast region, including Zhejiang, Fujian and Jiangxi provinces, when $\gamma = 10^{-3}$. In winter, 430 431 there are slight increases in SOA concentrations over the Sichuan Basin, the North China Plain 432 and northeastern China while the SOA concentrations decrease slightly in southern China.

433 These changes are related to the variation of isoprene-derived SOA formation caused by 434 the change of particle pH, shown in Figure 13 and Figure S3. In summer, the particle pH increased by about 1 pH unit for the $\gamma = 10^{-3}$ scenario in Yangtze River Delta, Pearl River Delta, 435 436 Fujian, Xinjiang, Tibet and some other western provinces, while the particle pH decreased in the 437 North China Plain and northeastern China. This may be attributed to the differences of the 438 dominant chemical components in PM2.5 over these regions. Even though large changes in pH 439 occur over western China which shows very low SOA concentrations (Xinjiang, Tibet and some 440 other western provinces), the NH₃ uptake process is expected to have little impact on the absolute SOA due to the low SOA concentrations in these regions. In winter, most regions show 441 decreases in particle pH for the $\gamma = 10^{-3}$ scenario especially in the North China Plain, northeastern 442 443 China, the Sichuan Basin and other southern provinces. Therefore, the small increase of SOA 444 concentration in these regions is attributed to the reduction of pH, which enhanced acid-445 catalyzed heterogeneous reactions for isoprene. It should be noted that the changes observed in 446 winter are as large as in summer even though the isoprene emissions are very low in winter 447 compared to summer. As isoprene is the only SOA forming species that depends on acidity in 448 CMAQ simulation, this phenomenon implies potentially notable changes in the isoprene-derived 449 SOA contribution in winter due to the NH₃ uptake effects. While notable effects of pH changes on SOA were found when $\gamma = 10^{-3}$, the changes in pH for the $\gamma = 10^{-4}$ and $\gamma = 10^{-5}$ scenarios were 450 overall relatively small (<0.4 pH units), whereas associated changes for $\gamma = 10^{-4}$ and $\gamma = 10^{-5}$ 451 scenarios in the SOA concentrations are as large as $\gamma = 10^{-3}$. Overall, the impacts of NH₃ uptake 452 453 mechanism on SOA are not as obvious as for inorganic aerosol. It is noteworthy that these 454 results further support the finding of Guo et al. (2018), who pointed out that the reduction of NH₃ 455 mixing ratio will not lead to a large decrease in particle pH because of the high sulfate 456 production over China..

457

458 459 Figure 11. Spatial distribution of simulated SOA concentrations (unit: $\mu g m^{-3}$) in the base case for

465 465 466 **Figure 12.** Spatial distribution of the difference in surface SOA concentrations (unit: $\mu g m^{-3}$) 467 468 between the $\gamma = 10^{-3}$ case, $\gamma = 10^{-4}$ case, $\gamma = 10^{-5}$ case and the base case for summer and winter. 468 Negative values represent decreases in concentration compared with the base case.

472 473 Figure 13. Spatial distribution of the difference in particle pH between the $\gamma = 10^{-3}$ case, $\gamma = 10^{-4}$ 474 case, $\gamma = 10^{-5}$ case and the base case for summer and winter. Negative values represent decreases 475 in concentration compared with the base case.

476

477 3.6 Impact of ammonia uptake on total PM

478 The spatial distribution of time-averaged PM_{2.5} concentration in summer and winter is 479 presented in Figure 14. The simulated PM_{2.5} concentration in winter is much higher than in 480 summer due to the enhanced anthropogenic emissions and meteorological conditions. In winter, 481 the primary emissions of elemental carbon, organic carbon, VOCs and NO₂ especially from 482 transportation and residential sources are much higher than summer. Besides, the low planetary 483 boundary layer height and frequent temperature inversions occurred in winter which often 484 associated with winter stagnant conditions, is unfavorable for the ventilation of PM2.5. 485 Furthermore, stronger rainfall in the summer induced by the monsoon would greatly reduce the aerosol lifetimes compared to winter. In summer, high PM_{2.5} concentrations of \sim 30 µg m⁻³ 486 487 mainly concentrated over eastern China, the North China Plain and the Sichuan Basin while all 488 other regions have concentrations of $< 20 \ \mu g \ m^{-3}$. These PM_{2.5} hotspots are highly related to the 489 large fraction of ammonium sulfate and ammonium nitrate in PM_{2.5} in these regions (as 490 discussed in Section 4.3). In addition, biogenic SOA also contributes significantly to the high 491 PM_{2.5} concentrations over central China and the Sichuan Basin (Wu et al., 2020). In winter, high 492 PM_{2.5} concentrations over 70 µg m⁻³ are simulated in the North China Plain, the Sichuan Basin, 493 central China and northeastern China. The high PM2.5 in the North China Plain can be attributed 494 to unfavorable meteorological conditions in wintertime including stable synoptic weather 495 patterns and persistent high relative humidity which could promote the secondary transformation 496 of gaseous pollutants (Cheng et al., 2019; H. Zhang et al., 2019; Y. Zhang et al., 2016). In

497 addition, emissions of primary pollutants is increased especially from transportation and coal-

498 burning sources (G. J. Zheng et al., 2015). The hotspots simulated over the Sichuan Basin are

499 caused by frequent stagnant weather conditions and blockage of dispersion due to basin

500 topography (Liao et al., 2018; Yang et al., 2020). It should be noted that the $PM_{2.5}$ concentrations

501 in northeastern China are very high with average concentrations reaching over 70 μg m⁻³ in

502 winter. In addition to the impacts of meteorological conditions, such as stable atmospheric

503 boundary layer and high relative humidity which favors the hygroscopic growth of particles (Z.

504 Chen et al., 2018; Sun et al., 2016), these high concentrations also result from combined

505 emissions of strong open biomass burning and residential heating (X. Li et al., 2017).

506 Figure 15 shows the differences in PM_{2.5} concentrations between the $\gamma = 10^{-3}$ case, $\gamma =$ 10^{-4} case, $\gamma = 10^{-5}$ case and the base case for summer and winter. In summer, the average 507 decrease in PM_{2.5} concentrations is 6.6% for $\gamma = 10^{-5}$, 8.3% for $\gamma = 10^{-4}$, and 8.9% for $\gamma = 10^{-3}$ 508 while the average decrease is 5.3 % for $\gamma = 10^{-5}$, 8.1 % for $\gamma = 10^{-4}$, and 8.7% for $\gamma = 10^{-3}$ in 509 510 winter respectively. As shown in Figure 15, the PM_{2.5} concentrations decreased across the whole 511 domain. In summer, the Sichuan Basin and the North China Plain show the largest decrease 512 magnitude in PM_{2.5} concentrations. In winter, the largest reductions occurred over eastern China 513 and the Sichuan Basin. These reductions are mainly attributed to the decrease in NH4NO3 owing to decreased gas-phase NH₃ mixing ratio from reaction with SOA, as discussed in Section. 4.2 514 515 and 4.3.

Figure 14. Spatial distribution of simulated primary and secondary PM_{2.5} concentrations (unit:

 μ g m⁻³) in the base case for (a) summer and (b) winter.

- 523 **Figure 15.** Spatial distribution of the difference in surface PM_{2.5} concentrations (unit: μg m⁻³)
- between the $\gamma = 10^{-3}$ case, $\gamma = 10^{-4}$ case, $\gamma = 10^{-5}$ case and the base case for summer and winter.
- 525 Negative values represent decreases in concentration compared with the base case.

526 4 Conclusion

527 In this study, we assess the effects of the heterogeneous uptake of NH₃ by SOA

528 accompanied by formation of NOCs on air quality over China by performing parallel simulations

529 with a range of NH₃ uptake coefficients using the CMAQ model. The implementation of the NH₃

530 uptake mechanism leads to significant reductions in NH₃ mixing ratio, NH₄⁺, and NO₃⁻

531 concentrations, but has little impact on SO_4^{2-} levels.

532 For NH₃, the reduction magnitude can be as high as 27.5% in summer and 19.0% in 533 winter after applying the NH₃ uptake mechanism. The reduction in NH₃ results in increases in 534 gas-phase HNO₃ concentrations, as there is less NH₃ to neutralize HNO₃ to ammonium nitrate. The increase of HNO₃ concentrations is as high as 5.7% and 9.3% in the summer and winter, 535 536 respectively. Spatially, the largest decrease of NH₃ mixing ratio occurred over the North China 537 Plain and the Sichuan Basin in both seasons. In summer, the HNO₃ increased substantially in the 538 North China Plain, while in winter HNO₃ increased dramatically over eastern and central China. 539 The decreases in NH₃ and increases in HNO₃ were associated with decreases in both particulate NH₄NO₃ and the total PM_{2.5} in both seasons. Under the largest uptake coefficients ($\gamma = 10^{-3}$), the 540 reduction of NH4⁺, NO3⁻ and PM2.5 concentrations in winter are 13.8%, 15.0%, and 8.7%, 541 542 respectively. Larger decreases occur in summer, with reduction of 20.0%, 29.7%, and 8.9% for NH_4^+ , NO_3^- and $PM_{2.5}$, respectively when $\gamma = 10^{-3}$. The impacts of NH_3 uptake on SOA 543 544 concentrations, which can result from changes in particle acidity, is relatively small compared to 545 the changes in ammonium nitrate; this is because the changes to particle acidity are relatively 546 moderate.

Results of this study present that the mechanism of NH₃ uptake by SOA have significant impacts on HNO₃ and inorganic aerosol species including NH₃, NH₄⁺, NO₃⁻ which further affect PM_{2.5} concentrations. The results from this study are useful for understanding the potential impacts of NH₃ uptake by SOA on air quality over China. However, even though the potential impacts indicate the importance of this mechanism in air quality models, the real uptake coefficient of each SOA species may differ from the uptake coefficient used in this study which 553 requires further laboratory experiments for better representing the NH₃ uptake process by SOA. 554 Additional work is also needed to develop phase separation mechanisms for improving the 555 assumption used in this study that the aerosol had a single phase for both organic and inorganic 556 constituents. Besides, the SOA is assumed to be well-mixed in this study then a shell of reacted 557 SOA does not build up at the particle surface whereas this assumption may change due to the 558 variation of the particle viscosity. Therefore, additional investigation of the possibility that a 559 shell of reacted SOA could build up for particles with low viscosity under the condition of low 560 relative humidity are needed in order to obtain more accurate NH₃ uptake process in numerical 561 models. Given the uncertainty introduced by above factors, coordinated community participation 562 is urgently needed to address these uncertainties.

563 Acknowledgments and Data

564 The authors acknowledge the MEIC team from Tsinghua University for providing the 565 multiscale emission inventory of China (MEIC). This work was funded by the Project of Science 566 and Technology Plan of Sichuan Province (No.2018SZDZX0023, No.2018JY0011), the National 567 Key Research and Development Program of China (No.2018YFC0214002), the National Natural 568 Science Foundation of China (No.91644226) and the Scientific Research Foundation of the 569 Chengdu University of Information Technology (No.KYTZ201823). This publication was 570 developed under Assistance Agreement No. EPA 83588101 was awarded by the US 571 Environmental Protection Agency to the Regents of the University of California. It has not been 572 formally reviewed by the EPA. The views expressed in this document are solely those of the 573 authors and do not necessarily reflect those of the agency. The EPA does not endorse any 574 products or commercial services mentioned in this publication. Any opinions, findings, and 575 conclusions or recommendations expressed in this material are those of the authors and do not 576 necessarily reflect the views of the funders. The authors declare no competing interests. The data 577 presented herein are available at http://dx.doi.org/10.17632/bf8mmw9sfz.1. And the FNL 578 analysis data are available at https://rda.ucar.edu/datasets/ds083.2.

579 References

- Baek, B. H., Aneja, V. P., & Tong, Q. (2004). Chemical coupling between ammonia, acid gases,
 and fine particles. *Environmental Pollution*, *129*(1), 89-98.
 http://www.sciencedirect.com/science/article/pii/S0269749103003816
- Bai, Z., Ma, W., Ma, L., Velthof, G. L., Wei, Z., Havlík, P., et al. (2018). China's livestock
 transition: Driving forces, impacts, and consequences. *Science Advances*, 4(7), eaar8534.
 http://advances.sciencemag.org/content/4/7/eaar8534.abstract
- Behera, S. N., Sharma, M., Aneja, V. P., & Balasubramanian, R. (2013). Ammonia in the
 atmosphere: a review on emission sources, atmospheric chemistry and deposition on
 terrestrial bodies. *Environmental Science and Pollution Research*, 20(11), 8092-8131.
 <u>https://doi.org/10.1007/s11356-013-2051-9</u>
- Binkowski, F. S., & Roselle, S. J. (2003). Models-3 Community Multiscale Air Quality (CMAQ)
 model aerosol component 1. Model description. *Journal of Geophysical Research: Atmospheres, 108*(D6). <u>https://doi.org/10.1029/2001JD001409</u>
- Byun, D., & Schere, K. L. (2006). Review of the Governing Equations, Computational
 Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality
 (CMAQ) Modeling System. *Applied Mechanics Reviews*, 59(2), 51-77.
 https://doi.org/10.1115/1.2128636
- 597 Chen, S., Cheng, M., Guo, Z., Xu, W., Du, X., & Li, Y. (2020). Enhanced atmospheric ammonia
 598 (NH3) pollution in China from 2008 to 2016: Evidence from a combination of
 599 observations and emissions. *Environmental Pollution, 263*, 114421.
 600 http://www.sciencedirect.com/science/article/pii/S0269749119343933
- 601 Chen, Z., Xie, X., Cai, J., Chen, D., Gao, B., He, B., et al. (2018). Understanding meteorological
 602 influences on PM2.5 concentrations across China: a temporal and spatial perspective.
 603 Atmos. Chem. Phys., 18(8), 5343-5358. https://acp.copernicus.org/articles/18/5343/2018/
- 604 Cheng, J., Su, J., Cui, T., Li, X., Dong, X., Sun, F., et al. (2019). Dominant role of emission
 605 reduction in PM2.5 air quality improvement in Beijing during 2013–2017: a model-based
 606 decomposition analysis. *Atmos. Chem. Phys.*, 19(9), 6125-6146.
 607 https://acp.copernicus.org/articles/19/6125/2019/
- Fu, X., Wang, T., Gao, J., Wang, P., Liu, Y., Wang, S., et al. (2020). Persistent Heavy Winter
 Nitrate Pollution Driven by Increased Photochemical Oxidants in Northern China. *Environmental Science & Technology*, 54(7), 3881-3889.
 https://doi.org/10.1021/acs.est.9b07248
- Gao, Z., Ma, W., Zhu, G., & Roelcke, M. (2013). Estimating farm-gate ammonia emissions from
 major animal production systems in China. *Atmospheric Environment*, *79*, 20-28.
 http://www.sciencedirect.com/science/article/pii/S1352231013004810
- Gu, B., Ju, X., Chang, J., Ge, Y., & Vitousek, P. M. (2015). Integrated reactive nitrogen budgets
 and future trends in China. *Proceedings of the National Academy of Sciences*, *112*(28),
 8792. <u>http://www.pnas.org/content/112/28/8792.abstract</u>
- Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., &
 Wang, X. (2012). The Model of Emissions of Gases and Aerosols from Nature version
 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. *Geosci. Model Dev.*, 5(6), 1471-1492. <u>https://www.geosci-model-dev.net/5/1471/2012/</u>
- Guo, H., Otjes, R., Schlag, P., Kiendler-Scharr, A., Nenes, A., & Weber, R. J. (2018).
 Effectiveness of ammonia reduction on control of fine particle nitrate. *Atmos. Chem. Phys.*, 18(16), 12241-12256. https://www.atmos-chem-phys.net/18/12241/2018/

625	Heald, C. L., Collett Jr, J. L., Lee, T., Benedict, K. B., Schwandner, F. M., Li, Y., et al. (2012).
626	Atmospheric ammonia and particulate inorganic nitrogen over the United States. Atmos.
627	Chem. Phys., 12(21), 10295-10312. https://www.atmos-chem-phys.net/12/10295/2012/
628	Hu, J., Chen, J., Ying, Q., & Zhang, H. (2016). One-year simulation of ozone and particulate
629	matter in China using WRF/CMAQ modeling system. Atmos. Chem. Phys., 16(16),
630	10333-10350. https://www.atmos-chem-phys.net/16/10333/2016/
631	Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H., et
632	al. (2009). Evolution of Organic Aerosols in the Atmosphere. Science, 326(5959), 1525.
633	http://science.sciencemag.org/content/326/5959/1525.abstract
634	Kong, L., Tang, X., Zhu, J., Wang, Z., Pan, Y., Wu, H., et al. (2019). Improved Inversion of
635	Monthly Ammonia Emissions in China Based on the Chinese Ammonia Monitoring
636	Network and Ensemble Kalman Filter. Environmental Science & Technology, 53(21),
637	12529-12538. https://doi.org/10.1021/acs.est.9b02701
638	Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., et al. (2017). Anthropogenic emission
639	inventories in China: a review. National Science Review, 4(6), 834-866.
640	https://doi.org/10.1093/nsr/nwx150
641	Li, X., Ma, Y., Wang, Y., Liu, N., & Hong, Y. (2017). Temporal and spatial analyses of
642	particulate matter (PM10 and PM2.5) and its relationship with meteorological parameters
643	over an urban city in northeast China. Atmospheric Research, 198, 185-193.
644	http://www.sciencedirect.com/science/article/pii/S0169809516303180
645	Li, Y., Schichtel, B. A., Walker, J. T., Schwede, D. B., Chen, X., Lehmann, C. M. B., et al.
646	(2016). Increasing importance of deposition of reduced nitrogen in the United States.
647	Proceedings of the National Academy of Sciences, 113(21), 5874.
648	http://www.pnas.org/content/113/21/5874.abstract
649	Liao, T., Gui, K., Jiang, W., Wang, S., Wang, B., Zeng, Z., et al. (2018). Air stagnation and its
650	impact on air quality during winter in Sichuan and Chongqing, southwestern China.
651	Science of The Total Environment, 635, 576-585.
652	http://www.sciencedirect.com/science/article/pii/S0048969718312920
653	Liu, L., Zhang, X., Xu, W., Liu, X., Li, Y., Lu, X., et al. (2017). Temporal characteristics of
654	atmospheric ammonia and nitrogen dioxide over China based on emission data, satellite
655	observations and atmospheric transport modeling since 1980. Atmos. Chem. Phys.,
656	17(15), 9365-9378. https://www.atmos-chem-phys.net/17/9365/2017/
657	Liu, Y., Liggio, J., Staebler, R., & Li, S. M. (2015). Reactive uptake of ammonia to secondary
658	organic aerosols: kinetics of organonitrogen formation. Atmos. Chem. Phys., 15(23),
659	13569-13584. https://www.atmos-chem-phys.net/15/13569/2015/
660	Meng, Z., Xu, X., Lin, W., Ge, B., Xie, Y., Song, B., et al. (2018). Role of ambient ammonia in
661	particulate ammonium formation at a rural site in the North China Plain. Atmos. Chem.
662	<i>Phys.</i> , 18(1), 167-184. <u>https://www.atmos-chem-phys.net/18/167/2018/</u>
663	Montoya-Aguilera, J., Hinks, M. L., Aiona, P. K., Wingen, L. M., Horne, J. R., Zhu, S., et al.
664	(2018). Reactive Uptake of Ammonia by Biogenic and Anthropogenic Organic Aerosols.
665	In Multiphase Environmental Chemistry in the Atmosphere (Vol. 1299, pp. 127-147):
666	American Chemical Society.
667	Pan, Y., Tian, S., Zhao, Y., Zhang, L., Zhu, X., Gao, J., et al. (2018). Identifying Ammonia
668	Hotspots in China Using a National Observation Network. Environmental Science &
669	Technology, 52(7), 3926-3934. https://doi.org/10.1021/acs.est.7b05235

670	Paulot, F., Jacob, D. J., Pinder, R. W., Bash, J. O., Travis, K., & Henze, D. K. (2014). Ammonia
671	emissions in the United States, European Union, and China derived by high-resolution
672	inversion of ammonium wet deposition data: Interpretation with a new agricultural
673	emissions inventory (MASAGE NH3). Journal of Geophysical Research: Atmospheres,
674	119(7), 4343-4364. https://doi.org/10.1002/2013JD021130
675	Pye, H. O. T., Pinder, R. W., Piletic, I. R., Xie, Y., Capps, S. L., Lin, YH., et al. (2013).
676	Epoxide Pathways Improve Model Predictions of Isoprene Markers and Reveal Key Role
677	of Acidity in Aerosol Formation. Environmental Science & Technology, 47(19), 11056-
678	11064. https://doi.org/10.1021/es402106h
679	Qin, M., Wang, X., Hu, Y., Ding, X., Song, Y., Li, M., et al. (2018). Simulating Biogenic
680	Secondary Organic Aerosol During Summertime in China. Journal of Geophysical
681	Research: Atmospheres, 123(19), 11,100-111,119.
682	https://doi.org/10.1029/2018JD029185
683	Reiss, R., Anderson, E. L., Cross, C. E., Hidy, G., Hoel, D., McClellan, R., & Moolgavkar, S.
684	(2007). Evidence of Health Impacts of Sulfate-and Nitrate-Containing Particles in
685	Ambient Air. Inhalation Toxicology, 19(5), 419-449.
686	https://doi.org/10.1080/08958370601174941
687	Sun, Y., Chen, C., Zhang, Y., Xu, W., Zhou, L., Cheng, X., et al. (2016). Rapid formation and
688	evolution of an extreme haze episode in Northern China during winter 2015. Scientific
689	Reports, 6(1), 27151. https://doi.org/10.1038/srep27151
690	Updyke, K. M., Nguyen, T. B., & Nizkorodov, S. A. (2012). Formation of brown carbon via
691	reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic
692	precursors. Atmospheric Environment, 63, 22-31.
693	http://www.sciencedirect.com/science/article/pii/S1352231012008710
694	Walters, W. W., Chai, J., & Hastings, M. G. (2019). Theoretical Phase Resolved Ammonia-
695	Ammonium Nitrogen Equilibrium Isotope Exchange Fractionations: Applications for
696	Tracking Atmospheric Ammonia Gas-to-Particle Conversion. ACS Earth and Space
697	Chemistry, 3(1), 79-89. https://doi.org/10.1021/acsearthspacechem.8b00140
698	Wang, P., Ying, Q., Zhang, H., Hu, J., Lin, Y., & Mao, H. (2018). Source apportionment of
699	secondary organic aerosol in China using a regional source-oriented chemical transport
700	model and two emission inventories. Environmental Pollution, 237, 756-766.
701	http://www.sciencedirect.com/science/article/pii/S0269749117324065
702	Weber, R. J., Guo, H., Russell, A. G., & Nenes, A. (2016). High aerosol acidity despite declining
703	atmospheric sulfate concentrations over the past 15 years. Nature Geoscience, 9(4), 282-
704	285. <u>https://doi.org/10.1038/ngeo2665</u>
705	Wu, K., Yang, X., Chen, D., Gu, S., Lu, Y., Jiang, Q., et al. (2020). Estimation of biogenic VOC
706	emissions and their corresponding impact on ozone and secondary organic aerosol
707	formation in China. Atmospheric Research, 231, 104656.
708	http://www.sciencedirect.com/science/article/pii/S0169809519304715
709	Yang, X., Lu, Y., Zhu, X., He, J., Jiang, Q., Wu, K., et al. (2020). Formation and Evolution
710	Mechanisms of Severe Haze Pollution in the Sichuan Basin, Southwest China. Aerosol
711	and Air Quality Research, 20(11), 2557-2567.
712	http://dx.doi.org/10.4209/aaqr.2020.04.0173
713	Zhang, H., Cheng, S., Li, J., Yao, S., & Wang, X. (2019). Investigating the aerosol mass and
714	chemical components characteristics and feedback effects on the meteorological factors

715	in the Beijing-Tianjin-Hebei region, China. Environmental Pollution, 244, 495-502.
717	Theng L Chen V Theo V Henze D K Thu L Song V et al (2018) Agricultural
/1/	Zhang, L., Chen, T., Zhao, T., Henze, D. K., Zhu, L., Song, T., et al. (2016). Agricultural
710	<i>Cham Dhug 19(1)</i> 220 255 https://www.atmog.aham.ph/g.pat/19/220/2019/
720	Zhang O Dan V Ha V Zhao V Zhu I Zhang V at al (2010) Dias in ammonia
720	emission inventory and implications on emission control of nitrogen oxides over North
721	Chipa Plain Atmospheric Environment 214 116869
722	https://www.sciencedirect.com/science/article/nji/\$1352231019304996
723	Zhang V Ding A Mao H Nie W Zhou D Liu L et al (2016) Impact of synoptic
725	weather patterns and inter-decadal climate variability on air quality in the North China
726	Plain during 1980–2013 Atmospheric Environment 124 119-128
727	https://www.sciencedirect.com/science/article/pii/S1352231015301345
728	Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., et al. (2018). Trends in China's
729	anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos.
730	Chem. Phys., 18(19), 14095-14111. https://www.atmos-chem-phys.net/18/14095/2018/
731	Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., et al. (2015). Heterogeneous
732	chemistry: a mechanism missing in current models to explain secondary inorganic
733	aerosol formation during the January 2013 haze episode in North China. Atmos. Chem.
734	Phys., 15(4), 2031-2049. https://www.atmos-chem-phys.net/15/2031/2015/
735	Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., et al. (2015). Exploring the
736	severe winter haze in Beijing: the impact of synoptic weather, regional transport and
737	heterogeneous reactions. Atmos. Chem. Phys., 15(6), 2969-2983. https://www.atmos-
738	<u>chem-phys.net/15/2969/2015/</u>
739	Zhu, L., Henze, D. K., Bash, J. O., Cady-Pereira, K. E., Shephard, M. W., Luo, M., & Capps, S.
740	L. (2015). Sources and Impacts of Atmospheric NH3: Current Understanding and
741	Frontiers for Modeling, Measurements, and Remote Sensing in North America. Current
742	Pollution Reports, 1(2), 95-116. <u>https://doi.org/10.1007/s40726-015-0010-4</u>
743	Zhu, S., Horne, J. R., Montoya-Aguilera, J., Hinks, M. L., Nizkorodov, S. A., & Dabdub, D.
744	(2018). Modeling reactive ammonia uptake by secondary organic aerosol in CMAQ:
745	application to the continental US. Atmos. Chem. Phys., 18(5), 3641-3657.
746	https://www.atmos-chem-phys.net/18/3641/2018/
747	

@AGUPUBLICATIONS

Journal of Geophysical Research: Atmospheres

Supporting Information for

Modeling ammonia and its uptake by secondary organic aerosol over China

Kai Wu^{1,2}, Shupeng Zhu^{2,3*}, Yiming Liu^{4,5}, Haolin Wang^{4,5}, Xianyu Yang⁶, Lei Liu⁷, Donald Dabdub³, Christopher D. Cappa^{8*}

¹Department of Land, Air, and Water Resources, University of California, Davis, CA, USA

²Advanced Power and Energy Program, University of California, Irvine, CA, USA

³Computational Environmental Sciences Laboratory, Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA

⁴School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, China

⁵Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

⁶Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, China

⁷College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China

⁸Department of Civil and Environmental Engineering, University of California, Davis, CA, USA

Contents of this file

Figures S1 to S3

Introduction

Figure S1 displays the model domain with important regions colored over China. Figure S2 shows the spatial distribution of allocated emission of NO₂ and SO₂ in the summer of 2017 over China. Figure S3 presents the spatial distribution of the particle pH in the base case for summer and winter.

Figure S1. Model domain with important regions colored over China.

Figure S2. Spatial distribution of allocated emission rate of NO_2 and SO_2 in the summer and winter of 2017 over China.

Figure S3. Spatial distribution of the particle pH in the base case for summer and winter.