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Abstract

Hydrodynamical Simulations of Strong Tides in Astrophysical Systems

by

James Guillochon

At the simplest level, gravitational sources are considered to be point-like and in solitude, with

a radial force that falls off as r−2. In reality, all astrophysical objects aside from black holes

are extended in space, and can be deformed by the tidal forces arising from the proximity of

companion objects with large average densities. When these forces are weak, the response of

an object to a tide can be through a decomposition into basis functions, but this approach fails

when the tide is strong enough to deform an object by a distance equal to its own size. Under

these circumstances, a hydrodynamical representation of the object is required to understand

the true tidal response.

In this thesis, we present a number of examples of physical systems in which tides

dominate the dynamics. First, we consider the case of a star that encounters a supermassive

black hole (SMBH) in a deeply penetrating encounter, resulting in a dramatic compression that

produces shocks that would be observable in the X-ray. Second, we present the results of hydro-

dynamical simulations that demonstrate a new mechanism for igniting Type Ia supernovae from

binary systems composed of two white dwarfs undergoing Roche-lobe overflow. Third, we in-

vestigate the survival prospects of giant planets that have been scattered into highly eccentricity

orbits and are exposed to a strong tide applied by their parent star. Fourth, we systematically

map the fallback rate resulting from the tidal disruptions of stars by SMBHs. Finally, we use

x



what we have learned about the feeding rate to model determine the highest-likelihood model

for an observed prototypical tidal disruption event.
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Chapter 1

Introduction

Tides have played a critical role in the human experience for millennia, especially to

those civilizations that heavily relied upon the oceans for their survival (Cartwright, 1999). Even

upon the release of Isaac Newton’s Principia in 1687, not everyone was convinced that gravi-

tation was the force responsible for inducing Earth’s tides. This included Jacques Cassini who

ascribed to Descartes’ theory for tides which supposes that planetary motion was due to vortices

in an “ether,” and incorrectly determined that the Earth was elongated at its poles (Figure 1.1).

Newton’s theory was eventually validated by a polar expedition undertaken by Maupertuis fifty

years later (Maupertuis, 1738). When gravitation was accepted as the underlying cause of tides,

it was quickly realized that tides are not merely a phenomena particular to Earth, as gravitation

is universal and accompanies all massive objects. Since then, tidal theory has been generalized

to apply to any self-gravitating object perturbed by the gravitational of a companion body (Press

and Teukolsky, 1977), and has been directly observed in objects both large (e.g. the tidal stream

of the Tadpole Galaxy) and small (e.g. the disruption of the Shoemaker-Levy 9 comet).

1



Figure 1.1: Competing geometries proposed by Newton and Cassini for the tide raised by the
Moon upon the Earth.

For those objects that are not very close to Earth (as in the case of the comet) or do

not subtend a large solid angle (as in the case of galaxies), their distortion and/or disruption

by the gravitational field of a companion cannot be imaged. However, the effects of tides have

been found to be extremely important in the evolution of many astrophysical systems, and their

presence is confirmed by means other than direct imaging. Some definitive examples of tides

in action are the large number of binaries actively engaged in Roche-lobe overflow (Thomas,

1977; Verbunt, 1993), the time-dependent deformation of eccentric binary stars (Thompson

et al., 2012), and the existence of short-period gas giant planets (Mayor and Queloz, 1995).

In our own solar system, the tides we observe are usually weak, with the most extreme

examples being the disruption of objects (such as comets) whose destruction poses little threat

to life on Earth. But beyond our solar system the manifestations of tides can be very strong,

2



potentially resulting in the complete destruction of entire stars or planets. In this thesis, we focus

on three transient event in which tides are important: The tidal disruption of a main-sequence

star by a supermassive black hole (SMBH, Chapters 2, 5, and 6), detonations resulting from

mass transfer in double white dwarf systems (Chapter 3), and the survival of giant planets that

have been scattered close to their parent stars (Chapter 4).

In Chapter 2 we consider the disruption of main-sequence (MS) stars by SMBHs,

which have been discovered in almost all galaxies for which we have searched for them (Kor-

mendy and Ho, 2013). These black holes are orbited by a cluster of stars that interact with one

another gravitationally through stochastic encounters. Occasionally, an encounter will shift a

star onto an orbit that takes it within its tidal radius, defined as the distance at which the black

hole’s tidal forces would overcome the star’s self-gravity at its surface (Frank and Rees, 1976).

When a rapidly changing tidal force starts to compete with the star’s self-gravity, the material

of the star responds in a complicated way (Rees, 1988; Carter and Luminet, 1983; Bicknell

and Gingold, 1983). During a close passage, the star is stretched along the orbital direction,

squeezed at a right angle to the orbit, and strongly compressed in the direction perpendicular to

the orbital plane.

This phenomenon poses a difficult challenge to computer simulations — three-dimensional

gas-dynamical calculations have so far addressed the fate of the bulk of the matter, but key ques-

tions relating to the details of tidal disruption had yet to be answered. In particular, very high

spatial resolution is needed to model stars passing well within the tidal radius, for which ex-

treme compression is halted by a shock which rebounds and eventually breaks out of the stellar

surface. We present a method for performing high-resolution simulations of deeply-penetrating

3



tidal encounters in which these extreme compressions can be resolved. We use the results of our

simulation to construct a model for the breakout of shockwaves from a tidally disrupted star,

and we apply this model to determine the detectability of these tidal shock breakouts (TSBs) in

the local Universe. Our results provide new insights into what happens when stars are strongly

shocked as a result of extreme compression and the characteristic properties of such events.

In Chapter 3, we shift gears slightly to consider the effects of strong tides in a dif-

ferent physical system. White dwarfs (WDs), the end point of stellar evolution for most stars,

are frequently observed in binary systems with normal stellar companions, and, less frequently,

with compact stellar companions. Double degenerate (DD) systems are those in which the

companion is another WD. Typically, DD systems are formed via common envelope evolution

(Nelemans et al., 2001b,a). Often, the final result of this evolutionary process is a binary con-

sisting of a carbon-oxygen (CO) WD and a lower-mass helium WD companion (Napiwotzki

et al., 2007).

Because of the mass-radius relationship of WDs, mass transfer between the two stars

is often unstable and can eventually lead to a merger (Marsh et al., 2004; Gokhale et al., 2007).

For binary mass ratios close to unity the circularization radius Rh drops below the radius of the

primary R1, and thus the accretion stream will directly impact the primary’s surface. We present

three-dimensional hydrodynamics simulations that demonstrate that explosive phenomena are

a likely consequence of the high accretion rates characteristic of the final stages of a merger in

a DD system. In some cases, these explosive phenomena may lead to the complete detonation

of the CO primary.

In Chapter 4 we consider another astrophysical system in which tides are important,

4



this time the disruption of giant planets by their host stars. The search for planets about other

stars has led to the discovery of dozens of planets with unusual properties, including the discov-

ery of many giant planets known colloquially as hot Jupiters and Neptunes, which are thought

to have formed far away from their parent stars but were then later transplanted to their observed

positions by currently undetermined means. Many of these exoplanets come so close to their

parent stars that they toe the line between destruction and survival, with some observed exoplan-

ets in danger of being destroyed on a relatively short timescale (Li et al., 2010). Additionally,

the inclination distribution of the hot Jupiters seems to demonstrate significant misalignment be-

tween the planet’s orbit and the stellar spin axis (Triaud et al., 2010; Schlaufman et al., 2010),

a surprising result that may require a dynamical process that acts after the protoplanetary disk

dissipates.

One of the primary physical processes that can deposit a planet on an orbit that is

very close to its parent star is planet-planet scattering, which can produce both the observed

semi-major axis and inclination distributions, and can deposit planets close enough such that

tides can circularize the orbits in a time that is less than the system age. Previous hydrody-

namical work has only focused on the planet’s first close fly-by (Faber et al., 2005, hereafter

FRW), and does not investigate how prolonged tidal forcing over many orbits affects a planet’s

chances for survival. We have performed hydrodynamical simulations of multiple passages of

a Jupiter-like planet by a Sun-like star, bridging the gap between numerical and analytical work

that have focused on extremely close and extremely grazing encounters respectively. We find

that scattering planets into star-grazing orbits is more destructive than previously thought, with

Jupiter-like planets being destroyed or ejected at distances no smaller than 2.7 times the tidal
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radius. This strongly suggests that planet-planet scattering alone cannot explain the complete

observed population of close-in Jupiter-like exoplanets.

In Chapter 5 we return to the problem of a main-sequence star being tidally disrupted

by a SMBH. The standard model of tidal disruption presumes that the star is completely de-

stroyed, resulting in approximately half of the star’s original mass falling back onto the black

hole, with the debris possessing a variety of orbital periods resulting from a spread of orbital

energy that is “frozen in” at pericenter. Aside from full disruptions, there can also partial stellar

disruptions, in which a stellar core survives the encounter and only a fraction of the star’s mass

becomes immediately bound to the black hole. Additionally, main-sequence stars of different

masses will have different density profiles, which can affect the dynamics of the disruption.

We present the results of 43 hydrodynamical simulations at high-resolution represent-

ing the disruption of both low-mass and high-mass MS stars. Contrary to what is expected from

the freezing model, in which only the distribution of mass at pericenter is considered, the non-

linear response of the star to the tidal field is found to play a crucial role in determining the

feeding rate. Our simulations show that the simple models previously employed to predict the

rate of fallback do not capture the full dynamics of the problem, and are only appropriate for

anything other than the full disruption at exactly the tidal radius.

In Chapter 6 we continue to consider a main-sequence star disruption by a SMBH, but

now focus on the observational counterpart to the disruption (this time in the optical and UV as

opposed to the X-ray, as was the case in Chapter 2). In the event of a full disruption, the star is

split into two pieces of nearly-equal mass. One half of the star becomes bound to the black hole

after the encounter, and continues along elliptical trajectories with pericenter distances equal
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to the star’s original pericenter distance. The other half of the star gains orbital energy in the

encounter, and is placed on hyperbolic trajectories. Determining the fates of these pieces of

the star are critical in determining the appearance of the flare that results from the immense

gravitational energy that will be released by the accretion disk that eventually forms.

We present three-dimensional hydrodynamical simulations that show that the width of

the stream of unbound material is still controlled by the stream’s self-gravity in the transverse

direction, restricting its width to only be a fraction of the star’s original pericenter distance.

The surface area of this structure is not significant enough to produce hydrogen emission lines,

even for the disruption of a main-sequence (MS) star composed largely of hydrogen. But while

we find that the area of the unbound debris has been overestimated, we also find that the area

occupied by the accretion disk formed from the bound material has been underestimated. Addi-

tionally, we find that significant dissipation occurs when this material returns to pericenter. As

the debris stream quickly virializes at pericenter and the density of the material is significantly

reduced as compared to the star’s original density, self-gravity is suppressed even in the trans-

verse direction. As a result, a fan structure is formed once material returns pericenter. But as

this material belongs to the fraction of the original star that is strongly bound to the black hole,

the radial extent of this material grows at a rate that is significantly smaller than the unbound

fraction. We use this information to infer that PS1-10jh is the disruption of a main-sequence

star of near-solar composition rather than a relatively rare star composed mostly of helium.
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Chapter 2

Shock Breakout from Stars Compressed by

Strong Tides

2.1 Introduction

Each star in the vicinity of a supermassive black hole (SMBH) traces out a compli-

cated orbit under the combined influence of all the other stars and the black hole itself. There

is a chance that encounters with other stars can send a star onto a nearly radial loss cone orbit

which brings it very close to the black hole. Exactly how close a star can approach a black hole

without suffering distortions is defined by the tidal radius

rt ' 7×1012 M1/3
6

(
R∗/R�

)
(M∗/M�)−1/3 cm, (2.1)

where M6 denotes the mass of the black hole in units of 106M�. While the tidal radius is

defined by average stellar properties, a solar-type star passing within this distance would likely
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Figure 2.1: Events in the life of a tidally-disrupted solar-type star. The star travels from left to
right in the black hole’s frame, with t = 0 s when r = rp, the pericenter passage distance. The
event horizon, which lies a distance rs from the black hole, is shown as a thick dashed line. The
orange coloring represents log10 ρ, and the light blue line shows the path of the star’s center of
mass. The encounter is not drawn to scale.

be disrupted in a single flyby.

It is a complicated (although tractable) problem of stellar dynamics to calculate how

frequently a star enters this zone of vulnerability (Frank and Rees, 1976). For galaxies with

steep density cusps, such disruptions would take place about once every few thousand years

(Magorrian and Tremaine, 1999). The exact rate depends on the statistics of the stellar orbits

and particularly on how quickly the near-radial loss cone orbits are replenished. When a star

is disrupted, the sudden release of gravitational binding energy is bound to produce a burst of

radiation. The flares resulting from a disrupted star could be the clearest diagnostic of a black

hole’s presence.

During a close passage, a star is radically deformed by the black hole’s strong tidal

field, stretching along the direction of motion while simultaneously being compressed in the

other two directions. Encounters that are particularly deep are difficult to simulate because of
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the extreme degree of compression achieved, with the final height of the star being hundreths or

thousandths of its original size (Luminet and Carter, 1986). In this chapter, we present the most

highly resolved three-dimensional simulation of the tidal disruption of a solar-type star to date,

with voxels∼103 times smaller than previous calculations (Kobayashi et al., 2004; Lodato et al.,

2009). We use the results of our simulation to construct a model for the breakout of shockwaves

from a tidally disrupted star, and we apply this model to determine the detectability of these

tidal shock breakouts (TSBs) in the local Universe.

The structure of this chapter is as follows. A description of the numerical methods

and the initial models are summarized in Section 2.2. In Section 2.3, we present a chronological

overview of the events in the life of a tidally disrupted star. An analytical treatment of shock

breakout in tidally disrupted stars follows in Section 2.4, while estimates for the luminosity

and detectability of various TSB events are subsequently presented in Section 2.5. We identify

limitations and summarize our results in Section 2.6.

2.2 Numerical Method and Initial Model

Our simulation is carried out using FLASH (Fryxell et al., 2000), an adaptive mesh

code that has been used to treat a wide variety of gas dynamics problems. The black hole

is initialized as a point mass with Mh = 106M�, while the progenitor star is initialized as a

1 M�, Γ = 3 polytrope
(
P∝ ρ1+1/Γ

)
with R∗ = 7× 1010 cm and central density of 76 g cm−3.

During the simulation, the gas obeys a γad = 5/3 equation of state. To ensure that the hydrostatic

equilibrium of this configuration is maintained, we ran a control simulation without the presence
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of the black hole for 104 s, roughly the duration of the encounter. We found good stability —

density does not change by more than a part in 100 for the inner 99.5% of the star’s mass.

The center of the computational domain is fixed to the star’s center of mass and is

8×1011 cm on a side. We subtract out the gravitational force the black hole exerts on the star’s

center of mass from every grid cell, leaving just the tidal force, which ensures the star remains

centered in our computational domain. Self-gravity is calculated using a multipole expansion

of the star’s mass distribution with only the monopole and quadrupole moments contributing

significantly.

Different refinement levels have different effective viscosities, so it is important that

the refinement of cells are chosen to match the symmetry of the problem. We use an adaptive

mesh scheme that refines all zones with ρ > 10−4 g cm−3 to have 8 levels. These zones are

refined twice more if they have |z| ≤ 1010 cm, resulting in a total refinement of 10 levels near

the orbital plane where the shock is expected to form. Each block is then divided into 83 grid

cells, making our smallest cells 2×108 cm in width. At pericenter, the star is resolved by 108

grid cells.

Because the majority of the stars in the loss cone are on radial orbits (Magorrian

and Tremaine, 1999), the orbit is assumed to be parabolic. We begin the simulation at t = −104

seconds, the star crosses the tidal radius at t = −103, and reaches pericenter at t = 0. At pericenter,

the star is brought to within rp = 1012 cm of the black hole, which corresponds to an impact

parameter β ≡ rt/rp = 7. Orbital energy is lost to heat and rotation injected into the star during

the passage, so we expect some deviation from a parabola. However, for large β the fractional

loss of energy is small. At pericenter, the kinetic energy of the star’s bulk motion relative to the
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black hole at is βGM�Mh/rt = 2× 1053 ergs, while our numerical results show only 2× 1050

ergs are injected as heat and internal motions. Although general relativistic effects do affect the

shape of the orbit somewhat for β = 7, we restrict ourselves to a purely parabolic encounter in

Newtonian gravity.

2.3 Hydrodynamics of Stellar Disruption

2.3.1 Initial Approach

A solar-type star on a loss-cone orbit is initially in hydrostatic equilibrium as it ad-

vances on a parabolic trajectory towards the black hole, eventually nearing rt, the distance at

which the black hole’s tidal forces are comparable to the star’s self-gravity. In this region, the

velocity and gravitational force vectors ~v and ~Fg of the star relative to the black hole are almost

parallel, resulting in the star being stretched into a prolate spheroid along its direction of travel

(Figure 2.1).

As the star continues in its orbit beyond rt, ~Fg changes angle with respect to ~v, and the

star is no longer stretched along its major axis. The angle of the star’s major axis at rt is partially

preserved during the passage. As a result, the star is not perfectly aligned with the trajectory

of the center of mass. For β� 1, the motion of the fluid after crossing rt (until reaching rp) is

well-described by the trajectories of a system of collisionless particles. During this phase, the

star is vertically compressed by the tidal field, leading to a velocity field that is directed towards

the orbital plane and whose magnitude is related to z, the distance above the plane.
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Figure 2.2: The hydrodynamics of shock formation in the core of a tidally compressed star. The
snapshots show the progression of gas temperature during the bounce phase of the passage in a
slice that passes through the center of mass, is perpendicular to the orbital plane, and parallel to
the minor axis of the star. The orange coloring in these figures indicates log10 T where ρ > 1 g
cm−3. Regions of subsonic/supersonic collapse/expansion are indicated with roman numerals,
with solid contours indicating the transition from collapse to expansion. The dashed contour is
where Mz = vz/cs = 1, the mach 1 surface relative to the z direction. The angle of the minor axis
to the x-z plane is 126.2◦ in (a), 127.3◦ in (b), 127.8◦ in (c), and 141.9◦ in (d).

2.3.2 Rebound

In the collisionless approximation, every particle would be expected to cross through

the orbital plane shortly after the star’s center of mass crossed pericenter. However, as the pres-

sure of the gas in the orbital plane increases, it eventually becomes large enough to overcome

the tidal field, which is decreasing as the star moves away from the black hole. When the ver-
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tical pressure gradient of the gas at the leading edge of the star becomes larger than the tidal

field, the flow reverses and compression waves propagate outwards in all directions. The com-

pression waves perpendicular to the orbital plane travel through a decreasing density gradient

and eventually steepen into shock waves. Shock waves that form on the edges of the star are

able to reach the surface quickly as the star has little vertical extent in these regions. The first

of these shocks form in the leading edge of the star ∼30 seconds after pericenter. Subsequent

shock formation sweeps across the star (parallel to the star’s major axis) at ∼ vp, with the edges

of the star rebounding before the interior, as illustrated in Figure (2.2).

The largest densities and pressures are reached when the compression wave crosses

what was the core of the star prior to the encounter. We find that Pmax = 1.3×1018 dyn cm−2 at a

density ρmax = 310 g cm−3, occurring 53.1 s after pericenter (Figure 2.2, panel c). These condi-

tions persist for only∼10 seconds, and substantial nuclear burning can only be triggered on this

timescale for T ∼ 3× 108 K and ρ ∼ 103 g cm−3 (Champagne and Wiescher, 1992). Compar-

ison with the results presented in Brassart and Luminet (2008) shows that this is substantially

lower than the predictions of one-dimensional simulations. This is expected because the density

at the leading edge of the star decreases after infall reversal, allowing the pressure build-up at

the interior to be relieved by leaking into the newly rarified post-bounce material. The reduction

in pressure due to this effect moderates the compression waves that form downstream in denser

parts of the star by decreasing the vertical pressure gradient ∂zP(x,y, t), a feature that is absent

from one-dimensional simulations, which assume that all parts of the star collapse at the same

time and ignore the effects of neighboring regions.

Additionally, a consequence of simulating tidal disruptions in three-dimensions is
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Figure 2.3: Histogram of the energies summed over all fluid elements during maximum com-
pression, Ei = Ki − Ui where Ki = 1

2 mi(~vbulk + ~vi)2 and Ui = GMhmi/r. ~vbulk is the star’s bulk
velocity, while mi and ~vi are the ith fluid element’s mass and velocity. Energies are distributed
among 30 bins and the data is smoothed using a spline fit. Curves are about 1.25s apart in time,
with colored arrows indicating effect of the pressure wave propagating through the star.

degraded linear resolution, which reduces the mid-plane pressure by a factor χ ∼ l−1, where

l is the width of a grid cell. Applying Brassart and Luminet’s scaling laws to our progenitor

model, we find that they predict a compressed core pressure that is χ = 100 times larger than

what is found in our simulation. Because the pressure gradient and resolution effects both lead

to a decrease in the mid-plane pressure, we expect that the actual value of the pressure at the

mid-plane should fall somewhere between Brassart and Luminet’s results and our own.

Shortly after the densest part of the star reaches maximum compression, the trailing
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edge enters its rebound phase. As the infalling material is halted by internal pressure at the

interior, the high pressure wave continues to sweep through the trailing half of the star at ve-

locity ∼ vp. Because the compression wave is traveling through a decreasing density gradient,

the lighter material piles up on the denser material towards the core, resulting in an increase of

velocity of the trailing edge relative to the star’s center of mass. This has the effect of binding

more material to the black hole (Figure 2.3) because the force is opposite to the direction of

the star’s motion. As a result about 5% of the mass that was already bound to the black hole

becomes more deeply bound after the maximum compression wave has crossed the entire star.

One-dimensional models do not replicate this effect mainly because they assume each column

of gas collapses independently, neglecting both compression and rarefaction waves that prop-

agate from other regions of the star. The relative speeds between any two parts of the star is

proportional to the total spread in velocity ∆v∝ vp ∝ β1/2 (Rees, 1988). Because the tempera-

ture of the star is largely uniform and the sound speed is proportional to β (Luminet and Carter,

1986), a given fluid element will be causally connected with a larger fraction of the star for

larger penetration factors, and thus multidimensional effects become increasingly important.

2.3.3 Free Expansion

After the entire star has rebounded, it proceeds to expand and adiabatically degrade

its internal energy content. Once again, the star’s pressure becomes unimportant in determining

its dynamics; as the star leaves the vicinity of the black hole, the effects of tidal stretching begin

to dominate. As the leading edge of the star is slightly closer than it would be on a purely

parabolic trajectory, the star experiences a torque and slowly rotates counter-clockwise when
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Figure 2.4: Three snapshots showing a slice of the star in the z = 0 plane, where t is time after
pericenter. The white arrow in each panel indicates the direction to the black hole’s center. The
orange coloring of the panels indicate log10 P where ρ> 10−3, where Pmin and Pmax are set to the
minimum and maximum pressure in each snapshot. In panels (b) and (c), contours of constant
angular velocity ω = vxy/|~r| are drawn in cyan showing deviations from rigid-body rotation.

viewed from above (Figure 2.4).

Because different parts of the star lie at different distances to the black hole, they

experience slightly different torques and acquire a range of angular velocities. This differential

rotation leads to the star folding onto itself, and generates a spiral feature similar to that seen in

Figure 2 of Evans and Kochanek (1989).

Eventually, the star leaves the immediate vicinity of the black hole and enters a free

expansion phase. As approximately half of the star’s mass has a negative binding energy relative

to the black hole, the bound material will eventually return to pericenter (Ramirez-Ruiz and

Rosswog, 2009), form an accretion disk, and feed an AGN phase for a few months (Rees,

1988). As we will describe in the next section, the rebound of the remnant also produces a clear

observable signature, which can be used to predict when a quiescent black hole will become

active.

17



2.4 Shock Breakout

The immediate signatures of tidal disruption will be observable in the X-rays, which

correspond to a surface temperature of ∼ 107 K. Because the ratio between the star’s vertical

extent and its width in the orbital plane is less than 1:10, the light curve produced by shocks

propagating perpendicular to the orbital plane should have roughly a cos(ψ) dependence, where

ψ is the angle between the orientation of the orbital plane and the line of sight. Due to the

complex nature of the shocks generated by this event, the escaping radiation does not necessary

lead to a single burst. In fact, our simulation shows two distinct peaks (Figure 2.5).

Because our simulation only resolves the star out to densities of ∼ 10−3 g cm−3, our

calculated surface lies beneath the true τ = 1 surface for Thomson scattering in a stellar atmo-

sphere. This surface corresponds to densities of mp/σthl = 10−8 g cm−3 in our simulation, where

l is the length of the smallest grid cells. Additionally, the simulation treats the entire star as a

γad = 5/3 ideal gas, which is clearly not true in the tenuous outer layers of the star’s atmosphere

that are radiation pressure dominated for temperatures of ∼ 107 K and densities of ρ . 1 g

cm−3. Because of these limitations, we must extrapolate from the conditions at the surface of

the simulation to determine the properties of the post-shocked atmosphere.

We define the surface of our simulation to be where εgas > 5εrad such that the gas

temperature is still representative of the energy content of a given fluid element. As the photons

below the τ = 1 surface are trapped on the shock crossing timescale, we can assume the shock

has no radiative losses and the properties of the post-shock material are accurately described by

the Rankine-Hugoniot jump conditions (Shu, 1992). For a perfect gas of ionized Hydrogen the
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energy density is εgas = 3nkbT , where n is the number density of atoms and T is the pre-shock

gas temperature. Thus, the post-shocked material will have ε = ρ
7

(
6v2

sh − kbT/mp
)
, where vsh is

the shock velocity. This expression is controlled by the v2
sh term in the star’s outer layers where

T is small, and thus the energy density of a post-shocked region is ∝ ρv2
sh, the ram pressure of

the post-shock material.

If we take the energy density εs = 3ρskbTsm−1
p (where the subscript s refers to the sur-

face conditions) to be equal to the post-shock energy density at the base of the atmosphere, we

can then calculate the energy density ε as a function of height z above this surface by consid-

ering the self-similar solutions of a shock propagating through a decreasing density gradient.

In such solutions, the evolution of the shock velocity as it moves towards the photosphere is

determined by γad and the dependence of ρ on z, where z is the distance from the base of the

atmosphere.

2.4.1 Self-Similar Solutions

Solutions for the post-shock conditions in the strong shock limit of both exponential

(Grover and Hardy, 1966; Hayes, 1968; Zel’Dovich and Raizer, 1967) and power-law (Saku-

rai, 1960) atmospheres are readily available. The outer layers of an Γ = 3 polytrope are well-

described by a power-law distribution with index 1.5≤ δ ≤ 3 (Matzner and McKee, 1999); we

assume that δ = 1.5 for the remainder of this work. For a power-law atmosphere where z is the

distance from the base of the atmosphere and h0 is the pressure scale height, the density ρ(z) is

ρ(z) = ρs[1 + zh−1
0 ]−δ. (2.2)
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If vsh,s = 7
6εs/ρb is the shock velocity at the base of the atmosphere, then v(z) is

v(z) =
2vsh,s

γad + 1
[1 + zh−1

0 ](1−α)/α. (2.3)

Because the post-shock energy density is just equal to the ram pressure in the strong shock limit,

the total energy density ε(z) is simply

ε(z) = εs[1 + zh−1
0 ]2(1−α)/α−δ. (2.4)

At the base of the atmosphere thermal pressure dominates, but as the density of the gas

decreases with z more rapidly than the temperature, the atmosphere becomes radiation pressure

dominated within a couple scale heights and thus γad = 4/3. For our assumed values of δ and

γad, Sakurai’s method leads to a similarity exponent α = 0.7774.

As the atmosphere is strongly compressed by the time-integrated tidal gravitational

field, its vertical scale at shock breakout is significantly reduced. To estimate the atmosphere’s

size at breakout, we assume that collapse is self-similar. Because most of the stretching in a

close encounter takes place before the star reaches rp, the cross-sectional area A∗ should not be

a strong function of β, provided that β� 1. Thus, the star’s vertical size is directly related to

the change in the star’s volume

Hf

Hi
=

Vf

Vi
, (2.5)

where Hi (= R∗) and Hf are the initial and final heights of the star above the orbital plane and

Vi and Vf are the initial and final stellar volumes. The vertical velocity v⊥ of the stellar material
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just prior to rebound is approximately equal to βcs (Carter and Luminet, 1983), and because

nearly all of the internal motions during free-fall are vertical, the total kinetic energy of the star

can be estimated as

1
2

M∗v2
⊥ = β2 GM2

∗
R∗

. (2.6)

At rebound, the kinetic energy of the infalling material is converted into internal en-

ergy. Because the star’s original internal energy is Ui ' GM2
∗/R∗, the initial and final internal

energies are simply related, Uf = β2Ui. Assuming the compression is adiabatic,

V ∝U
1

1−γad , (2.7)

and thus

Hf =Hi

(
Ui

Uf

) 1
1−γad

=Hiβ
2

1−γad . (2.8)

For γad = 5/3, Equation 2.8 givesHf =Hiβ
−3. In a self-similar collapse, the scale height hb will

be reduced by a factorHf/Hi, and thus hb = h0β
−3.

Because the velocity of a given layer is position dependent, ∆v is non-zero and the

post-shock energy density ε is a decreasing function of t. The energy output will therefore be

controlled by a balance between photon diffusion and adiabatic expansion, with most of the

photons being released from a layer where these two timescales are comparable. Assuming
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plane-parallel geometry, these timescales can be estimated for a layer at a given z as

τad '
[

erf
(

1/
√

2
)−1/γad

− 1
](

∂v(z)
∂z

)−1

(2.9)

τdiff '
τ (z)2ρ(z)σth

cmp
. (2.10)

where σth is the Thomson cross-section and mp is the proton mass. Equating these two expres-

sions and solving numerically for z determines zmin, the deepest layer in the atmosphere that

will contribute significantly to the emission.

With the compressed density profile, shock jump conditions, and depth of the emit-

ting region determined, we can calculate the luminosity and spectrum of shock breakout. As

the energy density of the post-shocked material is primarily given by the energy density of ra-

diation, we can estimate the photon temperature in the atmosphere as T 4
ph = ε(z)/ab, where ab

is the Stefan-Boltzmann constant. While the temperature does decrease as z approaches H (the

distance from the base of the atmosphere to the photosphere), this decrease is small because

T ∝ ε1/4.

The spectrum of photons near the τ = 1 surface may be significantly non-thermal

because the photon spectrum takes a non-neglible amount of time to approach a Planckian

distribution (Katz et al., 2009). Additionally, the shock velocity near the surface is∼ 0.03c, and

special relativistic effects may also contribute to a non-thermal spectrum. While these effects

would lead to the production of harder photons that are easier to detect (Band et al., 2008), we

conservatively assume that the observed photon spectrum is a combination of blackbodies.

The total energy released by the event can be estimated by integrating the energy
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density over z and multiplying by twice the cross-sectional of the star at pericenter 2A∗ = 2πab:

Etot = 2πab
∫ H

zmin

ε(z)dz, (2.11)

where a and b are the semi-major and semi-minor axes of the star. We can define an effective

height parameter Z

Z ≡
∫ H

zmin

(
1 +

z
hb

)2(1−α)/α−δ

dz (2.12)

= hb
α

α(δ + 1) − 2

(
1 +

z
hb

) 2
α

−δ−1 ∣∣∣∣z = H

z = zmin

,

which is independent of position on the surface of the star if we assume that the atmosphere is

always perpendicular to the orbital plane and that hb and δ are constants. The average luminosity

of the event is then given by substituting Z into Equation 2.11 and dividing by the length of time

for the star’s center of mass to cross pericenter

tcr = 2a/vp '
6R3/2
∗

β1/2G1/2M1/3
h M1/6

∗
, (2.13)

which yields

L̄ = πvpbεsZ, (2.14)

where we used Equation 2.4 to substitute for ε(z) and our definition for Z. Evaluating Equation

(2.14) for the average εs found at the surface of our simulation, assuming the initial scale height

has the solar value of h0 ' 1.4× 107 cm, and using the measured crossing time tcr = 30 s, we
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find L̄ = 3×1044 ergs s−1.

While our estimation determines the average luminosity L̄, calculating the luminosity

as a function of time is more difficult because εs is a function of position on the surface. Because

a detailed record of the surface conditions are produced by our simulation, we can calculate

what the luminosity and spectrum will look like as a function of time. Most of the luminosity is

released from the deepest contributing layer of the atmosphere ε(zmin), where the diffusion time

to the surface is ∼ 10−2 s. This timescale is significantly shorter than tcr, so we approximate

each grid cell’s contribution to the luminosity as a delta function

L(x,y, t) =
Zl2εs(x,y)

∆t
δ[t − tb(x,y)], (2.15)

where l is the grid cell size in cm, ∆t is the time increment between two data dumps, and tb(x,y)

is the breakout time for a given location on the surface. We use ∆t = 0.1s, but the value chosen

only affects the smoothness of the resultant light curve so long as ∆t� tcr. Because the shock

front is not always easy to detect in our simulation due to limited resolution in the perpendicular

direction, tb is set by when a given area element’s energy density peaks. The luminosity as a

function of time is then simply a sum of the individual contributions of the surface grid cells

L(t) =
Ncells∑

i

Zl2εs,i

∆t
δ(t − tb,i), (2.16)

where εs,i and tb,i are the energy density and breakout time of a given cell, respectively.

Equation (2.16) allows us to generate a light-curve for our disruption event (Figure
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Figure 2.5: Light curve produced by the breakout of shocks across the surface of the disrupted
star, where s is the flux in photons per second and t is time since the star’s center of mass crossed
pericenter. Photons are binned into categories based on energy. The dotted lines show the raw
output of the luminosity calculation for a given bin, while the solid lines show a 1 s moving
average of the same data.

2.5). We assume that each grid cell produces a blackbody spectrum of photons defined by the

photon temperature of that cell, Tph,i = ε1/4
s,i a−1

b . By summing these spectra, we can obtain a

photon distribution at time t. Note that there are two peaks at ∼30 and ∼50 seconds corre-

sponding to shocks that originate from the limbs of the star. As discussed in §2.3, this double

peak feature arises because compression waves that originate near the star’s center of mass tend

to travel parallel to the orbital plane in the direction of the star’s orbital motion into regions that
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have already begun expanding. This compression moderation results in the non-production of

shocks in this region, and thus there is a period of relatively low luminosity as the shocks cross

the star’s center of mass. The time difference between the two maxima in the light curve is

approximately equal to tcr (Equation 2.13).

Our post-shock surface conditions show peak breakout temperatures in excess of 8×

107 K at densities of 30 g cm−3. Kobayashi et al. (2004) estimated that the β = 5 event will

yield photons of energy of 2.2 keV on average, which is in agreement with our mean surface

temperature.

2.5 Observability

2.5.1 X-ray Transient

The duration, color, and luminosity of a disruption breakout event depends on β,

Mh, and the parameters of the star being disrupted. Ideally, one would want to construct a

predictive model for TSBs by performing a detailed simulation for each possible combination

of parameters. However, a thorough exploration of the full parameter space would require many

simulations similar in scope to the simulation presented in this work. Fortunately, progress can

still be made as our simulation provides an accurate benchmark for the peak luminosity Lpeak

of a deeply-penetrating breakout event. The results of the simulation can then be used together

with some simple scaling arguments to construct a function that can describe the features of

disruption breakouts for a variety of encounters.

We can gain some insight by considering the scaling of the various parameters that the
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luminosity (Equation 2.14) depends on. The pericenter velocity is dependent on the black hole

mass and the closest-approach distance, which gives a scaling of vp ∝ β1/2M1/3
h . For γad = 5/3

(appropriate for the mid-plane), ρ∝ β3 and T ∝ β2 (Luminet and Carter, 1986), which implies

that εs∝ ρv2
s ∝ β5. Because the total height of the atmosphere H scales as β−3, large β events are

reduced in output by the decrease in volume of the emitting region. For ultra-close encounters

the escape velocity can be comparable to c, and thus the emitted photons are gravitationally

redshifted, with the energy of each being divided by a factor of
(
1 +

1
2 rs/rp

)
. Additionally, the

passage of time in the star’s rest frame is slower than that of an observer for which r� rs by a

factor of
√

1 − rs/rp, leading to a further decrease in luminosity. Accounting for these effects,

the peak luminosity of a TSB roughly scales as

Lpeak ∝ β5/2M1/3
h

√
1 − rs/rp

2 + rs/rp
. (2.17)

A more careful calculation considering the detailed properties of the shocked, self-

similar atmosphere reveals that L also depends on the choice of δ. The dependence on β and Mh

still roughly follows the scaling of Equation 2.17, but because the volume of the emitting region

depends on where τad = τrad (Equations 2.9 and 2.10), the luminosity of a given event must be

computed numerically. The full numerical solution for Lpeak of a δ = 1.5 power-law atmosphere

over a range of β and Mh is shown in the left panel of Figure 2.6.

We now follow the procedure of Wang and Merritt (2004) to estimate the rate of

detectable events. Because the tidal radius grows as M1/3
h and the Schwarzschild radius grows

as Mh, disruptions with β > 3 are only possible for black holes with Mh . 108M�. This means a
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Figure 2.6: Peak luminosity and detectability of events as a function of Mh and β, assuming
that the outer atmosphere is described by a δ = 1.5 power law. The left panel shows log10 Lpeak
for a given event, while the right panel shows the number of expected detections by EXIST
(Grindlay, 2004) [update this with active x-ray telescope] Ṅd, normalized to the maximum
rate. Our simulation parameters are indicated by the white circles, while the black crosses
indicate the location of the events with the largest predicted detection rates. Disruptions are
constrained by the β = βmax curve (shown as a dashed line), which indicates the largest β for a
given black hole mass where rp > rs.

significant detection rate is only obtained when considering the low end of the galaxy luminosity

function, as characterized by Trentham and Tully (2002)

NdE(M)dM = NdE,0
(
10−0.4(M−MdE))αdE+1

(2.18)

× e−10−0.4(M−MdE)
dM.

In this expression, NdE,0 is a normalized dwarf elliptical galaxy number density, MdE is the
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cutoff magnitude for the Schechter function, and αdE describes the faint-end slope. As in Wang

and Merritt (2004), we want to write Equation 2.18 as a function of Mh. We use the scaling

relation of Magorrian et al. (1998) to write the absolute magnitudeM in terms of bulge mass

Mbulge, which is simply related to Mh = 10−2.91Mbulge (Merritt and Ferrarese, 2001). We assume

that only nucleated dwarf elliptical (dEn) galaxies contain black holes, with the nucleated frac-

tion Fn scaling linearly withM. To properly scale NdE,0, we assume that the space-averaged dE

density is equal to the number of dEs in the Virgo cluster spread into a sphere with radius equal

to the distance of the Virgo cluster (approx. 0.2 Mpc−3).

Because we are in the regime where rp� rt, we know that the disruption rate scales

linearly with rp (Rees, 1988), and Wang’s expression for the disruption rate becomes

Ṅ = 6.5×10−4 yr−1
(

Mh

106 M�

)−0.25

β−1. (2.19)

The maximum distance Rd to a detectable event can be expressed as a function of

instrumental sensitivity as

Rd =

√
πLpeak

2σbT 4
ph

∫ νmax

νmin

F−1
T Bν(Tph)

hν
dν, (2.20)

in which FT(ν) is the burst sensitivity as a function of frequency, the TSB spectrum is given

by the Planck function Bν at a temperature Tph ∝ β5/4, h is Planck’s constant, σb is the Stefan-

Boltzmann constant, and νmin and νmax are the minimum and maximum frequencies accessible
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Figure 2.7: Bulge velocity dispersion σe vs. BH masses in E, dE, and bulge-dominated spiral
galaxies (circles), AGN (triangles), and globular clusters (pentagons). The colored contours
represent the detection rate relative to the maximum detection rate as in Figure 2.6, averaged
over all β, with the maximum indicated by the dashed line. Plot modified from Geha et al.
(2002), including the BH masses compiled by Noyola et al. (2008).

to the instrument. An instrument is sensitive to all events contained within the volume

Vd =
4
3
πR3

d. (2.21)

We now have all the pieces needed to determine a detection rate in terms of β and Mh.

By multiplying the number density of black holes NdEFn (Equation 2.18) by the disruption rate

30



Ṅ for a black hole of a given mass and penetration factor (Equation 2.19), and by the volume

Vd in which those events are detectable (Equation 2.21), we obtain the following expression for

the total rate of detection

Ṅd =
Ω

4π

∫ ∞
3

∫ Mmax

Mmin

ṄNdEFnVd dMhdβ, (2.22)

in which Ω is the solid angle covered by the instrument’s field of view and Mmax≡
(
c2R�/4GM�β

)3/2

is the mass at which rp ≤ rs, the Schwarzschild radius. The integral over β terminates at β = 3

because shocks have not been seen in one-dimensional calculations for passages with β < 3

(Brassart and Luminet, 2008). However, our simulation shows that shocks form in the limbs of

the star where conditions are substantially different than the core, and thus shocks may still be

produced for β < 3 in some cases.

The detection rate is evaluated using the parameters of the proposed EXIST telescope,

which has spectral coverage from 3 to 1000 keV, an average burst sensitivity of FT = 0.2 cm−2

s−1, and ∼ 20% sky coverage (Grindlay, 2004; Band et al., 2008). Using these values, Equation

2.22 predicts that EXIST should detect approximately 1 TSB per year. We can also use the

argument of integrals of this equation to generate a map in (β,Mh) space (Figure 2.6, right

panel) to predict which events will generate the most detections. Comparison with the left panel

of the same figure shows that these events have a characteristic luminosity of ∼ 5× 1044 ergs.

Despite being similar to the Eddington value of 1044M6 for a SMBH, detection is infrequent

because of the short duration of the shock breakout. By integrating Equation 2.22 over all β, we

can also determine how black holes of different masses contribute to the detection rate (Figure
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2.7), with the peak rate corresponding to a black hole mass of 2×105M�. The predicted peak

in the detection rate is predicated on the assumption that SMBHs obey the black hole to bulge

mass relation for Mh < 106M�. Therefore, the detection of TSBs would test the validity of this

assumption and potentially provide compelling evidence for SMBHs in low mass galaxies.

2.5.2 Gravitational Wave Signal

In addition to the X-ray breakout signature, gravitational waves are also expected to

radiate from the encounter, mostly originating from the changing location of the star relative to

the black hole. We can estimate the strength of these waves by approximating the second time

derivative of the moment of inertia tensor as Ï i j ∼ GMR2/c4P2. If we assume that the period

P ∼ rp/vp = r3
p/GMh, the length scale of variation R ∼ rp, and the mass M = M∗, we find that

the gravitational wave amplitude h̄ is (Kobayashi et al., 2004)

h̄∼ GM∗rs

dc2rp
=
βG2M4/3

∗ M2/3
h

dc4R∗
, (2.23)

in which d is the distance to the event. For our β = 7 simulation, we calculate that h̄ ∼ 10−21

for d = 10 Mpc. Gravitational waves will also be radiated as the star itself changes shape, but

these distortions are far smaller than those generating by the changing quadrupolar moment of

the star-SMBH system. Assuming that R∼ R∗, the gravitational wave amplitude is

h̄∼ β3G2M2
∗

dc4R∗
. (2.24)
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Note that this expression is independent of Mh. For d = 10 Mpc, h̄ is 10−23 for our encounter,

beyond LISA’s sensitivity range. Because this expression is proportional to β3, the compression

of the star can be a substantial contribution to the gravitational wave signature for very deep

passages (β & 25).

If both a gravitational wave signal and a TSB signal are available for the same event,

additional information about the encounter can be obtained. While both observational signa-

tures each place upper and lower limits on the properties of the disrupted star, either signature on

its own cannot uniquely constrain the star’s characteristics. By assuming a stellar mass-radius

relationship M∗ = M0Rη
∗, Equation 2.23 can be combined with Equation 2.13 to calculate the

mass of the disrupted star

M∗ ∼

(
h̄dc4t2

cr

GM2η
0

) 1
1−2η

, (2.25)

in which tcr can be estimated by measuring the distance between the two peaks in the light

curve (e.g. Figure 2.5). By determining the masses of disrupted stars, a distribution of stars

that occupy the loss cone can be derived. As the IMF in the vicinity of SMBHs is poorly

characterized even in our own galaxy (Alexander, 2005), a coincident detection of both the

gravitational and TSB signatures would, for the first time, allow us to investigate the IMF in

close proximity to extragalactic SMBHs.

2.6 Conclusion

While the simulation presented in this work features the highest resolution of the tidal

disruption of star in 3D to date, it still has a few shortcomings. Our model does not have enough
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linear resolution to resolve the sharp pressure gradients that develop in deeply penetrating en-

counters, and thus the mid-plane pressure in the rebound phase is certainly underestimated by

some factor. In addition, for close passages such as ours, GR effects start to become important.

For 5. β . 10, the orbit is better characterized by a Paczynski-Wiita potential, but for β > 10, a

fully general relativistic treatment of the Schwarzschild metric (Frolov et al., 1994) is required.

The orbits are then not ellipses, but may have two or more pericenter transversals and, as a

result, could lead to the formation of multiple shocks. A full understanding of the compression

process in such cases will require detailed GR hydrodynamical simulations.

In this work, we have provided numerical details of how a solar-type star is stretched,

squeezed, and strongly shocked during an encounter with a massive black hole. We then calcu-

lated the radiation a distant observer might detect as the observational signature of the accom-

panying shock breakout. If detected, an L ∼ 1044 erg/s burst that fades within a few minutes

and exhibits the predicted double-peaked signature in the soft X-rays would be compelling tes-

timony that a star experiencing an ultra-close encounter with a black hole can be disrupted and

compressed to such an extent that shock waves can be triggered.
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Chapter 3

Surface Detonations in Roche Lobe Filling

Double Degenerate Systems

3.1 Introduction

White dwarfs (WDs), the final state of main-sequence stars with mass . 8M�, are ex-

tremely common, with about 1010 of them residing within the Milky Way (Napiwotzki, 2009).

WDs are sometimes observed to have compact stellar companions, with “double degenerate”

(DD) systems being defined as those in which the companion is another WD. Most frequently,

DD systems are formed via common envelope evolution (Nelemans et al., 2001b,a), and some-

times the final result of this evolutionary process is a binary consisting of a carbon-oxygen (CO)

WD and a lower-mass helium WD companion (Napiwotzki et al., 2007).

For decades, Type Ia supernovae (SNe) have been employed as standard candles.

Still, even the preferred mechanism exhibits substantial variability (Timmes et al., 2003; Kasen
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et al., 2009). Complicating this issue further is that WDs may not need to have masses near

the Chandrasekhar limit to be capable of exploding; other mechanisms include collisions be-

tween WDs in dense stellar environments such as the cores of globular clusters (Rosswog et al.,

2009a), tidal encounters with moderately massive black holes (Rosswog et al., 2008a,b, 2009b;

Ramirez-Ruiz and Rosswog, 2009), or as we are introducing in this chapter, the accretion of

dense material from a He WD companion.

At the distance of tens of WD radii, gravitational radiation can bring two WDs close

enough for the less-massive WD (secondary) to overfill its Roche lobe and begin transferring

mass to the more-massive WD (primary). Because WDs expand as they lose mass, mass transfer

from a WD donor is often unstable and can lead to a merger (Marsh et al., 2004; Gokhale et al.,

2007). For binary mass ratios close to unity the circularization radius Rh drops below the radius

of the primary R1, and thus the accretion stream will directly impact the primary’s surface.

Most studies of dynamically unstable DD systems focus on the evolution of the post-

merger object and, assuming that the final object has a mass larger than the Chandrasekhar limit,

on how the merged remnant may eventually lead to a Type Ia SNe (Livio, 2000; Yoon et al.,

2007). These models all assume that the rapid accretion that precedes coalescence is uneventful.

In this chapter, we present three-dimensional hydrodynamics simulations that demonstrate that

explosive phenomena are a likely consequence of the high accretion rates characteristic of the

final stages of a merger in a DD system. In some cases, these explosive phenomena may lead to

the complete detonation of the CO primary.
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Figure 3.1: Setup of run Ba in FLASH, with several annotated regions of interest. The color
scheme shows logT through a slice of the orbital plane. The cyan circle shows the spherical
outflow boundary condition centered about the secondary, while the cyan wedge shows a cross-
section of the cone used as the mass inflow boundary. The dashed contour shows the system’s
Roche surface. The white boxes with labels are described in Section 3.3.

3.2 Numerical Method and Initial Models

The lead-up to the merger has only been studied recently due to the sensitivity of the

accretion to the transfer of angular momentum. Several groups have simulated these mergers

in three dimensions using particle-based codes (Benz et al., 1990; Rasio and Shapiro, 1995;

Segretain et al., 1997; Guerrero et al., 2004; Dan et al., 2009), with the latter being able to

resolve the final ∼ 100 orbits of the binary prior to coalescence. SPH simulations, with their

excellent angular momentum conservation, are well-suited to determine the binary orbital evo-

lution. However, because the SPH particles have a fixed mass and typical accretion rates are

& 10−5 the total mass of the system per orbit, the accretion stream is only resolved by hundreds

of particles at best. Consequently, SPH approaches are unable to resolve any of the accretion
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stream’s detailed structure, including how the stream impacts the surface of the primary.

Eulerian codes are able to provide high resolution based on any combination of local

and global simulation properties, and thus are ideal for systems where the regions of interest do

not overlap with the regions of highest density (New and Tohline, 1997; Swesty et al., 2000).

Unfortunately, it is difficult to accurately simulate the overall orbital evolution for many orbits

in grid-based codes due to the non-conservation of angular momentum (Krumholz et al., 2004),

although a careful choice of coordinate system has led to recent success (D’Souza et al., 2006;

Motl et al., 2007). Because the stability of the system depends on the structure of the primary

and the secondary, the grid-based simulations that investigate stability must fully resolve both

stars, and thus the stream and the primary’s surface are less resolved in these simulations.

Here we follow a hybrid approach that combines the strengths of both SPH- and

grid-based methods. We follow the impact of the mass transfer onto the orbital evolution by

performing an SPH simulation (Dan et al. 2010, in prep.) and use the obtained, time-dependent

results for orbital separation and Ṁ as boundary conditions for FLASH (Fryxell et al., 2000).

This combination allows us to realistically determine the dynamic stability of the binary while

not sacrificing our spatial resolution of the accretion.

In FLASH, the primary is built under the assumption of spherical hydrostatic equilib-

rium and a constant temperature of 5×105 K, and is mapped into the simulation explicitly. The

secondary is not mapped directly into the grid and is taken to be a point mass surrounded by a

spherical outflow boundary condition. The simulation is performed in a non-inertial frame ro-

tating with angular frequency ω =
√

G(M1 + M2)/a3 about the barycenter. The primary’s gravity

is calculated using a multipole expansion of its potential, and because the quadrupolar contri-
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bution of the secondary is negligible, we approximate the secondary’s gravitational field as a

monopole. Because the choice of frame and the presence of the secondary changes the hydro-

static configuration of the primary, we first allow the primary to slowly relax in the presence of

the secondary’s potential by removing a fraction of its kinetic energy every time-step over many

dynamical timescales.

The nuclear composition of the fluid is evolved via the 13 element α-chain network

of Timmes (1999) and Timmes et al. (2000). Pressures and temperatures are calculated using

the Helmholtz equation of state (Timmes and Swesty, 2000). The accretion rate provided by the

SPH calculation is used to generate a quasi-hydrostatic inflow boundary condition to replicate

the flow of matter from the secondary to the primary (Figure 3.1). The boundary we use is

cone-shaped with the apex located at L1, and mass is added to the cone under the assumption

that the stream is in hydrostatic equilibrium in the direction perpendicular to the barycentric line

(Lubow and Shu, 1976). The flow is directed towards the barycenter of the system at velocity

v = cs ∼ 108 cm/s, the sound speed within the secondary. In all simulations presented here, the

stream is assumed to be pure He. The four simulations that we have performed are summarized

in Table 3.1.

3.3 Accretion Stream Instabilities

In a binary system undergoing mass transfer, the fate of the accretion stream is de-

termined by ratio R1/Rh. For all three of the binaries we describe Rh < R1 and thus the stream

would directly impact the surface of the primary assuming the stream was collisionless. How-
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Table 3.1: Simulation results.

Run tevol
a lmin

b Primary Secondary Mtorus,max
c Surf. Mass ejected Yield (10−3M�)

s 106 cm M� Type M� Type 10−2M� det. 10−2M� 20≤ A≤ 32 A≥ 36

A 1885 4.9 0.67 CO 0.45 He 14 No - - -
B 434 3.7 0.9 CO 0.45 He 9.7 Yes 5.9 11 1.9
Bad 25 1.8 0.9 CO 0.45 He 11 No - - -
C 335 3.4 0.9 CO 0.6 He/CO 5.0 Yes 6.0 16 5.6

aTotal evolution time.
bMinimum grid cell size.
cMaximum mass of the helium torus accumulated during the run; this is either the value just before detonation or

at the end of the run if there was no detonation.
dRun Ba is initialized from a checkpoint produced by run B at t = 403s.

ever, the stream can eventually be deflected by the ram pressure of the thick torus of helium that

gradually accumulates on the primary’s surface, preventing a direct impact.

As the sound speed within the torus is far smaller than the Keplerian rotation velocity,

the collision between the torus and the stream is highly supersonic (M > 10), which leads to the

development of a standing shock (Figure 3.1, region I). This shock establishes pressure equi-

librium across the stream-torus interface. Because of the temperature increase of the material

falling from L1 to the surface of the primary, the torus consists of material heated to a tem-

perature close to the virial temperature of GM1mp/R1kb ∼ 108 K. Radiation pressure becomes

competitive with degeneracy pressure at these temperatures and densities, and as a result the

torus has a density smaller than the incoming accretion stream.

Because the accretion stream and the helium torus do not move in the same direction,

the difference in velocity at the interface is substantial, U1 −U2 ∼
√

GM1/r1(
√

2−cosθ), where

θ is the angle between the stream and torus velocities. This shear can lead to the rapid growth of

Kelvin-Helmholtz instabilities along the interface between the two regions (Figure 3.1, region

II). An important factor in determining which perturbations are unstable is the magnitude of
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the restoring force perpendicular to this interface. The acceleration g limits the instability to

k > kmin (Chandrasekhar, 1961)

kmin =
g (α1 −α2)

α1α2 (U1 −U2)2 , (3.1)

where α1 ≡ ρ1/(ρ1 + ρ2) and α2 ≡ ρ2/(ρ1 + ρ2). As long as g > 0, only perturbations with

wavelength λ < λmax = 2π/kmin can grow. Within the primary’s Roche lobe, g is determined by

the combination of the primary’s gravity and the Coriolis force

g = 2Ω|~v|− GM1

|~r1|2
|~r1×~v|
|~r1| |~v|

. (3.2)

Because the Coriolis force is always perpendicular to the velocity, its contribution to g is always

equal to the magnitude of the force. Only the component of the primary’s gravity that is perpen-

dicular to ~v will contribute to g. Near L1 where the cumulative gravitational forces are parallel

to the velocity, the Coriolis term is dominant and is directed away from the primary, and thus g

is positive. As the stream falls toward the surface of the primary, U1 −U2 continually increases,

allowing progressively longer wavelengths to become unstable. And because the Coriolis effect

is ∝ |~v| ∝ |~r1|−1/2 while the primary’s gravity is ∝ |~r1|−2, the primary’s gravity eventually be-

comes the dominant contributor to the restoring force. As the primary’s gravity is opposite to

the Coriolis force, g eventually changes sign, at which point all wave modes become unstable

(Figure 3.1, region III).

The helium torus, which is both clumpy and has a radial density profile, drives the
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seed vertical displacements in the accretion stream. The torus is highly turbulent, with the

largest bulk motions being driven at scales comparable to the width of the accretion stream (∼

108 cm) and at speeds that are highly supersonic. Therefore, the power spectrum of the resulting

turbulent cascade is given by Burgers turbulence (E ∝ k−2). Consequently, perturbations with

large wavelengths are seeded with large initial amplitudes, giving them a head start over smaller

perturbations. Additionally, power is transferred from large k to small k by the tidal stretching

of waves as they fall in the primary’s gravity. A numerical calculation of the growth rate shows

that the largest unstable modes experience a ten-fold increase in amplitude in the time it takes

to fall from L1 to the primary’s surface. Because the flow is three-dimensional, instabilities

larger than the stream size cannot form, and the end result is that the stream consists of knots of

material that are comparable in size to the stream itself (Figure 3.1).

3.4 Surface Detonations

We find that instabilities in the accretion stream are present in all four runs once the

helium torus has acquired enough mass to deflect the stream. The material that is compressed

against the surface of the primary by the dense knots formed in the stream can be heated to

billions of degrees Kelvin (Figure 3.1, region IV). At the onset of mass transfer, the density

of the stream is too small to heat the underlying material appreciably. This allows ∼ 1 − 15%

of a solar mass of helium to accumulate on the surface of the primary. As the density of the

accretion stream increases with the decreasing separation between the WDs, the temperature of

the compressed layer can exceed the temperature required to explosively ignite helium via the
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Figure 3.2: The hashed region on the lower right shows systems that are definitely dynamically
stable, while the sticked region in the upper left shows systems that are definitely unstable. The
thick solid line shows the transition from direct impact to disk accretion, while the dot-dashed
curve shows the separation between sub- and super-Eddington accretion in the weak coupling
limit (Marsh et al., 2004). The contours show where τdyn = τ3α for different stream densities
ρs,5 ≡ ρs/105 assuming a torus density of 3× 105 g cm−3. Surface detonations are likely for
systems that accrete with ρs for which τdyn < τ3α and then experience an increase in ρs until
τdyn > τ3α.

triple-alpha process. This leads to a gravitationally confined surface detonation that propagates

through the helium torus that wraps around the surface of the primary at approximately the

Keplerian velocity (Figure 3.3).
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Figure 3.3: Volumetric snapshots showing the temperature T and logρHe ≡ ρXHe during the
explosive event on the surface of the primary in run C. A dense knot of helium that formed
through Kelvin-Helmholtz instabilities in the accretion stream is marked by a magenta arrow.
The evolution of the surface detonation is described in Section 3.5.

The conditions required for a successful surface detonations are summarized in Fig-

ure 3.2. Only systems that are dynamically unstable will ever have accretion rates capable of

igniting surface detonations via stream instabilities, and thus the lower-right region of the fig-

ure is excluded. The question of whether the surface detonation will occur in a given binary

is tricky to answer because the process is highly stochastic; the impact trajectory, density, and

geometry of the knots that initiate the detonations vary considerably over the course of the sim-

ulations. Nevertheless, we can estimate when surface detonations will occur by comparing the

timescale for triple-α reactions τ3α (Caughlan and Fowler, 1988) to the dynamical timescale

τdyn ' R1/vesc,1 at the surface of the primary.

For a surface detonation to involve a significant amount of mass, the system must

accrete material at a rate for which τ3α > τdyn, and then transition to a rate where τ3α ≤ τdyn.
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By solving the equations of motion for a test particle released from L1, we estimate the two

timescales in Figure 3.2 for various stream densities for different primary and secondary masses.

The conditions at the He/CO interface are given by ∂P/∂r = ∂φ/∂r, where φ ' GM1/r1 −

r1Ω
2
tor and Ωtor is the angular velocity of the torus, which is related to the component of the

accretion stream velocity parallel to the primary’s surface. Conversely, the ram pressure Pram ∝

ρv2 applied by the accretion stream is dependent on the component of velocity perpendicular to

the primary’s surface.

The density structure of the torus is approximately fixed as the system evolves to-

wards merger because φ only increases slightly due to mass accretion. Meanwhile the stream

density continually increases, resulting in the contour of τ3α = τdyn moving leftwards in Figure

3.2. When τ3α . τdyn, the increase in temperature of the torus can no longer be controlled by

adiabatic expansion, which results in thermonuclear runaway and a detonation in the helium

torus.

3.5 Results and Discussion

Surface detonations are present in both of the longer runs with a 0.9 M� CO primary,

although run B detonates much later in its evolution than run C. The geometry and evolution

of the detonations are similar in both runs. A small region of the surface helium is heated to

a temperature of ∼ 2× 109 K, leading to a detonation front that expands outwards from the

ignition site along the primary’s surface (Figure 3.3, second column). Because the helium layer

is toroidal rather than spherical, the front runs out of fuel as it propagates towards the primary’s
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poles. Consequently, the detonation splits into two fronts that run clockwise and counterclock-

wise around the equator of the primary (Figure 3.3, third column). These detonation fronts

eventually run into each other along a longitudinal line that is opposite to the original ignition

site (Figure 3.3, fourth column). The highest temperatures are produced in this convergence

region.

For run A, the primary’s surface gravity is too low to compress the helium layer above

the critical temperature necessary for thermonuclear runway. No detonation was observed in run

Ba, despite being initialized using a checkpoint from run B just prior to the observed detonation

in B. This is because of the stochastic nature of the ignition mechanism — the particular dense

knot of material that led to the surface detonation in B has a different shape in Ba, and did not

have a favorable geometry for igniting the helium torus. And because Ba has twice the linear

resolution of run B, we could only afford to evolve it for a short period of time.

If a helium surface detonation occurs as the result of stream instabilities in a DD

system, the resulting transient event could potential resemble a dim Type Ia SNe (Bildsten

et al., 2007; Perets et al., 2009; Foley et al., 2009). The results of our simulations shows a large

degree of variability which ultimately depends on the geometry of the dense knots when they

strike the surface of the primary in the impact zone. However, if the post-detonation temperature

is not much larger than 2×109 K or the geometry of the detonation fronts are not favorable, it

is possible to only synthesize intermediate-mass α-elements (Table 3.1).

The prospect of igniting the CO core itself is attractive because the typical densities of

moderate-mass WDs (M ∼ 1.0M�) are ∼ 106 − 107 g cm−3, comparable to the densities found

in the DDT for Type Ia SNe (Khokhlov et al., 1997). Fink et al. (2007) (hereafter FHR) show
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that when 0.1M� of helium is ignited at the He/CO interface of a moderate-mass WD, strong

shocks are launched deep into the CO core, which converge at a focusing point. This focusing
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produces a region where the temperature and density meet the criteria for explosively igniting

carbon (Niemeyer and Woosley, 1997; Röpke et al., 2007; Seitenzahl et al., 2009), thus leading

to a full detonation of the CO core.

The linear resolution of our simulations is substantially coarser than the highest-

resolution two-dimensional simulations of FHR, and we are certainly under-resolving the true

density and temperature peaks. However, FHR’s results appear to be rather optimistic when

applied to our model for the following reasons. First, FHR assumes perfect mirror symmetry,

which dramatically increases the amount of focusing by forcing the shocks to converge at a

single point rather than a locus of points. Second, FHR does not use a nuclear network and

makes the simplifying assumption that the entire He envelope is burned to Ni, which naturally

overestimates the energy injected into the CO core when compared to the more realistic case

where burning is incomplete.

Because of these differences, the conditions for double detonation are still not met

even in our run with the most favorable shock geometry and strongest surface detonation (run

C). In the focusing region of run C, the temperature and density are 2.5×108 K and 2.0×107

g cm−3, respectively. Conditions for CO core detonation may be more propitious in systems

containing a slightly more massive primary, but ultimately the successful detonation of the core

depends on the precise distribution of temperature and density within the high-pressure regions

of the convergence zone (Seitenzahl et al., 2009).

The mechanism reported here for the detonation of a sub-Chandrasekhar CO WD in

a dynamically unstable binary is not tied to a particular mass scale and therefore allows for

considerably more diversity. As outlined above, mass transfer between a pure He WD or a
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He/CO hybrid and a CO WD before the merger provides a novel pathway to ignite CO WDs.

Even if a critical amount of mass is not raised above the conditions required for CO detonation,

a peculiar underluminous optical transient should signal the last few orbits of a merging system.
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Chapter 4

Tidal Ejection and Disruption of Giant Planets

4.1 Introduction

Both radial velocity and transit surveys are biased towards planets that are both mas-

sive and close to their parent stars, the region of parameter space corresponding to planets with

a mass larger than that of Neptune and a semi-major axis < 0.1 au is particularly well-explored

(Ida and Lin, 2004; Shen and Turner, 2008; Zakamska et al., 2010). This has led to the discov-

ery of many giant planets that are remarkably close to their parent stars, with several examples

that orbit so closely that they risk imminent disruption (Li et al., 2010). These planets are also

found to be dramatically misaligned with their parent star’s spin (Triaud et al., 2010; Schlauf-

man et al., 2010).

There are three primary physical processes that can deposit a planet on an orbit that is

very close to its parent star: disk migration, the Kozai mechanism, and planet-planet scattering.

Disk migration can yield hot Jupiters, but as the star collapses from the same cloud as the pro-
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toplanetary disk that encircles it, it is difficult to explain the observed orbit misalignments using

this mechanism alone (though see Watson et al., 2010; Foucart and Lai, 2011, for discussions

regarding star-disk interactions). The Kozai mechanism (Kozai, 1962) can lead to the large ec-

centricities required to produce close-in planets, but it can only operate in systems in which a

massive planet or secondary star are present, and the mechanism may be mitigated by general

relativistic effects that become important before tidal dissipation is large enough to circularize

the orbit (Takeda and Rasio, 2005; Fabrycky and Tremaine, 2007). Planet-planet scattering can

produce both the observed semi-major axis and inclination distributions, and can deposit plan-

ets close enough such that tides can circularize the orbits in a time that is less than the system

age. Additionally, the object that acts as a scatterer can have approximately the same mass as

the scattered object itself and still yield a hot Jupiter in a significant fraction of systems (Ford

and Rasio, 2008), negating the need for a non-planetary companion in the system.

Previous hydrodynamical work has only focused on the planet’s first close fly-by

(Faber et al., 2005, hereafter FRW), and does not investigate how prolonged tidal forcing over

many orbits affects a planet’s chances for survival. In this chapter we have performed hydrody-

namical simulations of multiple passages of a Jupiter-like planet by a Sun-like star, bridging the

gap between numerical and analytical work that have focused on extremely close and extremely

grazing encounters respectively. We find that scattering planets into star-grazing orbits is more

destructive than previously thought, with Jupiter-like planets being destroyed or ejected at dis-

tances no smaller than 2.7 times the tidal radius rt. As some exoplanets are currently observed

to have semi-major axes less than twice this critical value, their initial eccentricities may be re-

quired to have been substantially smaller than unity if planet-planet scattering is the mechanism
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responsible for bringing them so close to their host stars. This strongly suggests that planet-

planet scattering alone cannot explain the complete observed population of close-in Jupiter-like

exoplanets, and that the process must operate along with one of either the Kozai mechanism,

disk migration, or both. These three processes likely act in concert to produce the observed

population of hot gas giants, with the relative importance of each process being a function of

the system’s initial conditions.

If planet-planet scattering is common enough to explain the existence of hot Jupiters,

we predict that there should be two signatures of disruption that are readily detectable with

today’s instruments. Firstly, we find that the parent star can have its spin significantly altered

by the accretion of material removed from the planet as a result of the disruption, producing a

star that can be significantly misaligned relative to any remaining planets. Secondly, we find

that most planet disruption events lead to the planet’s ejection from the host system prior to the

planet being completely destroyed, and that this ejected planet can remain almost as bright as

its host star for centuries.

In this chapter we focus on the results of numerical hydrodynamical simulations that

have been used to attempt to ascertain the true radii of destruction and ejection for Jupiter-like

exoplanets, and the consequences of these planet-removing processes on their stellar hosts. In

Section 4.2 we review the history of the analytical and numerical work done to characterize

the orbital evolution of a planet that comes within a few tidal radii of its host star, and then we

detail our particular numerical approach to modeling tidal disruption. We report the results of

our simulations in Section 4.3. In Section 4.4 we discuss the implications of our results, with

special attention paid to the viability of various mechanisms for producing hot Jupiters, and the
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Figure 4.1: Final orbital energy Eorb scaled to the initial orbital energy Eorb,0 (left panel), change
in orbital energy ∆Eorb≡Eorb,0 −Eorb scaled by Eorb,0 (left sub-panel), and spin angular momen-
tum Jspin scaled by the characteristic angular momentum of Jupiter J2

J ≡GM3
J RJ (right panel) as

functions of periastron distance rp after a single near-parabolic encounter between a MP = MJ
Jupiter-like planet and a M∗ = 103MJ star. The solid lines show the results from this work, with
decreasing thickness corresponding to increasing maximum refinement, square markers show
the results of FRW, and the dashed lines shows the prediction of PT using FRW’s analytical
n = 1 solutions for Tl and Sl . Note that our results and that of FRW are consistent for rp ≤ 2.5rt.
At the highest resolution, our results are consistent with that of PT until rp ≥ 4rt.

observational signatures of planetary disruption and ejection. We summarize the shortcomings

of our models and the possible fates of a Jupiter-like exoplanet in Section 4.5. Appendix A is

provided to detail our algorithm used to simulate multiple orbits and for presenting tests of the

algorithm’s conservative properties.

4.2 Modeling Planetary Disruption

4.2.1 Previous Disruption Models

Tidal encounters between a point mass and an extended, initially spherical object have

been described with progressively more detailed analytical models and simulations. The first

analytical models of tidal dissipation were laid out in Press and Teukolsky (1977) (hereafter
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encounter on its 2nd periastron passage.

PT), which assumes that the tidally excited body retains its spherical shape and that the mo-

tions induced by the encounter can be described with spherical harmonics. This model works

quite well for encounters where tides are weak, i.e. more than a few tidal radii away from the

perturbing body, where the assumption of sphericity is valid. If mode-mode coupling is weak,

the initially excited modes have no mechanism to share energy with each other during the en-

counter itself, and the PT formalism can accurately predict the amount of energy injected into

the extended object.

In the PT formalism, the amount of energy and angular momentum injected into an

object is derived by taking the convolution of the object’s modes of oscillation and the fre-

quency decomposition of the tidal field, which drops the time-dependence from the governing

equations. However, if the incoming object is already oscillating, the phase of these oscilla-

tions relative to the time of periastron is important, which by construction cannot be resolved

by the time-independent PT formalism. The absence of time-dependence also requires that the

base-state is cylindrically symmetric relative to the line connecting the extended object to the

54



perturber, which can only be accomplished for an initially non-rotating object by using a spher-

ical geometry. As the amplitude of the mode oscillations approaches the size of the object itself,

the body must become highly non-spherical and therefore the PT formalism must break down.

These two shortcomings lead to the development of the “affine” model for tidal en-

counters (Carter and Luminet, 1983, 1985), which allows the initially spherical object to deform

into a triaxial ellipsoid during and after the encounter. One axis of the ellipsoid is fixed to be

perpendicular to the orbital plane, with the other two axes lying within the plane at a right angle

to each other and with arbitrary orientation angle relative to the first axis. This feature allows

for the object to be followed dynamically, which means that the incoming state of the object’s

oscillations can affect the object’s response to future encounters.

Because the excitation of normal modes in a dynamically inert object can only yield

an increase in the object’s energy and angular momentum budgets, an initially spherical object

would always find itself in a more-tightly bound orbit after the encounter. An important facet

of the problem that the affine model can investigate is how the fundamental modes excited in

previous encounters are de-excited in future encounters, which can lead to a positive change in

the orbital energy. The inclusion of de-excitation of modes adds a chaotic component to the

problem, with the orbital evolution behaving as a “random-walk” process (Kochanek, 1992;

Mardling, 1995a).

While mass loss has been included in a nested-ellipsoid version of the affine model

presented by Ivanov and Novikov (2001), asymmetrical mass loss is not treated as the models

assume mirror symmetry. Asymmetric mass loss is expected in real disruptions as the tidal field

is stronger on the side of the object facing the point mass. This is due to the steep power-law
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dependence of the strength of the tidal field (∝ r−3) and the non-linear evolution of the tide

raised on the object, with both the velocity and amount of mass lost being larger on the side of

the object closest to the point mass. Numerical simulations by FRW show that this asymmetric

mass loss leads to a substantial deviation from the nested-ellipsoid treatment, especially when

the closest approach distance is . 2rt. Within this distance, the asymmetric removal of mass

can lead to a positive increase in the orbital energy, which can cause the object to be completely

ejected from the system if Eorb ≡ −GM∗MP/2a∼ Eobj.

The disruption of polytropes in highly eccentric encounters has been investigated nu-

merically by both Lagrangian (Nolthenius and Katz, 1982; Bicknell and Gingold, 1983; Evans

and Kochanek, 1989; Kobayashi et al., 2004; Faber et al., 2005; Rosswog et al., 2008b, 2009b;

Ramirez-Ruiz and Rosswog, 2009; Lodato et al., 2009) and Eulerian methods (see Chapter 2,

also see Khokhlov et al., 1993b,a; Frolov et al., 1994; Diener et al., 1997; Guillochon et al.,

2009), with the principle focus being on stars or compact objects that are disrupted by point-like

gravitational sources. However, most hydrodynamic simulations that have focused on the long-

term survival of these systems only consider when the two objects have a mass ratio close to

unity (Lee et al., 2010; Lorén-Aguilar et al., 2009), or for non-disruptive encounters (Rathore,

2005). Recently, Antonini et al. (2010) performed low-resolution multiple-passage simulations

in the context of the galactic center, allowing the exploration of a large parameter space at the

expense of accuracy.

To summarize, most analytical models of tides in an astrophysical context focus on

objects which do not lose any mass at their closest approach, and conversely most numerical

work has focused on encounters where the object is completely destroyed. The intermediate
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regime, where objects lose some mass but are not completely destroyed in their first passage,

is largely uncharacterized. If the planet survives the initial encounter, some of the mass that is

removed from the planet can become bound to the planet again as it recedes from periastron

to a region with a weaker tidal field. The return and subsequent re-accretion of this material

is not treated at all in analytical models. As we will describe in Section 4.3.2, the structure

of the planet can be significantly altered by the re-accretion of the planetary envelope, and the

inclusion of this re-accretion into tidal disruption theory is necessary to determine if a planet

will ultimately survive.

4.2.2 Our Approach

While Lagrangian codes are well-suited for treating problems where a hydrostatic ob-

ject moves rapidly with respect to a fixed reference frame, their relatively poor scalability makes

it difficult to follow the evolution of an object for many dynamical timescales with sufficient

spatial resolution. On the other hand, maintaining near-hydrostatic balance in rapidly advecting

frames using Eulerian methods can also be quite challenging. Robertson et al. (2010) show that

performing Eulerian simulations in a boosted frame with unresolved pressure gradients leads to

a spurious viscosity term that tends to damp out instabilities. This has been colloquially referred

to as the non-Galilean invariance (GI) of the Riemann problem (Tasker et al., 2008; Springel,

2010). While Robertson et al. showed that GI issues can be avoided with increased resolution,

the requisite spatial resolution can be impractical for three-dimensional simulations that are

evolved over thousands of dynamical timescales, or for when the bulk velocities are many times

larger than the internal sound speeds within the simulation. The problem is compounded in the
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outermost layers of Jupiter-like planets, which exhibit particularly steep pressure gradients.

To side-step the GI issues, our simulations are performed in the rest-frame of the

planet, which limits the typical fluid velocities to the planet’s sound speed for tidal disruption

calculations (see Chapter 2 and Guillochon et al., 2009). We model the planet as an n = 1, Γ = 2

polytrope, with the fluid being described by a polytropic equation of state (P ∝ ργ), where the

adiabatic index γ = Γ. This gives a reasonable approximation to the interior structure of Jupiter-

like planets (Hubbard, 1984), as long as the core is not a significant fraction of the planet’s

mass. Our simulations are constructed within the framework of FLASH (Fryxell et al., 2000),

an adaptive-mesh, grid-based hydrodynamics code. We treat the star as a point-mass because

the distortion of the star itself contributes negligibly to the planet’s orbital evolution in the case

where M∗�MP (Matsumura et al., 2008). The relative positions of the star and the planet are

explicitly tracked over the course of the simulation using two virtual particles xS (star) and xP

(planet), which are evolved alongside the hydro calculation using a Burlisch-Stoer integrator

(Press et al., 1986) with maximum error constrained to be less than 10−12. The planet’s self-

gravity is calculated using a multipole O(l2
maxN) expansion of the fluid, where we take lmax = 12.

The flux-calculation step in any hydro code depends on the time-dependent force ap-

plied to the fluid over the duration of the step. Because the gravitational field is applied as a

source term in most multi-dimensional hydro codes that include self-gravity, conservation of

energy is not explicitly achievable when self-gravity is included, as the potential at timestep

m + 1 is unknown and must be estimated. In the case of self-bound objects in hydrostatic equi-

librium, small perturbations can lead to a systematic drift in the total energy of the system. For

hydrostatic objects, we find that an increase in spatial resolution reduces this drift by an amount
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that approximately scales with the number of voxels used to resolve a given region. This is

because the relative forces acting on neighboring cells decrease as the voxels are more closely

packed together, and because the sharp density gradients present in the 1D hydrostatic profile

are better resolved.

The potential at m + 1 must be estimated because the value of φm+1 depends on ρm+1,

which is not known until the hydro step has been completed. This extrapolation is one of the

main sources of error in the code because the obtained acceleration is only an estimate based on

the previous evolution of φ. And because the extrapolation is only first-order accurate in time,

smaller time-steps do not improve the accuracy of the results (Springel, 2010). The error can be

somewhat reduced by using a higher-order extrapolation that includes N previous time-steps,

but our tests show that including the m − 2 time-step only leads to a few percent reduction in

error relative to the first-order approximation. Additionally, it imposes additional memory and

disk overhead to save the full potential field from the previous N time-steps.

For cases where the object is nearly in hydrostatic equilibrium the gravitational field

does not rapidly change with time. However, a tidal disruption can lead to variations in the

gravitational field of order unity over a fraction of the planet’s dynamical timescale. As a

result, the default method used by FLASH to apply the gravitational field can lead to substantial

changes in the total energy. Motivated by this, we implement a novel method where the potential

contribution from the fluid and from tidal forces are separated, negating much of the error

associated with the extrapolation of the potential. Details of this algorithm are provided in

Appendix A.
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Figure 4.3: Slices through the orbital plane shortly after each periastron passage for the simu-
lation where rp = 2.7rt. All plots show log ρ. The upper, red color-coded figures show a wide
view of each encounter, with white corresponding to ρ = 10−2 g cm−3 and black corresponding
to ρ = 10−7 g cm−3, while the lower, blue color-coded figures show a close-up view of the core,
with white corresponding to the maximum density ρmax and black corresponding to ρ = 10−2 g
cm−3.

4.3 Simulation Results

4.3.1 Single Passage Encounters

For comparison purposes, we first ran a suite of simulations with physical initial con-

ditions identical to that of FRW. The planet is assumed to have a radius RP = RJ and mass

MP = MJ, where RJ and MJ are the radius and mass of Jupiter. The planets are disrupted by a
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Figure 4.4: Same as Figure 4.3, but with frames 2-10 corresponding to apastron. The first frame
shows the initial conditions.

star with M∗ = 103MJ, with the orbits of incoming planets are set to have an apastron separa-

tion ra = 104RJ. Our lowest-resolution models have maximum spatial resolutions of s = 0.02RJ,

where s is the width of the smallest grid cells, corresponding to N3' 106, slightly better than the

peak spatial resolution of FRW. Our results agree very well with FRW’s results for periastron

passage distances rp ≤ 2.5rt (Figure 4.1).

Because the amount of energy stored in the oscillations is ∆E ∼ EJ(∆R/RJ)2 where

EJ is the binding energy of Jupiter and ∆R is the amplitude of the mode, the simulations con-

verge to the analytical solution only when the spatial resolution is fine enough to resolve ∆R. As
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is evident in both FRW and our lower-resolution runs, the measured amount of energy dissipa-

tion is larger than the analytical predictions of PT when the oscillatory amplitude is smaller than

the minimum grid scale. To test for convergent behavior, we ran higher-resolution simulations

with double and quadrupole the resolution of our fiducial test for the more grazing encoun-

ters. For the rp = 2.7rt and rp = 3rt runs, the improved spatial resolution allows us to recover

the analytical solution. It is also apparent that our rp = 4rt simulation is closer to convergence

than the lower-resolution models, but the estimated resolution required for true convergence

(l ∼ 10−3RJ,N3 = 1010) means that recovering the predicted results of PT for such a grazing

passage is currently beyond our computational ability.

As in FRW and Khokhlov et al. (1993b), we also find that the change in Eorb and

Jspin is slightly larger than what is predicted by the analytical models, even in the simulations

that have surely converged and have minimal mass loss (i.e., 2rt ≤ rp ≤ 2.7rt). This is almost

certainly due to the dynamical tide effects neglected by the PT model. Comparing the hydro-

dynamic results to that of a dynamical treatment of tides shows better agreement for this range

of pericenter distances (Lai et al., 1994), but note that these dynamical models only include

the l = 2 f -mode of oscillation, and thus do not account for energy transferred to higher-order

f -modes or p-modes. For grazing encounters, the dynamical tide is much less important, and

thus we expect that the change in orbital energy and angular momentum should converge to the

PT prediction for an inviscid planet.
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0.1 au

10 R
J

Figure 4.5: Fallback accretion stream formed as the result of the 8th encounter between a 1 M�
star and 1 MJ planet with initial rp = 2.7rt. The large, red color-coded image shows a wide-
view of the disruption, while the inset blue color-coded figure shows a close-up of the surviving
planetary core.
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4.3.2 Multiple Passage Encounters

The initial conditions of FRW are not appropriate for investigating multiple-passage

encounters as the orbital timescale is many thousands of times longer than the dynamical

timescale. Thus, for our second set of simulations in which we explore multiple passages,

we assume that the planets are initially on e = 0.9 orbits (Figure 4.2). Depending on the initial

pericenter distance, the planets are destroyed in as few as one and as many as ten orbits (Figures

4.3 and 4.4), where a planet is considered to be destroyed once it has lost more than 90% of its

original mass.

To ensure that our assumption of a less eccentric orbit is valid, we consider the effects

of varying e when e ≈ 1. For nearly-parabolic orbits, the shape of the orbit in the vicinity

of periastron changes very little with changing e, with the main effect being that the average

strength of the tidal force is slightly stronger for smaller e before and after pericenter. This

means that the critical distance for which a planet is destroyed or ejected is very slightly larger

than our setup for single encounters described in the previous section where e' 1. To estimate

the magnitude of this effect, we calculate the ratio of the distances at fixed true anomaly for two

orbits with eccentricities e1 and e2, assuming both orbits have the same rp

r2

r1
=

e1 (e2 + 1)rp

(e1 − e2)r1 + (e1 + 1)e2rp
(4.1)

As the strength of the tidal force is∝ r−3, the difference in the strength of the tidal force between
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the two orbits with respect to the tidal force experienced at pericenter is

F1 − F2

Frp

= r3
p
(
r−3

1 − r−3
2
)

(4.2)

=
3(e1 − e2)
e2 (e2 + 1)

r3
p

r3
1

(
r1

rp
− 1
)

+ O(2) : e1 − e2→ 0. (4.3)

This expression is maximized at r1 = 3
2 rp, where the force difference between an e1 = 0.9 and

e2 = 1.1 encounter evaluates to 4%. For all other values of r1, the force differences are much

smaller than this maximum. Thus, our hydrodynamical treatment of tides in a e = 0.9 orbit is

directly applicable to all orbits with 0.9 . e . 1.1.

After an orbit in which the planet sheds mass, some of the material that is removed

from the planet’s surface remains marginally bound to the planetary core. The majority of this

material is then re-accreted by the planet over a few dynamical timescales. When the free-falling

material encounters the surviving planetary remnant, its kinetic energy is converted to internal

energy in a standing accretion shock, which results in the planet possessing a hot outer layer with

temperature close to the virial temperature (Figure 4.5). Additionally, the material striking the

remnant leads to some heating of the remnant’s outer mass shells. This effect is predominantly

important in determining the envelope’s temperature early in the accretion history before the

pressure of the growing hot atmosphere becomes comparable to the ram pressure and is able to

halt the flow before it can reach the core’s surface (Frank et al., 2002).

Because the re-accreted material is marginally bound to planet, the orbital trajectories

characterizing the accretion streams have apocenter distances comparable to the planet’s Hill

sphere rH ≡ rp(MP/3M∗)1/3 and follow highly eccentric orbits. As the re-accreted material re-
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turns on a Keplerian trajectory (Kochanek, 1994; Ramirez-Ruiz and Rosswog, 2009), it carries

a substantial amount of specific angular momentum. This leads to a rapid spin-up of the plan-

etary remnant’s outer layers. In encounters with little or no mass loss, the planets spin slowly

post-encounter as the angular momentum carried by the normal modes is almost equally dis-

tributed between rotating and counter-rotating regions (Figure 4.6). The process of re-accretion

produces a planet that has a lower average density and more mass at larger radii, which makes

the planet easier to destroy on subsequent passages.

As the re-accreted material has a temperature comparable to the virial temperature,

radiative cooling may be able affect the atmosphere’s structure, an effect that we do not account

for in our simulations. However, as the planet can only thermally evolve for one orbital pe-

riod, the atmosphere does not have much time to cool down before it has another strong tidal

encounter with the star. While the outer layers of the planet may cool relatively rapidly and

lead produce a brief transient visible in the UV (see Section 4.4.3), the denser regions of the

planet’s hot atmosphere component contains much more mass and is too optically thick to cool

significantly before returning to pericenter. Assuming Thomson scattering, this corresponds to

a mass of the hot atmosphere component Matm ∼ 10−5MJ. This means that we expect that the

thermal evolution of the reaccreted material is unimportant in determining the planet’s density

profile interior to the most tenuous outer layers. Thus, we expect that the dynamically relevant

distribution of mass within the planet should remain relatively unchanged between encounters

with the star, even for values of e significantly closer to 1 than what we use in our simulations.

This allows us to use the change in orbital energy and angular momentum from our

simulations to calculate the orbital evolution for orbits with semi-major axes of several au. The
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change in orbital energy as a result of each encounter is shown in Figure 4.7. For grazing

encounters with little mass loss, the change in orbital energy is negative; the planet becomes

progressively more bound to the star after each encounter. The magnitude of this change is re-

lated to the state of the dynamical tide on the planet at pericenter, where the interaction between

the oscillation of the fundamental modes can interact with the tidal field to reduce the amount

of energy removed from the orbit, or even change its sign (see Section 4.3.3). As the mass

loss per orbit exceeds ∼ 10%, the trend in orbital energy change becomes positive, and planets

become progressively less bound on each subsequent encounter. This is primarily a result of

the asymmetrical mass loss, although the interaction with the normal modes is important for

encounters where the mass loss is on the order of a few percent.

For orbits with a ∼ aice, where aice = 2.7(L∗/L�)1/2 au (Ida and Lin, 2008) is the

ice line, the total orbital energy is small relative to the self-binding energy of the planet, and a

positive ∆E can lead to the surviving planet becoming unbound from the host star. The number

of orbits completed by a planet before it becomes unbound is shown in Figure 4.8. All Jupiter-

like planets that come within rp ≤ 2.7rt are expected to be ejected if e & 0.97, and destroyed

otherwise. For the most grazing encounters and smallest eccentricities, we find that the planet

can survive for as many as ten orbits before being destroyed by the host star. The general trend

is that planets that come closer to their parent stars tend to be ejected or destroyed in fewer

orbits, but the consequences of the encounter seem to depend heavily on the orientation of the

planet’s long axis at pericenter, which as we will show in the next section is quite difficult to

predict.
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4.3.3 The Role of Chaos

As the planet continues in its orbit after its first encounter with the parent star, the

planet exhibits both rotation and oscillation. Both the magnitude and sign of the orbital energy

change is related to the phase of the planet’s dynamical tide at periastron. Because the tidal

forces strongly excite the l = 2 modes, the coherence or decoherence of these modes at periastron

can greatly change the effects of that particular encounter (Kochanek, 1992; Mardling, 1995a,b;

Usami and Fujimoto, 1997). As the ratio of the orbital period to the break-up rotation period

for a Jupiter-like planet scattered in from the ice line is ∼ (MJ/M∗)1/2(aice/RJ)3/2 ∼ 105, even

a very small change in the orbital parameters introduces a dramatic variability in the amount

mass lost and the change in orbital energy.

For our simulations where e = 0.9, the planet completes hundreds revolutions be-

tween periastron passages, which means extremely fine sampling of rp would be required to

completely describe the problem. To explore the chaotic behavior we ran another multiple

disruption simulation with rp = 2rt, with the only difference being that the initial eccentric-

ity is set to e = 0.90012, corresponding to an orbital period that is one free-fall timescale

tff ≡ (R3
J/GMJ)1/2/2π longer than the corresponding e = 0.9 simulation. As shown in Figure

4.9, multiple outcomes are possible for even slight changes in the initial conditions, with the

planet surviving for a different number of orbits in the two simulations. The chaotic behavior

is also evident for our multiple disruption simulation where rp = 1.8rt, which is destroyed on

its fourth periastron passage, whereas both the rp = 1.7rt and rp = 1.9rt runs are destroyed on

their third passages. This chaotic behavior arises because the angle of the major axis of the
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oscillating planetary core can range from being perpendicular to parallel to the true anomaly at

periastron, which dramatically affects the ability of a planet to survive on any particular orbit.

As the principle component of the tidal field are the l = 2,m =±2 harmonics, the only

way to avoid chaotic behavior is to somehow remove energy from these modes before the planet

returns to periastron. For fully-convective, Jupiter-like planets, this can be potentially achieved

through three types of mechanisms: Viscosity (either microscopic or turbulent), coupling to

other oscillatory modes, or the increase in entropy associated with sound waves steepening into

shocks at either the surface of the planet or within its interior. It should be emphasized that

most of the work investigating these energy-sharing mechanisms have concentrated on systems

where the oscillations can be treated linearly, and thus the results of these studies can only give

us a rough idea to their importance when applied to partially-disruptive encounters.

The two main differences between the linear models and the survivors of a partially-

disruptive encounter are the amplitude of the oscillations, which are close to unity, and the

presence of a hot, optically thick envelope that accumulates after the disruption and sits on top

of the oscillating core. We know that in order for a particular mechanism to result in significant

damping of the l = 2 modes, the damping timescale has to be at least on the order of the orbital

period P, if not shorter. As all of the mechanisms for removal of energy from the l = 2 modes

result in a cascade to microscopic scales, systems with effective damping will experience infla-

tion of the core, inflation of the envelope, or inflation of both regions. This inevitably leads to

reduced survivability on subsequent passages.

We now briefly discuss the applicability and viability of each of these proposed mech-

anisms. For Jupiter-like planets, the microscopic and turbulent fluid viscosities seem to be too
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small to produce any significant damping on an orbital timescale (Guillot et al., 2004). Per-

haps a more promising mechanism is the coupling of the primary l = 2 modes to higher-order

“daughter” modes, which then couple to “grand-daughter” modes, etc., in a cascade resembling

the cascade of energy from large scales to small scales in turbulent fluids (Kumar and Good-

man, 1996). In the linear regime, the fundamental mode normally couples to the low frequency

g-modes, with the degree of coupling being related to the amplitude of the primary perturbation

relative to the size of the object, ∆R/R. But for Jupiter-like planets, which are fully convec-

tive and have a negligible luminosity, the polytropic index Γ is equal to the adiabatic index γ,

which makes their interiors incapable of supporting g-modes (Cowling, 1941). Coupling can

still occur through p-modes, which have higher frequencies than the fundamental mode, but the

coupling is only effective for large displacements where the behavior becomes non-linear and

for which the rate of energy-sharing is highly uncertain (Kumar and Goodman, 1996).

Inertial waves may be an effective means of dissipating the l = 2 modes given low-

frequency tidal forcing (Ivanov and Papaloizou, 2010), but the efficiency of this dissipation

as the forcing frequency approaches the characteristic frequency is not well understood. And

because inertial waves are most effective when the planet spin frequency is comparable to the

orbital frequency, they may not be important during the first few passages before syncronicity

is established. Additional dissipation may occur via the interaction between inertial waves

and Hough waves (Ogilvie and Lin, 2004), in which effective coupling is achieved when the

wavelength of the inertial modes is comparable to the size of the radiative zone. As scattered

planets tend to have large eccentricities, stellar insolation is unlikely to be important for these

planets prior to circularization, but as the hot envelope produced by partially disruptive events
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is radiative, effective dissipation via Hough waves may still be possible.

In our simulations, we do not find that the l = 2 modes decay appreciably between

periastron passages, despite the fact that the planet oscillates thousands of times in the course of

each orbit. We do find, however, that the re-accretion of loosely-bound material moderates the

chaotic behavior somewhat. As the density in this region is & 103 times smaller than the core,

the tidal radius for the hot envelope component is & 10 larger than the core’s initial tidal radius,

which results in the hot envelope being easily removed on subsequent encounters. And unlike

the core, the hot envelope has a large sound-crossing time relative to the periastron passage

time, and thus no fundamental modes that could affect the interaction on future passages are

excited in this region. This leads to the result that as the envelope becomes a larger fraction of

the planet’s total mass, the behavior becomes notably less chaotic.

Even if the mode energy is completely damped before the planet again passes through

periastron, interactions with other planets in the system can potentially lead to major changes in

the planet’s orbit, which adds another element of chaos to the planet’s orbital evolution. While

the scattered planet has a possibility of strongly interacting with any other planets with orbital

periastrons smaller than its own apastron, its most probable interaction partner is the planet that

originally scattered it. If we optimistically assume that the orbits are co-planar and that the

scattered planet’s apastron lies within the path of the scatterer’s orbit, the change in angular

momentum ∆J under the impulse approximation is GM1M2/bv12, where M1 and M2 are the

masses of the two planets, b is their separation at closest approach, and v12 is the difference

in their orbital velocities. The probability that the scatterer can result in relative change in the

orbital angular momentum ∆J/Jorb is then proportional to the fraction of time the scatterer is
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within a window of size b at the time the scattered planet crosses its orbit, or

1
8π

Jorb

∆J
M1 + M2

M∗

(
aice

rp

)1/2

per orbit. (4.4)

As M∗ ∼ 103(M1 + M2) and aice ∼ 103rp, the typical value of ∆J/Jorb is small, ∼ 10−2. Like the

chaotic behavior related to the phase of the planet’s oscillatory modes, these changes in Jorb can

change the number of orbits a planet may survive, but does not affect the overall survival rate

of scattered planets as ∆rp ∝
√
∆J is much smaller than rp. Additionally, future encounters

with the original scatterer become progressively less probable as a changes in response to the

scattered planets changes in orbital energy, as ∆E ∼ EJ� Eorb(aice).

4.3.4 Debris Accreted by the Star

The amount of mass removed on the first few orbits can vary over many orders of

magnitude for a relatively small range of rp. For our closest simulated encounters, nearly half

the planet ends up being bound to the host star after the first passage, while our most grazing

encounters show almost no mass loss at all (Figure 4.10). However, as the initial passages

excite fundamental modes of oscillation, and the returning debris leads to additional heating

in the planet’s outer layers, the amount of mass removed geometrically increases with each

subsequent passage. This leads to the result that approximately 20-50% of the planet’s initial

mass is accreted by the host star by the time the planet has been completely disrupted, with

slightly less material being accreted when the initial encounter is grazing.

The reason closer disruptions lead to more mass accreted by the central star has to do
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with the asymmetry of the tides; the force resulting from the inner tide (closest to the star) at

pericenter is (
2rp − RP

)(
RP + rp

)2(
2rp + RP

)(
RP − rp

)2 ' 1 +
3RP

rp
as rp→∞ (4.5)

times larger than the outer tide (furthest from the star). And while the effective size of the planet

increases due to the excitation of oscillations and the loss of mass, subsequent passages yield

diminishing returns as material has already been removed on previous encounters.

As the mass lost by the planet from a series of partially disruptive encounters is highly

stochastic, the exact amount of mass accreted by the star for any given multiple-orbit encounter

is difficult to predict. To parameterize the average mass accreted by the star, we consider two

limiting cases. If the planet is scattered into an orbit with a� aice, the planet will be completely

destroyed before it is ejected. On the other hand, if a planet is scattered from the ice line, Eorb

is much smaller than the planet’s binding energy and the planet will be ejected on the orbit for

which ∆Eorb > Eorb. A fit of ∆M∗ for these two limiting cases yields

∆M∗(β) =



1.26 exp
[
−0.79β−1

]
MJ : a0� aice

9.62 exp
[
−2.59β−1

]
MJ : a0 ∼ aice,

(4.6)

for 0.37 ≤ β ≤ 0.83. For the case where the planet is completely destroyed, the amount of

mass accreted is nearly constant, with a slight decrease with decreasing β. The decrease is

substantially steeper for the incomplete disruptions, as planets on grazing orbits are less likely

to transfer much mass to their parent stars prior to being ejected.
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Table 4.1: Hot Jupiters

Planet rp/rt ra,max/aice τage,L
a τage,U

a Q∗,max
b τlife,max

b τlife,max/τage

(Gyr) (Gyr) (Gyr)

CoRoT-1 b 4.8 0.044 1.0 14.0 2×106 — 3×107 0.4 — 6 0.4
HAT-P-23 b 5.0 0.052 4.0 6.0 5×107 — 8×107 2.0 — 3 0.6

OGLE-TR-56 b 4.2 0.014 1.9 4.2 1×107 — 3×107 0.4 — 0.9 0.2
OGLE-TR-113 b 5.0 0.083 10.8 14.0 1×107 — 2×107 6.2 — 8.0 0.6

Qatar-1 b 4.6 0.043 4.0 14.0 3×106 — 1×107 1.5 — 5.3 0.4
TrES-3 b 5.1 0.10 0.1 3.7 9×105 — 3×107 0.07 — 2.7 0.7

WASP-4 b 4.5 0.028 2.0 9.0 7×106 — 3×107 0.6 — 2.6 0.3
WASP-12 b 4.1 0.011 1.0 3.0 1×107 — 4×107 0.2 — 0.6 0.2
WASP-19 b 3.2 0.0080 1.0 14.0 2×106 — 2×107 0.03 — 0.5 0.03

aThe τage values shown are as compiled by (Schlaufman, 2010), except for CoRoT-1 b (no measured age in-
formation available), WASP-19 b (Hellier et al., 2011), Qatar-1 b (Alsubai et al., 2010), and HAT-P-23 b (Bakos
et al., 2010). All other data was taken from the Extrasolar Planets Encyclopaedia (http://exoplanet.eu)
on January 24, 2011.

bAssuming rp,0 = 2rτ ,sim, a0 = aice. The minimum and maximum values are calculated using τage,L and τage,U,
the lower and upper limits on the host star’s age.

4.4 Discussion

4.4.1 The Jupiter Exclusion Zone

As discussed in Section 4.3, there exists an exclusion zone with radius rτ = 2.7rt

within which all Jupiter-like planets are either ejected or destroyed. For our simulations we

used a polytropic model of a gas giant, with a mass and radius equal to present-day Jupiter. As

some gas giant planets may not have had much time to cool before being disrupted, it is likely

that disrupted Jupiter-like planets are larger than our fiducial cold Jupiter model (Bodenheimer

et al., 2001). This is confirmed by observations, many of the known hot Jupiters are observed

to be inflated, with larger radii and lower densities as a result of the injection of entropy via

stellar insolation (Fortney et al., 2007; Miller et al., 2009; Li et al., 2010), and potentially also

other dissipative mechanisms (Ogilvie and Lin, 2004; Laine et al., 2009; Arras and Socrates,
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2010). But this means that the tidal radii for these planets must be larger than what we use in

our calculations, translating to planets that are more easily disrupted than cold gas giants. And

while the core mass of Jupiter-like planets is uncertain, all plausible models include cores that

compose such a small fraction of the planet’s total mass that they are unimportant in determining

the structure of the gas envelope, and thus the dynamics of the disruption. The value of rτ

calculated in this chapter is thus a lower limit for Jupiter-like planets. For gas giants with

masses more similar to Neptune, the affect of an increased core mass may allow these planets

to survive closer to their parent stars due to the increase in average density. We stress that our

model should only be applied to planets of M & 0.25MJ.

Because the spatial resolution required to resolve grazing passages becomes compu-

tationally prohibitive beyond ∼ 3rt, the true value of rτ may lie beyond what we have been able

to calculate for even cold Jupiter-like planets. Thus, the exclusion zone radius determined by

our simulations rτ ,sim is a lower bound on the size of exclusion zone for Jupiters scattered from

the ice line. However, the true cutoff value probably lies no further than the current periastron

distance of WASP-19 b (denoted as rτ ,obs), the exoplanet with the smallest known value of rp/rt

(Hellier et al., 2011), which appears to be quite inflated (Hebb et al., 2010) and possesses a tidal

radius that is likely larger than a cold gas giant of the same mass. Hence, we can only constrain

rτ to lie within the range rτ ,sim ≤ rτ ≤ rτ ,obs, or 2.7 ≤ rτ/rt ≤ 3.20, where the upper bound is

derived by assuming WASP-19 b’s radius at the time of scattering is equal to its cold radius.

Because specific orbital angular momentum is very nearly conserved during even

strong tidal encounters (Figure 4.2), the currently observed semi-major axes of hot Jupiters is

at most 2 rp,0, where rp,0 is the planet’s initial pericenter distance after being scattered into a
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disruptive orbit. As the exclusion radius rτ is larger than the a/2 for many known exoplanets,

there exists a maximum initial apastron distance from which a planet could have been scattered

without having been destroyed or ejected

ra,max =
aobs

(
1 − e2

obs

)
rτ

aobs
(
e2

obs − 1
)

+ 2rτ
, (4.7)

where aobs and eobs are the currently observed semi-major axis and eccentricity. This maximum

apastron value is illustrated for the currently known hot Jupiters in Figure 4.11. Because a planet

that is scattered into a disruptive orbit from the ice line possesses e∼ 1, the maximum allowed

apastron is a highly sensitive function of rτ for ra & 0.1aice. Thus, if the current distance of

an exoplanet from its host star is less than 2rτ , it is highly likely that its initial orbit prior to

scattering must have been significantly closer to the star than the ice line. This means that no

Jupiter-like planets would be observed for initial pericenter distances smaller than this value if

they were scattered from the ice line to their present-day orbits.

Nine of the currently known hot Jupiters (CoRoT-1 b, HAT-P-23 b, OGLE-TR-56 b,

OGLE-TR-113 b, Qatar-1 b, TrES-3 b, WASP-4 b, WASP-12 b, and WASP-19 b) with M >

0.25MJ have observed semi-major axes aobs > 2rτ ,sim, corresponding to ra,max � aice (Table

4.1), indeed for all nine planets the maximum initial apastron distance is less than 0.1 aice.

As all Jupiter-mass planets are thought to form beyond aice, these planets could not have been

directly scattered to their current locations. This implies that a migration process that resulted in

a dramatic decrease in a must have occurred either before or after these planets were scattered.

If the true value of rτ for cold Jupiter-like planets lies closer to the maximum possible value
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set by WASP-19 b (rτ ,obs), as many as 12 of the currently known hot Jupiters with M > 0.25MJ

could not have survived the scattering event that deposited them at their current locations.

As both planet-planet scattering and the Kozai mechanism do not radically alter a

planet’s semi-major axis, disk migration would be required to explain how close-in planets

would have initial apastrons that are significantly smaller than aice (Lin et al., 1996; Ida and Lin,

2004, 2008). As many of the currently known exoplanets have ra,max < aice, this would imply

that the migration timescale in these systems must have been substantially shorter than the disk

lifetime if the planets migrated prior to the scattering event. For the misaligned systems, a

dynamical process (either planet-planet scattering or the Kozai mechanism) may need to occur

after the migration or while the gas disk dissipates (Matsumura et al., 2010) to produce the

observed misalignment.

Alternatively, the planets may have migrated after the scattering event. For this to be

the case, the scattering event had to bring the planet close enough to its parent star such that the

tide raised on the star can alter the planet’s orbit in a time shorter than the system age, but not too

close that the planet is destroyed or ejected by the star. Suppose that a planet is scattered from

beyond aice such that rp,0 > rτ . After circularization the pericenter distance doubles to 2rτ , and

the planet’s semi-major axis evolves via the interaction between the planet and the tide it raises

on the surface of the star (Hut, 1980; Eggleton et al., 1998). At this distance, the orbital period

of the planet is almost always shorter than the spin-period of the star, except perhaps for stars

with ages . 650 Myr (Irwin and Bouvier, 2009). This results in a spin-up of the star, which tries

to “catch up” to the Keplerian frequency imposed by the planet’s orbit, and an inward migration

of the planet.
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As the planet is likely to be tidally locked even prior to circularization, the timescale

for evolution of the planet’s semi-major axis is entirely determined by the star’s properties and

the orbital frequency ω (Dobbs-Dixon et al., 2004),

a
ȧ

=
1
9

Q∗

(
M∗
MP

)(
a

R∗

)5

(ω −Ω∗)−1 , (4.8)

where R∗ is the star’s radius, Q∗ is the star’s tidal quality factor, and Ω∗ is its rotation frequency.

The fastest inward migration occurs when a star is not rotating, e.g. Ω∗→ 0. As planet-planet

scattering seems to be rare after 108 yr (Matsumura et al., 2008), we can set a/ȧ equal to the

system age τage to determine Q∗,max, the maximum tidal quality factor for which a planet can

migrate from 2rτ to aobs

Q∗,max = 1.7×106
(

MP

MJ

)8/3(M∗
M�

)−8/3(RP

RJ

)−5

×
(

rτ
2.7rt

)−5( P0

2 days

)−1( τage

Gyr

)
, (4.9)

where P0 is the initial orbital period. When setting rτ = rτ ,sim, all of the known hot Jupiters with

aobs < 2rτ yields values for Q∗,max that are consistent with those expected for stars (Table 4.1).

If the true radius of disruption lies closer to rτ ,obs, the measured values of Q∗,max are

more restrictive, meaning that higher dissipation rates would be required to enable planet-planet

scattering to viably produce hot Jupiters with a< 2rτ . This would also imply that most observed

hot Jupiters would only exist a short while longer before being destroyed by their parent star.

This remaining lifetime can be calculated by solving Equation (4.8) using present-day values
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for a, ω, and Ω∗ (denoted τlife,max in Table 4.1). As Q∗,max is extremely sensitive to the exact

value of rτ , only a slight increase in rτ is required to eliminate direct scattering as a possible

genesis mechanism for a significant fraction of the hot Jupiters. If it can be shown that rτ is

substantially larger than what we have calculated in this work (i.e. rτ ' rτ ,obs), Q∗,max can put

definitive constraints on the mechanism responsible for producing hot Jupiters.

4.4.2 Stellar Spin-Up from Planetary Disruption

As discussed in Section 4.3.4, the star acquires a substantial injection of angular mo-

mentum from the disrupted planet. Our simulations give us an empirical determination of

∆M∗
(
β,MP = MJ,M∗ = 103MJ

)
, the amount of mass gained by a star with M∗ = 103MJ from

the disruption of a Jupiter-mass planet given the impact parameter β (Figure 4.10). The angular

momentum acquired by the star is simply equal to the specific angular momentum at the star’s

radius multiplied by the amount of mass accreted, ∆J∗ = ∆M∗
√

GM∗R∗. Note that this is not

the same as the total angular momentum content of the disk formed from the debris as claimed

by Jackson et al. (2009), as the accretion stream does not intersect the star’s radius unless the

planet’s original orbit has rp < R∗ (Kochanek, 1994).

If all disrupted Jupiter-like planets are approximately the same size and e ∼ 1, all

disruptions can be treated using our fiducial model and the inclusion of the simple scaling asso-

ciated with the increase in the orbital angular momentum. This is because the only difference

that arises from changing the mass of the planet and the star is the degree of asymmetry of the

tides, which is third-order in the force expansion and is (RJ/βrt)2 ∼ 10−2 times smaller than

the tidal force itself. Thus, in the event that the planet is completely destroyed by the star, we
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expect that the amount of angular momentum acquired by the star should simply scale with M∗

and MP

∆J∗(β,MP,M∗) =
(

M∗
M�

)1/2(MP

MJ

)3/2

×∆J∗(β,MJ,103MJ). (4.10)

However, our results show that a substantial fraction of planets are ejected from the

system before they can be fully destroyed by the star. This reduces the amount of mass ∆M∗

accreted by the star, and thus ∆J∗. Therefore ∆J∗ for any given encounter should depend on

which particular orbit a planet is ejected Nej. This parameter depends on the orbital energy

Eorb, and the change in orbital energy associated with each encounter, which as we explain in

Section 4.3.2 should also should scale simply with the masses of the planet and the star. Thus

our expression for ∆J∗ becomes

∆J∗(β,MP,M∗) =
(

M∗
M�

)1/2(MP

MJ

)3/2

×∆J∗(β,MJ,103MJ,Nej) (4.11)

Σ
Nej
N=1∆Eorb > −Eorb, (4.12)

where Nej is equal to the lowest value of N for which Equation (4.12) is satisfied. While this

gives us the amount of angular momentum acquired by the star for a set of encounter parameters,

we must know the distribution of β in order to estimate the probability for which a star will

possess a total angular momentum J∗ and obliquity ψ∗ after a number of planetary disruptions
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Nd.

The integrated rate of scattering (i.e., all encounters with β greater than some value)

has been evaluated numerically by a number of authors. (Jurić and Tremaine, 2008) show that

up to 20% of planets present at the end of phase I of planetary formation can collide with the

host star, e.g. rp < R∗. (Ford and Rasio, 2008) show that up to 16% of planets in a 3-body

system can be thrown into a “star-grazing” orbit, which they define as rp < 10−2ainit. Nagasawa

et al. (2008) show that planet-planet scattering events tend to induce transitions between Kozai

states (with the duration of each state being ∼ 106 − 107 yr) until a planet is ejected from the

system or until the eccentricity of the innermost planet is damped by tides. Nagasawa et al.

note that most of the close-in planets seem to be driven to their closest approaches via the Kozai

mechanism, which gently drives the planets into the region where they can be circularized,

as opposed to being directly scattered into such orbits. None of the models presented above

include the precession associated with general relativity that would normally quench the Kozai

mechanism.

Because the numerical scattering experiments do not include a hydrodynamical treat-

ment of tides, the fates of planets that are either scattered or driven by the Kozai to rt ≤ rp ≤ rτ

are not accurately represented. What the scattering experiments do reveal is the total rate of

planet-planet interactions as a function of the number of gravitating bodies in the system, and

the distribution of orbits that arises from numerous planet-planet interactions. And despite the

simplistic treatment of tides or the neglect of tides altogether, different prescriptions of tidal

dissipation do not seem to strongly affect the distribution of the remaining planets in the system

(Nagasawa et al., 2008), which means that the orbit distributions these models predict should
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still be appropriate to use as inputs for our post-disruption stellar spin estimates.

For systems that are not dynamically stable after the gas disk dissipates, or for systems

which are driven to instability by an external perturber (Zhou et al., 2007; Malmberg et al.,

2011), the models indicate that the eccentricity distribution of planets quickly evolves to a

Rayleigh distribution (Jurić and Tremaine, 2008)

dN =
e
σ2

e
exp
(

−e2

2σ2
e

)
de (4.13)

As the relaxation to this distribution is mainly driven by strong two-body planet-planet interac-

tions, the new eccentricity e of a planet after a scattering event should also be drawn from the

above distribution. Because we are interested in objects that may be unbound from the system

after the encounter, objects with e initially larger than 1 should be included when calculating

the number of events at each e. Using our definition of β,

e = 1 −
2

βrt/ra + 1
, (4.14)

and by making a change of variable from e to β, Equation (4.13) becomes

dN =
2rart(raβ − rt)
(rt + raβ)3σ2

e
exp
[

−
(rt − raβ)2

2(rt + raβ)2σ2
e

]
dβ. (4.15)

When ra� rp, as is the case in planet disruption, the above expression simplifies to

dN ' 2rt

raσ2
e

exp
[

−
1

2σ2
e

]
dβ
β2 , (4.16)
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which when integrated yields a disruption probability that scales inversely with β (Rees, 1988).

Because we are including hyperbolic encounters, β can assume both positive and negative val-

ues, with rt/ra < |β| <∞. To first order, the value of the integrand is equal for both positive

and negative values of β, and the total number of events where β > β′ is given by

N = 2
∫ ∞
β′

dN
dβ

dβ. (4.17)

This implies that equal numbers of planets will be scattered into prograde and retrograde orbits.

Under these assumptions and given our empirically determined lower limit for ejection rp =

2.7rt, it is immediately clear that the rate of collisions with the central star is lower than the

combined rate of ejections and disruptions by at least a factor rτ/R∗ − 1 = 1.78, assuming solar

and Jovian values.

Now that we have a model for the expected initial distribution of giant planets in a

dynamically relaxed system, we can use Equation (4.15) to evaluate the expected values of J∗

and ψ∗ after Nd planetary disruptions for a star of M∗ = M� (Figure 4.12). Here we consider

the scattered objects to be cold, Jupiter-like planets with MP > 0.25MJ, resulting in a nearly-

constant planetary radius RP. This assumption is only valid if the system is older than ∼ 108 yr

and if the planet’s initial orbit is far enough from its parent star to have negligible insolation,

but note that including these effects would only act to increase the amount of mass removed

from the planet per orbit. We also assume that the planets are distributed uniformly in log a

from rτ to 10aice, and in log MP from 0.25 to 10 MJ, with Rayleigh distributions in e and i with

σe = 0.3 and σi = 10◦. For simplicity, we assume that any angular momentum acquired by the
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star through a disruption is shared equally with all parts of the star.

For a single planet disruption in a system where the star possesses initial angular

momentum equal to the Sun, ψ∗ exceeds 30◦ in 15% of the stellar hosts, and 90◦ (i.e. the

star rotates retrograde to the invariable plane) in 8% of systems. The spin rate of the star also

tends to increase, with 10% of stars possessing 3J� after the disruption. If disruptions are very

common (N = 5), the probability of > 10/ > 90◦ increases to 47/22%, and 41% of stars have

J∗ > 3J�. The probability for enhanced values of J∗ and ψ∗ are all slightly smaller if we restrict

disruptions to come from a > aice, as the amount of mass the star acquires from disruptions

is slightly less on average, Equation (4.6). However, the effect is minor, with changes in the

cumulative probabilities being on the order of a few percent.

If a star is unable to share the angular momentum deposited in its outer layers in a

time less than its age, the star may be observed to have larger values of Ω∗ or ψ∗ than what

would be expected given complete mixing. The timescale τν for sharing angular momentum

across the tachocline in the Sun is known to be only∼3 Myr (Gough and McIntyre, 1998), with

the timescale decreasing for increasing rotation rates in the convective region. The timescale for

sharing angular momentum across the tachocline appears to increase significantly as the size of

the convective zone shrinks for rapidly rotating stars (Barnes, 2003; Barnes and Kim, 2010), but

this may be moderated by a fingering instability made possible by the larger molecular weight

of the disruption debris (Garaud, 2010; Rosenblum et al., 2011). A disruption in a system where

the host star never has a thick convective zone could effectively erase the star’s original spin rate

and obliquity, with ψ∗ being pulled from the inclination distribution of planetary orbits.
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4.4.3 Observational Signatures

If we assume that the pressure profile of the hot atmosphere that accumulates on the

planet has a pressure profile P = Pram at all radii (Frank et al., 2002), the initial Kelvin-Helmholtz

cooling timescale given a total atmosphere mass Matm is approximately

τKH ' 1.2
(

Matm

0.1MJ

)(
MP

MJ

)(
RP

RJ

)−1

×
(

Ratm

3RJ

)−2( Tvir

105 K

)−4

days, (4.18)

where Tvir is the virial temperature, Matm is the mass of the atmosphere and Ratm is the radius of

the atmosphere. Because Tvir is initially very large, the atmosphere is at first completely ionized.

At this temperature, τKH is a few days, leading to a rapid thermal evolution of the planet’s outer

layers shortly after most of the sundered mass returns to the planet. During this phase, the

planet can briefly outshine its parent star with Lbol ∼ 1036 erg s−1, with most of the radiation

being emitted in the UV. As the atmosphere cools it shrinks back down onto the planet’s surface

until Ratm ∼ RP. We can then estimate the temperature at which the planet radiates for the

majority of its orbit by setting P equal to τKH, which yields a temperature of a few 104 K. This

indicates that the planet’s outer layers will still be somewhat inflated before the planet returns

to pericenter, and thus will be easily removed on subsequent passages.

For planets that are ejected from their host stars, the thermal evolution of their outer

layers continues until the temperature reaches a few thousand Kelvin, at which point hydrogen

begins to recombine, which acts as a thermostat to maintain the temperature at a relatively
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constant value. The recombination timescale is

τrec ' 150
(

XH

0.7

)(
Matm

0.1MJ

)(
RP

RJ

)
years, (4.19)

where XH is the Hydrogen fraction. As a result of this relatively long time-scale, these ejected

planets could remain quite bright (Lbol ∼ 0.1L�) for an extended period of time, even without

additional tidal forcing. If we assume that one in ten planet-hosting stars ejects a Jupiter-like

planet via a partial disruption, and adopting an average star formation rate of 1M� per year, at

least one ejected planet in the recombination phase should be visible in the galaxy at any one

time.

4.5 Conclusions

4.5.1 Limitations and Future Directions

The principle assumptions that we have made in this chapter is that Jupiter-like planets

are represented accurately by a polytropic model of its structure. One advantage of this model

is that disruption simulations are trivially scalable to planets of a different size by a simple

correction to β, assuming that the planet’s mass interior to a given radius MP(< r) scales self-

similarly and that the fluid γ remains unchanged. An n = 1 polytrope reproduces the mass

profile of coreless 1 MJ planet relatively well, with the difference in MP(< r) never exceeding

10% throughout the planet’s interior (N. Miller, private communication).

The inclusion of a core of a few tens of M⊕ affects MP(< r) out to a few times the
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core radius, for which MP(< r) ∼ 0.4M(RP). Beyond this radius, the structure of the planet is

nearly identical to the coreless/polytropic models. This means that our simulations should be

an accurate representation for disruptions where . 70% of the planet’s mass is removed for

Jupiter-like planets. For Neptune-like planets, where the core mass can be larger than the gas

mass, the difference in MP(< r) is substantial all the way to the planet’s outermost layers, and

thus our simulation results should not be directly applied. As the average densities of Neptune-

like planets is larger than Jupiter-like planets, rτ for Neptunes should assume a smaller value.

Additionally, we assume that γ = 2 throughout the simulation volume, even for regions

of very low density where the fluid is completely ionized and should behave as an ideal gas

(γ = 5/3) or even a radiation pressure dominated fluid (γ = 4/3) in the lowest-density regions.

This transition to different values of γ should affect the structure of the hot envelope that forms

from the re-accreted debris that surrounds a partially disrupted planet, which is dynamically

unimportant but may affect the planet’s observable signature. This is not to say that a more

realistic equation of state would not affect the mass loss itself. As the process of ripping material

from the planet involves rapid fluid decompression, a decrease in γ may result in slightly altered

disruption dynamics.

Ideally, one would like to extend the models we have presented here to include a

more physical equation of state that can treat all components of the pre- and post-disrupted

planet realistically. As the resolution required to determine rτ for multiple-orbit encounters

beyond what we have presented here is prohibitive, it seems that the exploring the affects of

using a more-complete equation of state with a realistic initial planet model is the next natural

step for future studies. In the case of planets with a substantial core, these modifications are
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necessary to determine rτ with any confidence.

4.5.2 The Fates of Scattered Jupiters

The fate of a Jupiter-like planet after a strong scattering event is a function of the

strength of the tidal forces it experiences at periastron. In this chapter, we have determined the

disruption radius rτ for Jupiter-like planets which sets the boundary between long-term survival

and rapid tidal disruption. Below, we summarize the various post-scattering outcomes in order

of decreasing distance, using rτ and the tidal radius rt as points of reference.

Stalled
(
rp & 6rt

)
: The planet is deposited into an orbit where the rate of tidal dis-

sipation is too small to result in a change in semi-major axis over the lifetime of the system.

This planet may be in a Kozai state driven by a third body in the system, or could experience

another strong scattering event, which may lead to an increase of eccentricity and subsequent

circularization.

Circularization/Migration
(
rτ < rp < 6rt,e . 0.9

)
: In this region, the planet is close

enough to its parent star that tidal dissipation is effective, and the planet can circularize in 109 yr

or less for moderate values of e. For near-radial orbits, circularization may still be longer than

the stellar age, but again the Kozai mechanism or scattering could lead to a more rapid orbital

evolution. All currently observed hot Jupiters are either stalled, in the process of circularizing,

or already have circular orbits. If the planet is close enough to its parent star and Q∗ . 107, the

planet will raise a tide on the star and migrate inwards due to the transfer of angular momentum.

Ejection
(
rp < rτ ,e & 0.97

)
: A planet that passes within the exclusion zone will be

ejected from the system if its initial orbit is radial enough such that its orbital energy Eorb is
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significantly smaller than the self-binding energy Ep of the planet. Slightly less than half of

the planet’s initial mass remains bound to the central star, carrying with it a large reservoir of

angular momentum that can significantly alter the host star’s spin rate and axis of rotation. The

ejected planet will remain as bright or brighter than its host star for a few years, eventually

plateauing via hydrogen recombination as an object with a fraction of solar luminosity for a

century. All Jupiter-like planets that scatter in from beyond aice such that rp < rτ will be ejected

from the system.

Complete disruption
(
rp < rτ ,e . 0.97

)
: For planets that are deep within their parent

star’s potential well, the planet cannot soak the change in energy required to significantly alter

the orbit, which eventually leads to its complete disruption. Approximately half of the planet’s

mass accretes onto the stellar host, carrying the same specific angular momentum as in the

ejection case, leading to even more pronounced effects on the stellar spin. Only planets that

have migrated close to their stars prior to being scattered are destroyed before they are ejected.

Collision with the central star
(
rp < R∗

)
: The planet strikes the surface of the star

directly. Anywhere from half to all of the planet’s mass is absorbed by the star, with the angular

momentum being carried by this material potentially being smaller than that carried by the

debris from a disruption, depending on how direct the impact is. These events are approximately

twice as uncommon as ejections/disruptions.
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Figure 4.6: Pressure perturbations and spin excited by a grazing encounter with rp = 3rt. The
upper five panels show the pressure perturbation δP over several τdyn, with blue corresponding
to regions of lower pressure and pink corresponding to regions of higher pressure relative to the
base state. The lower five panels show the fluid’s angular momentum relative to rc (Equation
(A.2)), with green representing clockwise rotation and orange representing counter-clockwise.
Note that while the object appears to be rotating rapidly, the presence of rotating and counter-
rotating regions leads to almost an exact cancellation of the total angular momentum J. The
illusion of rapid rotation is in fact related to the pattern speed of the l = 2, m =±2 normal modes.
Because the angular momentum carried by this mode is related to the tangential component of
the expansion and contraction of the planet as it oscillates, the fluid vacillates back and forth at
the mode frequency. As can be seen in the figure, the fluid with J > 0 possess slightly more
total angular momentum than the fluid with J < 0. This leads to a spin frequency ω =

∑
J/I

that is actually very small.
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Figure 4.7: Change in orbital energy Eorb attributed to each passage as a function of rp and orbit
number Norb. The orange regions show decreases in Eorb (more bound), while the cyan regions
show increases in Eorb (less bound). The height of each rp column shows the number of orbits
a planet survives before being destroyed.
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Figure 4.8: Criteria leading to planet ejection given an initial periastron passage distance rp and
eccentricity e. The colored regions correspond to the number of orbits before a planet is ejected
by its interaction with the parent star. The dashed lines show the value of e given an apocenter
distance equal to the ice line aice, assuming that L∗ ∝M3.9

∗ . For all values of rp shown and for
e . 0.97, planets are ejected before they are totally disrupted. Note that the region bounding
the planets that are ejected on the first orbit has a monotonic dependence on rp, while all other
regions exhibit more complicated structure. This is because the first passage involves a planet
with no internal motions, and thus no relation between phase and the excitation or de-excitation
of fundamental modes. All future passages for N > 1 involve a planet that is both differentially
rotating and oscillating, resulting in a large variance in the amount of energy added or removed
from the orbit.
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Figure 4.9: The evolution of two multiple encounter simulations with almost identical initial
conditions. Both simulations use the same initial conditions as the rest of the multiple encounter
simulations presented in this chapter, with rp = 2rt. The only difference between the two sim-
ulations is the initial eccentricity: The solid curves show the outcome for initial eccentricity
e = 0.9, while the dotted curves show the outcome for e = 0.90012, which corresponds to an
orbital period that is one free-fall time-scale tff longer than the e = 0.9 case. The four plots show
the planetary mass MP, orbital energy Eorb, spin angular momentum JP, and precession of the
orbit ω as functions of t/tch. Note that while the outcome of the first encounter at t = 0 is almost
completely identical in both simulations, the behavior diverges on the second encounter, which
leads to the planet on the e = 0.9 orbit being destroyed in three orbits, whereas the planet on the
e = 0.90012 is destroyed in four. This divergence is a result of the phase difference between the
two simulations introduced by the slight difference in initial orbital period.
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Figure 4.11: Possible apastrons ra for the known hot Jupiters with MP > 0.25MJ. Each arc shows
the apocenter of an orbit with pericenter rp, assuming that the angular momentum of the ini-
tial orbit is equal to the orbital angular momentum observed today. The open circles show each
planet’s currently observed rp and ra, scaled to the tidal radius rt and the ice line aice respectively,
which are determined by the planet/host star properties at the time of scattering. For the planet’s
radius at the time of scattering, we use the cold, coreless Jupiter models of (Fortney et al., 2007)
at 300 Myr. Blue-filled circles are planets that are thought to be aligned with their host stars,
red-filled circles are thought to be misaligned (either via direct measurement or because they
have observed to have statistically inconsistent rotation rates, see Schlaufman, 2010), and white-
filled circles show systems with unknown orientations. The thick vertical line (labeled rτ ,sim)
shows the minimum possible value of rτ corresponding to the Jupiter exclusion zone, which is
determined through our numerical simulations for Jupiter-like planets to be 2.7rt, while the thin-
ner vertical line (labeled rτ ,obs) shows the maximum possible value for rτ , which is defined by
the planet that is currently observed to be closest to its classically defined tidal radius, WASP-19
b. Filled black circles show the intersection between the rτ lines and each of the arcs of con-
stant angular momentum shows the maximum apastron distance ra,max a planet could have been
scattered from without being destroyed on its subsequent encounters with the host star. Only
planets for which ra,max < aice assuming rτ ≤ rτ ,obs are labeled, hot Jupiters that do not meet this
criteria are left unlabeled and are greyed out. Note that the typical ra,max values are significantly
smaller than aice, which indicates that those planets must have migrated prior to being scattered
if planet-planet scattering brought them to their current positions. All data taken from the Ex-
trasolar Planets Encyclopaedia (http://exoplanet.eu) and René Heller’s Holt-Rossiter-
McLaughlin Encyclopaedia (http://www.aip.de/People/RHeller/) on January 24,
2011.
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Figure 4.12: Changes to the stellar spin as a result of accreting tidally disrupted planets. The
curves show the cumulative probability that a star will possess a given angular momentum J∗
and spin inclination ψ∗ after 1 (solid) or 5 (dashed) planetary disruptions Nd for different initial
stellar angular momentum J∗,init. Planets are assumed to have a logarithmic distribution in
mass (0.25MJ ≤M ≤ 10MJ) and semi-major axes (rτ ≤ a ≤ 10aice), where rτ is the minimum
distance for which a planet won’t be tidally disrupted and aice is the ice line. The eccentricity
e and inclination i relative to the invariable plane are assumed to follow Rayleigh distributions,
with σe = 0.3 and σi = 10◦.
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Chapter 5

The Importance of the Impact Parameter and

Stellar Structure for the Tidal Disruption of

Stars

5.1 Introduction

Supermassive black holes (SMBHs) have been found to reside at the centers of most

galaxies. These black holes are surrounded by a dense stellar cluster which will occasionally

deposit a star into an orbit that takes it within its tidal radius. A fraction of the star’s mass

then becomes bound to the black hole, and proceeds to fall back towards the star’s original

pericenter, eventually forming an accretion disk that results in a luminous flare with a luminosity

comparable to the Eddington luminosity.

The standard model of tidal disruption presumes that nothing remains of the star after

the encounter, resulting in approximately half of the star’s original mass falling back onto the
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black hole, with the debris possessing a variety of orbital periods resulting from a spread of

orbital energy that is “frozen in” at pericenter. First described in Rees (1988), the rate of fallback

has been estimated both through increasingly sophisticated numerical simulations and analytical

models. While previous results have provided reasonable models for the fallback resulting

from the complete disruptions of stars at the tidal radius rt, where M∗ and R∗ are the mass

and radius of the star and Mh is the mass of the black hole, they completely neglect partial

stellar disruptions, in which a stellar core survives the encounter and only a fraction of the

star’s mass becomes immediately bound to the black hole. These events are likely to be much

more common than their complete disruption counterparts, both for the reason that the rate of

encounters interior to the pericenter distance rp scales as rp (Hills, 1988), and also that the

disrupted star may return on subsequent orbits and be subject to disruption and/or further tidal

dissipation. Additionally, many previous studies have focused on stars of a single structural

profile, usually selected to match the familiar profile of our own Sun. However, standard stellar

mass functions predict that low-mass main sequence (MS) stars are more common (e.g. Kroupa

et al., 1993), and thus may contribute significantly to the overall disruption rate. These stars are

significantly less centrally concentrated than their solar mass brethren.

The dynamics of stellar tidal disruption have been modeled by many authors us-

ing simple analytical arguments (Rees, 1988; Phinney, 1989; Lodato et al., 2009; Kasen and

Ramirez-Ruiz, 2010), increasingly complex dynamical models (Luminet and Marck, 1985;

Carter and Luminet, 1985; Luminet and Carter, 1986; Diener et al., 1995; Ivanov and Novikov,

2001), and hydrodymical simulations utilizing either an Eulerian (see Chapter 2, also see Evans

and Kochanek, 1989; Khokhlov et al., 1993a,b; Diener et al., 1997; Guillochon et al., 2009)
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or Lagrangian (Nolthenius and Katz, 1982; Bicknell and Gingold, 1983; Laguna et al., 1993;

Kobayashi et al., 2004; Rosswog et al., 2008a; Lodato et al., 2009; Ramirez-Ruiz and Rosswog,

2009; Rosswog et al., 2009b; Antonini et al., 2011) approaches. Very few of these studies have

presented the effect varying rp on the amount of mass lost by the star, ∆M, or the effect on Ṁ,

the rate at which the mass liberated from the star returns to pericenter. Given that the viscous

time is expected to be significantly shorter than the period of the returning debris, this Ṁ is

expected to track the luminosity L(t) closely. As the number of observed disruptions increases,

and as the cadence and quality of data improves, it becomes increasingly more important to

improve models of Ṁ for disruptions of all kinds.

In this chapter, we present the results of 43 hydrodynamical simulations at high-

resolution representing the disruption of both low-mass and high-mass MS stars. This provides,

for the first time, a complete picture of the feeding of SMBHs by the disruption of MS stars.

While the expected trend of smaller mass accretion rates for progressively more grazing encoun-

ters is reproduced, our study reveals several surprises on how disruptions work, particularly on

the effect of stellar structure and how the fallback rate scales for both grazing and deep encoun-

ters. Contrary to what is expected from the freezing model, in which only the distribution of

mass at pericenter is considered, the non-linear response of the star to the tidal field is found to

play a crucial role in determining Ṁ. Our simulations show that the simple models previously

employed to predict the rate of fallback do not capture the full dynamics of the problem, and

are only appropriate for anything other than the full disruption at exactly the tidal radius.

We find that the decay rate of Ṁ does not settle to a constant value until a few months

after the disruption for all disruptions by black holes with Mh > 106M�, implying that the
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range of characteristic decay rates used to identify tidal disruption flares should be widened

to include events that may not follow the fiducial t−5/3 decay rate. For partial disruptions, the

decay rate at a few years after the disruption depends crucially on the hydrodynamical evolution

of the debris stream. This means that simulations must cover more than a few stellar dynamical

timescales after the disruption, with the final functional form of Ṁ not being established until

the star is many hundreds of tidal radii away from the black hole. And while we do find that

there are differences between the fallback functions calculated for the disruptions of profiles

characteristic of low- and high-mass stars, the mass-radius relationship of MS stars results in a

family of fallback curves that are difficult to distinguish from one another for stars of 0.3M� &

M∗ & 1.0M� without considering secondary features related to the shape of the fallback curves

themselves, such as the decay rate of Ṁ, characterized by a time-dependent power-law index

n(t).

This chapter is organized as follows. We describe our numerical method, initial mod-

els, and method for calculating ∆M and Ṁ in Section 5.2. The results of these simulations and

how they improve our understanding of stellar tidal disruptions is described in Section 5.3. A

discussion of the general trends and their effect on the observable features of tidal disruptions

is presented in Section 5.4. Finally, we provide fitting formula to four characteristic variables

describing disruptions of stellar profiles characteristic of low- and high-mass stars in Appendix

B.
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5.2 Method

Our simulations of tidal disruption are performed in FLASH (Fryxell et al., 2000),

an adaptive-mesh grid-based hydrodynamics code which includes self-gravity. The standard

hydrodynamical equations are solved using the directionally split piecewise-parabolic approach

(Colella and Woodward, 1984) as provided by the FLASH software, which has a small numerical

viscosity and diffusivity as compared to the available unsplit solvers Therefore, the principle

source of entropy generation is via shocks, if they are present. The solution to the Riemann

problem is sensitive to the velocity of the frame in which the problem is solved, and poor

solutions can be returned in regions where the velocity of the frame is many times larger than

the sound speed (Tasker et al., 2008; Robertson et al., 2010; Springel, 2010). As stars that

are disrupted by SMBHs are traveling at a fraction of the speed of light c, we perform our

simulations in the rest-frame of the star where the velocities are ∼√csvp, where cs is the sound

speed within the star and vp is the velocity at pericenter.

Our method for this chapter is very similar to what is presented in Chapter 4, except

that we now utilize version 4.0 of the FLASH software, which has a greatly improved multipole

gravity solver1. A key parameter of the multipole gravity solver is the maximum angular num-

ber of the multipole expansion lm. A test simulation setting lm = 10 showed multiple recollapse

points for a nearly-complete disruption, which is not expected to occur in disrupted stars (as

described in Section 5.3.1). We suspected this behavior was a consequence of the large aspect

ratio of the debris stream, which results in gravity being under-resolved if the multipole expan-

sion is truncated at small lm. With lm set to 20, only a single recollapse occurs, as is expected.
1See http://flash.uchicago.edu for details
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For lm = 40, we found no significantly difference in any quantities of interest as compared to

lm = 20, except for cases in which a very small remnant survives the disruption. In these cases,

the error is in the mass of the surviving object, which is difficult to resolve for marginally sur-

viving stars (see Section 5.3.1). The results presented in this work all use lm = 20 for optimal

runtime efficiency.

Additionally, we add a truncation density parameter ρdamp that is set to 10−18 g cm−1, a

factor of 10 larger than the fluff density. Material with density less than this value is not included

in the multipole expansion, nor are any gravitational forces applied to this material. This is

necessary as the domain is extremely large as compared to the initial star, and so even 10−11M�

of material can introduce a significant error in the calculated position of the center of mass. We

also only include material with a density greater than 10% of the star’s original peak density

when calculating the location to use as the multipole expansion point; however all material with

density greater than ρdamp is included when calculating the magnitude of each of the multipole

terms. This is done because the total center of mass does not always spatially coincide with

the peak density, which can result in a multipole expansion that is a poor representation of the

underlying density distribution.

5.2.1 Parameter Study

Ignoring general relativistic effects and stellar rotation, it may seem that a complete

study of tidal disruptions would require an exhaustive study of the various combinations of six

parameters: M∗, R∗, Mh, the orbital eccentricity e, the polytropic index γ, and β ≡ rt/rp. As

an exhaustive search of a six-dimensional parameter space is prohibitive, we wish to reduce the
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Figure 5.1: Snapshots of the density logρ for all γ = 4/3 simulations at t = 4×104 s after the start
of each simulation, with white corresponding to the maximum density and black corresponding
to 10−6 g cm−1. Each snapshot is labeled with the ratio of the tidal radius to the pericenter
distance β. The white arrows indicate the angle of the velocity vector at the time of each
snapshot. The white dashed line separates simulations in which a core survives the encounter;
although not visible here, recollapse does occur for the β = 1.7 and 1.8 simulations, but for
t > 4×104 s.

number of free parameters to a more manageable number. For fixed β, both rp and vp scale as

M1/2
h , and thus the pericenter crossing time tp is independent of Mh. Additionally, as the mass

ratio approaches infinity, the asymmetry of the tidal field becomes progressively less important

as R∗� rt, with the difference in the strength of the tidal field at pericenter between the near-

side and the far-side for a 106 : 1 encounter being ' 3% (see Equation 4.5). And as most of the

stars that are scattered into disruptive orbits originate from the sphere of influence or beyond

(Magorrian and Tremaine, 1999; Wang and Merritt, 2004), the orbital eccentricity of almost all
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Figure 5.2: Snapshots of logρ for all γ = 5/3 simulations at t = 4×104 s, colors and annotations
are the same as in Figure 5.1. Although not visible here, recollapse does occur for the β = 0.75
– 0.85 simulations, but for t > 4×104 s.

disrupted stars is approximately unity2.

It then follows that as the ratio of the time of the encounter tp to the star’s dynamical

time tdyn =
√

R3
∗/GM∗, shape of the orbit (which depends on e), and asymmetry of the tides are

nearly identical for all encounters of interest for a fixed β, the tidal force applied to the star as

a function of time is independent of Mh, e, M∗, and R∗. Thus, we find that the vast majority of

stellar disruptions by SMBHs can be described by just two parameters: β and γ, with all other

parameters obeying simple scaling relations. While previous numerical studies have considered

the effect of varying γ on Ṁ(Rosswog et al., 2009b; Lodato et al., 2009; Ramirez-Ruiz and

Rosswog, 2009), the present work is the first to explore the effect of varying β on Ṁ in cases

ranging from no mass loss to deeply penetrating encounters3.

To explore this reduced but physically motivated parameter space, we run a series

of simulations assuming M∗ = M� and Mh = 106M�. Our stars are constructed as polytropes,

2See (Madigan et al., 2011) for a discussion of resonant relation processes that may produce a different distribu-
tion of eccentricities for stellar disruptions.

3Note that Laguna et al. (1993) do present Ṁ from low-resolution simulations for three different β values, two
of which are very deeply penetrating (β ≥ 5).
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with the polytropic γ being set to either 5/3 or 4/3, representative of both low- and high-mass

stars, respectively. During the simulation, the stars are evolved hydrodynamically according to a

Γ = 5/3 equation of state, with the difference between γ and Γ for high-mass stars being a conse-

quence of the radiation transfer within the star (Chandrasekhar, 1939). These one-dimensional

profiles are then mapped to the three-dimensional grid, with initially uniform refinement across

the star. The star is then relaxed for 104 s at the center of a cubical domain, which is 4× 1014

cm on a side. The domain is initially composed of a single 83 block, which is then bisected

into smaller 83 blocks as many as 15 times, resulting in a minimum cell size of 3×109 cm, or

approximately 2% of the star’s original diameter. Our refinement criteria is solely dependent

on the density relative to the initial central density, with a factor of two reduction in resolution

for each factor of a hundred in density. Regions within the simulation that are within 1% of the

peak density are always maximally refined.

We ran simulations for 23 different impact parameters β ranging from 0.6 to 4.0 for

γ = 4/3, and 20 different β ranging from 0.5 to 2.5 for γ = 5/3. Two additional simulations

were run at β = 0.5 for γ = 4/3 and β = 0.45 for γ = 5/3; as less than 10−6M� is observed to be

removed from the stars in these two borderline cases, we conlude that no mass is lost for values

of β less than the above quoted ranges in β. Snapshots from each simulation recorded shortly

after pericenter are shown in Figures 5.1 and 5.2.

5.2.2 Calculation of ∆M and Ṁ

Our hydrodynamical simulations enable us to calculate the binding energy of the ma-

terial to the black hole dM/dE. This function can be used to determine the feeding rate as a
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function of time through Kepler’s third law,

Ṁ =
dM
dE

dE
dt

=
2π
3

(GMh)2/3 dM
dE

t−5/3. (5.1)

For full disruptions, the entirety of the star’s original mass is included in the calculation of

dM/dE, approximately half of which will have specific orbit energy E > 0 and is thus unbound

from the black hole. For partial disruptions, the criteria for determining which material to

include in the determination of dM/dE is less straightforward, as what will be accreted by the

black hole is only the material that the star’s gravity is unable to retain. As the star is on a

parabolic orbit, the distance from the black hole changes rapidly as a function of time, and

thus the star’s Hill radius aH(t)≡ r(Mbound(t)/Mh)1/3 is also time-dependent, introducing some

ambiguity into the determination of the self-bound mass Mbound(t).

In principle, the distance of matter from the surviving star can be compared to aH(t)

to determine what mass is bound to the star. However, the continual reaccretion of matter

means that the star is extended, non-spherical, and dynamically unrelaxed for many dynami-

cal timescales, and thus the appropriate mass to use in the calculation of aH is uncertain. To

circumvent this, we choose an iterative energy-based approach that we find converges quickly

to a solution. First, we calculate the material that remains bound to the star, where the initial

reference point is taken to be at the location of the star’s peak density, which has a velocity

vpeak. The specific binding energy of material in a given cell is calculated as

E∗,i =
1
2
(
vi − vpeak

)2
−φ∗, (5.2)
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where φ∗ is the gravitational self-potential as calculated by the multipole solver. The center of

momentum vcm is then determined by summing over all mass elements for which E∗,i < 0

vcm =

∑
E∗,i<0 viρiVi∑

E∗,i<0 ρiVi
, (5.3)

where ρi and Vi are the cell density and volume. Equation (5.2) is then re-evaluated with vpeak

being replaced by vcm. This process is repeated until vcm (and thus Mbound) converges to a

constant value. While this approach yields a value for Mbound in most cases, the question of

whether an object is completely destroyed is somewhat complicated by the fact that the tidal

force formally approaches zero as ∆r→ 0, and thus there is always some material for which

vi = vcm, resulting in a infinitesimal, but non-zero Mbound even as the time since disruption

t − td→∞.

Figure 5.3 shows how the maximum density within a simulation ρmax compares to

the star’s initial maximum density ρmax,0 for six simulations (three for γ = 4/3 and three for

γ = 5/3). Two of the simulations shown for each γ exhibit a continuous decrease in ρmax, show-

ing no signs of recollapse, whereas the third simulation for each γ shows an increase in density

sometime after pericenter, eventually settling to a constant value as the collapsed object dynam-

ically relaxes. As a check on the convergence of Mbound for all the simulations presented in

this work, we compute the quantity F ≡
∣∣Ṁbound/Mbound

∣∣ (t − td), which expresses the fractional

change in Mbound since the time of disruption. Disruptions in which a self-bound core forms

asymptote quickly to a constant Mbound, and thus small values of F , whereas disruptions in

which ρmax consistently decreases show F ∼ 1 at all times. The only disruptions in which the

107



0 50 000 100 000 150 000 200 000
-5

-4

-3

-2

-1

0

t-tdisrupt

L
o
g

1
0
@Ρ

m
ax
�Ρ

m
ax

,0
D

Γ = 4�3
Γ = 5�3

Β = 1.8

Β = 1.9

Β = 0.85

Β = 0.95

4.0 4.5 5.0
-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

Log10@t-tdisruptD

L
o
g

1
0
@F
D

Figure 5.3: Evolution of maximum density ρmax and bound mass Mbound as a function of time
since disruption. In the left panel, the evolution of the ratio of ρmax to the original maximum
density ρmax,0 is shown for six simulations (filled regions), three for γ = 4/3 (orange, solid
lines) with β = 0.85, 0.9, and 0.95, and three for γ = 5/3 (light blue, dashed lines) with β =
1.8, 1.85, and 1.9. In the right panel, the parameter F ≡ |Ṁbound/Mbound|(t − td) is shown for
all simulations, demonstrating the convergence of the calculate Mbound for all the simulations
presented in this work (see Section 5.2.2 for details). When the value of this quantity is close to
unity, Mbound is still changing by order unity over that timescale, indicating that the final bound
mass cannot yet be determined at that t. The thick lines show simulations for which the star
is considering to be destroyed after the encounter, whereas the thin lines show simulations for
which a surviving core forms.

final core mass has not completely converged are the borderline survival cases (e.g. β slightly

less than βd). However, while the fractional error in Mbound is large for the borderline cases, the

definition of ∆M = M∗ − Mbound means that the amount of mass lost from the star (and also the

amount of mass bound to the black hole) is well-determined.

Once vcm has been determined, all material for which E∗,i < 0 is excluded, and the

binding energy to the black hole E is calculated. This data is then binned in E, the result of

which is used to determine dM/dE. The values of ∆M and Ṁ presented in the figures in the

subsequent sections are all generated from snapshots that are produced at t = 2.5× 105 s after

the start of each simulation (unless otherwise noted), or approximately 100 dynamical times
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after pericenter.

5.3 Hydrodynamics of the tidal disruption of MS stars

Many assumptions about the way partial and full disruptions work have never been

tested beyond analytical approximations. Quantities that have been estimated include the time

of return of the most bound material tmost, the time of peak accretion rate tpeak and the mag-

nitude of this rate Ṁpeak, and the amount of mass bound both to the star and to the black hole

after the encounter. Additionally, it has always been presumed that the late-time evolution of

the fallback converges to the t−5/3 decay law, whereas this is not necessarily true in partial

disruptions where the surviving core may affect the binding energy of this material. We empiri-

cally measure these quantities from our calculations of dM/dE, and find that while some of the

commonly-held assumptions are reasonably accurate, many are not. Most of these assumptions

arise from how the problem was originally formulated, in which the star’s self-gravity is viewed

as inconsequential, and only the spread in binding energy across the star at pericenter is relevant

in determining the features of the resulting Ṁ. We find that the star’s self-gravity is critical in

determining the resulting Ṁ, even for encounters with pericenters that are many times deeper

than the tidal radius.

5.3.1 The Boundary Between Survival or Destruction

A collection of non-interacting particles in the presence of a point mass potential will

all follow Keplerian orbits, provided that no outside force acts upon them. This means that
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once both the star’s gravity and pressure become unimportant at a time close to the star’s closest

approach to a black hole, the position and velocity of each mass element can be recorded, and

the future orbits of each part of the debris stream can be determined. It has been presumed

that this condition is satisfied at rt, the distance at which the tidal force is greater than the self-

gravitational force at the object’s surface. This assumption is flawed in that the tidal radius as

classically defined does not denote the distance at which the tidal force dominates self-gravity

for any point within the star, but rather only at its surface. The conditions necessary for a poly-

trope to lose mass due to the presence of an external tidal force have been previously determined

in the context of the Roche problem, which considers when the tidal force at the surface of an

object exceeds the self-gravitational force in a circular orbit (Aizenman, 1968; Chandrasekhar,

1969). However, again, this limit only informs us as to when we expect the object to begin

losing mass, and not the distance at which the object is completely destroyed. Additionally, the

Roche limit is evaluated under the assumption of hydrostatic equilibrium, and presumes that the

orbital velocity is equal to that of a circular orbit vc, resulting in a different dynamical response

than for parabolic encounters in which the pericenter velocity is
√

2vc.

The question of whether a star survives depends not on the ability of tidal forces

to remove some mass, but on whether these forces are overwhelming enough to disrupt the

star’s densest regions. Furthermore, even if a star experiences a seemingly complete disruption,

the star may be capable of recollapse into a self-bound object after the encounter under the

proper conditions. It has been shown that gamma-law equations of state stiffer than Γ = 2

can result in the recollapse of material within expanding thin streams for infinitesimally small

masses (Chandrasekhar, 1961; Lee and Ramirez-Ruiz, 2007). As stars are well-approximated
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by Γ≤ 5/3 equations of state, these instabilities are not expected to appear in stellar disruptions,

and thus recollapse is not guaranteed for all β.

The affine model, as introduced in Carter and Luminet (1985), improved upon the

initial estimates provided by the Roche approach by including the effects of the dynamical tide,

but while this approach is able to evaluate the distance at which distortions become non-linear,

it is not capable of determining the actual distance at which disruptions occur. Later, Diener

et al. (1995) extended the affine approach to calculate the critical impact parameter for full

disruption βd, finding βd = 1.12 for γ = 4/3 and βd = 0.67 for γ = 5/3 polytropes, where βd

is the critical impact parameter at which complete disruption ensues. More recently, the affine

formalism was improved upon further by modeling the star as a nested set of ellipsoids, each

of which respond dynamically to the external tidal field (Ivanov and Novikov, 2001; Ivanov

et al., 2003). While this model is the first analytical approach to provide estimates for ∆M, the

simplifying assumptions made regarding the treatment of self-gravity, pressure, and geometry

does not guarantee that the true solution can be recovered via this approach.

In Figure 5.4 we show the amount of mass lost ∆M = M∗ − Mbound (measured at the

end of each simulation) as a function of β for both γ = 4/3 and γ = 5/3, with comparisons to

Ivanov and Novikov (2001) shown in black. Remarkably, the model of Ivanov and Novikov

comes quite close to predicting the critical β value as measured by these simulations, despite

the assumptions made, and is able to recover reasonable values for ∆M, although the scaling

between ∆M and β is somewhat steeper than what is observed in the simulations. In particular,

we find that stars can survive encounters for larger values of β than the nested affine model

predicts. We speculate that the method presented in Ivanov and Novikov could be extended to
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Figure 5.4: Fits to ∆M, with the fits to the γ = 4/3 models being shown by the solid colored
circles, and fits to the γ = 5/3 models being shown by the open colored circles. Predictions
of ∆M from Ivanov and Novikov (2001) for both γ = 4/3 and γ = 5/3 are represented by the
black symbols/curves. The color coding matches that of Figures 5.1 and 5.2, with the impact
parameters βd beyond which stars are considered to be destroyed being denoted by the colored
dot-dashed lines.

calculate Ṁ if the time at which each ellipsoid becomes unbound were recorded, which given the

low computational burden of this approach could be used to perform more extensive parameter

space studies.

We observe that while some stars appear initially to be completely destroyed, with

their cores being disrupted along with their envelopes (Figures 5.1 and 5.2), the debris stream

can often recollapse many dynamical timescales after the encounter, resulting in a small yet

self-bound remnant. The mass of the remnant that results is roughly equal to the amount of
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Figure 5.5: Fallback accretion rate Ṁ onto a 106M� black hole from the disruption of a 1 M�
star as a function of γ and β. The colored curves in the left two panels show Ṁ, with the
color of each curve corresponding to the color coding scheme presented in Figures 5.1 and 5.2.
The dashed portions of each curve are extrapolations based on the slope of the Ṁ immediately
prior to the extrapolated region, which accounts for the fact that the late-time slope can only
be determined exactly if the simulations are run for a prohibitive amount of time (see Figure
5.10). The dotted line shows the Eddington limit for a 106M� black hole assuming an accretion
efficiency ε = 0.1. The open triangles connected by the gray dashed line show the peak fallback
rate Ṁpeak and time of peak tpeak as predicted by the energy-freezing model, in which the period
of the return of materials scales as β3 (Evans and Kochanek, 1989; Ulmer, 1999; Lodato et al.,
2009). The open circles connected by the black line show the fits to Mpeak and tpeak as given by
Equations B.1 and B.2 respectively. The right two panels shows the same data as the left two
panels, with the filled regions showing the range of Ṁ curves resulting from full disruptions
(red) and from disruptions in which the star survives (gray).

mass contained within a sphere centered at the recollapse point and with a radius equal to the

cylindrical radius of the debris stream S.

For collapsing gaseous cylinders, spurious condensations as the result of the accu-

mulation of numerical error may develop if the Jeans length is not properly resolved (Truelove

et al., 1997), with the source of that error being exacerbated by an inexact determination of the

gravitational potential (Jiang et al., 2013). Truelove et al. found that no spurious gravitational

collapse occurs if the ratio J of the grid scale to the Jeans length λJ ≡
√
πc2

s/Gρ, where cs is

the sound speed and ρ is the density, is always less than 0.25 in all grid cells at all times. In

all of our simulations, the width of the debris stream is comparable to the star’s initial size,
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and the resolution in the densest portion of the stream as it condenses is equal to the resolution

used to resolve the original star (∼ 50 grid cells). Therefore, in the case in which a recollapse

marginally occurs (i.e. J/S∼ 1), J ' 0.02, satisfying the Truelove criteria.

For γ = 4/3, we find that stars are destroyed for β ≥ βd = 1.85, i.e. no self-bound

stellar remnant is produced. To verify that we are adequately resolving the boundary between

survival and destruction, we ran a single γ = 4/3,β = 1.8 simulation at double the linear reso-

lution, and found a recollapse that results in a bound remnant of only a few percent of a solar

mass, slightly smaller than what is found using our fiducial resolution. As the mass of the sur-

viving star nears zero, the resolution requirements become progressively more restrictive, as

even slight changes in the cylindrical density profile or gravitational potential can alter the time

of recollapse, and thus the final bound mass. For γ = 5/3, we find that stars are destroyed for

β ≥ βd = 0.9.

Numerical challenges aside, the exact boundary between survival and destruction for

real stars is likely to be slightly different than what is predicted here, as the central densities

of stars on the MS depend on rotation, metallicity, and age (Maeder, 1974; Wagner, 1974).

Notably, our own Sun has a central density approximately twice that of the standard γ = 4/3

polytrope used to model it. This may allow the cores of somewhat evolved MS stars to survive

for slightly larger values of β, although their gravitational influence is likely small as the helium-

enriched cores of evolved MS stars are no larger than 10% of the star’s mass (Schönberg and

Chandrasekhar, 1942).
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5.3.2 Characteristic features of Ṁ

Figure 5.5 shows the family of Ṁ curves as a function of β for both γ = 4/3 and

γ = 5/3. Immediately evident is the strong dependence between Ṁpeak and β for β < βd, and

the similarity of the Ṁ curve family for β≥ βd. The result that deeper encounters do not produce

more rapid flares is in direct conflict with the analytical prescription presented in Lodato et al.

(2009) (hereafter LKP), in which the binding energy dM/dE is equivalent to the spread in mass

over distance (modulo a constant), dM/dx, at pericenter. In this model (hereafter referred to as

the “freezing model”), the binding energy is given by

E = GMhx/r2
p, (5.4)

and thus deeper encounters always result in faster-peaking transients. Because the binding

energy E ∝ r−2
p , the scaling between β and tpeak is expected to be tpeak ∝ β3 (Ulmer, 1999).

We definitively find that this is not the case, as the two separate functional forms of

the parametric pair
[
tpeak(β),Ṁpeak(β)

]
indicate a separate set of assumptions are appropriate

for the two cases β < βd and β > βd, neither of which match the functional form advocated by

LKP (Figure 5.5, triangles). For encounters in which β < βd, tpeak and Ṁpeak are approximately

related to one another by a power law, with the best fit model having Ṁpeak ∝ t−7.4
peak for γ = 4/3

and Ṁpeak ∝ t−10.5
peak for γ = 5/3. The steepness of this relation means that the difference in tpeak

is only a few tenths of a dex between an event in which 10−4M� is lost and a full disruption.

For β > βd, the trend between tpeak and Ṁpeak reverses for increasing β, with deep encounters

resulting in both slightly longer duration flares and slightly lower typical accretion rates.
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For fully-disruptive encounters, we find that Ṁ varies little with increasing β. An

assumption of the freezing model is that the distance at which the dynamics of the debris can

be described by Kepler’s laws is when the star is at pericenter. In fact, the star’s self-gravity

becomes unimportant before the star comes this close to the black hole for encounters where

β > βd. This suggests that the binding energy distribution of the material should be determined

shortly after the star crosses the full disruption radius rd ≡ rt/βd, and not at its closest approach,

unless the encounter is grazing enough such that rp < rd.

This can be understood by considering the local reaction time of each layer of the

star’s structure as compared to the passage timescale. The dynamical timescale for a particular

layer is τdyn '
√

1/Gρ̄x, which is approximately equal to the time between when the star is at a

distance where the tidal force is capable of removing that layer and the time of pericenter,

τtidal = rt,x/vt,x '

√
r3

t,x

GMh
=

√
x3

GMx
(5.5)

'
√

1/Gρ̄x, (5.6)

where the subscript x refers to quantities defined by the mass interior to x. Thus, regardless

of the distance at which the tidal force begins to dominate the self-gravitational force, material

is removed from the star at or near the full disruption radius rd. This means that the effective

radius that should be used in the denominator of Equation 5.4 is reff = max(rd,rp). However, as

the degree of balance between the tidal and self-gravitational forces continuously evolves over

the encounter, the actual radius at which mass is removed can be larger or smaller than reff, and

thus the relationship between E and x is more complicated than outlined here.
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Figure 5.6: Average spread of matter post-disruption as compared to the change in orbital en-
ergy for binary disruptions (Sari et al., 2010). The solid curves show 〈E〉 (the mass-averaged
binding energy of the bound debris post-disruption) for both γ = 4/3 (light blue, open circles)
and γ = 5/3 (orange, filled circles) stars, whereas the dashed curves show the change in orbital
energy ∆Eorb for prograde binary encounters, where we have presumed that each star has mass
M�. The impact parameters βd beyond which stars are considered to be destroyed being denoted
by the colored dot-dashed lines. The red dashed curve shows the maximum change in orbital en-
ergy ∆Eorb,max at a particular β, whereas the blue dashed curve shows Eorb averaged over binary
phase. The binary disruption energies are scaled by (GM∗/a)(Mh/M�)1/3, where a is the initial
binary separation, whereas the stellar disruption curves are scaled by (GM∗/R∗)(Mh/M�)1/3.

Additionally, while the binding energy is effectively frozen-in once the star crosses

rd, the assumption that the orbital energy can be reliably recorded at this point is only valid if

the pressure gradient that develops within the star during maximum compression is not large

enough to affect dM/dE. As shown in Carter and Luminet (1983), the pressure component of

the Lagrangian does build significantly shortly after pericenter, and eventually dominates the
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Figure 5.7: The left panel shows the power-law index n, with orange corresponding to γ = 4/3
stars and light blue corresponding to γ = 5/3 stars. The filled regions show the convex hull of
n over all values of β; the lightly-weighted curves within the filled regions represent individual
simulations for specific values of β. The horizontal dotted and dashed black curves show n = 0
(i.e. the peak of the accretion rate) and n = −5/3 (the canonical value for constant dM/dE),
respectively. The dashed colored curves are produced using the analytical formulae of Lodato
et al. (2009) for β = 1 encounters for both values of γ. For 1 M� stars, the analytical formulae
predict a faster rise to peak for γ = 4/3 (orange-bordered point) than for γ = 5/3 (blue-bordered
point), and fail to reproduce the steeper power law index that is found shortly after peak for
γ = 4/3. The open colored circles show the numerical results of Lodato et al. (2009) for β = 1,
where we include their γ = 1.4 case (dark green) in addition to γ = 5/3 and note that their
simulations set Γ = γ. The right panel shows the asymptotic power-law index n∞ as a function
of β, with the color coding scheme identical to that of Figures 5.1 and 5.2, where the filled
circles show n∞ for γ = 4/3, and the open circles for γ = 5/3. A best fit for both values of γ
are shown by the solid colored curves, and the impact parameters βd beyond which stars are
considered to be destroyed are denoted by the colored dot-dashed lines.

tidal component for sufficiently deep encounters. However, while this build-up can lead to the

production of shocks whose breakouts may be observable as short X-ray transients (see Chapter

2 and Guillochon et al., 2009), we find that the gradient of pressure within the orbital plane

primarily acts to redistribute the most highly-bound material for (t . tpeak), and not the material

that determines the behavior of the decay phase (see Figure 3 of Guillochon et al. and Figure

5 of LKP). The tangible effect of this pressure build-up on the shape of Ṁ is the spreading of

some material that would have otherwise accreted at tpeak to more highly-bound orbits, thus

reducing the rate of accretion at peak, shifting tpeak to later times, and leading to an increased
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feeding rate at early times.

This behavior is analogous with what is found for binary star disruptions, in which

the change in orbital energy ∆Eorb of the stars is independent of the impact parameter for

sufficiently deep encounters (Sari et al., 2010). In Figure 5.6, we compare ∆Eorb calculated by

Sari et al. for binary disruptions to the mass-averaged spread in the binding energy 〈E〉 of the

material that becomes bound to the black hole. As is found in binary disruption calculations, the

change in energy initially increases with increasing β, then a transition point is reached where

the binary’s gravity (or star’s gravity, in our case) no longer affects the dynamics, and finally

the change in energy approaches a constant. A single star disruption and the disruption of a

binary system are conceptually quite similar. A full disruption is analogous to an equal-mass

binary disruption with separation distance a∼ R∗, where the mass of each “star” is equal to the

mass liberated from each Lagrange point, M1 = M2 = M∗/2. A partial disruption is analogous

to an unequal mass “trinary” system, in which the three masses correspond to the surviving

self-bound core with mass M∗ −∆M, and the bound/unbound debris streams with mass ∆M/2,

all with initial separation a∼ R∗. As the results presented in Sari et al. are independent of mass,

the normalized ∆E for disruptions still map closely to those seen for binary disruptions, despite

the variance in mass of the two (or three) interacting objects.

A caveat in our comparison to binary systems is that binaries can have an arbitrary

orientation upon arrival at pericenter. This leads to an increase in the potential maximum energy

change, and the β value at which it occurs. This comes as the result of stars in a binary being

able to come arbitrarily close to one another during an encounter for favorable binary phases at

pericenter (∆Eorb,max in Figure 5.6), which permits them to interact gravitationally for longer.

119



In effect, the binary can become “denser,” decreasing the size of its effective tidal radius. For

a stellar disruption in which the star is not initially rotating, the mass interior to a given radius

cannot increase in the same way, and thus its self-gravity ceases to be important interior to its

original tidal radius. This results in the near–constant spread in energy as described above,

and is visually evident from simulation snapshots (Figures 5.1 and 5.2), in which the debris

distributions are almost identical for β & βd. We speculate that for rapidly rotating stars that

this same effect that can yield large ∆E for certain binary phases may also apply, as stellar

rotation can permit stars to penetrate more deeply before dM/dE is set (Stone et al., 2012).

Figure 5.7 shows both the power-law slope n(t) over the full Ṁ curve (left panel), and

the asymptotic power-law slopes n∞ (right panel), as produced by our disruption simulations.

The behavior of the curves is more complicated than what is implied by the freezing model,

in which n ≥ −5/3 for all t. The qualitative behavior of the Ṁ curves can be characterized by

three phases: A rise phase, in which n > 0, a drop phase, in which n < 0 (and potentially even

< -5/3), and an asymptotic phase, in which n∞ ≡ n(t→∞) assumes a constant value. The rise

phase is somewhat similar to what is predicted by the freezing model, although the evolution

of n is somewhat more rapid within the simulations. The drop phase exhibits particularly steep

downward slopes for γ = 4/3 stars, with n ∼ −4 shortly after peak, but n for γ = 5/3 stars is

closer to the predicted asymptotic value. Despite the disagreement between our simulations and

the analytical model presented in LKP, we do find we reproduce the simulation results of LKP

for γ = 5/3 stars at the same β (Figures 5.7 and 5.13).

The discrepancy between the simulation results and the prediction of the freezing

model can be understood by considering what material becomes bound to the black hole in the
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case that the star is not completely destroyed. The binding energy E of material a distance

x from the center of the star is ∝ x/max(rd,rp)2 ∝ xβ2 (assuming x� rp). The value of x

that corresponds to the material that determines the asymptotic behavior of Ṁ can be estimated

by considering the deepest point within the star during the encounter in which tidal forces are

capable of overcoming the star’s self-gravitational force, the exact functional form of which

is dependent upon the hydrodynamical response of the star during the encounter. While this

functional form can only truly be determined through hydrodynamical simulation, it is clear that

the effective x must decrease with increasing β, as the tidal forces remove an ever-increasing

fraction of the star’s mass. This implies that the scaling between E and β must be weaker

than β2, and thus tpeak should show less evolution for progressively deeper, but not completely

disruptive encounters.

The asymptotic phase exhibits a more complicated behavior that depends on β, and

shows four distinct behaviors depending on the depth of the encounter for both γ = 4/3 and

γ = 5/3 stars. For extremely grazing encounters in which a small fraction of the star’s mass is

lost, n∞ ' −5/3. In these encounters, all of the mass is removed near pericenter, resulting in

an energy spread that only depends on x, the distance to the star’s center of mass (in agreement

with the freezing model).

When a significant fraction of the star’s mass is removed in an encounter, n∞ steepens

to values as large as ' −2.2. This behavior arises from the influence of the star’s core (Figure

5.8). As the outermost layers of the star are removed prior to pericenter, the core is able to

partially counter the black hole’s tidal force, keeping material closer to the star’s core, and

thus reducing the effective x at which the material is no longer strongly affected by the core’s
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Figure 5.8: Cartoon showing the gravitational effect of a surviving core on the dynamics of
material that is removed from the star during a partially-disruptive encounter. The inset diagram
in the upper left demonstrates how the restoring force provided by a surviving core can alter the
structure of the outer layers. For encounters in which the core plays little role, the binding
energy to the black hole E scales linearly with x (black solid curve), the distance from the
star’s center of mass (Lodato et al., 2009). If a core survives the encounter, its gravity prevents
material from moving as quickly away from the star, resulting in a weaker relationship between
E and x (orange dashed curve). This consequently results in a more-steeply declining Ṁ. If
the core itself is close to destruction, its gravitational influence is minimal, and the canonical
Ṁ ∝ t−5/3 decay law is recovered.

gravity. This results in a sub-linear relationship between E and x. As E ∝ t−2/3, and E ∝ xm,
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Figure 5.9: The left panel shows a collage from two simulations of the regions that contain
the mass that contributes to Ṁpeak(t), super-imposed over the density distribution of the each
snapshot. The fill and outline color denotes the time of the snapshot after pericenter, with blue
corresponding to t = tp, and red corresponding to t = tp +2×104. Snapshots are shown from two
different disruption simulations that have similar values of ∆M, with light blue showing the
disruption of a γ = 5/3 star for β = 0.65, and orange showing the disruption of a γ = 4/3 star for
β = 1.0. Each fill region shows the material that contributes to the part of Ṁ that is within 90%
of Ṁpeak(t). The right panel shows the values of Ṁ derived from these two simulations (one
curve per snapshot), with the colors of each curve corresponding to the color of the fill regions
of each snapshot. The solid lines correspond to γ = 5/3, and the dashed lines corresponding to
γ = 4/3, with the thick light blue and orange lines being fitted to Ṁpeak(t).

where m≤ 1, the resulting asymptotic power-law is

n∞ =
2

3m
−

7
3

(5.7)

where n∞ = −5/3 is recovered for the standard linear relationship. If m < 0, this implies that

E actually decreases with x, and thus the most bound material would initially lie interior to the
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least bound. As the most bound material would have to cross beyond the least bound, we expect

that any m < 0 relationship would be quickly flattened to at least m = 0 by pressure gradients,

resulting in a limit on the asymptotic slope of n∞ ≥ −7/3.

For disruptions that are just deep enough to destroy the star (i.e. β = βd), n∞ can

be somewhat less steep than -5/3. This implies that m > 1; the relationship between E and x

is super-linear. For this borderline case only, the release of material that eventually composes

the decay tail of Ṁ is moderated by the slow shrinkage of the stellar core, which is not fully

destroyed until after the star has passed pericenter. For these encounters, r and x are somewhat

dependent, with the material being released at the smallest x being launched at large r, and thus

the quantity x/r2 can be ∝ x>1.

Finally, for deep encounters, n∞ again seems to be consistent with -5/3. Unlike the

borderline case where a core persists long after pericenter, here the core is rapidly destroyed,

and the energy is again set at a fixed r. As there is no core to resist the tidal force, the energy

spread is simply given by the spread in potential energy across the star, à la the freezing model.

5.3.3 The Influence of Stellar Structure

A seemingly counter-intuitive result in the context of the freezing model is the fact

that less-centrally concentrated stars, which have more mass at larger radii, result in transient

events that peak at later times than their more centrally concentrated brethren, even for events

that yield the same ∆M. As shown in Section 5.3.1, the distance at which total disruption

occurs is significantly deeper for centrally concentrated stars, which may explain some of the

discrepancy. Consider what happens to a star in the approach to pericenter for two extreme
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Figure 5.10: Evolution of dM/dE (left panel) and Ṁ (right panel) for the disruption of a star
with polytropic index γ = 5/3 and impact parameter β = 0.55. The measured mass distribution
in both plots is shown as a function of time relative to the time of pericenter, with the blue curves
indicating early times and the red curves showing late times. The right-hand plot is overlaid on
a series of dotted gray lines showing the fiducial Ṁ ∝ t−5/3 evolution. While the early-time Ṁ
can be determined shortly after the disruption, the rate of fallback still evolves for t & 10 yr
even after the simulation has been allowed to run for many hundreds of dynamical timescales.

cases: A case in which most of the star’s mass is concentrated at its center, and a case in which

the star has near-constant density. In the centrally-concentrated example, the star’s outer layers

will find that their dynamics are partly determined by the tidal force at early times, but also

partly determined by the core, which remains initially undisturbed (Figure 5.8). The influence

of any surviving core on the dynamics of the matter can thus affect the final binding energy E.

The left panel of Figure 5.9 shows that one of the fundamental assumptions of the

freezing model, that the binding energy E and the distance from the star’s core x are linearly

related, is not correct, and matter that contributes to a particular E is drawn from a range in x that

spans nearly the entire star. In Figure 5.9 we compare two disruptions with nearly identical ∆M

for γ = 4/3 and γ = 5/3. The left panel shows the time evolution of the material that determines

the peak of Ṁ, with the contour colors corresponding to the same times after pericenter. The

filled contours show the regions that contribute to Ṁpeak within each snapshot. The expectation
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under the freezing approximation would be that all mass that possesses a given energy E comes

from a cylindrical cross-section of the star, but as illustrated in Figure 5.9 the geometry of

the debris that contributes to Ṁpeak is clearly not cylindrical. The right panel shows the Ṁ

that correspond to these snapshots. For the earliest snapshots (light blue-filled contours), the

material in the γ = 5/3 simulation appears to have a head-start over the centrally-concentrated

case, despite the fact that the γ = 4/3 encounter is 50% deeper (β = 1.0 for γ = 5/3 versus

β = 0.65 for γ = 4/3). However, as the encounter progresses, the peak of Ṁ for γ = 4/3 moves

to progressively earlier times relative to γ = 5/3, eventually settling to a value that results in a

faster transient.

This implies that the binding energy of these layers relative to the black hole should

not be recorded assuming the star has preserved its original spherical shape and size. While less

material is positioned near the black hole when comparing the centrally-concentrated case to the

constant density case, the core of the star continues to interact with the debris, and effectively

“carries” material to larger E before E has been fixed. For constant density stars, the tidal force

and the self-gravitational force scale to the same power in x, and the core is disrupted at approx-

imately the same time as the outer layers, which is consequently why these stars are destroyed at

a distance that more closely matches the classical Roche result. In this case, the assumption that

E can be determined by considering the star’s original size and shape is more appropriate, as

little stellar material is carried closer to the black hole, as is found in the centrally-concentrated

case.
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Figure 5.11: Distribution of mass as a function of binding energy E for three different simula-
tions of a γ = 4/3 disruption for β = 0.6, 1.4, and 2.5. Shown in each panel is a sequence of
mass distributions in time, with the evolution in time progressing from top to bottom, where the
yellow regions show all material that remains bound to the black hole, and the green regions
show material bound to the black hole but not bound to the star. The cyan region shows ma-
terial that is bound to the star, but whose semi-major axis larger than the distance defined by
the surviving core’s time-dependent Hill sphere, aH(t). The green regions are separated by the
gray dotted curves into sub-regions where the resulting accretion rate Ṁ exceeds, from lowest
to highest, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, and 1 M�/yr. The red arrows show the location
within the material bound to the black hole which determines the peak accretion rate Ṁpeak.

5.3.4 Long-term evolution of Ṁ

While the peak of the accretion rate is determined within tens of stellar dynamical

timescales, the tail of Ṁ continues to evolve for hundreds of dynamical timescales. Most no-

tably, a large “cavity” in Ṁ is present for accretion times t > tpeak (Figure 5.10), which gradually

fills from left to right as additional material in the tidal debris tails satisfies the simple energy

criteria applied to determine if matter is bound to the black hole. An example of the long-term

evolution of Ṁ arising from this interaction is shown in Figure 5.10, where Ṁ is not determined

for t & 10 years until 550 dynamical timescales after the disruption. As the star recedes from the
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black hole, the evolution of Ṁ slows (as indicated by the decreasing space between the curves

in Figure 5.10), implying that progressively longer simulation times are required to determine

Ṁ much beyond tpeak.

The cavity arises from the exclusion of material within the debris stream that remains

bound to the stellar core after the encounter, with the evolution coming as a result of the con-

tinued interaction between either the stellar core (if the star survived the encounter) or a mildly

self-gravitating debris stream (if it did not) and the black hole. An examination of the pressure

of the debris tails reveals that the debris is free-streaming, even in the vicinity of the Hill sphere.

In other words, the pressure gradients present within the stream are small enough to be inca-

pable of modifying the material’s trajectory. Thus, the interaction between the stream, black

hole, and surviving core is purely gravitational.

In Figure 5.11 we show dM/dE for disruptions of a γ = 4/3 star for three values of

β. As material that is considered to be bound to the star (yellow) crosses the time-dependent

Hill sphere, it becomes bound to the black hole (green). We find that there is always some mass

in the vicinity of the time-dependent Hill sphere aH(t) (cyan) for encounters in which a core

survives, whereas full disruptions do not show this behavior, mostly because the self-bound

mass shrinks drastically as progressively less material satisfies the criteria for being self-bound.

As the star moves away from the black hole, the Hill radius grows, but by a rate that

is a factor (M∗/Mh)1/3 smaller than the rate at which the star recedes from the black hole. This

implies that any material that retains a positive velocity relative to the surviving core after the

encounter has the potential to be removed from the star, even if it is technically bound to the core

(i.e. v2 < 2GMcore/r) at an earlier epoch. Much of the observed evolution of dM/dE may be due
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Figure 5.12: Fits to Ṁpeak and tpeak, with the fits to the γ = 4/3 models being shown by the solid
colored circles, and fits to the γ = 5/3 models being shown by the open colored circles. The
color coding matches that of Figures 5.1 and 5.2, with the impact parameters βd beyond which
stars are considered to be destroyed being denoted by the colored dot-dashed lines.

to our definition for what is considered to be “bound” to the surviving core after the encounter

(Section 5.2). Our calculation presumes that the energy budget of material with respect to the

star is sufficient to determine what inevitably remains bound to the star; in reality the question

of whether a given particle remains bound or not amounts to solving the restricted elliptical

three-body problem, for which no closed-form solution exists. The Jacobi constant, which has

a fixed value in the restricted circular three-body problem and can be used to determine the

zones within which a particle of a given initial position and velocity can occupy (Murray and

Dermott, 1999), is not constant once the orbit is non-circular (Hamilton and Burns, 1992).

However, while the energy balance approach may not be capable of immediately de-

termining the mass that will eventually become bound to the black hole, the distribution only

remains uncertain for material that is accreted far beyond tpeak. In the limit that t →∞, the

distance of the star to the black hole increases as t2/3, and thus E for material leaving the Hill

sphere is GMhah/r2 ∝ t−2/3. This explains the observed slowing of the evolution of Ṁ.

The material that fills in the cavity assumes a distribution in E that is not entirely flat,
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Figure 5.13: Comparison of the families of Ṁ curves for γ = 4/3 (orange) and γ = 5/3 (light
blue). The left panel shows Ṁ derived from the simulations presented here as solid lines, as-
suming that the stars for both γ have mass M = 1M�. The open circles show the numerical
results of (Lodato et al., 2009) for β = 1 and γ = 1.4 (dark green) and γ = 5/3 (light blue). The
right panel shows the shift in Ṁ (black arrows) if the mass and radius of star that is expected to
have a structure described by γ = 5/3 is taken into account (Tout et al., 1996).

resulting in a fallback rate that scales to a power slightly steeper than the canonical t−5/3. This

energy distribution is likely set near pericenter, where the pressure component is comparable

to the tidal component. As the star recedes from the black hole, the pressure component of the

force decreases more quickly than the tidal component (Kochanek, 1994), and thus the debris

is expected to evolve purely gravitationally. However, the conditions under which material is

launched across the time-dependent Hill sphere may depend somewhat on the pressure gradient,

no matter how small, as the net gravitational force is zero (Lubow and Shu, 1975).

5.4 Discussion

The results of our extensive parameter study produce a number of unexpected trends

as compared to the predictions presented by previous work. In the previous section we attempted

to explain the observed scalings, and how these features arise as a result of the interaction
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between the black hole and a potentially surviving stellar core. In what follows, we explain

how these newly discovered features can be used to constrain the type of disrupted star and how

it was disrupted.

5.4.1 Can γ and β be determined a posteriori?

Given our predicted Ṁ, is it possible to determine either the stellar structure or the

impact parameter from the light curve produced by a tidal disruption event? The conversion

efficiency between mass accreted by the black hole and the light emitted is somewhat uncertain,

and depends on factors such as the black hole’s spin and how the accretion rate compares to

ṀEdd (Ulmer, 1999; Beloborodov, 1999; Strubbe and Quataert, 2009; Lodato and Rossi, 2010).

However, as the efficiency cannot be larger than unity, and as flares are typically observed in

the decay phase, we can only place lower limits on the amount of mass accreted by a black hole

to produce a given flare (Gezari et al., 2008). Thus, at the very least, our predicted ∆M (Figure

5.4) can be used to exclude events for β less than some critical value, given the mass of the star.

Figures 5.7 and 5.12 present four additional quantities that enable us to classify tidal

disruptions based on the properties of observed tidal disruption flares. Two of these quantities,

Ṁpeak and tpeak, are only available to us for flares in which the peak of the accretion rate is

clearly observed (Gezari et al., 2012), but both n(t) and n∞ are measurable for flares that are

observed long after peak (Komossa and Greiner, 1999; Komossa et al., 2004; Gezari et al.,

2006, 2008; Cappelluti et al., 2009; van Velzen et al., 2011; Cenko et al., 2012). If the mass of

the black hole is known with some certainty, one may be able to infer both M∗ and β by simply

measuring Ṁpeak and tpeak and comparing to our resultant Ṁ, which at first glance appear to
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form distinct sequences for γ = 4/3 and γ = 5/3 stars (Figure 5.13, left panel). However, this is

only true assuming that centrally concentrated stars have the same mass and radius as stars of

near constant density. The transition from stars that are well-modeled by a γ = 4/3 polytrope

to a γ = 5/3 polytrope is also accompanied by a decrease in radius such that all stars with mass

0.25M� <M∗ <M� have the same central density (Kippenhahn and Weigert, 1990). Adjusting

the radii and mass of our γ = 5/3 models to the mass and radius of a 0.25M� star (Tout et al.,

1996), we find that the sequence of Ṁ functions for 1.0M� and 0.25M� stars lie on top of

each other (Figure 5.13, right panel), making the determination of the disrupted mass of a star

somewhat degenerate with its structure.

This motivates us to look for other features of Ṁ that may uniquely identify either γ

or β. If we consider the power-law of the rate of decline n after peak, we find that there is a

distinguishing feature between γ = 5/3 and γ = 4/3 models at ∼ 0.5 dex after tpeak. Whereas

γ = 5/3 stars quickly converge to n' −5/3, γ = 4/3 models show a characteristic drop, with n

being as large as -4 for some encounters (Figure 5.7, left panel). This feature is most prominent

for intermediate β in which ∼ 50% of the star’s mass is removed during the encounter, and

represents the strong influence of the dense stellar core, which acts to drag material deeper

within the black hole’s potential before tidal forces are capable of removing it.

In addition to being more centrally-concentrated to begin with, an additional com-

ponent that likely contributes to this observed drop is the adiabatic response of the surviving

core. For γ = 5/3 stars, the removal of mass results in the inflation of the star, whereas γ = 4/3

exhibit the opposite behavior, shrinking dramatically in response to the loss of mass (Hjellm-

ing and Webbink, 1987). This enhances the core’s influence during the encounter in the phase
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where the core’s mass is changing, slowing the reduction in the core’s effective gravity, and

thus pulling even more matter to higher binding energies. The recently observed flare PS1-10jh

presented in Gezari et al. (2012) shows a clear drop in the accretion rate with respect to the

canonical t−5/3 decline rate expected from the freezing model. In the freezing model, it is im-

possible to produce a decline feature steeper than t−5/3 within any part of Ṁ, as we explained in

Section 5.3.2. As many tidal disruption flares may show this characteristic drop in Ṁ, a clearly-

resolved peak can be used to compare to the subsequent decay phase for a precise determination

of n(t).

For events in which the peak is not clearly observed, and for which the signal-to-noise

is too small to permit an accurate determination of n(t), the asymptotic slope n∞ of Ṁ can still

provide additional information about the star that was disrupted. As shown in the right panel

of Figure 5.7, n∞ can be used to distinguish between partial and full disruptions. The fact that

n∞ assumes values that are significantly steeper than -5/3 may indicate that additional tidal dis-

ruption flares have been found observationally, but subsequently discarded and/or ignored due

to the mismatch between the measured n and −5/3 (van Velzen et al., 2011). This implies that

some supernovae that have been observed at the centers of galaxies may in fact be misidentified

partial tidal disruptions.

5.4.2 Future work

As found in previous work (see Chapter 4, also see Faber et al., 2005; Guillochon

et al., 2011), there is a change in surviving star’s orbital energy after the encounter, with the

change in energy being comparable to the star’s initial self-binding energy. This change in en-

133



ergy, combined with the star’s initial orbital energy, leads to a shift in the entire dM/dE distri-

bution, which can affect the fallback of material for E ∼∆Eorb, or for t & MhR3/2
∗ G−1/2M−3/2

∗ ∼

100 years, given that ∆Eorb ∼ GM∗/R∗. As the star’s initial orbital energy may not be zero and

can be comparable to ∆E itself, and thus the final binding energy of the star depends on its

initial orbital energy, we have presented our dM/dE and Ṁ curves with this change in energy

removed. As a result, our plots show the fallback rate that would be expected if the final star

were to remain on a parabolic trajectory, as our initial conditions assume. While these kicks

that are typically of the order of star’s own escape velocity may be important in determining the

further fate of the star and whether it will suffer additional disruptions, they are not expected to

affect the first century of a flare’s evolution, of which only the first few years are accessible to

currently available transient surveys.

Even if Ṁ is directly related to the properties of the star being disrupted, the luminos-

ity of the accretion disk L may not directly follow Ṁ. The primary factors that affect the link

between Ṁ and the bolometric L are the viscous evolution of the disk and the size of the disk

(Ramirez-Ruiz and Rosswog, 2009), although other processes may strongly affect the amount

of light observed in a single band, especially in the optical/UV where dust extinction can play

a vital role. Disk viscosity can only affect L for t . τvisc, in which its primary affect is to de-

lay emission at early times. However, once t > τvisc, L is expected to track Ṁ closely. As the
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material is delivered to the disk at r ' rp, the ratio of τvisc to tpeak is

τvisc

tpeak
= 3.2×10−2β−3

(
Bγ (β)

0.1

)−1

×(
Mh

106M�

)−1/2( α

0.1

)−1
(

M∗
M�

)1/2

, (5.8)

where Bγ is a fitted parameter derived from our simulations, (Bγ ∼ 0.1 for most β, see Appendix

B) and α is the parameterized α-disk scaling coefficient, where we have taken the scale-height

ratio h/r = 1. If τvisc/tpeak & 1, the accretion is spread over longer timescales, resulting in a

power-law decay index n = −1.1 (Cannizzo et al., 1990). This may affect the light curve shape in

the earliest phases of the fallback (prior to peak) where t� τvisc, and thus the early evolution of

L(t) may not follow the functional forms of Ṁ presented here for t� tpeak. But as observations

of tidal disruption flares in the decay phase seem to be consistent with the canonical n = −5/3

decay law, it is clear that Ṁ and L(t) must be closely coupled on year-long timescales.

An ingredient that the set of simulations presented in this chapter do not include is

the inclusion of general relativistic effects, which become important for very deeply penetrating

encounters. Qualitatively, for both spinning and non-spinning black holes, general relativity

is expected to result in more mass loss and a spreading of mass in dM/dE as compared to

Newtonian encounters, as its primary effect is to bend the star’s path such that it spends a larger

fraction of time near the black hole where tidal forces are important (Luminet and Marck, 1985;

Kobayashi et al., 2004). The only numerical provenance for how the metric may affect the

feeding rate comes from low-resolution simulations performed by Laguna et al. (1993), which

find a slight increase in Ṁpeak for increasing β, but much less than the predicted β3 scaling. If
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the black hole has non-zero spin, the resulting dM/dE depends on the orientation of the star’s

angular momentum vector as compared to the black hole’s spin vector (Haas et al., 2012).

A spinning black hole permits deeper encounters that don’t result in the star being

immediately swallowed (Kesden, 2012b), provided that the two angular momentum vectors

are aligned, and also should affect the final binding energy distribution, with co- and counter-

rotational encounters resulting in smaller and larger ∆M, respectively (Diener et al., 1997;

Ivanov and Chernyakova, 2006; Kesden, 2012a). However, as the fraction of disruptions in

which non-Newtonian metrics can affect the dynamics is ∼ rs/rt, which is ∼ 5% for a 106M�

black hole and ∼ 20% for a 107M� black hole, the majority of tidal disruption events are well-

represented by a Newtonian approximation to the black hole’s gravity.

Lastly, the absence of hydrogen in spectra taken of the tidal disruption event PS1-10jh

(Gezari et al., 2012) strongly suggests that the disruption of stars that are not on the MS may

contribute significantly to the overall rate of tidal disruption. As we show, the structure of the

star that is disrupted is clearly imprinted upon Ṁ, providing valuable additional information that

can be used to distinguish between candidate disruption victims. We explore the disruption of

post-MS stars in a companion paper using a method similar to what is presented here (MacLeod

et al., 2012).

The discovery of flaring black hole candidates in nearby galaxies will continue to

elucidate the demography of the AGN population (De Colle et al., 2012). Whereas AGN are

supplied by a steady stream of fuel for hundreds or even thousands of years, tidal disruptions

offer a unique opportunity to study a single black hole under a set of conditions that change over

a range of timescales. There are, of course, rapidly varying stellar-mass black hole candidates in
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X-ray binaries within our own Galaxy. But for SMBHs, tidal disruption events offer the firmest

hope of studying the evolution of their accretion disks for a wide range of mass accretion rates

and feeding timescales. The simulations and resultant Ṁ curves presented here are crucial for

determining the properties of the black hole itself, as an incomplete model of a stellar disruption

can result in much uncertainty in how the black hole converts matter into light. For a disruption

with a well-resolved light curve, our models permit a significant reduction of the number of

potential combinations of star and black hole properties, enabling a better characterization of

SMBHs and the dense stellar clusters that surround them.
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Chapter 6

PS1-10jh: The Case for the Disruption of a

Solar-Type Star

6.1 Introduction

The tidal disruption of a star by a supermassive black hole (SMBH) splits the star into

either two or three ballistically distinct masses. In the event of a full disruption, the star is split

into two pieces of nearly-equal mass. One half of the star becomes bound to the black hole

after the encounter, and continues along elliptical trajectories with pericenter distances equal

to the star’s original pericenter distance. The other half of the star gains orbital energy in the

encounter, and is placed on hyperbolic trajectories. For a partial disruption, a third mass in

the form of a surviving stellar core emerges from the encounter, with the absolute value of its

orbital energy comparable to its own binding energy (see Chapter 4, also see Faber et al., 2005;

Guillochon et al., 2011; MacLeod et al., 2012; Liu et al., 2013).
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Determining the fates of these pieces of the star are critical in determining the appear-

ance of the flare that results from the immense gravitational energy that will be released by the

accretion disk that eventually forms. Previously, it has been assumed that the unbound mate-

rial, which was thought to be a wide “fan,” was the primary contributor to the broad emission

lines that are produced as the result of a tidal disruption (Strubbe and Quataert, 2009; Kasen

and Ramirez-Ruiz, 2010; Clausen and Eracleous, 2011). For the tidal disruption event (TDE)

PS1-10jh, it was assumed that hydrogen, which is ejected to large distances within the wide

debris fan generated by the disruption, can recombine more quickly than the rate at which it is

ionized by the central source (Gezari et al., 2012, hereafter G12). This would ensure that the

vast majority of the hydrogen is neutral, and thus any ionizing radiation incident upon the fan

would produce an emission feature. The absence of any hydrogen emission features was used

to derive an upper limit on the amount of hydrogen present, implying that helium is five times

more common than hydrogen by mass with the disrupted star.

In this chapter, we present three-dimensional hydrodynamical simulations that show

that the assumption that this debris fan intercepts a significant fraction of the light is incorrect.

As noted by Kochanek (1994), the width of the stream of unbound material is still controlled

by the stream’s self-gravity in the transverse direction, restricting its width to only be a frac-

tion of the star’s original pericenter distance. Through numerical simulations of fully-disruptive

encounters with mass ratios q ≡Mh/M� = 103 and 106, we verify that the transverse contain-

ment of the stream’s width does indeed occur (Figure 6.1). As a result, the stream only grows

in the radial direction, and thus the total volume and surface area increase only slightly more

steeply than vp. The surface area of this structure is not significant enough to produce hydro-
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gen emission lines, even for the disruption of a main-sequence (MS) star composed largely of

hydrogen.

But while we find that the area of the unbound debris has been vastly overestimated,

we also find that the area occupied by the accretion disk formed from the bound material has

been vastly underestimated. Our numerical simulations confirm the prediction that material

that returns to pericenter is ballistically launched to very large distances from the black hole,

hundreds of times rp. Additionally, we find that significant dissipation occurs when this material

returns to pericenter. As the debris stream quickly virializes at pericenter and the density of

the material is significantly reduced as compared to the star’s original density, self-gravity is

suppressed even in the transverse direction. As a result, a fan structure is formed once material

returns pericenter. But as this material belongs to the fraction of the original star that is strongly

bound to the black hole, the radial extent of this material grows at a rate that is significantly

smaller than the unbound fraction.

As the region in which Hα is produced in steady AGN is on the order of a few light

days from the black hole (Peterson, 2006), we show that it is very unlikely that the debris

ejected by the disruption has traveled the distance necessary to produce an Hα line for PS1-

10jh. Through comparison with the processes responsible for producing the broad line regions

(BLRs) of steadily-accreting AGN, we predict that the helium lines that are observed in PS1-

10jh are produced much closer to the black hole (Bentz et al., 2010), and the debris has sufficient

time to reach this distance by the time the first spectrum was observed. Motivated by the results

of our hydrodynamical simulations, we model the accretion disk structure and use a Markov-

Chain Monte Carlo (MCMC) procedure to determine the combinations of parameters with the
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highest-likelihood, and we find that the highest-likelihood models involve the disruption of a

low-mass main-sequence star with mass ∼0.5M� by a Mh = 107M� black hole.

In Section 6.2 we describe our method for running hydrodynamical simulations to

characterize the behavior of the debris stream after a disruption, and describe the maximum

likelihood analysis we employed to estimate the parameters of PS1-10jh. In Section 6.3 we

present a physical interpretation of the results of our hydrodynamical simulations. Bearing

these results in mind, we develop our generalized model for the time-dependent, broadband

light that would accompany the disruption of a star in Section 6.5. We then apply this model

specifically to PS1-10jh in Section 6.6. Finally, we review additional evidence as to why the

disruption of a helium-rich star is unlikely to have produced PS1-10jh in the first place, and

look towards the future when TDEs will be regularly observed.

6.2 Method

6.2.1 Hydrodynamical Simulations

The black hole at the center of our own galaxy is estimated to be ' 4×106M� (Ghez

et al., 2008), and is one of the smallest known massive black holes (Gültekin et al., 2009). As

the mass of an average main-sequence star is ∼ 0.1M� (Kroupa et al., 1993), the majority of

stellar tidal disruptions will have q & 106. For such disruptions, the timescale of return of the

most bound debris is on the order of days to weeks (Rees, 1988), with the peak fallback rate

occurring approximately one month after the time of the disruption (see Chapter 5, also see

Evans and Kochanek, 1989; Lodato et al., 2009; Guillochon and Ramirez-Ruiz, 2013).
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Figure 6.1: Snapshots from a tidal disruption simulation with M∗ = M�, Mh = 106M�, and
β = 1.8, as compared to a simple model of a tidally-confined debris stream with self-gravity,
where we assume that the width of the stream scales as r1/4 (Kochanek, 1994). The left panel
shows a superposition of the debris stream at different times, with the longest stream depicting
the time when the most bound material returns to pericenter at t = 42 days. The color along the
stream indicates whether it is bound or unbound from the SMBH, with magenta corresponding
to bound and cyan corresponding to unbound. The green line shows the original path of the
star, and the green circles show the locations of the surviving core corresponding to the eight
snapshots shown on the right-hand side of the figure. In each of the right-hand panels, the
simple model of the debris stream is shown atop the results from the simulation.
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For hydrodynamical simulations of TDEs, the main limiting factor is the sound-

crossing time of the star, which for a solar mass star is approximately one hour. Given an

initial stellar model that occupies 1003 grid cells, each hydrodynamical time-step translates to

only one minute of physical time. Thus, the simulation of the tidal disruption of a solar mass

star by a 106M� black hole that includes the time at which the fallback rate is at a maximum

requires ∼ 105 time-steps. Additionally, the debris stream resulting from the disruption must

be fully resolved in both length and in width. As the stream is self-gravitating (as described

in Section 6.3.1), it mains a very narrow profile, with the aspect ratio of the stream when the

first material returns to pericenter being q1/3(tpeak/tp)1/2 ∼ 103, where tpeak is the time where Ṁ

reaches a maximum, and tp is the pericenter crossing time. If the number of grid cells across

the stream is forced to be at least 20, which is necessary to satisfy the Truelove et al. (1997)

criteria, then 106 grid cells would be required to be evolved for 105 time-steps.

This means that a complete simulation of the full problem within a single simulation

is very computationally expensive. Instead, we run two separate simulations that are each well-

equipped to describe the behavior of the debris stream at two different epochs. To determine the

fate of the debris liberated from a star during a tidal disruption, we used two similar simulation

setups, differing only in the mass ratio q. The first simulation sets q = 106 and solely focuses

on the evolution of the debris stream as it expands away from pericenter after the star’s initial

encounter with the black hole. Because of the computational expense, the return of the debris

to pericenter is not followed in this simulation. The second simulation sets q = 103, and follows

the return of the debris to pericenter well beyond the peak in the accretion rate Ṁpeak. In these

encounters, the peak accretion rate is realized only one day after pericenter, and we follow
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the evolution of the returning debris for a total of 5× 105 seconds (about one week). Our

hydrodynamical simulations were performed in a module written for the FLASH adaptive mesh

refinement code, the details of which can be found in Chapters 2, 4, and 5 (also see Guillochon

et al., 2009, 2011; Guillochon and Ramirez-Ruiz, 2013).

The initial conditions of the simulation are similar to those presented in Chapter 4,

with the polytropic Γ that describes the star’s structure being set to 5/3, and the impact parameter

β being set to 2. The star is placed on a parabolic trajectory at an initial position that is several

times further than rt, and is initially resolved by 50 grid cells across its diameter. As realistic

equations of state are only sensical at the full-scale of the problem, the hydrodynamics of the

gas are treated using a simple adiabatic polytrope P ∝ ργ , where γ is the adiabatic index. The

code utilizes the adaptive-mesh functionality of the FLASH software in different ways for the

two simulations. In the q = 103 simulation, regions which are less than 10−1 times as dense

as the current peak density are derefined, but maximum refinement is maintained within 4rp at

all times. For the q = 106 simulation, each refinement level is assigned to a single decade in ρ,

using the star’s original central density ρc as a baseline, with the exception of the first refinement

threshold which is set to ρ = 5×10−3ρc.

As both the timescales and the length scales of a q = 103 disruption are different from

those of the more typical q = 106 disruption, care must be taken when interpreting the results

from these simulations and attempting to scale them up to what would be realized for larger

mass ratios. As we will describe in Section 6.3.2, the dissipation processes that are observed in

the scaled-down simulation are analogous to other dissipation mechanism that operate for larger

values of q, given the proper scaling.
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6.2.2 Fitting TDE Observations

For fitting our models for tidal disruptions to observed events, we have developed

the code TDEFit, which performs a maximum likelihood analysis using an affine-invariant

MCMC (Goodman and Weare, 2010; Foreman-Mackey et al., 2013). The code is written in

Fortran and utilizes the parallel variant of the algorithm presented in Foreman-Mackey et al..

We have designed the software to be flexible in the model parameters it accepts as inputs, any

free parameter (either discrete or continuous) can be included in the parameter space exploration

by simply listing it and its range of acceptable values within a parameter file. In the same way,

both trivial and non-trivial priors can be specified at runtime for single or combinations of input

parameters.

As the solutions can often be multi-modal, with small regions of acceptable parameter

space separated by large voids of poor parameter space, it can sometimes be difficult to find the

deepest global minimum using the vanilla affine-invariant algorithm. We have improved upon

this algorithm by performing simulated annealing (SA, Press et al., 1986) on a fraction F of the

walkers every N timesteps during a “bake-in” period, where both F and N are adjustable. Each

walker that is selected to anneal is used to seed an amoeba whose points are randomly drawn a

small distance away from the original walker, these “frackers” then run through a full SA cycle

in which the temperature is gradually reduced until they are unable to improve upon their local

solution.

This enables the depths of local minima to be found more quickly, and in tests we have

found that this improves the time of convergence to the global solution by orders of magnitude.

145



Additionally, we anneal the ensemble of walkers themselves during the bake-in period, using

the temperature schedule proposed in Hou et al. (2012), and periodically compare the scores

of walkers to the best so far, removing those that fall below a pre-determined threshold that

depends on the current annealing temperature. After the bake-in period, the algorithm reverts

to the vanilla affine-invariant MCMC and run for several autocorrelation times, ensuring that

detailed balance is maintained.

As inputs to this method, we use the full functional forms of the fallback rate (param-

eterized as Ṁsim, see Figure 5.5) for γ = 4/3 and γ = 5/3 polytropes. We assume that as the

mass ratio q� 1, the dependence of Ṁ on Mh, M∗, and R∗ is self-similar,

Ṁ = M−1/2
h,6 M2

∗,�R−3/2
∗,� Ṁint(β), (6.1)

where 106Mh,6 = Mh, M�M∗,� = M∗, R�R∗,� = R∗ and Ṁint is an interpolation of Ṁsim, defined

below. We can eliminate R∗ in this expression by using known mass-radius relationships (e.g.

Tout et al. 1996 for MS stars or Nauenberg 1972 for white dwarfs). For MS stars, we presume

that all objects with M∗ ≤ 0.1M� have the radius of a 0.1M∗ star. With these relations, Ṁ is

solely a function of Mh, M∗, and β.

As the simulations of Chapter 5 are only run for specific values of β, we determine

intermediate β solutions by rescaling neighboring simulations in β-space to the same scaled

time variable x ≡ (t − tmin)/(tmax − tmin), where tmin and tmax are the minimum and maximum
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times for each Ṁsim curve, and then interpolating linearly between the two solutions,

bβc = min{B ∈ βsim | B≥ β} (6.2)

dβe = max{B ∈ βsim | B≤ β} (6.3)

Ṁint(β,x) = Ṁsim(bβc,x)

+
β − bβc
dβe− bβc

[
Ṁsim(dβe,x) − Ṁsim(bβc,x)

]
, (6.4)

where βsim is the set of all β for which a simulation is available, and where bβc and dβe return

the values of βsim that bracket β. We find this preserves the overall shape of the Ṁ curves

well for values of β for which a simulation is not available, as long as the sampling in βsim is

sufficiently dense to capture the overall trends.

The objective function used within TDEFit when comparing our models to the data

is the maximum likelihood function,

lnLLC =
n∑

i=1

(Vobs,i −Vmod,i
)2(

σ2
obs,i +σ2

v

) + ln
(
σobs,i +σ2

v
) , (6.5)

where n is the number of datapoints, Vobs,i and Vmod,i are respectively the AB magnitude at the

ith datapoint for the observation and the model, σobs,i is the measurement error associated with

the ith datapoint, and σv is the intrinsic variability of the source, assumed to be a constant that

scales with black hole mass (see Section 6.5.1).
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6.3 Hydrodynamics of Post-Disruption Debris

6.3.1 Debris Stream with Self-Gravity

Determining the fate of the various pieces of the star after a disruptive encounter is

critical in determining the appearance of the flare that results from the immense gravitational

energy that will be released by the accretion disk that eventually forms. Previously, it has

been assumed that self-gravity of the disrupted star is unimportant, and therefore the spread

in energy imparted to the debris at pericenter leads to a spread in angle as well as semi-major

axis (Strubbe and Quataert, 2009; Kasen and Ramirez-Ruiz, 2010). Under this assumption, the

unbound debris is a homologously expanding structure, which occupies a constant solid angle

and whose volume increases proportional to v3
p.

However, Kochanek (1994) showed that the stream can be in fact gravitationally con-

fined in the transverse direction by self-gravity and forms a very thin structure (Figure 6.1), with

a width ∆ and height H that scale as r̃1/4 for γ = 5/3, where r̃ ≡ r/rt. For general γ,

H2Λ
2−γ
γ−1 ∝ constant (6.6)

where Λ is the mass per unit length (Ostriker, 1964), which we define to be Λ = M∗/2R∗ at

t = td. Assuming that Λ∝ r−1 (Kochanek, 1994),

H = R∗r̃
2−γ
2γ−2 , (6.7)

where we recover H ∝ r̃1/4 for γ = 5/3.
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In the right eight panels of Figure 6.1, we superimpose the results of our hydrody-

namical simulations of the disruption of a star by a black hole with mass ratio q = 106 with this

simple prescription. We find excellent agreement between the prediction of Kochanek and our

results over the time period in which we ran the simulation. The thinness of the stream is also

noted in other hydrodynamical simulations in which the mass ratio is large (Rosswog et al.,

2009b; Hayasaki et al., 2012).

The surface area of this structure for γ = 5/3 is

As =
2πR2

∗q
1/3

β

∫ ru/rp

1
r̃1/4dr̃

' 1.4×10−2M1/3
6 β7/8

(
t
tff

)5/4

AU2, (6.8)

where ru' rtβ
1/2(t/tff) is the distance to which the most unbound material has traveled (Strubbe

and Quataert, 2009), and tff ≡ π
√

R3
∗/GM∗ is the star’s free-fall time. At the peak time of

∼100 days, PS1-10jh emits ∼1045 erg s−1 of radiation with an effective temperature of a few

104 K, implying a photosphere size of ∼1015 cm with area ∼105 AU2. By contrast, the area

occupied by the stream is only comparable to this value when t ≈ 105tff ≈ 10 yr for q = 106 and

β = 1. Kasen and Ramirez-Ruiz (2010) calculated that this component would contribute at most

1040 ergs s−1 of luminosity for the disruption of a solar mass star. However, we believe that

this represents an upper limit as the self-gravity of the stream was not included in that work,

resulting in an artificially fast rate of recombination.

Because the evolution of the stream is adiabatic, but not incompressible, the stream

is resistant to gravitational collapse in both the radial direction perpendicular to the stream, and
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in the axial direction along the cylinder. Collapse can only occur in the radial direction when

γ < 1, as it becomes energetically favorable to collapse radially (McKee and Ostriker, 2007),

and can only occur axially for γ > 2, where the fastest growing mode has a non-zero wavelength

and leads to fragmentation (Figure 4 of Ostriker, 1964; Lee and Ramirez-Ruiz, 2007).

In a thin stream, the tidal force applied by the black hole results in the density ρ

scaling as r−3 (Kochanek, 1994). As the distance r ∝ t2/3 when t→∞ for parabolic orbits, this

implies that ρ ∝ t−2. For cylinders, the time of free-fall tff is proportional to ρ−1/2, the same

as it is for spherical collapse (Chandrasekhar, 1961), and thus tff ∝ t. Therefore, a segment of

the stream within which tff ever becomes greater than t will not experience recollapse at any

future time, as the two timescales differ from one another only by a multiplicative constant. It

is also evident that self-gravitating cylinders can be bound whereas a self-bound sphere will

not, as the Jeans length progressively decreases in size for structures that are initially confined

in fewer directions (Larson, 1985). This implies that the cylindrical configuration may not

remain self-bound if sufficient energy is injected into the star via a particularly deep encounter

in which the core itself is violently shocked, which only occurs for β & 3 (see Chapter 2, also

see Kobayashi et al., 2004; Guillochon et al., 2009; Rosswog et al., 2009b), approximately

10% of disruption events. Additional energy can also be injected by nuclear burning (Carter

and Luminet, 1982; Rosswog et al., 2008a), again only for events in which β is significantly

larger than 1. For most values of β, the amount of energy injected into the star at pericenter

is insufficient counteract gravitational confinement in the transverse direction at t = 0, and thus

from the timescale argument given above the unbound stream would forever be confined.

Given this result, and given the computation burden of resolving a structure with such
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a large aspect ratio for the number of dynamical timescales necessary for the material to begin

accreting onto the black hole, we presume that the gravitational confinement continues to hold

at larger distances than we are capable of resolving, and show how the profile of the debris

stream would appear if the simulation were followed to the point of the material’s return to

pericenter in the left panel of Figure 6.1.

By contrast, the bound material travels a much shorter distance from the black hole

before turning around. For the material that remains bound to the hole, it has been assumed

that the material circularizes quickly after returning to pericenter, resulting in an accretion disk

with an outer radius equal to 2rp, where rp is the pericenter distance (Cannizzo et al., 1990;

Ulmer, 1999; Gezari et al., 2009; Lodato and Rossi, 2010; Strubbe and Quataert, 2011). This

is actually a vast underestimate of the distance to which the debris travels, which can be found

via Kepler’s third law for the orbital period of a body and dividing by two to get the half-period,

and then solving for the semi-major axis a,

ro = 2
(

GMht2

π2

)1/3

, (6.9)

where we have made the assumption that ro ' 2a, appropriate for the highly elliptical orbits of

the bound material (The most-bound material has eccentricity e = 1−2q−1/3 = 0.98 for q = 106).

As this material is initially confined by its own gravity, the return of the stream to pericenter

mimics a huge β encounter, which as we explain in the following section can yield a impressive

compression ratio.
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Figure 6.2: Column density contours of the debris resulting from the disruption of a M∗ = M�
star by a Mh = 103M� black hole. The column density shown in all panels is scaled to the
value that would be expected for a disruption by a Mh = 107M� black hole, which is 10−3.5

smaller than what is expected for Mh = 103M�. The six mini-panels in the upper right show
the evolution of the column density in the xy-plane with time, with the upper left mini-panel
showing the column density at the time of return of the most bound material tm, and lower
left mini-panel showing the column density at the time of peak accretion tpeak. The three large
panels show the column density as viewed from the x–y, x–z, and y–z planes at t = tpeak.
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6.3.2 Dissipative Effects within the Nozzle

There are a combination of potentially active mechanisms that can provide the re-

quired dissipation for any given event, with each mechanism dominating for particular combi-

nations of Mh and β. To quantify the effect of each of these mechanisms, we define the ratio

V ≡ (∂E/∂t)(T/E), where T is the orbital period. V represents the fraction of gravitational

binding energy that is extracted per orbit, with V = 1 indicating a mechanism that fully converts

kinetic to internal energy within a single orbit. To have Ṁ and L trace one another over the

duration of a flare, V must have a value & tm/tpeak, where tpeak is the time at which the accretion

rate peaks and tm is the time at which the most bound debris returns to pericenter. For partially

disruptive encounters, the ratio between these two times is ∼ 3, but then increases as β3 for

deep encounters in which tm varies more quickly than tpeak (see Chapter 5 and Guillochon and

Ramirez-Ruiz, 2013).

In the following sections we provide a brief description of the dissipation mechanisms

that are expected to operate in a TDE. Only the first mechanism (hydrodynamical dissipation)

is present within our calculations, as we do not include magnetic fields or the effects of a curved

space time. Regardless of the origin of the dissipation, we expect that the dissipation observed

in our simulations is likely to be quite analogous to the other dissipative process that operate.

6.3.2.1 Hydrodynamical dissipation

As described in Section 6.3.1, self-gravity within the debris stream sets its width and

height to be equal to R∗r̃1/4, and thus when the stream crosses the original tidal radius, its

height is approximately equal to the size of the original star. If the return of the material to
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pericenter behaved in the same way as the original encounter, the maximum collapse velocity

v⊥ would be equal to the sound speed at rt multiplied by β, yielding a dissipation per orbit

V = q−2/3/β, equal to 2% for q = 103 and β = 2 (Carter and Luminet, 1983; Stone et al., 2012).

In our hydrodynamical simulations for q = 103, we find that ≈ 10% of the total kinetic energy

of the debris is dissipated upon its return to pericenter through strong compression at the nozzle

(Figure 6.2). This is a factor of a few larger than the expected dissipation.

However, as the star has been stretched tremendously, the sound speed within the

stream has dropped by a significant factor, meaning that the distance from the black hole at

which the stream’s sound-crossing time is comparable to the orbital time (i.e., where the tidal

and pressure forces are approximately in balance) is not the star’s original tidal radius, but is

instead somewhat further away.

For two points that are separated by a distance dr within the original star, their new

distance dr′ upon returning to pericenter is related to the difference in binding energy between

them, which remains constant after the encounter and is equal to

dE
dr
'

E(rp)
rp

=
GM∗
R2
∗

q1/3 (6.10)

As angular momentum is approximately conserved, the two points will cross pericenter at the

same location they originally crossed pericenter, but at two different times t separated by a time

dt owing to their different orbital energies. Assuming that the star originally had approached on

a parabolic orbit, and that all the bound debris are on highly elliptical orbits, the distance from
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the black hole is

r′ =
(

9
2

GMht2
)1/3

, (6.11)

and thus

dr′

dt
=
(

4GMh

3t

)1/3

. (6.12)

If we set t = 0 to be the time when the first point re-crosses pericenter, the difference in time is

simply the difference in orbital period, and thus we can use Kepler’s third law to derive dE/dt.

Using Equations 6.10 and 6.12, we can use the chain rule to determine dr′/dr,

dr′

dr
=

dE
dr

dt
dE

dr′

dt
=
(

3π
2

)2/3( t
tm

)4/3

q2/3. (6.13)

For q = 103, this implies that the material has been stretched by a factor & 102 at all times

beyond the time the most-bound material begins accreting, and for q = 106 this factor is & 104.

The change in volume is then given by the change in cross-section of the stream multiplied by

the change in length given by Equation 6.13,

dV ′

dV
=

dr′

dr
r̃

2−γ
γ−1 (6.14)

where we have used Equation 6.7 to estimate the width and height of the stream.

The density of the stream ρ as it returns to pericenter can be approximated by assum-

ing that dM/dr = Λ, although in reality this distribution can be determined more exactly from

the numerical determination of Ṁ by a change of variables from E to r. Under this assumption,
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the change in density is simply related to the change in volume alone. As the tidal radius is

proportional to ρ1/3, the ratio of the effective tidal radius of the stream rt,s to rt is then

rt,s

rt
=
(

dV ′

dV

)1/3

=
(

3π
2

q
) 2

3
γ−1

4γ−5
(

t
tm

) 4
3

γ−1
4γ−5

≡ βs

β
(6.15)

where we have substituted rt,s/rt for r̃, and where we have presumed that the time until the

stream reaches pericenter from rt,s is small compared to the time since disruption.

Under the assumption that the stream expands adiabatically and its pressure is gov-

erned by ideal gas pressure, this results in a reduction in the sound speed cs =
√

dP/dρ ∝

V (1−γ)/2, where γ is the adiabatic index of the fluid. At r = rt,s, the ratio of the sound speed

within the stream cs,s to the star’s original sound speed cs,∗ is

cs,s

cs,∗
=
(

dV ′

dV

) 1−γ
2

=
(

3π
2

q
) (γ−1)2

5−4γ
(

t
tm

) 2(γ−1)2

5−4γ

. (6.16)

Analogous to the original star, the maximum collapse velocity of the stream v⊥,s

is equal to the sound speed at rt,s multiplied by the stream’s impact parameter βs ≡ βrt,s/rt,

v⊥ = βscs,s. As the majority of the dissipation comes through the conversion of the kinetic

energy of the vertical collapse via shocks, the fractional change in the specific internal energy
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is

VH =
β2

s c2
s,s

v2
p

=
(

3π
2

q
)−

2
3

(γ−1)(3γ−5)
4γ−5

(
t

tm

)−
4
3

(γ−1)(3γ−5)
4γ−5

βq−2/3. (6.17)

As rt ∝ ρ1/3, and cs ∝ ρ−1/3 for γ = 5/3, Equations 6.15 and 6.16 are inverses of one

another in the adiabatic case,

rt,s

rt
=

cs,∗
cs,s

= 60M4/15
6

(
t

tm

)8/15

(6.18)

and thus 6.17 simplifies to VH = βq−2/3, identical to the amount of dissipation experienced by

the original star. One key difference exists between the original encounter and the stream’s

return to pericenter: While the original encounter may only result in the partial shock-heating

of the star, even for relatively deep β (Guillochon et al., 2009), the fact that the collapse of

the stream is highly supersonic (βs ∼ 60β) guarantees that shock-heating will occur upon the

material’s return to pericenter.

For our q = 103 simulation, the amount of dissipation expected per orbit predicted

by Equation 6.17 is 4× 10−2, and for our q = 106 simulation the expected dissipation would

only be 4× 10−4. Thus, the conversion of kinetic energy to internal energy via shocks at the

nozzle point is inefficient for all but the lowest mass ratios and/or the largest impact parameters,

and would be incapable of circularizing material on a timescale that is shorter than the peak

timescale of PS1-10jh (Figure 6.3). This suggests that a viscous mechanism that involves an
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unresolved hydrodynamical instability, or a mechanism that is beyond pure hydrodynamics, is

responsible for the circularization of the material for this event.

An additional complication that is not addressed here is recombination. As the stream

expands, its internal temperature drops below the point at which hydrogen and helium begin to

recombine, flooring its temperature to∼104 K (Roos, 1992; Kochanek, 1994). This implies that

the ratio between the initial and final sound speeds is somewhat smaller than when assuming

adiabaticity holds to arbitrarily-low stream densities, and depends on the initial temperature

of the fluid, which is ∼ 104 K in the outer layers of the Sun, but ∼107 K in its core. This also

causes the stream to expand somewhat due to the release of latent heat. However, as the material

returns to pericenter, the compression of the material will reionize it. Given these complications,

it is unclear if this process would lead to more or less dissipation at the nozzle.

6.3.2.2 Dissipation through General Relativistic Precession

For orbits in which the pericenter is comparable to the Schwarzschild radius rg, the

orbital trajectory begins to deviate from elliptical due to precession induced by the curved space-

time. The precession time in the inner part of the disk is (Valsecchi et al., 2012):

γ̇GR =
(

2π
T

)5/3 3G2/3

c2

M2/3
h

1 − e2 , (6.19)

where T and e are respectively the period and eccentricity of the stream. As the debris re-

sulting from a tidal disruption has a range of pericenter distances (rp±R∗), there is a gradient

in precession times of the returning debris. This precession causes the orbits to cross one an-
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Figure 6.3: Fraction of binding energy dissipated at t = tpeak for three mechanisms that may con-
tribute to the circularization of material after a tidal disruption, with light green corresponding
to hydrodynamical shocks at the nozzle point, light blue corresponding to dissipation through
GR precession (presuming γ = 5/3), and white corresponding to the MRI mechanism. For each
mechanism, three contours of V are shown, with solid corresponding to 100%, dashed corre-
sponding to 10%, and dotted corresponding to 1%. If all three mechanisms operate, the shaded
blue regions represent zones in which V adopts the values specified by the unions of the regions
enclosed by the three sets of contours, with the lightest/darkest corresponding to the least/most
dissipation. In order for L and Ṁ to trace one another closely, V ∼ 100%. For reference, our
two hydrodynamical simulations are shown by the cyan triangle and the red hexagon, and the
highest-likelihood fit returned by our maximum likelihood analysis (Section 6.6.3) is shown by
the magenta square.

other, dissipating energy (Eracleous et al., 1995). When compared to the standard α viscosity
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prescription, the timescale of this precession is comparable to the viscous time,

tprec = 10−1.7M6T −1/2
5 (1 + e)

(
rp

rg

)2

yr, (6.20)

where T5 ≡ 105T is the local disk temperature. In a tidal disruption, the most-bound material is

also the material with the shortest precession time, and it is this timescale that sets the overall

rate of dissipation. By setting T and e in Equation 6.19 to tm≡
√

q/2β−3tff and em≡ 1−2βq−1/3,

the period and eccentricity of the most-bound material, and by assuming that precession through

an angle 2π would lead to complete dissipation, the dissipation due to relativistic precession for

the material that corresponds to the peak in the accretion rate is

VGR,peak =
tpeak

tm

(
2π
tm

)2/3 3G2/3

c2

M2/3
h

1 − e2
m
. (6.21)

In general, the period of the most-bound material tends to smaller values for larger q

and β, resulting in more dissipation, except in the case that rp and R∗ are comparable (Figure

6.3, cyan curves). If none of the other dissipation mechanisms are effective, this means that

disruptions by massive black holes, in which rp and rg are closer to one another in value, would

be the only cases in which Ṁ and L follow one another closely.

As we will show in Section 6.6, the highest-likelihood models of PS1-10jh seem to

be consistent with a relativistic encounter with the central black hole. If no other dissipative

mechanisms are able to operate effectively in tidal disruption accretion disks, the possibility

exists that only those events in which rp and rg are comparable will have L and Ṁ trace one
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another closely.

6.3.2.3 Super-Keplerian, Compressive MRI

The magnetic field in the bound stellar debris is likely to be amplified by compres-

sion and by strong shearing within the nozzle region. The effects of magnetic shearing, the

magneto-rotational instability (MRI; Balbus and Hawley, 1998), is expected to lead to the rapid

exponential growth of the magnetic field with a characteristic timescale of order the rotational

period. This instability has been routinely studied in the context of accretion disks and we ar-

gue here that it is likely to operate within the nozzle although its exact character is difficult to

constrain given that the boundary conditions are constantly changing and the material is never

in steady-state.

The MRI is present in a weakly magnetized, rotating fluid wherever

dΩ2

d lnr
< 0. (6.22)

The ensuing growth of the field is exponential with a characteristic time scale given by tMRI =

4π|dΩ/d lnr|−1 (Balbus and Hawley, 1998). For a (super-)Keplerian angular velocity distribu-

tion Ω ∝ r−3/2, this gives tMRI = (4/3)Ω−1. Exponential growth of the field on the timescale

Ω−1 by the MRI is likely to dominate over other amplification process such as field compres-

sion within the same characteristic time. While a variety of accretion efficiencies are reported

in numerical realizations of magnetically-driven accretion disks, which depend on the geome-

try, dimensionality of the simulation, and included physics, essentially all models find that the
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strength of the magnetic field amplifies to the point that it is capable of converting fluid mo-

tion into internal energy. From global simulations of the MRI, the build-up of the magnetic

field strength is confirmed to be exponential, resulting in a dissipation rate that is a constant

multiple of the orbital period. In Stone et al. (1996), this constant is found to be 3. Once

the magnetic field strength is saturated, the resulting angular momentum transport will be gov-

erned by the turbulence and is therefore expected to take place over longer timescales. A sim-

ple estimate of the saturation field can be obtained by equating the characteristic mode scale,

∼ vA(dΩ/d lnr)−1, where vA is the Alfvén velocity, to the shearing length scale, ∼ dr/d lnΩ,

such that Bsat ∼ (4πρ)1/2Ωr. This saturation field is achieved after turbulence is fully devel-

oped, which in numerical simulations takes about a few tens of rotations following the initial

exponential growth (Hawley et al., 1996; Stone et al., 1996).

For the Sun, the initial interior magnetic field energy at the base of the convective

zone EB,0 ∼ 10−10Eg (Miesch and Toomre, 2009), although larger initial fields are possible in

general (Durney et al., 1993). As the tidal forces stretch the star into a long stream, the volume

of the fluid increases by a factor β3
s (Equation 6.15) prior to returning to pericenter, reducing the

magnetic field strength further. However, when the stream returns to pericenter, it experiences

a dramatic decrease in volume by a factor β2/(γ−1)
s (Luminet and Carter, 1986). Assuming the

frozen flux approximation, the new magnetic energy density is

EB = EB,0β
3γ−5
γ−1

s (6.23)

=
(

3π
2

q
) 2

3
3γ−5
4γ−5
(

t
tm

) 4
3

3γ−5
4γ−5

(6.24)
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For γ = 5/3, the dependence on βs disappears, i.e. the magnetic field strength upon return to

pericenter is identical to the star’s initial interior field. Assuming that the magnetic field within

the debris has strength EB relative to the local gravitational binding energy Eg upon returning to

the nozzle, VMRI adopts a simple form (Figure 6.3, white curves),

VMRI,peak =
EB

Eg
exp
[

tpeak

3tm

]
. (6.25)

6.3.3 Is the Debris Disk Dissipative Enough?

In order for the emergent luminosity L to follow the feeding rate Ṁ closely, the dissi-

pation must be effective enough such that material returning to pericenter can circularize on a

timescale tc that is at most the time since disruption td. In Figure 6.3 we show the three sources

of dissipation that we estimated above. We find that while significant dissipation is expected for

large β encounters, or for encounters in which rp ∼ rg (as is the case for our best-fitting model

for PS1-10jh), that there are many combinations of β and q that may not have the required dissi-

pation necessary to ensure the direct mapping in time of Ṁ to L. In our q = 103 hydrodynamical

simulation, we found somewhat more dissipation than what is expected from a simple analyti-

cal calculation, but the resolution at which we resolved the compression at pericenter was only

marginally sufficient to resolve the strong shocks that form there.

One potential resolution to this issue is the adiabatic index of the fluid γ, which in

the above calculations we have assumed = 5/3, although the real equation of state within the

stream is likely softer due to the influence of recombination. With a softer equation of state,

the cancelations that occur for γ = 5/3 and eliminate the dependence on βs for the hydrody-
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namical (Equation 6.17) and MRI (Equation 6.25) dissipation mechanisms would no longer

apply, yielding both increased compression and magnetic field strengths, and thus additional

dissipation.

While the initial dissipation of the stream may indeed come as the combination of

the three previously described mechanisms, it is likely that the mechanism responsible for the

accretion onto the black hole once the material has been assembled into a disk is the MRI

mechanism, as is suspected for steadily-accreting AGN. Given the computational challenge of

simultaneously resolving the nozzle region and the full debris stream, it is clear that local high-

resolution magnetohydrodynamic simulations are required to determine the true dissipation rate

V at the nozzle.

6.4 The Relationship Between Steadily-Accreting AGN and TDE

Debris Disks

Within the debris structure formed from a tidal disruption, the same mechanisms that

operate in steady-state AGN may continue to operate. There are a number of differences be-

tween the structure of a debris disk resulting from tidal disruption and the structure of steadily-

accreting AGN, but we will argue that similar processes are responsible for the appearance of

both structures. In this section, we will make continued reference to the highest-likelihood

model of PS1-10jh, which is determined in Section 6.5.
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6.4.1 The Conversion of Mass to Light

For steadily-accreting AGN, energy is thought to be released by the viscous MRI

process at all radii. The amount of energy available at a particular radius depends on the local

gravitational potential, and thus the vast majority of the energy emitted by accreting black holes

is produced within a few times the Schwarzschild radius rg. The temperature profile that results

from this release in energy within the accretion disk is given by the well-known expression

presented in Shakura and Sunyaev (1973), and scales as r−3/4, resulting in a sum of blackbodies

with a continuum slope Fν ∝ ν1/3 (Pringle and Rees, 1972; Gaskell, 2008). AGN are divided

into two primary categories: Compton-thick AGN, which are obscured by∼1024 cm2 of column

and thus making them optically thick to Compton scattering (Treister et al., 2009), and thermal

AGN, which have column densities significantly less than this value, enabling the black hole’s

emission to be directly observed. However, all thermal AGN show an excess in the blue known

as the “big blue bump” (Shields, 1978; Lawrence, 2012), and the slopes of their continuum

Fν ∝ ν−1 (Gaskell, 2009). This is more consistent with the notion that the light emitted from the

central parts of the disk is intercepted by intervening gas before it is observed, with nearly one

hundred percent of the light emitted by the disk being reprocessed in this way. This implies that

a significant fraction of the mass that may eventually be accreted by the black hole is suspended

some distance above the disk plane, where it can intercept a large fraction of the outgoing light.

For the accretion structure that forms from the debris of a tidal disruption, the dis-

sipation at the nozzle point provides a means for lifting material above and below the orbital

plane, resulting in a sheath of material that surrounds the debris and is very optically thick for
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Figure 6.4: Schematic figure from our q = 103 simulation demonstrating the geometry of the
debris resulting from a tidal disruption at t − td = 4.3× 105 s, shown from the top (top image)
and the side (bottom image). The three-dimensional isodensity contours are colored according
their temperature, with red being hot and blue being cold. Super-imposed on these contours are
a line of arrows showing the path of the circularizing debris as return to the black hole (black
disk), inside which a surviving stellar core may reside (white disk). The dot-dashed and double-
dot-dashed lines respectively show the regions interior to which helium is doubly-ionized and
hydrogen/helium are singly ionized within the BLR. The region in which BLR clouds may form
is super-imposed using the gray contours, although we note that the BLR may instead be in the
form of a diffuse wind.

certain lines of sight (Figure 6.2). However, as the spread in energy at the nozzle point does

not completely virialize the flow, the resulting distribution of matter is flattened, allowing the

central regions of the accretion disk to be visible through material that is close to the Compton-

thick limit. The time-series presented in the upper six panels of Figure 6.2 show that despite the

continually active dissipation process at the nozzle-point, the region directly above the central

parts of the accretion disk remain relatively evacuated of gas before, during, and after the time

of peak accretion. For the toy simulation presented here, the optical depth to Thomson scat-

tering directly above the black hole and perpendicular to the orbital plane of the debris is ∼ 1,
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depending on the electron fraction of debris (assumed to be pure hydrogen in Figure 6.2). For

more massive black holes, the debris is spread over a larger volume, as the tidal radius grows as

M1/3
h , and thus N ∝M−1

h . If the dissipation rate were the same independent of black hole mass,

it would be expected that the disruption of stars by more massive black holes would yield more

lines of sight for which τ ∼ 1.

6.4.2 Source of Broad Emission Lines

Broad line emission is visible in many AGN, being thought to be produced by gas

above and below the disk plane at distances on the order of light days away from the black hole.

For other AGN, this region is not directly observable, which has been attributed to a torus at

large radii that can obscure the broad line region for lines of sight that run within a few tens of

degrees of the disk plane (i.e. the AGN unification model, Antonucci, 1993). The emission lines

produced within this region have been successfully used to measure black hole masses (Peterson

and Wandel, 1999; Peterson et al., 2004) based on measurements of the time lag in the response

of line luminosity to variations in the output of the central engine. It is still debated whether this

material is in the form of an optically-thick disk wind (Trump et al., 2011) or optically-thick

clouds (Celotti and Rees, 1999), but in either case the material that constitutes the BLR is likely

bound to the black hole (Proga et al., 2008; Pancoast et al., 2012).

In a steady-accreting AGN, material accretes from very large distances (& 103rg),

and the emission from this region is often manifest as an IR bump in Type II AGN (Koratkar

and Blaes, 1999). At such distances, the ionizing flux originating from the black hole is not

sufficient to maintain a large ion fraction within the disk’s emitting layer. The closer one gets to
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the central black hole, the greater the incident flux of ionizing radiation on the BLR wind/clouds

that generate the observed emission lines. The fraction of atoms in an excited state X+ relative

to the state directly below it X0 is approximately (Frank et al., 2002)

nX+

nX0

∼ a(νion)
αB(X0)hνion

Q(X0)
4πr2ne

, (6.26)

where Q(X0) is the flux in photons capable of ionizing the lower state. This expression shows

that that as the distance from the central engine increases, the number of atoms in the high state

decreases, assuming that the electron density ne decreases with radius more slowly than r−4 (as

Q ∝ r−2), and also shows that species with larger ionization potentials will have less atoms in

the high state than species with smaller ionization potentials. This leads to a hierarchy of ions in

the disk, with those with the highest ionization potential being predominant in the inner regions

of the disk. In a steadily-accreting AGN, the flux in ionizing photons is large enough to fully

ionize iron (as evidenced by the existence of Fe K lines, Fabian et al., 2000), and given that

atoms at large radii are mostly neutral, all ionic species of all elements exist at some distance

from the central engine. Reverberation mapping supports this basic photoionization picture,

as RBLR ∼ L1/2 (Bentz et al., 2010, 2013). In particular, the optical wave band hosts several

lines from the Balmer series of hydrogen and lines from both singly-ionized and neutral helium

(Bentz et al., 2010).

This wide range of scales is in stark contrast to the debris disk formed as the result of

a tidal disruption, which we schematically illustrate in Figure 6.4. Rather than material spiraling

in from parsec scales, material is instead ejected from the nozzle point, which lies at the star’s
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original point of closest approach, and typically has scales on the order of a few AU. As a result,

the debris disk forms from the inside out. The ratio of line strengths in a TDE is dependent upon

the number of atoms in the photosphere that are in the particular ionization state associated

with each line. For PS1-10jh, the lack of an Hα emission line was interpreted by G12 as being

attributed to a lack of hydrogen atoms. However, the Balmer series requires neutral hydrogen

to be present in sufficient quantities to produce a line in excess of the continuum emission. As

shown in our q = 103 simulation, material is ejected from the nozzle point at approximately the

escape velocity, with the fastest moving material traversing a distance rt[(t − td)/tp]2/3. This sets

an upper limit on the radial extent of the disk. Therefore, the lack of an observed emission

feature may simply be the result of the disk not being large enough to host the region required

for that particular feature’s production.

The specifics as to which particular radii contribute the most to the emission strength

of each line is complicated to determine, and requires a more-through treatment of the ionization

state of the gas as a function of radius, which depends on the geometry of the structure, and the

distribution of density and temperature as functions of height and radius. In a tidal disruption,

the matter distribution that ensheathes the black hole is established quickly, forming a steady-

state structure that is supported by a combination of gas pressure and angular momentum (Loeb

and Ulmer, 1997). Accretion then proceeds through the midplane, in which the majority of

light is generated within a few rg at X-ray temperatures. These photons are intercepted by the

ensheathing material at higher latitudes. Korista and Goad (2004) determined the equivalent

widths of various lines as functions of volume density and ionizing flux, which is not expected

to vary much as a function of column density for 1023 ≤ N ≤ 1025 cm2 (Ruff, 2012). In Figure
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6.5 we show a series of profiles corresponding to our highest-likelihood model for PS1-10jh

over the range of times at which spectra were taken of this event. To calculate the density

distribution n(H) as a function of r, we once again use the chain rule,

n(H) =
X(H)

4πmpr2
dM
dE

dE
da

(
2a
rp

)3/2

(6.27)

where X(H) is the mass fraction of hydrogen. and presuming that the radial distribution of mass

is determined by the distribution of mass with semi-major axis a, dM/da, set at the time of

disruption. Likewise, dM/dr is directly proportional to dM/da, with a scaling factor equal to

the ratio of time spent at apocenter versus pericenter, dM/dr ' dM/da(2a/rp)3/2, where we

have assumed that 1 − e→ 0 and thus the apocenter distance ra ' 2a.

As a strong dissipation mechanism likely operates at the nozzle point, and this dis-

sipation mechanism is likely to be as dissipative as the commonly invoked MRI mechanism,

it stands to reason that the vertical structure of the debris disk formed through the circulariza-

tion process is similar to that of a steadily-accreting AGN. Therefore, we would expect that

the BLR associated with such structures should be similar to the BLR produced by steadily-

accreting black holes. Under this assumption, we can use Equation 6.27 to approximate the

number density of hydrogen as a function of radius and to determine the equivalent width of

various emission lines using the models that have been generated for steadily accreting AGN

(Korista and Goad, 2004). Figure 6.5 shows the density profiles calculated from Equation 6.27

as a function of time for our highest-likelihood model of PS1-10jh, with the purple curve cor-

responding to the time of the first acquired spectrum of PS1-10jh at -22 days, and the red curve
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corresponding to the last recorded spectrum at +358 days.

From Figure 6.5, it is clear that the equivalent width of HeII λ4686 is significantly

larger than that of Hα, Hβ, and HeI λ5876, all three of which are not observed in PS1-10jh.

The figure does suggest that hydrogen and/or singly-ionized helium emission lines may appear

at later times when the ionizing flux has decreased, although this may not ever be observable in

PS1-10jh where the flux originating from the TDE has already dropped below that of the host

galaxy.

In making this plot, we have made some assumptions that actually would lead to a

decrease in the strength of the unobserved lines if we performed a more-detailed calculation.

Firstly, the models of Korista and Goad (2004) presume that a full annulus of material exists

at each radius; this is not the case in an elliptical accretion disks where the inner annuli are

closer to full circles than outer annuli (Eracleous et al., 1995). In fact, it is unlikely that the

outer material can circularize at all, given that there is significantly less angular momentum in

the disk than the angular momentum required to support a circular orbit at the distance at which

these lines would be produced (at r = 1016 cm, ∼30 times more angular momentum would be

required to form a circular orbit than what is available at rp). Secondly, we have made the

assumption that the material that does the reprocessing remains at the distance determined by

the energy distribution set at the time of disruption at all times (à la Loeb and Ulmer, 1997),

when in reality the entire debris structure will shrink onto the black hole due to dissipation at

pericenter. It is possible that this shrinkage of the debris could prevent emission features arising

from species with lower ionization potentials from ever being observed.

Radiation pressure (which we ignore in this work) may act to push some fraction of
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Figure 6.5: Contours of the log of the equivalent width of four emission lines as a function
of hydrogen–ionizing flux Φ(H) and hydrogen number density n(H), where the black dashed
and solid contours correspond to 0.1 and 1 decade, respectively (Adapted from Figure 1 of
Korista and Goad, 2004), with the smallest contour corresponding to 1 Å of equivalent width.
The colored triangle within each panel indicates the peak equivalent width for each line. The
rainbow-colored curves show the profiles of the debris resulting from the tidal disruption that
corresponds to the highest-likelihood fit of PS1-10jh (Section 6.6.3), with the range of curves
being shown corresponding to the range between the first and last spectrum taken for the event,
with purple being -22 and red being +358 days from peak. The black dotted curve shows the
conditions at ro over the full event duration. Note that Hα, Hβ, and HeI λ5876 would potentially
be observable if additional spectra were collected at later times.

the material outwards, which in principle could produce low-energy emission features (Strubbe

and Quataert, 2009). However, our highest-likelihood models predict a peak accretion rate that
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Figure 6.6: Evolution of the size scales relevant to the appearance of TDEs. The left image
shows a three-dimensional schematic of the elliptical accretion disk (rainbow-colored surface),
the low-density material that ensheaths the disk (cyan surface), and the location of the region
interior to which helium is doubly-ionized (magenta surface), at three times labeled A, B, and
C. The right plot shows results from the highest-likelihood fit of PS1-10jh, where the solid
cyan and dashed magenta curves correspond to the two surfaces in the left image, the dash-
dotted blue curve corresponds to the distance to which the unbound material has traveled, and
the dotted orange curve corresponds to the distance to which light travels since the time of the
accretion of the most-bound material, denoted by the vertical dashed black line. The times to
which the images on the left correspond are shown by the labeled vertical black lines.

is sub-Eddington, and thus only a small fraction of the accreted matter is expected to be driven

to large distances via radiation. It is unclear whether the amount of mass in this component

would be dense enough to produce these features, as the recombination time may be too long.

6.5 A Generalized Model for the Observational Signatures of TDEs

As emphasized in the previous sections, there are many uncertainties relating to how

the material circularized when it returns to pericenter, how this returning material radiates its

energy when it falls deeper into the black hole’s potential well, and in the ionization state of the

gas within the debris superstructure. Using the code TDEFit, developed for this chapter, we

construct a generalized model of the resultant emission from TDEs. In this section, we describe
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the results of running this fitting procedure, and how PS1-10jh specifically allows us to evaluate

some of the other models that have been proposed for modeling TDEs.

6.5.1 Model description and free parameters

Our generalized model for matching TDEs is one in which an accretion disk forms

by the disruption of a star of mass M∗ by a black hole of mass Mh with impact parameter β

and offset time toff ≡ t0 − td, where t0 is the time the first datapoint was collected. This disk

spreads both inwards and outwards from rp, and is ensheathed by a diffuse layer of material that

intercepts some fraction of the light. The disk itself is bounded by an inner radius ri and outer

radius ro, with ri assumed to be set by the viscous evolution of the material, and ro being set by

the ballistic ejection of material as it leaves the nozzle region, which scales as ro = rp(t/tm)2/3,

where tm is the time of return of the most-bound material. The fraction of the full annulus

θf that is covered by the disk varies as a function of time, with θf = 0 when r = ro, and = 2π

when t = tvisc (r), assuming its spread in the azimuthal direction is controlled by the local value

of the viscosity. The model is shown pictographically in the left panel of Figure 6.6, with the

aforementioned size scales as functions of time being shown in the right panel of the same

figure.

The source of this viscosity may be similar to the source of viscosity at the nozzle

point (see Section 6.3.2), or it could be the result of the stream-stream collision that occurs when

material reaches apocenter (Kochanek, 1994; Kim et al., 1999; Ramirez-Ruiz and Rosswog,

2009). For simplicity, we assume that the same viscous process, parameterized by the free

parameter V , applies in both regions.
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The emergent emission from the disk is calculated using the prescription of Done

et al. (2012), which largely follows the original prescription of Shakura and Sunyaev (1973),

but amends the no-torque boundary condition to include the effects of the black hole’s spin,

parameterized by the dimensionless spin parameter aspin. The model accounts for a shift in the

emergent disk spectrum arising from variations in opacity, resulting in an effective temperature

that can be ∼2.7 times larger than expected from the fiducial SS model. We do not permit the

luminosity L to exceed the Eddington luminosity LEdd = 4πGMhmpc/κt, and set L = LEdd at

times where Ṁ exceeds this limit. We also include the inclination of the structure relative to

the observer φ as a free parameter, where φ = 0 is defined to be edge-on, assuming that both

the disk’s height and the ensheathing layer scale with V in the same way, with the emergent

emission from both components being reduced by a factor V + (1 −V)cos(φ).

Note that we assume the color correction is intrinsic to the disk emission, and is not

the same as the reprocessing that occurs due to the diffuse gas that ensheaths the disk and is

ejected from the nozzle region directly. The photosphere of this reprocessing layer, whose size

is set by a combination of the mass distribution and the absorption process responsible for in-

tercepting the light, is less constrained. For steadily-accreting AGN with thermal emission,

the reprocessing layer has temperatures of several 104 K (Koratkar and Blaes, 1999; Lawrence,

2012), and intercepts nearly 100% of the emission from the disk, resulting in an effective pho-

tosphere size that can be hundreds of AU in size for SMBHs accreting at the Eddington limit.

However, as there are many non-thermal AGN whose spectra are more representative of bare

slim-disk models (Walton et al., 2013), it remains unclear how the size of this reprocessing zone

and its fractional coverage are set.
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In the models of Strubbe and Quataert (2009, 2011), this layer is presumed to arise as

the result of ejection via a super-Eddington wind, and scales with this value when Ṁ exceeds

ṀEdd. From our hydrodynamical simulations, we find that the material that forms the repro-

cessing layer may be deposited by a process that does not require the accretion rate to exceed

ṀEdd, but instead depends on the details of how energy is injected into the material within the

nozzle region. The distribution of mass in radius resulting from the ejection from the nozzle

maps is directly related to dM/dE, although it is modified somewhat by the additional spread

in energy introduced at the nozzle point. However, this spread in energy is local to mass that

return at a particular time t, and thus the distribution of mass with radius after leaving the nozzle

point will resemble dM/dE with an additional “smear” equal to the spread in energy applied

at the nozzle. Therefore, we expect that the mass distribution with radius follows the general

shape of dM/dE, and that there will be a density maximum corresponding to the orbital period

of the material that constitutes the peak of the accretion. This peak in density that corresponds

to the apocenter of the material that determines Ṁpeak is clearly seen in our hydrodynamical

simulations (Figure 6.2).

Thus, the size of the reprocessing layer is likely to be dependent on both the instan-

taneous value of Ṁ, which determines the amount of ionization radiation produced by the disk

and the rate of instantaneous mass loss from the nozzle region, and on the integrated amount of

mass that has been ejected from the nozzle region since t = td. The optical depth τ is

τ = κ
∫ ∞

0

dM
dr

dr, (6.28)
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where κ is an opacity that we leave as a free parameter, but is at minimum the Thomson opacity

κt = 0.2(1 + X(H)) cm2 g−1.

As we described in the derivation of Equation 6.27, the amount of mass at a particular

distance r is related to the amount of mass at a particular binding energy E, and thus we can

rewrite Equation 6.28 in terms of E,

τ = κ
∫ Eo

Em

dM
dE

dE. (6.29)

where Em and Eo are the binding energy of the most bound material and the material at apocenter

at time t respectively.

We presume that the fraction of light C intercepted by the reprocessing layer scales

simply with τ ,

C = 1 − e−τ , (6.30)

but enforce the condition that C < c(t − td)/Rph (where Rph is the size of the photosphere) at all

times, otherwise the photon diffusion time would be greater than the time since disruption, and

thus L and Ṁ would not be expected to closely trace one another. In reality, C should have a

wavelength dependence, but for the purposes of this work we treat the opacity as being “gray,”

absorbing all frequencies of light equally.

As the ionization state of the gas (and therefore the opacity) depends on the current

luminosity, the size of the photosphere is expected to vary with time. In general, as the Thomson

cross-section is significantly smaller than that of bound-free transitions, the photosphere scale

is likely to correspond to the first species is not completely ionized, and in the case of PS1-10jh
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where HeII emission is observed, we speculate that this species is helium (Figure 6.6, magenta

region). If we assume that Rph∝ Ṁl , Tph∝ Ṁm, and L∝ Ṁ∝R2
phT 4

ph, then the power law indices

of Rph and Tph are simply related,

2l + 4m = 1. (6.31)

If the opening angle of the reprocessing layer is independent of r, the flux in ionizing photons

intercepted is constant, implying l = 1/2 and thus m = 0, i.e. Tph is independent of time. How-

ever, as we find that the geometry may in reality be somewhat more complicated (Figure 6.2),

we do not assume the intercepting area necessarily scales as Ṁ, and instead leave l as a free

parameter. For any l 6= 1/2, the temperature of the photosphere will evolve with time. We leave

l as a free parameter and relate m and l through Equation 6.31. The size of the photosphere is

then defined to be

Rph = Rph,0ap

(
Ṁ

ṀEdd

)l

(6.32)

ap =
[

8GMh

( tpeak − tm
π

)2
]1/3

, (6.33)

where ap is the semi-major axis of the material that accretes at t = tpeak, and Rph,0 is a dimen-

sionless free parameter.

The amount of reddening in the host galaxy is also an unknown quantity that must be

fitted to simultaneously with the parameters of the disruption. For extinction in the IR through

the UV, we adopt the reddening law fits of Cardelli et al. (1989), in which the amount of red-

dening is defined by A(λ) = AV[a(λ) + b(λ)/RV], in which a(λ) and b(λ) are fitted parameters,
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RV is a fitted parameter that ranges between 2 and 10 (Goobar et al., 2002), and where we

take Nh = 1.8×1021AV g cm−3. For the X-rays, we adopt the cross-sections presented in Mor-

rison and McCammon (1983). Extinction in the X-rays is particularly sensitive to metallicity

and temperature (Gnat and Ferland, 2012), and the uncertainty in the amount expected for a

particular event is large given the environment of a galactic center is likely to have super-solar

metallicities (Cunha et al., 2007) and a wide range of temperatures and densities (Quataert,

2002; Cuadra et al., 2006; De Colle et al., 2012).

An advantage of the MCMC method employed here is that it permits the inclusion of

discrete parameters that can only assume particular values. This enables us to simultaneously fit

multiple physical models, as long as the continuous parameters are shared between the models.

We include two discrete free parameters in this work: A∗, which parameterizes the type of

object that was disrupted, and Aγ , which parameterizes the polytropic model that is assumed.

We include two distinct object types, the white dwarf sequence and the main sequence. Within

each of these sequences, different mass ranges are characterized by different polytropic γ; we

use the Ṁ functions derived from our hydrodynamical simulations (Guillochon and Ramirez-
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Ruiz, 2013) appropriate to each mass range,

Ṁ = Ṁ4/3 (t)


MS : 0.3<M∗/M� < 22

WD : M∗/M� > 1.0

(6.34)

Ṁ = Ṁ5/3 (t)


MS :

M∗/M� < 1.0

M∗/M� > 22

WD : M∗/M� < 1.0

(6.35)

where some overlap is permitted in the mass range 0.3 < M∗/M� < 1.0 to account for the

gradual transition between fully radiative and fully convective stars in this range. It was found

that the white dwarf sequence, which is only permits very low mass black holes, is excluded to

very high confidence for all of the combinations of parameters that were considered, especially

when accounting for the measurement of the black hole’s mass presented in G12, which restricts

M > 2×106M�. For simplicity, we exclude discussion of the white dwarf channel for the rest

of this work.

In addition to modifying the emergent disk spectrum, aspin also affects the minimum

approach distance of a star on a parabolic trajectory (i.e. the innermost bound circular orbit)

rIBCO, and the spread in energy across the star at pericenter (Kesden, 2012a). For simplicity

in this work we only consider prograde encounters (aspin > 0), and apply first-order correction

factor to the binding energy,

E ′ =
(

1 −
1
2

rIBCO

rp

)−1/2

E. (6.36)

In general, retrograde and/or orbits in which the orbit’s inclination is not equal to the black
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Figure 6.7: Location of BLR in AGN as a function of L at λ = 5100 Å as compared to the outer
radius of the truncated debris disk resulting from a tidal disruption. The purple error bars and
purple curve show the data and fit of Peterson (2006) for Hβ, while the red and blue curves show
the offsets to the best-fitting Hβ relation as measured by Bentz et al. (2010) for Hα and HeII
λ4686. The outer radius of the truncated debris disk ro is shown with the black curve, with the
time of collection for the four spectra (-22, +227, +254, and +358 restframe days) being denoted
by the black points. In all but the last spectrum, in which no lines are apparent, HeII λ4686 was
observed and Hα was not observed, which implies that ro must extend beyond the region within
which the majority of the flux for HeII λ4686 is produced, but not extend beyond the region
within which most of the Hα flux is produced. Thus, the four black points must appear between
the red and the blue curves to satisfy this constraint (shaded in gray). Additionally, the velocity
dispersion of the HeII λ4686 line (σHeII) was measured for the first spectrum taken at -22 days.
The HeII λ4686 line is assumed to be located along the standard BLR relation, and the velocity
of this line predicted by the model is given by matching the luminosity to its associated size on
the HeII λ4686 curve (white point). As it is unclear whether the motions being observed are
Keplerian or inflow/outflow, the distance implied by the model velocity is constrained between
a circular and a parabolic orbit, GMh/σ

2
HeII < RHeII < 2GMh/σ

2
HeII (dashed vertical blue curves,

shaded in blue).
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hole’s spin inclination would be expected.

AGN show variability from the radio to the X-ray, with variability on the order of a

few tenths of a dex being common (Webb and Malkan, 2000). While the photometric errors

are small for this event, it is clear that the light curve exhibits some intrinsic variability, as may

be expected for an accreting black hole. To model this, we add an additional intrinsic spread

σv in quadrature with the observational errors associated with each data point. In addition,

the variability has been shown to be dependent on the black hole mass (Uttley and McHardy,

2005). To include this within our modeling, we define a function based on the break in the

power spectral density (PSD) of black hole variability using the results of Kelly et al. (2011)

σv = tHζ2

= 0.0253+0.071
−0.038M−0.19±0.78

7 , (6.37)

where tH is the timescale of the break in the PSD, and ζ is the square root of the variability

amplitude measured at the break. The quoted error bars are calculated using the fits of Kelly

et al..

In total, our fitting procedure includes 15 parameters, 13 of which are continuous (M∗,

Mh, β, toff, aspin, V , φ, κ, l, Rph,0, Rv, Nh, and σv), and 2 of which are discrete (Aγ and A∗).
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Figure 6.8: Fits of highest likelihood of PS1-10jh for two different models: A bare SS disk (left
panel, described in Section 6.6.2), and a disk with a variably-sized reprocessing layer (right
panel, described in Section 6.6.3), with the AB magnitude of the data and the models shown in
the top panels, and the difference between the highest-likelihood model and the data shown in
the bottom panels. The highest-likelihood model found is shown by the solid curves, whereas
the 2-σ range in magnitudes encompassed by the full ensemble of walkers is shown by the
shaded bands. The five colors correspond to four filters of Pan-STARRS1 system (denoted by
Pg, Pi, Pr, and Pz), and the NUV band of the GALEX instrument (denoted as GN).

6.5.2 Using the existence/absence of emission lines and their properties to con-

strain TDEs

In addition to using the quality of the fit of the model light curves to the data, we also

impose additional constraints depending on which lines do or do not exist in spectra taken at

various times (Figure 6.7). To do this, we measure the emergent flux at λ = 5100, which is used

in steadily-accreting AGN to measure the continuum, and compare ro to the distance implied by

the relationship between λLλ(5100) and RBLR, as first determined by Wandel et al. (1999) for

Hβ. Since then, the relationship between L and RBLR has been more-accurately determined for

Hβ (Peterson et al., 2004; Bentz et al., 2013), and for several other emission lines (Bentz et al.,
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2010). For all lines, it is found that L ∝ R0.5
BLR, indicating that the source of ionizing photons is

point-like and that the disk maintains a relatively constant scale-height for a wide range of r,

which gives the natural result that the number of ionizing photons Φ∝ r−2.

Our modification to the likelihood function is simple: If a line exists in a spectrum

and ro < RBLR, or if a line doesn’t exist and ro > RBLR, we reduce the log-likelihood measured

from the light curve alone LLC by a factor

lnLBLR = ln
[

1 −
1
2

erfc
(
|lnRBLR − lnro|

2σBLR

)]
, (6.38)

where σBLR is the error in the measured L − RBLR relation, which we take from Bentz et al.

(2010).

If a line exists, and a velocity for that line has been measured, we can use that ad-

ditional information to constrain the event further by relating RBLR to the underlying veloc-

ity expected at the position. In steadily-accreting AGN, there is an ambiguity in the velocity

measured for the BLR and its location, as it may partially be supported by radiation pressure

(Marconi et al., 2008), we ignore this effect here as it only introduces a∼10% correction (Barth

et al., 2011). A greater uncertainty exists in TDE debris disks in that the underlying velocity

vBLR can range from Keplerian (vBLR = vK) to parabolic (vBLR =
√

2vK), and therefore we can-

not constrain the distance implied by vBLR better than a factor of
√

2. Bearing this in mind, our
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reduction to the log-likelihood assumes the following functional form,

lnLv =



v< vBLR
1
2

(
v−vBLR
σv

)2

vBLR < v<
√

2vBLR 0

v> vBLR
1
2

(
v−
√

2vBLR
σv

)2
.

(6.39)

We show the results of imposing these constraints for PS1-10jh in Figure 6.7, where

we plot the distance to which material has traveled ro versus the luminosity at 5100 Å. The

specific constraints we have applied are that HeII λ4686 must be produced, and Hα must not be

produced, in the four spectra in which the observed light is not dominated by the host galaxy (at

-22, +227, +254, and +358 restframe days). We find that ro is sufficiently large to produce HeII

λ4686 in all four of these spectra, and that Hα would potentially be observable at later times if

the host galaxy did not dominate the observed light (the light is already subdominant to the host

galaxy at +254 days). Hβ, which is produced at smaller distances than Hα in steadily-accreting

AGN, may potentially be observable in late-time spectra, but its wavelength (4861 Å) notably

overlaps with the broad HeII λ4686 feature, and is usually a factor of several weaker than Hα

in most AGN (Vanden Berk et al., 2001). We also might expect that Hγ and/or HeI λ5876 may

appear at later times, as the distances at which these lines are produced are only slightly larger

than the distance at which HeII λ4686 is produced (Bentz et al., 2010). As we had mentioned in

Section 6.4.2, we may also be overestimating the size of reprocessing region if it accretes onto

the black hole quickly, which would tend to predict the existence of more emission features.

Given these uncertainties, we do not impose a constraint on the non-existence of HeI λ5876,

Hβ, or Hγ in this work; we note that their inclusion would likely restrict the size of the accretion
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disk further, which would tend to favor lower-mass black holes.

We note that the constraints we are imposing do not consider the specific luminosity

of the lines versus the continuum (see Section 6.4.2), which can strongly affect whether a line is

identified within a collected spectrum. This means we also cannot consider in detail the effects

of the elliptical accretion disk structure resulting from a tidal disruption on the strengths of

the observed lines, which would preferentially reduce the strength of lines originating at large

distances as the BLR does not occupy a full 2π in azimuth in the outskirts of the debris structure

(Figure 6.2).

6.6 Model Fitting of PS1-10jh, a Prototypical Tidal Disruption

6.6.1 Available Data

For the fitting procedure, we use all of the available data to constrain the event, in-

cluding four Pan-STARRS bands (Pg, Pr, Pi, Pz), the X-ray upper limits from the Chandra

space-based X-ray telescope (cycle 12), and the spectra taken by the Hectospec instrument on

the MMT telescope, all of which are taken from G12. As the data presented in G12 is already

corrected for extinction assuming Nh = 7.2×1019 cm−2, we remove this correction before using

the data as an input, as we self-consistently determine the extinction in the model fitting pro-

cess. We assume a redshift z = 0.1696 as is determined in G12 from template fitting to the host

galaxy.
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Figure 6.9: Spectral energy distribution of the emergent radiation from the highest-likelihood
fits of PS1-10jh as a function of time for the bare disk (left panel) and generalized (right panel)
models. The colored curves are spaced equally in ln(t − td), with red corresponding to early
times and blue correspond to late times. The vertical black lines show the wavelength of high-
est transmission for the four Pan-STARRS and GALEX NUV bands. The bare disk models
feature a single component that corresponds to the accretion disk that peaks at λ∼ 102 Å,
whereas the generalized model features two components which corresponds to the accretion
disk, which peaks at λ∼ 102 Å, and the single-temperature reprocessing component, which
peaks at λ∼ 103 Å.

6.6.2 Bare Disk Model

In steadily-accreting AGN disks, the majority of radiation produced by the disk is

thought to be intercepted by intervening gas that reprocesses the original emission from the

disk. In a TDE, this layer may take some time to form, or may not form at all, depending on

the dissipative processes at work. In this case, the light produced as the result of a TDE would

resemble a bare Shakura-Sunyaev (SS, Shakura and Sunyaev, 1973) or slim-disk (Abramowicz

et al., 1988) model, with peak emission that extends well beyond the tens of eV that is charac-

teristic of AGN spectra. For this model, we do not include the additional constraints imposed

by the existence/absence of emission lines.

Fits assuming this “bare” disk model, which are equivalent to our generalized model

for TDE debris disks sans the reprocessing layer (cyan region of Figure 6.6), are shown in
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Figure 6.8, where it is immediately obvious that a bare disk model is a poor match to PS1-10jh.

In order for the bare disk model to closely match the data, the fitting routine settles upon one of

two non-ideal solutions: An SED with peak that centers about the range of wavelengths covered

by the observed bands, or an SED in which the bands are all within the Rayleigh-jeans tail. In

the first case, the luminosity L can closely follow Ṁ, but the color evolves tremendously as the

peak of the summed blackbody curves shift into/out of the observed bands. In the latter case,

the ratio of fluxes between the observed bands remains constant, but L scales as a much weaker

power of Ṁ, L∝ Ṁ1/4 (Figure 6.9).

It has previously been assumed that the size of the disk is controlled by the angular

momentum content of the returning material, which is limited to
√

2GMhrt (see Section 6.3.1

for references). In this case, the disk resembles a bare disk that is “truncated” at r = 2rt. We find

that these models are an even poorer match to the event.

6.6.3 Fits to Generalized Model With Reprocessing Layer

From the previous section, we know that bare disk models can either reproduce a

constant color, or reproduce a luminosity that follows Ṁ, but cannot reproduce both behaviors

simultaneously. This suggests that a secondary process is involved that reprocesses a large

fraction of the light prior to reaching the observer. In section 6.6.3 we suggested that this

mechanism is the absorption of the soft X-ray photons produced primarily at r ∼ rg by material

deposited at r ∼ ap.

As can be seen in the right panels of Figures 6.8 and 6.9, these models provide excel-

lent fits to the data; the parameters associated with the fits of highest likelihood are shown in
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Table 6.1: Parameters of Highest Likelihood Models

Parameter Units Prior Allowed Range Value1

Log10M∗ M� Flat −3≤ x≤ 2 −0.25+0.04
−0.10

Log10Mh M� Flat 4≤ x≤ 8.6 7.04+0.08
−0.05

β · · · Flat 0.5≤ x≤ 4 0.87+0.02
−0.02

toff days Flat −700≤ x≤ 700 42+2
−2

aspin · · · Flat 0≤ x≤ 1 0.35+0.34
−0.26

Log10V · · · Flat −4≤ x≤ 0 −0.0062+0.005
−0.012

φ radians Flat 0≤ x≤ π/2 0.71+0.59
−0.52

Log10κ cm2 g−1 Flat −0.7≤ x≤ 6 −0.31+0.27
−0.28

l · · · Flat 0≤ x≤ 4 0.96+0.04
−0.04

Log10Rph,0 · · · Flat −4≤ x≤ 4 −0.77+0.05
−0.07

Rv · · · Flat 2≤ x≤ 10 6.5+0.4
−0.4

Log10Nh cm−2 Flat 17≤ x≤ 23 21+0.03
−0.03

σv · · · See 6.5.1 0≤ x≤ 1 0.034+0.007
−0.007

1Median value, with ranges corresponding to 1-σ spread from median.

Table 6.1. We immediately caution the reader that the reported medians of the probability dis-

tributions, and the small spread in distributions of some parameters, should not be taken at face

value. In our generalized model, which is only a simplified realization of the true structure of

the debris, we have made many assumptions, and the uncertainty in some of these assumptions

is likely to be greater than spread of solutions about the highest-likelihood models presented

here. That being said, it is encouraging that such a simple model with relatively few free pa-

rameters can provide a reasonable fit to the data, and is highly suggestive of the true values of

the underlying parameters.

In the generalized model, we find that the disruption is best matched by the nearly-

complete disruption (β = 0.87) of a low mass star (M∗ = 0.56M�) by a Mh = 1.1×107M� black

hole. This combination of parameters is close to the most common sub-Eddington disruption

expected (De Colle et al., 2012), but predicts the black hole mass is a factor of a few larger
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than the black hole mass suggested by G12. Most of this discrepancy is likely to arise not from

improper template fitting of the host galaxy, but rather the large intrinsic scatter in the Mh-L

relation, as black holes of mass 106 ≤ Mh/M� ≤ 109 have been found for other galaxies of

similar magnitude (Graham and Scott, 2013). The disruption is predicted to have occurred 42

days prior to the first observation, about 20 days prior to what was originally suggested in G12.

We find that aspin is only loosely constrained, with the main effects of a larger spin

being that deeper-β encounters would be permitted (which are disfavored anyway), and an

increase in the efficiency of converting mass to light. The inclination φ is highly degenerate

with this parameter, and shows a strong anti-correlation (i.e. more-slowly spinning black holes

tend to be more face-on). We find that the preferred models increase V to as large a value as

possible, and likely this result would be altered given a physical model for V that accounts for

all the various dissipation processes (see Section 6.3.2).

The mass-averaged opacity κ= 0.5 cm2 g−1 is slightly larger than Thomson, consistent

with the expectation that the opacity is dominated by electron scattering with some contribution

from bound-free absorption by partially-ionized species heavier than hydrogen (with potentially

a large contribution coming from singly-ionized helium). We find that l = 0.96, which is larger

than 1/2 and indicates that the photosphere temperature does evolve to some degree during the

encounter, with T ∝ Ṁ−0.23 (Equation 6.31). The fact that the highest-likelihood models settle

on this temperature evolution is a consequence of the increase in flux in the Pz band relative

to other bands at late times. A truly isothermal photosphere could be achieved if its location

is mediated by the recombination of a single species (acting as a thermostat), in which case

m = 0. The fact that the highest-likelihood models deviate from this value indicates that either
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the distribution of matter in radius and height may be non-trivial, or that multiple species may

be responsible for setting the observed temperature (Lawrence, 2012). The photosphere scale

parameter Rph,0 = 0.17 corresponds to a physical size of 5.4×1014 cm at peak (approximately

50 times larger than pericenter distance rp = 1.1× 1013 cm), the time evolution of which is

shown in the right panel of Figure 6.6. This distance is approximately the distance at which

helium becomes doubly ionized (Figure 6.5).

For the extinction in the host galaxy, we find that a column of Nh = 1021 cm−2 is

preferred, with a reddening parameter Rv = 6.5. This value is somewhat higher than what is

typically observed within the Milky Way (Rv = 3.1), and is more representative of “gray” dust

in which all wavelengths are absorbed equally. Such values of Rv have been observed outside of

the Milky Way (see e.g. Falco et al., 1999), and are typical of dense molecular clouds (Draine,

2003). Another possibility that our generalized model simply does not produce enough UV

photons, necessitating a gray opacity law to compensate.

Lastly, we find that the model requires σv = 0.034 magnitudes of intrinsic variability,

well within the expected range given a black hole mass of 107M� (Equation 6.37), and surpris-

ingly small given the potentially chaotic nature of the accretion process. This strongly suggests

that the accretion process is smooth and regular, with no major changes in global structure over

short timescales.

We find that our highest-likelihood models with and without the BLR constraints are

very similar to one another. In Figure 6.10, we present the posteriors of four parameters that

showed the most change (Mh, M∗, aspin, and Rph,0) when the BLR constraints are removed, and

find that difference in the posteriors is on the same order as the scatter about the median. This
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Figure 6.10: Posterior distributions of Mh, M∗, aspin, and Rph,0 for PS1-10jh. Within each panel
are the probability P scaled to the maximum probability Pmax, with the red curves showing
the posteriors when the BLR constraints are not included, and the blue curves showing the
posteriors when they are included. With the constraints, slightly smaller Mh and slightly larger
M∗ are preferred, leading to a slightly larger photosphere scaling parameter Rph,0 to compensate.

suggests that the timescale, luminosity, and color of PS1-10jh are sufficient to constrain most of

the physical parameters of an event, whereas the BLR constraints can be used as a sanity check
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to ensure there is no discrepancy between the existent BLR emission regions and the observed

spectra.

6.7 Discussion

6.7.1 Arguments against the helium star interpretation

The discovery of a flare with no noticeable hydrogen features certainly hints at the

possibility that the disrupted star may have been relatively devoid of hydrogen. Aside from

the hypothesis presented in the previous sections, there are other reasons to believe why the

helium-rich progenitor scenario might be unlikely.

Firstly, helium-rich stars are rare in the universe. The known candidates are SdB/SdO

stars (∼106 in the MW, Han et al., 2003), helium WDs (∼107 in the MW, Nelemans et al.,

2001b), and WR stars (∼104 in the MW, van der Hucht, 2001). While there is some evidence

that the mass function around SMBHs is not well-represented by a canonical IMF (Bartko

et al., 2010), it seems unlikely that the numbers of these stars could be increased by the factor

of ∼104–107 required to plausibly explain why the first well-resolved TDE happened to be a

helium-rich star.

A second possibility is that the helium-rich star comes as the result of the previous

interaction of a giant star with the SMBH, or potentially through a collision between the gi-

ant and a more compact stellar object (Davies et al., 1991). However, in both of these cases,

hydrogen is not completely removed from the star. In fact, even for deep tidal encounters, the

core tends to retain an atmospheric mass of hydrogen comparable to its own mass (MacLeod
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et al., 2012). Additionally, giant stars do not frequently get deposited into highly-bound orbits

in which the core itself is likely to be disrupted, as the densities of their cores are & 103 times

larger than their envelopes, and their orbital migration into the loss-cone is largely dictated by

diffusion (Wang and Merritt, 2004; MacLeod et al., 2012).

We can thus conclude that while helium-rich disruptions will occur occasionally, they

will not be the dominant contributor to the rate, and as a result, it is highly unlikely by chance

that these disruptions would be among the first to be observed.

6.7.2 Inclusion of priors

In this work, we do not make any assumptions about the distribution of any of our

input parameters, with the exception of our intrinsic variability parameter σv (see Section 6.5.1).

For example, the distribution of stars around SMBHs is likely to possess a current mass function

(CMF) that is strongly related to the initial mass function (IMF), which would suggest that the

most likely stars to be disrupted are those with M∗ ∼ 0.1M� (Kroupa, 2001). Additionally,

we might expect that that grazing encounters (e.g. small β) should outnumber deep encounters

(Frank and Rees, 1976), and the black hole mass should follow established Mh-L relations

(Graham and Scott, 2013).

This prior information could be used to further constrain the parameters of any given

event. However, each of these priors has a great deal of uncertainty associated with it. In

our own galactic center, it is not clear if the distribution of stars is similar to the general IMF

observed in the field, especially given the prevalence of short-lived B-stars within several lt-

days of the black hole (Gillessen et al., 2009). These stars may have been deposited through
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binary disruption (Ginsburg and Loeb, 2006), or through a disk (Madigan et al., 2011), both of

which would lead to different distribution in β than what would be produced by a steady-state,

spherically symmetric cluster around the black hole (à la Wang and Merritt, 2004). Lastly, while

a clear trend has been demonstrated between the luminosity of the host galaxy and the mass of

its black hole, there is significant scatter about this trend (Gültekin et al., 2009). In principle,

once a significant number of TDEs have been identified, these distributions can be determined

from the collection of fits to all disruptions, which could potentially improve the accuracy of

parameter estimations of future events.

6.7.3 How BLRs can help us understand TDEs

The (non-)existence of various lines in spectra acquired of TDEs can be used to great

effect to constrain the parameter space of allowed encounters for any particular event. These

features enable one to place a time-dependent size constraint on the size of the debris structure

resulting from a tidal disruption, which is directly related to the combination of three parame-

ters: Mh, M∗, and β (Equation 6.9). In this chapter, we have focused specifically on HeII λ4686

and Hα in regards to PS1-10jh, but our technique could be used in general with other emission

lines. PS1-10jh appears to originate from a moderately-massive SMBH, but disruptions of stars

by more or less massive black holes would respectively produce larger or smaller structures

from which emission lines could be produced. As an example, the disruption of the same star

by a 108M� may show Hβ and HeI λ5876 features early, with Hα appearing later, whereas a

disruption by a 106M� black hole may never show any helium or hydrogen emission lines.

In the optical at z = 0, the number of strong emission lines is limited, but many more
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emission lines are available in the UV and X-ray where metals with larger ionization potentials

begin to lose their electrons. These lines, which would be produced nearer to the SMBH, could

potentially be used to constrain the size scale at early times, and would provide a spatial map

of the accretion disk as it grows. It is critical that TDEs are identified early and followed up

spectroscopically to obtain this valuable information.

6.7.4 How TDEs can help us understand BLRs

The BLR has long been used to measure the masses of black holes from the lag times

observed in the response of various emission lines, which are thought to lie at various distances.

However, there remains much uncertainty in these models, namely the form of the BLR itself.

If the dissipation mechanism within the debris disks resulting from tidal disruptions is similar

to the dissipation mechanism that controls angular momentum transport in steadily-accreting

AGN, it is reasonable to expect that the two structures should have many similarities in terms of

their density and temperature profiles, velocity structures, and in the components of the structure

that conspire to produce the emergent light.

In this chapter, we have made direct comparisons to BLRs in order to understand the

emission features that are observed in a particular event. As we have shown, the dependence

between the distance at which a particular emission line is produced and the flux originating

from the central engine is even more exaggerated than in the case of steadily-accreting AGN,

as some line-emitting regions do not exist at all due to the absence of mass beyond a certain

distance. With a larger catalogue of TDEs, we can reverse the arguments presented here to learn

more about the structure of the BLR present in TDE debris disks.
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6.7.5 Caveats and future directions

At the time of this writing, PS1-10jh is the only event that is claimed to be a TDE

and also captures the rise, peak, and decay of the flare. By capturing all three phases, and with

the addition of spectroscopic information, this event provides significantly more information

on the underlying mechanisms than the small number of poorly sampled UV/optical TDEs

that only capture the decay phase and may have no spectroscopic data (Gezari et al., 2006,

2008; Cappelluti et al., 2009; van Velzen et al., 2011; Cenko et al., 2012). While the models

presented here provide compelling evidence of the similarities between steadily-accreting AGN

and luminous flares resulting from the tidal disruptions of stars, there are many aspects that

can be improved upon. Some uncertainties in the generalized model presented here, such as

details on the viscous processes that govern accretion and how matter light is reprocessed, could

potentially be resolved with a more-complete collection of well-sampled TDEs.

It is clear from our purely hydrodynamical simulations that mere gas dynamics is in-

capable of generating the necessary dissipation for high mass-ratio encounters, as we described

in Section 6.3.3. This suggests that magnetohydrodynamical simulations that focus on the noz-

zle region need to be performed to examine the growth of the MRI, which by our estimate may

be capable of providing the required dissipation. If this mechanism is incapable of operating,

then it is possible that only deeply-penetrating encounters in which rp ∼ rg will yield rapidly-

rising light curves.

A second critical uncertainty is our treatment of the reprocessing layer, which is in-

extricably linked to the BLR of TDE debris disks. In this work, we have presumed that this
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reprocessing layer is spherical, parameterized the amount of light absorbed by an average gray

opacity, and have ignored potentially complex radiation transport and line-of-sight effects. It is

also unlikely that the BLR relations we compare to here are identical for debris disks resulting

from disruption, given their elliptical geometry and different radial mass distributions. While

the scaling relations determined for steadily-accreting AGN are likely to be similar to TDE

scaling relations, meaningful constraints on individual events can only be obtained by revising

these relations to account for the differences.

Given a more-accurate prescription of how the viscous and reprocessing mechanisms

operate, TDEFit can easily be improved to include these additional aspects of the problem,

which can potentially yield very accurate estimates of the parameters associated with individual

disruption events. With a large library of TDEs, which will likely exist in the LSST era when

potentially thousands of TDEs may be detected (van Velzen et al., 2011), it should be possible

to obtain detailed demographics of the stellar clusters that surround SMBHs.

6.7.6 Lessons Learned

For the readers convenience, we summarize the main findings of this chapter below.

1. The unbound material, while ejected at high velocity from pericenter after a disruption, is

gravitationally confined in the two directions transverse to its motion. This constricts the

debris to a thin stream that presents a negligible surface area as compared to the emitting

surface generated by the return of the stream to pericenter, and is unlikely to affect the

flare’s appearance.
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2. When material returns to pericenter, it is heated via hydrodynamical shocks, but this

dissipation is likely insufficient to explain the tight relationship between L and Ṁ for

large-q encounters. Additional dissipation via an MRI-like mechanism or through general

relativistic precession is probably required to explain this observed relationship.

3. A disk that is truncated at 2rt fails drastically in explaining the observed flare, and cannot

match the observed shape of the light curves without extreme color evolution.

4. The light curve of PS1-10jh is well modeled by a single blackbody whose temperature

evolves weakly in time, and whose size is tens of times larger than rt. We speculate that

this distance is roughly co-spatial with the distance at which helium is doubly-ionized.

5. The fact that HeII emission lines are observed, but Hα and Hβ are not, is consistent with

the size constraint on the bound debris that is ejected from the nozzle point upon returning

to pericenter. In general, the presence or absence of various emission lines can be used as

a probe of the size of the elliptical debris disk.

6. The parameters for PS1-10jh of our highest-likelihood fits indicate that a 0.56M� main-

sequence star was partially disrupted by a 1.1× 107M� black hole. As this involves the

disruption of a common star by a common SMBH with an impact parameter near the

expected average, TDEs of the kind we associate with PS1-10jh are likely to be among

the most common sub-Eddington disruption events. However, given that we are analyzing

a single event in this chapter, we cannot eliminate the possibility that an event of this type

was among the first observed due to observational bias. Once more well-sampled TDEs

are available, a joint analysis of many events similar to what we perform here is required
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for a complete understanding of the demographics of tidal disruption.

200



Bibliography

Abramowicz, M. A.; Czerny, B.; Lasota, J. P. and Szuszkiewicz, E. Slim accretion disks. ApJ

332, 646 (1988).

Aizenman, M. L. The Equilibrium and the Stability of the Roche-Riemann Ellipsoids. ApJ 153,

511 (1968).

Alexander, T. Stellar processes near the massive black hole in the Galactic center. Phys. Rep.

419, 65 (2005).

Alsubai, K. A.; Parley, N. R.; Bramich, D. M.; West, R. G.; Sorensen, P. M.; Collier Cameron,

A.; Latham, D. W.; Horne, K.; Anderson, D. R.; Brown, D. J. A.; Buchhave, L. A.; Esquerdo,

G. A.; Everett, M. E.; Fürész, G.; Hellier, C.; Miller, G. M.; Pollacco, D.; Quinn, S. N.; Smith,

J. C.; Stefanik, R. P. and Szentgyorgyi, A. Qatar-1b: a hot Jupiter orbiting a metal-rich K

dwarf star. ArXiv arXiv:1012.3027 (2010).

Antonini, F.; Faber, J.; Gualandris, A. and Merritt, D. Tidal Breakup of Binary Stars at the

Galactic Center and Its Consequences. ApJ 713, 90 (2010).

201



Antonini, F.; Lombardi, J. C. J. and Merritt, D. Tidal Breakup of Binary Stars at the Galactic

Center. II. Hydrodynamic Simulations. ApJ 731, 128 (2011).

Antonucci, R. Unified models for active galactic nuclei and quasars. A&A Rev. 31, 473 (1993).

Arras, P. and Socrates, A. Thermal Tides in Fluid Extrasolar Planets. ApJ 714, 1 (2010).

Bakos, G. Ã.; Hartman, J.; Torres, G.; Latham, D. W.; Kovács, G.; Noyes, R. W.; Fischer,

D. A.; Johnson, J. A.; Marcy, G. W.; Howard, A. W.; Kipping, D.; Esquerdo, G. A.; Shporer,

A.; Béky, B.; Buchhave, L. A.; Perumpilly, G.; Everett, M.; Sasselov, D. D.; Stefanik, R. P.;

Lázár, J.; Papp, I. and Sári, P. HAT-P-20b-HAT-P-23b: Four Massive Transiting Extrasolar

Planets. ArXiv arXiv:1008.3388 (2010).

Balbus, S. A. and Hawley, J. F. Instability, turbulence, and enhanced transport in accretion

disks. Reviews of Modern Physics 70, 1 (1998).

Band, D. L.; Grindlay, J. E.; Hong, J.; Fishman, G.; Hartmann, D. H.; Garson, A.; Krawczynski,

H.; Barthelmy, S.; Gehrels, N. and Skinner, G. EXIST’s Gamma-Ray Burst Sensitivity. ApJ

673, 1225 (2008).

Barnes, S. A. On the Rotational Evolution of Solar- and Late-Type Stars, Its Magnetic Origins,

and the Possibility of Stellar Gyrochronology. ApJ 586, 464 (2003).

Barnes, S. A. and Kim, Y.-C. Angular Momentum Loss from Cool Stars: An Empirical Expres-

sion and Connection to Stellar Activity. ApJ 721, 675 (2010).

Barth, A. J.; Nguyen, M. L.; Malkan, M. A.; Filippenko, A. V.; Li, W.; Gorjian, V.; Joner,

M. D.; Bennert, V. N.; Botyanszki, J.; Cenko, S. B.; Childress, M.; Choi, J.; Comerford,

202



J. M.; Cucciara, A.; da Silva, R.; Duchêne, G.; Fumagalli, M.; Ganeshalingam, M.; Gates,

E. L.; Gerke, B. F.; Griffith, C. V.; Harris, C.; Hintz, E. G.; Hsiao, E.; Kandrashoff, M. T.;

Keel, W. C.; Kirkman, D.; Kleiser, I. K. W.; Laney, C. D.; Lee, J.; Lopez, L.; Lowe, T. B.;

Moody, J. W.; Morton, A.; Nierenberg, A. M.; Nugent, P.; Pancoast, A.; Rex, J.; Rich, R. M.;

Silverman, J. M.; Smith, G. H.; Sonnenfeld, A.; Suzuki, N.; Tytler, D.; Walsh, J. L.; Woo,

J.-H.; Yang, Y. and Zeisse, C. Broad-line Reverberation in the Kepler-field Seyfert Galaxy

Zw 229-015. ApJ 732, 121 (2011).

Bartko, H.; Martins, F.; Trippe, S.; Fritz, T. K.; Genzel, R.; Ott, T.; Eisenhauer, F.; Gillessen, S.;

Paumard, T.; Alexander, T.; Dodds-Eden, K.; Gerhard, O.; Levin, Y.; Mascetti, L.; Nayak-

shin, S.; Perets, H. B.; Perrin, G.; Pfuhl, O.; Reid, M. J.; Rouan, D.; Zilka, M. and Sternberg,

A. An Extremely Top-Heavy Initial Mass Function in the Galactic Center Stellar Disks. ApJ

708, 834 (2010).

Beloborodov, A. M. Accretion Disk Models. High Energy Processes in Accreting Black Holes

161, 295 (1999).

Bentz, M. C.; Denney, K. D.; Grier, C. J.; Barth, A. J.; Peterson, B. M.; Vestergaard, M.;

Bennert, V. N.; Canalizo, G.; De Rosa, G.; Filippenko, A. V.; Gates, E. L.; Greene, J. E.; Li,

W.; Malkan, M. A.; Pogge, R. W.; Stern, D.; Treu, T. and Woo, J.-H. The Low-Luminosity

End of the Radius-Luminosity Relationship for Active Galactic Nuclei. arXiv (2013).

Bentz, M. C.; Walsh, J. L.; Barth, A. J.; Yoshii, Y.; Woo, J.-H.; Wang, X.; Treu, T.; Thornton,

C. E.; Street, R. A.; Steele, T. N.; Silverman, J. M.; Serduke, F. J. D.; Sakata, Y.; Minezaki,

T.; Malkan, M. A.; Li, W.; Lee, N.; Hiner, K. D.; Hidas, M. G.; Greene, J. E.; Gates, E. L.;

203



Ganeshalingam, M.; Filippenko, A. V.; Canalizo, G.; Bennert, V. N. and Baliber, N. The

Lick AGN Monitoring Project: Reverberation Mapping of Optical Hydrogen and Helium

Recombination Lines. ApJ 716, 993 (2010).

Benz, W.; Cameron, A. G. W.; Press, W. H. and Bowers, R. L. Dynamic mass exchange in

doubly degenerate binaries. I - 0.9 and 1.2 solar mass stars. ApJ 348, 647 (1990).

Bicknell, G. V. and Gingold, R. A. On tidal detonation of stars by massive black holes. ApJ

273, 749 (1983).

Bildsten, L.; Shen, K. J.; Weinberg, N. N. and Nelemans, G. Faint Thermonuclear Supernovae

from AM Canum Venaticorum Binaries. ApJ 662, L95 (2007).

Bodenheimer, P.; Lin, D. N. C. and Mardling, R. A. On the Tidal Inflation of Short-Period

Extrasolar Planets. ApJ 548, 466 (2001).

Brassart, M. and Luminet, J. P. Shock waves in tidally compressed stars by massive black holes.

A&A 481, 259 (2008).

Bryan, G. L.; Norman, M. L.; Stone, J. M.; Cen, R. and Ostriker, J. P. A piecewise parabolic

method for cosmological hydrodynamics. Computer Physics Communications 89, 149

(1995).

Cannizzo, J. K.; Lee, H. M. and Goodman, J. The disk accretion of a tidally disrupted star onto

a massive black hole. ApJ 351, 38 (1990).

Cappelluti, N.; Ajello, M.; Rebusco, P.; Komossa, S.; Bongiorno, A.; Clemens, C.; Salvato, M.;

204



Esquej, P.; Aldcroft, T.; Greiner, J. and Quintana, H. A candidate tidal disruption event in the

Galaxy cluster Abell 3571. A&A 495, L9 (2009).

Cardelli, J. A.; Clayton, G. C. and Mathis, J. S. The relationship between infrared, optical, and

ultraviolet extinction. ApJ 345, 245 (1989).

Carter, B. and Luminet, J. Pancake detonation of stars by black holes in galactic nuclei. Nature

296, 211 (1982).

Carter, B. and Luminet, J. Tidal compression of a star by a large black hole. I Mechanical

evolution and nuclear energy release by proton capture. A&A 121, 97 (1983).

Carter, B. and Luminet, J. P. Mechanics of the affine star model. MNRAS 212, 23 (1985).

Cartwright, D. E. Tides: A Scientific History. Cambridge University Press (1999).

Caughlan, G. R. and Fowler, W. A. Thermonuclear Reaction Rates V. Atomic Data and Nuclear

Data Tables 40, 283 (1988).

Celotti, A. and Rees, M. J. Reprocessing of radiation by multiâĂŘphase gas in lowâĂŘlumi-
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Appendix A

Modified PPM Gravity Algorithm

Because the binding energy of a planet on a disruptive orbit is comparable to the

planet self-binding energy, the conservative properties of a code used to investigate planetary

disruption are important. As the simulation of a partially-disruptive encounter involves the

simultaneous resolution of both a compact core and two debris tails which are hundreds of time

larger than the core, we found that the standard methods used to calculate the gravitational

potential in a tidal disruption are too computationally expensive given the required accuracies.

Our approach was to improve upon the gravity solver found within the FLASH hydro-

dynamics code (Fryxell et al., 2000) such that it is better suited to investigating the problem of

tidal disruption, a pictorial representation of the algorithm described below is shown in Figure
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Figure A.1: Cartoon showing the sequence of states used to compute the evolution over a single
a time-step using our modified gravity solver. The initial state m is showing in the left panel, the
middle panel shows the intermediate state ˜(m + 1), and the last panel shows the final state m + 1.
r∗ is the position of the point mass representing the star, rc is the planetary core’s true center of
mass, rT ≡ (MPrt +M∗r∗)/(MJ +M∗) is the center of mass of the complete system. The variable
vector field U(r) ≡ [ρ,ρv,e,X] represents the value of all the conserved quantities in a given
state. Differences between the states are exaggerated for illustrative purposes.

A.1. Two centers of mass are calculated at each time-step, which are defined as

rt =
∑

i miri∑
i mi

(A.1)

rc =

∑
i,ρ(i)> fρmax

miri∑
i,ρ(i)> fρmax

mi
, (A.2)

where rt is the “true” center of mass and rc is the “core” center of mass, which only includes

matter above a density cut-off ρ > fρmax, where f is set to 0.1. The planet’s virtual particle is

fixed to spatially coincide with the rc vector at all times. The planet’s self-gravity is calculated

using a multipole expansion of the planet’s mass about rc instead of rt, which allows us to better

approximate the planet’s potential using less terms in the multipole expansion.

Our algorithm is particularly well-suited for investigating tidal disruptions. If the

expansion were performed about rt after large tidal tails have formed within the simulation,
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rt would be mostly determined by the position of material that is far away from the core, and

the region with the best resolution of the potential may lie in empty space. We can estimate the

number of terms required to represent the core’s potential if the expansion is carried out about rt

instead of rc. Assume the core has a radius rc, and that the core lies a distance d ≡ |r − rc| from

the true center of mass. The angular scale of a lobe corresponding to a spherical harmonic of

degree l is simply π/l, which means that even a first-order approximation of the core’s potential

requires an expansion with lmax ≥ πd/rc. Assuming ∼ 10% of a planet’s mass is lost during

an encounter and this material lies an average distance ∼ 103RJ from the core at apocenter, d is

on order 100RJ, meaning that the multipole expansion must be carried out to l & 300. This is

highly impractical, and thus it is much more efficient to carry out the multipole expansion about

the planet’s core, whose position is associated with the densest material in the simulation and is

where the potential gradients are largest.

The potential φ calculated from the multipole expansion about rc is used both to

apply forces to the fluid in the simulation domain and to the virtual star and planet particles.

A consequence of not expanding about the true center of mass is that there exists a non-zero

force that is applied to the core. These forces are associated with the odd-l multipole terms that

usually cancel when the expansion is carried out about the true center of mass. Our multipole

expansion does not discard these odd-l terms, which allows us to confidently represent the

fluid’s potential using an expansion of relatively low order.

In the FLASH code’s split PPM formalism, the equations used for coupling hydro-

dynamics and the gravitational field for a cell i along each of the three cartesian directions are
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(Bryan et al., 1995)

(ρv)m+1
i = (ρv)m

i +
∆tm

2
gm+1

i
(
ρm

i +ρm+1
i
)

(A.3)

(ρE)m+1
i = (ρE)m

i +
∆tm

4
gm+1

i
(
ρm

i +ρm+1
i
)(

vm
i + vm+1

i
)
. (A.4)

The acceleration gm+1
i is calculated by extrapolating φm−1

i and φm
i to obtain an estimate for φm+1

i

φ̃m+1
i = φm

i

(
1 +

∆tm

∆tm−1

)
−φm−1

i
∆tm

∆tm−1 . (A.5)

This is in turn used to calculate gm+1
i

gm+1
i =

1
2∆xi

[
φ̃m+1

i+1 −φm+1
i−1 +

1
12

(
φ̃m+1

i+1 − 2φm+1
i +φm+1

i−1
δρi

ρi

)]
, (A.6)

where δρi is defined as

δρi = min
(
|ρm

i+1 −ρm
i−1| ,2 |ρm

i −ρm
i−1| ,2 |ρm

i −ρm
i+1|
)
× sign

(
ρm

i+1 −ρm
i−1
)

(A.7)

to enforce monotonicity in ρ.

Because the potential of the star in our simulations is approximated by an analytical

expression (for our simulations, a monopole potential), we can implement the following mod-

ification such that the component of the acceleration attributed to the star can be calculated to

much higher accuracy. We first make the assumption that the matter distribution remains fixed

over the course of the time-step, and then integrate the virtual particle positions forward in time
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from m to m + 1. This allows us to calculate

φ̃m+1
∗,i =

GM∗ρm
P,i

|ri − rm+1
∗ |

, (A.8)

an estimate of the star’s contribution to the potential based on the star’s approximate final po-

sition. This estimate should be much closer to the true value than simple extrapolation as the

potential at a given location has a non-trivial time-dependence. Splitting φi into two components

φ∗,i (star) and φP,i (planet), Equation (A.5) becomes

φ̃m+1
i = φm

P,i

(
1 +

∆tm

∆tm−1

)
−φm−1

P,i
∆tm

∆tm−1 + φ̃m+1
∗,i . (A.9)

Additionally, a correction must be made to Equation (A.6)

gm+1
i,cor = gm+1

i − gm+1
c , (A.10)

where gm+1
c is the acceleration experienced by the core due to the presence of odd-l terms in the

multipole expansion. Using gm+1
i,cor instead of gm+1

i , a hydrodynamical step is performed according

to Equations (A.3) and (A.4), which yields ρm+1
i and thus the true contribution at m + 1 of the

planet to the potential, φm+1
P,i . The positions of the virtual particles are then re-integrated from

m to m + 1, but this time using a linear interpolation of the time-evolving potential over the

time-step.

As mentioned previously, a complication introduced by this method is that the net

force applied to the point about which the multipole expansion is carried out is non-zero. This
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Figure A.2: Accumulation of numerical error in the total energy E and angular momentum J
for the simulations ran to compare with the results of FRW. The solid lines show simulations
for which s = 0.02RJ, the dashed lines show simulations where s = 0.01RJ, and the dash-dotted
lines show simulations where s = 5×10−3RJ. Note that the rate of error accumulation is greatest
shortly after periastron when the planet’s self-potential is rapidly varying as a function of time.
As the planet returns to a state of quasi-equilibrium, the rate of error accumulation asymptotes
to the original rate.

is because we do not cancel out the acceleration applied to the extended object’s true center of

mass rt, but rather the center of mass defined by the densest material, rc. While our correction

to the gravitational acceleration (Equation (A.10)) mitigates the problem somewhat, the mass

density within the simulation domain varies as a function of time, and thus the total mass that

satisfies the density criteria to be included when calculating rc also changes as a function of

time. This leads to small, but measurable, changes in the reference point over the course of a

simulation which are not entirely corrected by simply subtracting off the force applied at rc.

To ensure that angular momentum and energy are conserved, a correction is made to virtual

particle positions over the course each time-step when re-integrating from m to m + 1,

x∗,cor (t) = x∗ (t) −
t − tm

tm+1 − tm

(
rm+1

c − rm
c
)
. (A.11)

In practice, rm
c and rm+1

c are very nearly equal, with a substantial difference only arising when
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the extended object is close to being destroyed. Typical corrections are significantly smaller

than the size of individual grid cells in the most highly-resolved regions.

The accumulation of error for our single passage encounters is shown in Figure A.2.

In the deepest encounters where the self-potential changes rapidly, we find that the rate of rel-

ative error accumulation in total energy and angular momentum is no larger than 10−4 per dy-

namical time for our simulations with the lowest maximum-resolution, with the planet’s initial

diameter being resolved by 50 grid cells at t = 0. Most of this error arises from the ejected tidal

tails, which are resolved at lower resolution out of necessity because of the large volume they

occupy. For encounters in which all the matter within the simulation is always resolved at high-

est resolution (i.e. those that do not have significant mass loss), the relative error accumulation

is only 10−6 per dynamical time.

We also tested the error accumulation for two sets of simulations with higher max-

imum resolutions, with the planet’s initial diameter being resolved by 100 and 200 grid cells.

These simulations show an accumulation of fractional error of ∼ 10−7 and 10−8 per dynamical

time, respectively.

240



Appendix B

Fitting Parameters for Main-Sequence Star

Disruptions

For convenience, we have calculated fitting parameters for four characteristic quan-

tities: The peak accretion rate Ṁpeak, the time of peak accretion tpeak, the amount of mass lost

by the star ∆M, and the asymptotic decay power-law index n∞. These parameters can be used

to constrain observed tidal disruption events based on measurable characteristics of their light

curves (see Section 5.4.1):
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Ṁpeak = Aγ

(
Mh

106M�

)−1/2(M∗
M�

)2( R∗
R�

)−3/2

M�/yr (B.1)

tpeak = Bγ

(
Mh

106M�

)1/2(M∗
M�

)−1( R∗
R�

)3/2

yr (B.2)

∆M = CγM∗ (B.3)

n∞ = Dγ . (B.4)

In these expressions are four functions of β alone: Aγ , Bγ , Cγ , and Dγ . The forms of

these functions are derived by fitting rational functions to the outputs produced by the numerical

simulations presented in this chapter. These functions are derived separately for two polytropic

γ, γ = 4/3 and γ = 5/3, which are appropriate for high- and low-mass main sequence stars,

respectively.
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A5/3 = Exp
[

10 − 17β + 6.0β2

1 − 0.47β − 4.5β2

]
, 0.5≤ β ≤ 2.5 (B.5)

A4/3 = Exp
[

27 − 28β + 3.9β2

1 − 3.3β − 1.4β2

]
, 0.6≤ β ≤ 4.0 (B.6)

B5/3 =
−0.31 + 1.2

√
β − 1.2β

1.0 + 1.3
√
β − 4.2β

, 0.5≤ β ≤ 2.5 (B.7)

B4/3 =
−0.39 + 0.57

√
β − 0.31β

1 − 1.3
√
β − 0.9β

, 0.6≤ β ≤ 4.0 (B.8)

C5/3 = Exp
[

3.2 − 6.4β + 3.2β2

1 − 3.4β + 2.5β2

]
, 0.5≤ β ≤ 2.5 (B.9)

C4/3 = Exp
[

12 − 28β + 11β2

1 − 5.1β + 5.9β2

]
, 0.6≤ β ≤ 4.0 (B.10)

D5/3 =
−0.94 + 11β − 38β2 + 50β3 − 23β4

1 − 8.6β + 26β2 − 32β3 + 14β4 , 0.5≤ β ≤ 2.5 (B.11)

D4/3 =
−2.7 + 6.9β − 3.3β2 − 0.85β3 + 0.56β4

1 − 2.4β + 0.48β2 + 0.96β3 − 0.38β4 , 0.6≤ β ≤ 4.0 (B.12)
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