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Abstract 
A linear programming (LP) routine was implemented to model optimal energy storage dispatch 
schedules for peak net load management and demand charge minimization in a grid-connected, 
combined photovoltaic-battery storage system (PV+ system). The LP leverages PV power output 
and load forecasts to minimize peak loads subject to elementary dynamical and electrical 
constraints of the PV+ system. Battery charge/discharge were simulated over a range of two PV+ 
system parameters (battery storage capacity and peak load reduction target) to obtain energy cost 
for a time-of-use pricing schedule and the net present value (NPV) of the battery storage system. 
The financial benefits of our optimized energy dispatch schedule were compared with basic off-
peak charging/on-peak discharging and real-time load response dispatch strategies that did not 
use any forecast information. The NPV of the battery array increased significantly when the 
battery was operated on the optimized schedule compared to the off-peak/on-peak and real time 
dispatch schedules. These trends were attributed to increased battery lifetime and reduced 
demand charges attained under the optimized dispatch strategy. Our results show that Lithium-
ion batteries can be a financially viable energy storage solution in demand side, energy cost 
management applications at an installed cost of about $400 - $500 per kWh (approximately 40-
50% of 2011 market prices). The financial value of forecasting in energy storage dispatch 
optimization was calculated as a function of battery capacity ratio. 
 
Keywords – Economics, Energy storage, Forecasting, Optimal scheduling, Solar power 
generation 
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Nomenclature 
A  annual energy bill savings 
E  energy 
f  objective function 
M  number of forecast update times 
N  number of timesteps 
NCC number of charge cycles at 80% 
  depth of discharge 
NPV net present value 
OM operation and maintenance  
  costs 
P  power (dE/dt) 
R  power ramp rate (dP/dt) 
r  discount rate 
T  nominal battery lifetime 
t  time. 

 
Greek symbols 

Δ  discrete change 
ε  forecast accuracy (safety)  
  factor. 

Superscript 
DC rating DC nameplate rating of the PV 
  array 
m  forecast update index 
max  maximum value 
min  minimum value 
n  time index 
target target value, objective 
total  total energy capacity of the  
  battery array. 

 
Subscript 

0  initial condition (n = 0) 
l  load 
lf  load forecast 
o  PV+ output 
opt  computed with LP optimization 
  routine, i.e. Eqs. 1-3 
p  PV output 
pf  PV output forecast 
s  battery (storage) 
update time between forecast updates. 

 
Symbols 

<> denotes a time average. 

1. Introduction 
Adoption of advanced energy storage technologies as a means to integrate renewable energy 
resources into electric grids will dramatically increase in the next decade. 28 states in the United 
States of America have enacted mandatory renewable portfolio standards (RPS) and 5 additional 
states have adopted voluntary RPSs. RPSs require electricity providers to obtain a minimum 
percentage of their power from renewable energy resources by a certain date [1]. The state of 
California has set an ambitious RPS of 33% renewable electricity generation by the year 2020 
[2] and passed legislation to determine energy storage procurement targets for both privately and 
publicly owned utilities [3]. Although critical applications for large scale energy storage (and the 
associated costs, benefits and market potentials) have been clearly identified [4,5], dispatch 
strategies for stored energy that maximize the financial value of combined renewable generation 
and energy storage systems (hereafter RSS) are not well quantified or understood in an 
operational context [6].   
 
Many models have been developed to determine optimal scheduling for stored energy dispatch in 
RSSs. The objectives of these modeling studies can be broadly classified in two categories, 
utility side applications and demand side applications [7]. Utility side applications focus on 
optimizing properties of the RSS output that are economically beneficial to electric utilities (e.g. 
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renewable capacity firming, transmission and distribution upgrade deferral, transmission support, 
etc.). The financial benefits associated with some utility side applications may be difficult to 
quantify (e.g. transmission support).  
 
Demand side applications optimize the economics of the RSS when the system is installed 
“behind the meter”. In this case economic benefits are usually quantified in terms of energy bill 
savings for the RSS owner who purchases power from an electric utility (e.g. time-of-use energy 
cost management, demand charge management, etc.). Lee & Chen [8] used an advanced multi-
pass dynamic programming (AMPDP) algorithm to optimize contract capacities and optimal 
energy storage capacity of stand-alone BESSs for utility customers that incur time-of-use (TOU) 
electricity rates. They found that optimal BESS capacity could be determined and varied 
significantly based on the customer’s load profile. A number of studies have investigated optimal 
energy storage capacity and dispatch, and economics for PV+ systems1. Su et al [9]  
implemented a closed-loop control system to modulate power output from a PV+ system for 
demand charge management, TOU energy price arbitrage, emergency power supply and 
transmission support. Su et al concluded that the economic viability of PV+ systems is site 
specific and depends strongly on the end user load shape, utility rate schedule, PV+ capacity and 
choice of application, however, their evaluation only considered a single PV+ system with fixed 
PV nameplate rating and battery capacity. Hoff et al [10] studied the economic benefits of PV+ 
for emergency power supply and demand charge management applications for typical industrial 
customers. Hoff et al found that financial benefits from emergency power supply exceeded 
benefits from demand charge management; however, they assumed that the entire battery 
capacity would be devoted to one application and only considered two PV+ systems with fixed 
PV nameplate rating and battery capacity. Shimada & Kurokawa [11] modeled annual energy 
bill savings for a PV+ system over a range of battery capacities using an approximate insolation 
forecast and a load forecast to determine the amount of night time charging required to minimize 
the cost of energy purchased by the customer from the electric utility during the following day. 
Shimada & Kurokawa found that the value of the PV+ system was significantly increased by 
using day-ahead, hourly insolation and load forecasts to inform the energy storage dispatch 
scheduling algorithm and identified optimal battery capacities in terms of end user peak load. Ru 
et al [12] used a mixed integer linear programming (MILP) framework to determine optimal 
battery energy capacity (in the context of marginal energy cost) for a PV+ system and 
implemented a peak reduction objective assuming perfect net load forecasts. The most 
comprehensive model to quantify the economic value of general RSS in demand side 
applications is the Distributed Energy Resources Customer Adoption Model [13].  DER-CAM 
minimizes costs of operating on-site customer generation considering combinations of many 
different distributed generation technologies, dispatched in a variety of demand side applications, 
and electrical tariffs.2  Stadler et al [14] used DER-CAM to study demand charge management 
and CO2 emissions minimization strategies in PV+ systems.  Their results showed that for 
demand charge management it is most economically efficient to charge batteries from the 

                                                 
1 The term PV+ was coined by Hoff et al [10] and refers to combined photovoltaic and battery energy storage 
systems where the battery is placed “behind the meter”. 
2 The primary disadvantage of DER-CAM is that, due to its complexity and native software, the model is not yet 
suitable for widespread public release, although some DER-CAM functionality has been made available to end users 
through the Storage Viability and Optimization Web Service [15]. 
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electric grid during off-peak hours, while charging batteries directly from zero emissions PV 
generation for CO2 minimization results in extraordinarily high energy costs to the customer. 
 
In this paper we consider an idealized PV+ system in which a PV array and a Lithium-ion battery 
array are connected to the utility electric grid (Fig. 1). The goal is to determine the optimal 
dispatch schedule for the energy stored in the battery to achieve a preset amount of load peak 
shaving (i.e. demand charge management). The optimization algorithm is formulated as a linear 
program (LP) and leverages day-ahead PV power output and load forecasts with regular updates 
to determine the best time to charge or discharge the battery subject to basic dynamical and 
electrical performance constraints of the PV+ system. System economics were quantified by the 
net present value (NPV) of the battery, and the financial value of PV power output and load 
forecasts in an energy bill reduction application of the PV+ system was calculated. We also 
computed the market price at which large scale (240 - 1270 kWh), Lithium-ion battery energy 
storage becomes financially viable in demand side, energy bill minimization applications. The 
model formulation and structure are described in Section 2, results from analysis of model output 
are presented in Section 3. Sections 4 and 5 are a discussion of our results and conclusions. 

2. Methodology 

 
Figure 1 – A schematic of the system model illustrating the important components and power flows; the PV+ system 

is delineated by the dashed line. Positive and negative symbols indicate sign conventions for active power flows. 
Because the inverter is assumed to be lossless it is not shown in this diagram. The battery management system is 

included in the battery, which allows “black box” treatment of complex electrical dynamics and transients within the 
battery. 

2.1 Linear optimization model 
Fig. 1 shows a schematic of the idealized PV+ system in which a PV array, a Lithium-ion battery 
array, and a load are connected to the utility electric grid. The PV array and battery array 
generate DC power which is converted to AC power via a lossless bidirectional inverter, and all 
power electronics (e.g. DC-DC converters and battery management systems) are assumed to be 
100% efficient. The charging/discharging response of the battery is assumed to be practically 
instantaneous so that energy from the battery may be dispatched “on demand”. This assumption 
is justified because the response time of Li-ion type batteries is O(ms) and energy dispatch from 
the battery was modeled on 15 min intervals. The battery is treated as a black box within the 
model, meaning that the charging and discharging efficiency of the battery does not depend on 
the charge/discharge power Ps, and Ps can take any values within the specified limits of the 
nominal battery performance. The utility customer’s net load is given by Po-Pl. 
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The model is formulated as a discrete-time, linear optimization problem (linear program; LP). 

 
such that 

(1) 

 (2a) 

 
(2b) 

 
(2c) 

 
(3a) 

 (3b) 
In Eqs. 1-3 E and P are energy and power. Variables with subscript s are related to the battery 
array, subscript pf refers to the PV power output forecast, subscript lf is the load forecast, 
subscript o denotes power flows to and from the PV+ system, and 0 indicates an initial condition. 
Integer superscript n is the current timestep, Δt is the timestep size and N denotes the maximum 
number of timesteps in the forecast horizon (e.g. N = 96 for a 24 h forecast horizon at 15 min 
sampling rate). Superscripts min and max indicate performance limits of the battery (i.e. 
maximum and minimum capacity or charging/disch arging rate). Eq. 1 minimizes net PV+ 
battery system power output (Po) levels that fall below the forecast customer load (Plf). In Eq. 1, 
f is a scalar valued objective function (or cost function) that corresponds to the energy shortage 
between the forecast customer load Plf and the forecast PV power output Ppf. The condition Plf

n 
≥ 0 ensures that battery charging and discharging is unrestricted during off-peak periods. The 
condition Plf

n > Ppf
n allows the battery to charge and discharge freely (i.e. there is no change in 

f) when the forecasted PV power output meets or exceeds the forecasted load. No cost is 
associated with selling or purchasing power from the electric grid in the LP, i.e. the model does 
not explicitly optimize on price arbitrage between the on-peak and off-peak energy markets. 
Price arbitrage is considered indirectly by forcing a reduction of on-peak demand and charging 
off-peak. Eqs. 2a,b are energy conservation (Kirchhoff’s Law) and system dynamic respectively. 
Eqs. 2a,b are enforced as equality constraints in the LP. Eq. 3a requires that the energy stored in 
the battery is bounded within the capacity of the battery. Eq. 3b constrains the battery charging 
and discharging rate within the specified limits of the battery performance. Eqs. 3a,b are 
modeled as inequality constraints. The discrete-time, LP system is solved in MATLAB.  

2.2 Time advancement and response to forecast errors 
Fig. 2 shows the high level structure of the optimization algorithm. PV+ system parameters and 
day-ahead PV power output and load forecasts are inputs to the model (see Section 2.4). The 
application of the optimization algorithm depends on two conditional tests (top right in Fig. 2). 
Empirical testing of the model revealed that the optimization strategy performed poorly when El 
< (Es

max – Es
min) due to sub-optimal convergence of Eq. 1 in the LP optimization. Therefore, 

each day at midnight the 24-hour ahead forecast is used to determine if the useable capacity of 
the battery is large enough to supply the entire peak energy demand. The LP optimization is only 
conducted if the usable energy capacity of the battery is less than the energy capacity of the net 
load times a forecast accuracy factor ε (here ε = 0.85). ε is a safety factor which compensates for 
effects of systematic forecast bias. If the LP optimization is not conducted, the energy stored in  



Nottrott et al (2012) 
  

6 of 19 
 

 
Figure 2 – Flowchart illustrating the important inputs, outputs and model processing steps in the dispatch schedule 

optimization algorithm. 
 
the battery is dispatched in real-time to meet the net load. At each forecast update time the model 
output is an optimal, 24-hour ahead energy dispatch schedule (Po) for the PV+ system.  
 
PV power output forecasts (Ppf) and load forecasts (Plf) are available for a finite time horizon 
N∙Δt and are continuously updated on an interval tupdate. The forecast horizon is N∙Δt = 24 hours 
and  Δt = 15 min. This type of information about future system output motivates a receding 
horizon approach for time advancement within the model. Initially an optimization is performed 
to compute the best dispatch schedule for the energy stored in the battery {Ps

n}m=0 using all 
available information about the initial state of the system and PV power output and load 
forecasts until N∙Δt. Forecast updates are denoted by the integer subscript m∈Z = [0,M]. The 
model is initialized at n = 1, m = 0 by requiring that {E0}0 has an arbitrary but fixed value (Eq. 
3a), and allowing {Ps

1}0 to take any value between Ps
min and Ps

max determined by the solution to 
Eq. 1. The optimization is conducted over N∙Δt and the PV+ system operates according to the 
computed dispatch schedule until tupdate when a new forecast is available. At that point the 



Nottrott et al (2012) 
  

7 of 19 
 

optimization is repeated using new, 24 hour ahead PV output and load forecast data, and 
additional equality constraints are imposed in the LP to ensure that {Ps

1}m in the current 
optimization is equal to {Ps

n_update}m-1 from the previous optimization (i.e. continuity of the 
storage dispatch schedule Ps is required between forecast updates). 

 (4) 
The initial energy storage for the mth iteration is set to, 

 (5) 
The system operates on the updated schedule for nupdate = tupdate/Δt timesteps until a new forecast 
is obtained. This procedure is repeated to generate a continuous, optimal energy dispatch 
schedule for the battery. 
 
The assumption of practically instantaneous battery response (see Section 2.1) permits 
incorporation of real time PV output and load data to improve the PV+ system performance 
during the forecast update interval tupdate. Refinements are made to the optimal, 24-hour ahead 
schedule at each time increment between n = 1 and n = nupdate in order to compensate for errors 
in the PV output and load forecasts (dashed box in Fig. 2). At the forecast issue time (n = 1) the 
optimal stored energy dispatch schedule is computed over the entire 24 hour forecast horizon 
according to Eqs. 1-3 using only forecast information and the current state of the battery. The 
actual PV output and load are monitored in real time and the battery can respond to compensate 
for forecast errors. During off-peak rate periods this approach does not contribute to demand 
charge reduction, but it amounts to a renewables capacity firming application of the battery, i.e. 
the battery responds both to shortages and surpluses. During on-peak rate periods PS ≥ 0 is 
enforced, so the battery only responds to shortages. After a period tupdate new forecast 
information is available and the optimal dispatch schedule is recalculated over the new forecast 
horizon. Conceptually one can interpret this procedure as a continuous perturbation to the 
optimal solution that arises due to forecast errors. At each forecast issue time the charge and 
output states of the battery are perturbed by a small amount from their expected states under the 
optimized solution due to the action of real time compensation for forecast errors. 

2.3 PV+ system cost-benefit analysis 
There are three PV+ system parameters in our model: PV array DC nameplate rating (Pp

DC rating), 
energy storage capacity (Es

total) and the peak load reduction target (Pl
target). Pl

target was chosen as 
a PV+ system parameter because the optimization algorithm targets demand charge management, 
and Pl

target is linearly proportional to the customer’s demand charge (see Appendix A). A more 
common choice to quantify the load capacity being managed by the PV+ system is battery 
capacity ratio, which is the quotient of the total energy storage capacity and the average daily 
load energy capacity (Es

total/<El>; [11]). It will be shown later (Section 3.4, Fig. 8a) that Pl
target 

and Es
total/<El> are consistent and both are valid PV+ system parameters. To evaluate feasible 

PV+ system designs a cost analysis was performed to determine the NPV of the battery storage 
system by calculating energy bill savings attained over the lifetime of the battery relative to 
capital costs of the storage system, annual operation and maintenance (O&M) costs and the 
discount rate. The net present value is estimated from 

 
(6) 

where A is the value of annual energy bill savings extrapolated from 2009 data, OM is the annual 
O&M cost for operating the storage system (including energy costs for active cooling of the 
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battery array), r is the discount rate, t is the current year and T is the total lifetime of the battery 
in years. For t = 0, OM is equal to the capital costs incurred on the purchase and installation of 
the storage array and A = 0. In this study we assumed that annual O&M costs were constant and 
equal to 3% of the capital cost of storage. Annual energy bill savings are attributed solely to the 
use of energy storage in the PV+ system, and energy bill savings are assessed in terms of the 
difference between the annual energy costs with and without the application of battery energy 
storage. Electric utilities assess TOU energy pricing and demand charges for industrial 
customers. The energy bill was calculated using the San Diego Gas & Electric (SDGE) AL-TOU 
rate schedule for industrial customers. The AL-TOU tariff includes basic service fees, on-peak 
and non-coincident demand charges and TOU energy pricing (Table A.1; [16]). Non-coincident 
demand charges (see Table A.1) are assessed monthly based on the utility customer’s maximum 
load (15 min interval) during the current month, not considering the rate periods in Table 1. If 
the maximum load during the previous 11 months was greater than the maximum load in the 
current month, the non-coincident demand charge is computed from 50% of the maximum load 
during the previous 11 months. This rate structure incentivizes customers to gradually reduce 
their monthly peak load in order minimize the non-coincident demand charge portion of their 
energy bill. 

 
Table 1 – San Diego Gas and Electric (SDGE) seasonal time-of-use rate periods for industrial customers (Schedule 

AL-TOU). The actual prices associated with energy and demand charges are listed in Table A.1 in Appendix A. 
 
In order to quantify the financial advantages of our optimization strategy we compared the 
optimized dispatch schedule (OPT) with two storage dispatch schedules that did not use any PV 
output or load forecast information, a simple off-peak/on-peak, charge/discharge schedule 
(OFFON) and a real-time dispatch scenario (RT).  For the OFFON schedule the battery 
undergoes one full charge cycle at 80% depth of discharge (DoD) per day. Charging and 
discharging rates are constant over the off-peak and on-peak periods defined in Table 1. OFFON 
is often used in real applications because it is simple, guarantees reduction in net load during the 
on-peak rate period, and maximizes off-peak, on-peak energy arbitrage. For the RT schedule the 
battery is charged to full capacity during the off-peak rate periods in Table 1 and discharged to 
meet the customer’s actual net-load in real time. RT is also simple and attractive because the 
battery is only used when it is needed for peak load reduction thus increasing battery lifetime. 

2.4 Battery System 
The energy storage device is a Sanyo DCB-102 Lithium-ion battery array. A single Sanyo DCB-
102 has nominal energy storage capacity of 1.59 kWh and minimum lifetime rating of 3000 
cycles at 80% DoD. The DCB-102 has a maximum charging power of Ps

min = -340 W and a 
maximum discharging power of Ps

max = 720 W. The capital cost of the battery array was 
assumed to be $1000/kWh including installation costs. The number of charge cycles at 80% DoD 
over a period of N timesteps was calculated from Eq. 7. 

 
(7) 
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In Eq. 7 NCC is the number of charge cycles and Es
total is the total energy capacity of the battery 

array. To avoid overcharging or overdrawing of the battery array the model parameters Es
min and 

Es
max are set to 0.2Es

total and 0.99Es
total, respectively. 

2.5 Solar and Load Data 
One year (2009) of 15 min DC power output data 
from one inverter of the EBU2 building rooftop 
PV array on the University of California, San 
Diego campus was used as the basis for Pp  
and Ppf (Fig. 3a). The PV array has a DC 
nameplate rating of 7.5 kW DC and the data was 
scaled to approximate the output of a larger system 
with a rating of Pp

DC rating = 500 kW DC; for 15 
min  
averages the relative variability of the output for a 
500 kW or 7.5 kW are essentially identical [17]. 
The load data were obtained from 2009 UCSD 
campus load profiles (Fig. 3b). 

2.6 Solar and Load Forecasts 
Real forecasts (e.g. from numerical weather 
prediction) often produce large errors that are 
weather and location dependent [18].To make our 
results more generalizable and focus on the 
performance of battery dispatch strategies, a PV 
“forecast” was generated from the measured data. 
The 15 min PV output was filtered using a 45 min 
moving average window to generate the solar 
forecast Ppf. During clear and overcast conditions 
Pp (the actual PV power output) and Ppf (the 
forecast PV output) are very close since Pp is 
smooth, but in partly cloudy conditions Pp 
fluctuates randomly about <Ppf>. Uncertainty in 
the load forecast was simulated by incorporating 
random, normally distributed fluctuations with a 
standard deviation of 5% of the magnitude of the 
load in Fig. 3b. 

3. Results 
PV+ system performance was simulated for a wide range of peak load reduction targets (Pl

target 
= 240-1500 kW), battery storage capacities (Es

total = 240-1270 kWh) and a PV array with a fixed 
nameplate rating of Pp

DC rating = 500 kW DC in order to evaluate model performance and 
quantify the financial benefits that are realized when PV and load forecasts are applied to 
optimize the charge/discharge schedule of the battery. In total 602 cases were simulated for one 
year. 

 
Figure 3 – Monthly climatologies (15 min 

resolution) of a) the measured PV array DC output 
normalized by the DC nameplate rating; b) the 
total measured load normalized by maximum 

annual demand (33.8 MW in October). The peak 
load profile is obtained by requiring that the 

maximum monthly peak load is {Pl
max}monthly - 

Pl
target and the excess “peak load” is the input to 

the optimization routine. Note that the peak in the 
PV array output usually occurs several hours 

earlier than the peak in the customer load. 
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3.1 Time series of model output 
Fig. 4 shows exemplary time series of model output data from September 9th, 2009 for Pl

target = 
1020 kW and Es

total = 1111 kWh. The columns in Fig. 4 show PV+ system power flows, battery 
charge state and net load on the electric grid for the OFFON, RT and OPT dispatch schedules. 
Figs. 4c,f,i illustrate superior performance of the optimized schedule over the OFFON and RT 
dispatch schedules that do not use PV output and load forecasts. For the given PV+ system 

 
Figure 4 – Sample timeseries of model output data on September 9th, 2009 illustrating PV+ system power flows 

(a,b,c), the battery charge state (d,e,f) and the net load on the electric grid (g,h,i).  Figs. 4a,d,g show model output 
when energy storage is dispatched according to the OFFON strategy, Figs. 4b,e,h show model output for the RT 

strategy and Figs. 4c,f,i show model output for the OPT strategy.  Power flows in Figs. 4a,b,c are relative to the PV+ 
system so that Po > 0 indicates net generation by the PV+ system and  Po < 0 indicates reverse power flow (i.e. the 
battery is charging from the grid). The fine dashed horizontal lines in Figs. 4a,b,c, indicate the maximum charging 
and discharging power of the battery array. The net load plotted in Figs. 4g,h,i is relative to the electric grid so that 

(Pl – Po) > 0 indicates power flow from the grid to the customer and vice versa. The dash-dotted vertical line in 
Figs. 4g,h,i indicate the range of the on-peak period as defined in Table 1. The PV+ system parameters for the data 

shown in this figure are Pp
DC rating = 500 kW, Es

total = 1111 kWh and Pl
target = 1020 kW. 
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parameters the battery undergoes one complete charge cycle per day for all three dispatch 
schedules. Using the OFFON strategy the energy stored in the battery is dispatched concurrently  
 
with the peak load, but the output power of the battery is too low during that time. Using the RT 
strategy the battery discharges too quickly leading to is complete discharge by the beginning of  
the on-peak rate period. With the OPT strategy the shape of the battery discharge curve closely 
approximates the shape of the peak load, and the net load during the on-peak rate period is 
relatively constant when compared with the off-peak/on-peak and real-time strategies (Fig. 4i). 
 
Figs. 4g,h,i show that the maximum net load on the electric grid during the on-peak rate period 
(i.e. when higher demand charges are assessed by the utility) is smallest under the optimized 
schedule. For the data shown in Fig. 4 the optimization algorithm reduced the maximum on-
peak, net load by 26% (112 kW) when compared with the OFFON schedule, and 43% (237 kW) 
when compared with the RT schedule. The small peak near the end of the on-peak rate period in 
Fig. 4i is due to under-forecasting of the net load resulting from an overestimation of the actual 
PV power output by the PV forecast and/or an underestimation of the peak load by the load 
forecast. This leads to the battery becoming discharged just before the end of the high load 
period. 

3.2 Performance evaluation of the optimized dispatch schedule 

 
Figure 5 – Difference between the net present value (ΔNPV; Eq. 6) of the OPT schedule and (a) the 
OFFON schedule; (b) the RT schedule. The NPV difference for a broad range of battery capacities 
(Es

total) and peak load reduction targets (Pl
target) are shown. The PV array nameplate rating was set to Pp

DC 

rating = 500 kW DC. The units of the color scale are $USD and the dashed white line delineates the $0 
contour. 

 
 
Results from 2009 model output were extrapolated over the lifetime of the battery (3000 the 
charge cycles, Eq. 7) to estimate the NPV of the battery array. Fig. 5 shows the NPV gain of the 
OPT dispatch schedule over the OFFON (Fig. 5a) and RT (Fig. 5b) dispatch schedules for 
different battery capacities that were “tasked” with a broad range of peak load reduction targets 
(Pl

target). Total battery capacity (Es
total) is plotted on the horizontal axis and the peak load 
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reduction target ratio (Pl
target/ Pp

DC rating) is plotted on the vertical axis. Given that Pp
DC rating is 

500 kW, Pl
target ranges from 250 kW to 1500 kW).  The color scale is the increase in NPV 

(ΔNPV) of the battery array in US dollars. Fig. 5 shows that operating the battery on the OPT 
dispatch schedule is more profitable than operating on the OFFON or RT schedules for most 
battery sizes and peak load capacities modeled in this study. The OPT strategy provides 
significantly more value than the OFFON strategy, especially in the range Es

total > 500 kWh and 
Pl

target/ Pp
DC rating < 1.25 where the NPV of the battery increases in the range $150k-$450k (or 

$220/kWh of capacity) under the OPT scenario. When compared with the RT dispatch strategy, 
the OPT schedule increases the value of the battery array by about $100k - $400k (or $270/kWh) 
for Es

total > 600 kWh and Pl
target/ Pp

DC rating > 1.5 (Fig. 5b).  In Fig. 5a the increase in NPV 
becomes independent of Pl

target  for large values of Pl
target/ Pp

DC rating, because the demand charge 
savings are ultimately limited by the total battery capacity regardless of the dispatch schedule. 

3.3 NPV of the battery array 

 
Figure 6 – The NPV of the battery array operated on the optimized dispatch schedule assuming an installed cost for 

storage of (a) $1000/kWh and (b) $200/kWh. The units of the color scale are $USD and the dashed white line 
delineates the $0 contour. 

 
Fig. 6 illustrates the NPV of the battery array when operated under the optimized dispatch 
strategy assuming different costs for the storage. Fig. 6a shows the battery NPV assuming a cost 
$1000/kWh, which is representative of the current (2011) market price for large scale, Lithium-
ion battery arrays.  At a price of $1000/kW all battery sizes have a negative NPV indicating that 
Lithium-ion type batteries are not a financially viable technology in demand side applications if 
energy bill savings for the utility customer are the only value proposition considered in the 
valuation of the storage array. The results of Fig. 6a raise an interesting question: What is the 
price at which Lithium-ion batteries become financially viable in demand side applications? We 
estimated this price within our model framework by varying the capital costs in Eq. 6. Fig. 6b 
shows the NPV of the battery array at a cost of $200/kWh, the maximum price at which the NPV 
> 0 for nearly all PV+ system designs modeled in this study.  It is worth noting that the NPV of 
the battery array became greater than zero for a limited range of PV+ system parameters at a 
price as high as $600/kWh. 
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Figure 7 shows the maximum NPV in USD as a function of battery energy storage capacity for 
three hypothetical storage costs $600/kWh, $400/kWh and $200/kWh. At an installed cost of 
$600/kWh only the battery capacities less than 400 kWh are profitable over the lifetime of the 
battery array and the marginal cost of storage is -123 $/kWh.  At installed costs of $400/kWh and 
$200/kWh all battery sizes are profitable and the marginal benefit of additional storage is 70 – 
270 $/kWh. In practice, when Es

total > El (or Pl
target > sup{Pl}) the slope of the lines in Fig. 7 

becomes zero, because no additional demand charge savings can be realized. 

 
Figure 7 – The maximum NPV [$USD] as a function of battery energy storage capacity assuming an installed cost 
for Lithium-ion batteries of a) $600/kWh, $400/kWh and $200/kWh.  For example, the data plotted as squares in 
this figure follow the maximum of the surface in Fig. 6b.  The slope of the lines is the marginal cost of additional 

energy storage. 

 3.4 PV+ System Parameters at Maximum NPV 
Fig. 8a shows that the peak load reduction target ratio (Pl

target/Pp
DC rating) and battery capacity 

ratio (Es
total/<El>; [11]) are linearly increasing functions of battery energy storage capacity. 

Pl
target is a relevant PV+ system parameter in the context of demand charge management because 

it is linearly related to the reduction in demand charges, however, in practice Es
total/<El> is a 

more useful quantity for system design. Fig. 8b shows the financial value of the OPT dispatch 
schedule over the OFFON and RT dispatch schedules in terms of the difference in the NPV of 
the battery array (ΔNPV) as a function of the battery capacity ratio. ΔNPV in Fig. 8b can also be 
interpreted as value of the PV power output and load forecasts (see Section 4). Fig. 8b shows that 
the value of the forecasts increases linearly with Es

total/<El> in the range $150k - $400k when 
compared to the ONOFF strategy.  The trend in ΔNPV as a function of Es

total/<El> is fairly weak 
for the OPT-RT data in Fig. 8b, and is better represented by the mean value of the data 
(<ΔNPV> = $51k) rather than a linear regression. 
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4. Discussion 
An important goal of this modeling effort was to demonstrate and quantify the value of applying 
PV power output and load forecasts to inform energy dispatch optimization in PV+ systems. The 
OFFON schedule maximizes price arbitrage in the time-of-use energy market, but its success as 
a demand charge management strategy relies on a strong temporal correlation between 
customer’s actual peak load and the peak load period defined by the utility (Table 1). If the 
customer’s actual peak load occurs outside the peak load period defined in the utility rate 
schedule the customer may incur high non-coincident demand charges (Table A.1). Because the 
peak load is typically variable over the on-peak market period, constant output from the battery 
over during the on-peak period market period is a robust yet suboptimal approach for demand 
charge minimization (e.g. Fig. 4a,d,g). 
 
The effectiveness of the RT schedule primarily depends on whether the energy storage capacity 
of the battery exceeds the daily energy requirement of the customer’s peak load (<El>).  If the 
energy capacity of the battery is greater than the energy required to meet the customer’s peak 
load, then energy stored in the battery can be dispatched in real-time and the entire peak load will 
be eliminated. If the battery capacity is less than the energy requirement of the load, the energy 
stored in the battery will be depleted before the peak load event (Fig. 4b,e,h), and the customer 
incurs high demand charges. The optimization algorithm developed in this paper improves on 
both the OFFON and RT strategies by using PV power output and load forecasts to overcome the 
disadvantages of both approaches. The optimal scheduling strategy targets demand charge 
management, because demand charges typically account for the largest portion of a utility 
customer’s energy bill. 
 
Fig. 5 quantifies the financial advantages of using PV power output and load forecasts to 
determine the optimal stored energy dispatch schedule in the PV+ system. We chose to present 
results as absolute USD values rather than percent values because, for an NPV that can be 

 
Figure 8 – a) PV+ system parameters as a function of the battery energy storage capacity (Es

total) and b) the value of 
the optimized dispatch schedule (ΔNPV) as a function of battery capacity ratio (Es

total/<El>) along the maximum of 
the surface in Figs. 6a and b. <El> in Fig. 8a,b is the average daily energy consumption during the peak period (Fig. 

1). The data in Fig. 8b correspond to the maximum of the surface plotted in Fig. 5. 
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positive or negative, absolute USD values provide readers with a more tangible quantity to 
interpret the relative value of different dispatch strategies. Fig. 5a shows that the largest financial 
gains from OPT strategy over the OFFON strategy occurred in the range in the range Es

total > 500 
kWh and Pl

target/ Pp
DC rating < 1.25. Those gains were attributed to superior load following and 

reduced battery cycling characteristics of the optimized dispatch schedule. In the range Pl
target/ 

Pp
DC rating < 1.25, the battery array lasts 8.2 year under the OFFON schedule compared to an 

approximately 10 – 16 year lifetime under the OPT schedule. The OPT dispatch schedule 
significantly increases the value of the battery array over the RT schedule for Es

total > 600 kWh 
and Pl

target/ Pp
DC rating > 1.5. These gains occur because the optimization strategy uses forecast 

information to distribute the energy stored in the battery over the duration of the peak load 
period, even when the energy capacity of the peak load exceeds the energy capacity of the 
battery array (Figs. 4h,i). In the range Pl

target/ Pp
DC rating < 1 the performance of the OPT and RT 

dispatch strategies is similar because the energy capacity of the battery is greater than the energy 
capacity of the peak load so the amount of energy storage is sufficient to eliminate the peak load 
throughout the year, thus the dispatch schedules for both strategies are similar. 
 
Noise in Figs. 5 and 6 is due to errors in the simulated PV power output and load forecasts 
relative to the actual PV output and load. Because forecasts are simulated using a Monte Carlo 
technique (Section 2.5), and a real-time dispatch strategy is used to respond to forecast errors 
between forecast updates (see Section 2.3) some random variability is expected across the range 
of simulations modeled in this study. The implication of the PV+ system real-time response to 
forecast errors is that, for erroneous forecasts that significantly and consistently under estimate 
the forecast net load (Pl-Po), the OPT strategy reduces to the RT strategy as the forecast error 
becomes large. The small peak in Fig. 4i was found to be a common feature of the daily storage 
dispatch schedules produced by the optimization routine that occurred when the actual net load 
was underestimated by the forecasts. This finding is interesting because it suggests that there is 
an incentive to overestimate the magnitude of the net load in the forecast to improve 
performance of the battery. An alternative interpretation is that the financially optimal battery 
capacity will change based on the nature of errors contained in the PV output and load forecasts. 
 
Generally the OPT schedule provides as much or greater value than the both the OFFON and RT 
schedules (in terms of the NPV of the battery array), but the optimization algorithm is only 
superior if reliable, accurate solar and load forecasts are available. Due to the structure of the 
demand charge tariffs, poor forecasts on only one day of the month could render the demand 
charge reduction of the OPT strategy inferior to OFFON. When no forecasts (or unreliable 
forecasts) are available, the PV+ operator must choose between the OFFON or RT schedule. Our 
results are significant in that context because, a typical PV+ owner/operator needs to purchase 
forecasts from a third party provider. The decision to purchase forecasts will depend on the 
priority of the PV+ system owner/operator and trends observed in a plot similar to Figs. 5 and 
8b. Fig. 5 illustrates that the most financially attractive energy dispatch strategy for the PV+ 
system is a complex decision that depends on PV+ design parameters, electrical and performance 
characteristics of the battery array and utility energy prices. 
 
Although the results of Fig. 5 and Fig. 8b are encouraging for the economics of solar and load 
forecasting in demand side energy storage applications Fig 6a indicates that at current (2011) 
market prices, no dispatch strategy performs well enough to make large scale Lithium-ion battery 
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energy storage a financially viable option if monthly energy bill savings are the only benefit 
associated with the operation of the energy storage. We employed our model to estimate the 
price at which Lithium-ion energy storage would become financially viable for the demand 
charge management application studied in this paper. Assuming a utility rate schedule similar to 
the SDGE AL-TOU battery array owners can expect to break even over the lifetime of the 
battery at an installed cost of $600/kWh for systems with batteries smaller than 400 kWh (Fig. 
7). Larger capacity batteries (up to 1.25 MW) generate profits in the range $100k-200k (or $100-
400 per kWh) at an installed cost of approximately $500-$400 per kWh (Fig. 7). This result is 
particularly relevant for the 2nd life battery industry, which holds promise for developing large 
scale Lithium-ion, battery energy storage systems from used EV batteries at a lower cost than 
new batteries. Perhaps the most interesting trend in Fig. 6 is that the PV+ system parameters 
which result in the most profitable design (in terms of the NPV of the battery array) change 
significantly depending on the market price of the battery. At the 2011 price of $1000/kWh all 
battery sizes return negative profits over the battery lifetime so it is logical that the most 
profitable battery size is the smallest size (Fig. 6a). If the market price for Lithium-ion batteries 
decreases sufficiently (Fig. 6b) nearly all battery capacities become profitable. In the price range 
of $200-$400 per kWh there is a marginal benefit associated with increasing storage capacity 
(until demand charges are eliminated) so that large capacity battery sizes have greater NPV than 
small capacity batteries, which is a desirable property in the sense of economies of scale (Fig. 7). 
 
The similarity of the trends observed between the two variables plotted in Fig. 8a suggests that 
there is a strong correlation between the Pl

target and <El>. This observation is an indication that 
both Pl

target/Pp
DC rating and Es

total/<El> are consistent and robust PV+ system parameters. The 
value of PV power output and load forecasts in demand side, energy bill management 
applications for large scale, Lithium-ion batteries is $51,000 ± $35,000 over the lifetime of the 
battery array, where the error is represented by one standard deviation of the OPT-RT data in 
Fig. 8b. 
 
It is important for readers to realize that the results presented in this paper were based on site 
specific PV power output data and load profiles, and the SDGE AL-TOU rate schedule (SDGE, 
2011). Some variability in Figs. 5 and 6 is expected on site to site basis. It has been noted that 
demand charges are typically higher in the state of California when compared to other regions in 
the United States (T. Pietsch, Personal communication, 2011). It is highly probable that a 
different rate schedule would produce different trends than those illustrated in Figs. 5 and 6. 
However, all of these differences are not related to any of the fundamental aspects of our model. 

5. Conclusion 
We developed a linear programming routine to optimize the energy storage dispatch schedule for 
a grid-connected, combined photovoltaic-battery storage system (PV+ system).  The 
optimization strategy targets demand charge management through a targeted peak load  
reduction, and leverages PV power output and load forecasts to determine the best trajectory for 
the battery storage output power in order to minimize demand charges. We simulated a broad 
range of PV+ system designs and performed a cost analysis to compare the financial benefits of 
our optimized energy storage dispatch schedule with basic off-peak/on-peak 
charging/discharging and real-time dispatch strategies. The performance and value of the 
optimization method were quantified in terms of energy bill savings attainable over the lifetime 
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of the battery array. The net present value (NPV) of the battery array increased significantly (in 
the range $100k - $450k – or $220/kWh to $270/kWh – for some PV+ configurations) when 
energy storage was dispatched on the optimized schedule over the simple dispatch schedules that 
did not use forecast information. Lithium-ion batteries are not a financially viable storage 
technology in demand side, energy bill management applications at current (2011) market prices. 
We estimated that Lithium-ion batteries become profitable at an installed cost of about 
$450/kWh, which is about 45% of 2011 market prices. The value of PV power output and load 
forecasts for the application studied in this paper is $51,000 ± $35,000. This study underscores 
the need to develop tools and techniques for quantitative modeling and analysis to improve 
estimates of the economic value of energy storage and forecasting for both utility and demand 
side applications. We consider our method to be a simple yet feasible approach to that end, 
which is useful for energy storage manufacturers, financiers and other industry professionals 
seeking to quantify the value of their product and forecast investment returns. 
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Appendix A 
 

 
 

Table A.1 – The SDGE AL-TOU rate schedule (secondary) of default electricity rates for all non-residential 
customers whose monthly maximum demand equals, exceeds, or is expected to exceed 20 kW. The data in this table 

was current as of August 2011. Although electricity rates change every few months, the magnitude of the values 
shown in this table is representative of current TOU electricity rates for industrial customers in the SDGE territory. 

The TOU rate periods are defined in Table 1. 
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