
UC Davis
UC Davis Previously Published Works

Title
Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with 
convolutional neural networks

Permalink
https://escholarship.org/uc/item/23w757v3

Authors
Gros, Charley
De Leener, Benjamin
Badji, Atef
et al.

Publication Date
2019

DOI
10.1016/j.neuroimage.2018.09.081
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/23w757v3
https://escholarship.org/uc/item/23w757v3#author
https://escholarship.org
http://www.cdlib.org/


Automatic segmentation of the spinal cord and intramedullary 
multiple sclerosis lesions with convolutional neural networks

A full list of authors and affiliations appears at the end of the article.

Abstract

The spinal cord is frequently affected by atrophy and/or lesions in multiple sclerosis (MS) 

patients. Segmentation of the spinal cord and lesions from MRI data provides measures of 

damage, which are key criteria for the diagnosis, prognosis, and longitudinal monitoring in MS. 

Automating this operation eliminates inter-rater variability and increases the efficiency of large-

throughput analysis pipelines. Robust and reliable segmentation across multi-site spinal cord data 

is challenging because of the large variability related to acquisition parameters and image artifacts. 

In particular, a precise delineation of lesions is hindered by a broad heterogeneity of lesion 

contrast, size, location, and shape. The goal of this study was to develop a fully-automatic 

framework — robust to variability in both image parameters and clinical condition — for 

segmentation of the spinal cord and intramedullary MS lesions from conventional MRI data of MS 

and non-MS cases. Scans of 1,042 subjects (459 healthy controls, 471 MS patients, and 112 with 

other spinal pathologies) were included in this multi-site study (n=30). Data spanned three 

contrasts (T1-, T2-, and T2*-weighted) for a total of 1,943 volumes and featured large 

heterogeneity in terms of resolution, orientation, coverage, and clinical conditions. The proposed 

cord and lesion automatic segmentation approach is based on a sequence of two Convolutional 

Neural Networks (CNNs). To deal with the very small proportion of spinal cord and/or lesion 

voxels compared to the rest of the volume, a first CNN with 2D dilated convolutions detects the 

spinal cord centerline, followed by a second CNN with 3D convolutions that segments the spinal 

cord and/or lesions. CNNs were trained independently with the Dice loss. When compared against 

manual segmentation, our CNN-based approach showed a median Dice of 95% vs. 88% for 

PropSeg (p≤0.05), a state-of-the-art spinal cord segmentation method. Regarding lesion 

segmentation on MS data, our framework provided a Dice of 60%, a relative volume difference of 

−15%, and a lesion-wise detection sensitivity and precision of 83% and 77%, respectively. In this 

study, we introduce a robust method to segment the spinal cord and intramedullary MS lesions on 

a variety of MRI contrasts. The proposed framework is open-source and readily available in the 

Spinal Cord Toolbox.
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1. Introduction

Multiple sclerosis (MS) is a chronic immune mediated disease of the central nervous system, 

with variable clinical expression. The pathologic hallmark of MS is the occurrence of focal 

areas of inflammatory demyelination within the brain and spinal cord, known as lesions 

(Popescu and Lucchinetti, 2012). MS lesions exhibit variable degrees of demyelination, 

axonal injury and loss, remyelination, and gliosis. Impaired axonal conduction often causes 

motor, sensory, visual, and cognitive impairment (Compston and Coles, 2002). Clinicians 

and researchers extensively use conventional MRI (e.g., T2-weighted) to non-invasively 

quantify the lesion burden in time and space (Filippi and Rocca, 2007; Kearney et al., 

2015b; Simon et al., 2006; Sombekke et al., 2013; Weier et al., 2012). The study of spinal 

cord lesions has recently garnered interest (Hua et al., 2015; Kearney et al., 2015a) given its 

potential value for diagnosis and prognosis of MS (Arrambide et al., 2018; Sombekke et al., 

2013; Thorpe et al., 1996). Moreover, spinal cord atrophy is common in MS (Bakshi et al., 

2005), and the quantification of such atrophy is clinically relevant and correlates with 

clinical disability (Cohen et al., 2012; Kearney et al., 2014; Losseff et al., 1996; Lundell et 

al., 2017; Rocca et al., 2013, 2011). Consequently, segmentation of the spinal cord and MS 

lesions contained within it (intramedullary lesions) is a common procedure to quantitatively 

assess the structural integrity of this portion of the central nervous system in MS patients. 

However, manual segmentation is time-consuming and suffers from intra- and inter-rater 

variability. Hence, there is a need for robust and automatic segmentation tools for the spinal 

cord and the intramedullary MS lesions.

Various automatic spinal cord segmentation methods have been proposed in the past few 

years, including active contours and surface-based approaches (De Leener et al., 2015; Koh 

et al., 2010), and atlas-based methods (Carbonell-Caballero et al., 2006; Chen et al., 2013; 

Pezold et al., 2015; Tang et al., 2013). While these methods have shown good performance 

(De Leener et al., 2016), they often require a specific region of interest and/or are limited to 

a specific contrast and resolution. Moreover, the lack of validation against multi-site data or 

cases with spinal cord damage has limited their application in large clinical multi-site 

studies. Automatic spinal cord segmentation is difficult to achieve robustly and accurately 

across the broad range of spinal cord shapes, lengths, and pathologies; and across variable 

image dimensions, resolutions, orientations, contrasts, and artifacts (e.g. susceptibility, 

motion, chemical shift, ghosting, blurring, Gibbs). Figure 1 illustrates these challenges, 

depicting the heterogeneity frequently observed in multi-site clinical spinal cord data sets.

The automatic segmentation of MS lesions has been thoroughly investigated over the past 

two decades for brain data sets (García-Lorenzo et al., 2013; Lladó et al., 2012), although it 

still remains a challenging task (Meier et al., 2018; Roy et al., 2018; Valverde et al., 2017a, 

2017b). While previous methods have shown reasonable performance in the brain, they are 

not easily transposable to the spinal cord, mainly because of its specific morphology. 
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Furthermore, traditional intensity-based segmentation methods are challenging in spinal 

cord images because of (i) the frequent intensity bias field in the Superior-to-Inferior axis 

which is difficult to correct, (ii) the confounding of lesion intensities with those of normal 

structures (e.g. grey matter on T2*-weighted images), or artifacts, and (iii) partial volume 

effects, where several structures may contribute to the signal of border voxels (e.g. 

cerebrospinal fluid and cord). To provide an overview of these challenges, Figure 1 shows 

instances of intramedullary MS lesions exhibiting heterogeneity (i.e. location, size, and 

shape), along with their intensity histograms which demonstrate a large overlap with the 

spinal cord intensities.

The last years have witnessed a noteworthy interest in convolutional neural networks 

(CNNs) for image segmentation tasks, with remarkable performance in different domains, 

notably in medical image analysis (Litjens et al., 2017). The game-changing advantage of 

CNNs, compared to feature engineering based approaches, is their hierarchical 

representation learning strategy to find appropriate filters on their own. Indeed, the features 

learned in the first layers come together and make abstract shapes, which often have 

meaning in their deeper layers. CNN methods have proven to be highly robust to varying 

image appearances. In particular, since 2015, U-net architecture achieved a notable 

breakthrough in the biomedical image segmentation community (Ronneberger et al., 2015), 

even for tasks with little available annotated training data. The good performance of the U-

net architecture is often explained by the use of two distinct paths: a contracting path to 

capture context, followed by a symmetric expanding path to recover the spatial information, 

with the support of skip connections between the paths. However, training CNNs on very 

unbalanced data sets, such as those encountered in MS spinal cord lesion segmentation tasks 

(i.e. data with < 1% of lesion voxels), remains a focus of active research (Buda et al., 2017; 

Sudre et al., 2017).

In this work, we propose an original and fully automatic framework for segmenting the 

spinal cord and/or intramedullary MS lesions from a variety of MRI contrasts and 

resolutions. The presented methods are based on a sequence of CNNs, specifically designed 

for spinal cord morphometry. We trained the networks and evaluated the robustness of the 

framework using a multi-site clinical data set (nvol. =1,943), which features a variety of 

pathologies, artifacts, contrasts, resolutions, dimensions, and orientations.

2. Materials and Methods

2.1 Data

Thirty centers contributed to this study, gathering retrospective ‘real world’ data from 1,042 

subjects, including healthy controls (n=459), patients with MS or suspected MS (n=471), as 

well as degenerative cervical myelopathy (n=55), neuromyelitis optica (n=19), spinal cord 

injury (n=4), amyotrophic lateral sclerosis (n=32), and syringomyelia (n=2). The MS cohort 

spanned a large heterogeneity of clinical conditions in terms of the Expanded Disability 

Status Scale (mean: 2.5 ; range: 0-8.5) and phenotype: clinically isolated syndrome (n=29), 

relapsing-remitting MS (n=283), secondary progressive MS (n=76), and primary progressive 

MS (n=69). Clinical data were not available for all MS patients. Images were acquired at 3T 

and 7T on various platforms (Siemens, Philips and GE). Contrasts included T2−weighted 
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(nvol. = 904), T1−weighted (nvol. = 151), and T2*-weighted (nvol. = 888). The coverage 

substantially differed among subjects, with volumes including the brain and/or diverse 

vertebral levels (cervical, thoracic, lumbar). Spatial resolutions included isotropic (nvol. = 

451, from 0.7 to 1.3mm) and anisotropic data with axial (nvol. = 1010, in plane: from 0.2 to 

0.9mm, slice thickness including slice gap: from 1.0 to 24.5mm), or with sagittal orientation 

(nvol. = 482, in plane: from 0.4 to 1.1mm, slice thickness: from 0.8 to 5.2mm). Figure 2 

summarises the data set, while Table A1 (see Appendix) details the imaging parameters 

across participating sites.

Four trained raters (BDL, SD, DE, CG) manually corrected the segmentation produced by 

PropSeg (De Leener et al., 2014) using FSLview (Jenkinson et al., 2012). The resulting 

spinal cord mask was considered as ground-truth and is herein referred to as “manual 

segmentation”. Using data from MS patients (nvol.=967), lesion masks were generated by 7 

raters including radiologists (JM, JT, MH, YT, RZ, LC) and trained (AB) raters using ITK-

SNAP Toolbox 3.6.0 (Yushkevich and Gerig, 2017). Image raters were blind to diagnostic 

and clinical information. Guidelines followed by raters are available at: osf.io/d4evy/. 

Among the MS volumes segmented by the raters, 17.7% (nvol.=171) were considered lesion 

free. The lesion involvement was highly heterogeneous across patients, with a mean (range) 

lesion count of 3.1 (0-17) and total lesion volume of 192mm3 (0.0-1679.8mm3). Over the 

entire MS data set, 0.01% of image voxels on average were confirmed to contain lesions by 

the experts, showing the unbalanced nature of the data.

2.2 Segmentation framework

The proposed segmentation framework is depicted in Figure 3. The workflow consists of 

two major stages. The first stage detects the spinal cord centerline (Figure 3, step 1–2) and 

the second stage performs the spinal cord and/or lesion segmentation along the centerline 

(Figure 3, steps 3).

2.2.1. Sequential framework—CNNs can easily overfit because of two main features 

of our data set: (i) the high class imbalance due to the small number of voxels labeled as 

positive (~ 0.34% for spinal cord, ~ 0.01% for lesions), and (ii) the limited number of 

available labeled images. To prevent overfitting, the proposed framework split the learning 

scheme into two stages, each containing a CNN. The first stage consists of detecting the 

center of the spinal cord (CNN1) and crop the image around it, while the second stage 

segments the spinal cord (CNN2-SC) and/or the MS lesion (CNN2-lesion). Note that CNN2-SC 

and CNN2-lesion were independently trained and can be run separately. The motivation 

behind the sequential approach is that CNNs have been shown to learn a hierarchical 

representation of the provided data since the stacked layers of convolutional filters are 

tailored towards the desired segmentation (Christ et al., 2017; LeCun et al., 2015; Valverde 

et al., 2017a). The designed sequential framework ensures that (i) CNN1 learns filters to 

discriminate between the axial patches that contain spinal cord voxels versus patches that do 

not, (ii) while CNN2-SC (and CNN2-lesion ) is trained to optimise a set of filters tailored to the 

spinal cord (and the lesions) from training patches centered around the spinal cord.
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Automatic preprocessing steps include resampling to 0.5mm isotropic images (based on 

preliminary optimisations), and matrix re-orientation (RPI, i.e. Right-to-left, Posterior-to-

anterior, Inferior-to-superior).

2.2.2 Spinal cord centerline detection—Detection of the cord centerline (Figure 3, 

step 1) is achieved with a 2D CNN (CNN1), through each cross-sectional slice of the input 

volume.

For each input volume, we extract 2D patches (96×96) from the cross-sectional slices. We 

computed the mean intensity and standard deviation across the training patches, to normalise 

all the processed patches (i.e. zero mean and unit variance), including the validation and 

testing patches.

CNN1 architecture was adapted from the U-net architecture (Ronneberger et al., 2015) by 

reducing the downsampling layers from four to two layers, and by replacing conventional 

convolutions with dilated convolutions in the contracting path. Briefly, dilated convolution is 

a convolution with defined gaps, which provides an exponential expansion of the receptive 

view with a linear increase of parameters (Yu and Koltun, 2015). The motivation behind the 

use of dilated convolutions is to capture more contextual information (i.e. broader view of 

the input), with fewer parameters compared to a conventional solution, which involves 

additional downsampling layers. Preliminary experiments led us to use a dilation rate of 

three (i.e. a gap of two pixels per input, as also illustrated in Figure 1 of (Yu and Koltun, 

2015)). To reduce overfitting, Batch Normalisation (Ioffe and Szegedy, 2015), rectified 

linear activation function (Nair and Hinton, 2010), and Dropout (training with p=0.2) 

(Srivastava et al., 2014) follow each convolution layer.

Training of CNN1 was performed on each contrast data set separately (i.e. three trained 

models: T1-w, T2-w, and T2*-w), using the Adam optimizer (Kingma and Ba, 2014), with a 

learning rate of 0.0001, a batch size of 32, and 100 epochs. We employed Dice loss 

(Milletari et al., 2016) for the loss function due to its insensitivity to high class imbalance, as 

favoured by recent studies dealing with this issue (Drozdzal et al., 2018; Perone et al., 2017; 

Sudre et al., 2017). We performed an extensive data augmentation of the training samples, 

including shifting (±10 voxels in each direction), flipping, rotation (±20° in each direction), 

and elastic deformations (Simard et al., 2003) (deformation coefficient of 100, standard 

deviation of 16). Elastic transformations were shown to be efficient at increasing learning 

invariance (Dosovitskiy et al., 2014) and realistic variation in tissue (Ronneberger et al., 

2015).

Spinal cord centerline extraction is achieved by reconstructing a volume from the patch 

inference of CNN1, where values indicate the degree of confidence regarding the spinal cord 

location. Because CNN1 outputs a prediction mask with abrupt boundaries, we compute the 

Euclidean distance map from the CNN1 output to assist with spinal cord centerline detection 

(red-to-yellow values in Figure 3, step 1). We infer the centerline from this spinal cord 

distance map using OptiC (Gros et al., 2018), a previously published fast global-curve 

optimisation algorithm, which regularises the centerline continuity along the Superior-to-

Inferior axis (pink centerline in Figure 3, step 2).
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2.2.3 Spinal cord and MS lesions segmentation—Segmentation of the spinal cord 

and the intramedullary lesions are achieved by CNN2-SC and CNN2-lesion, which both are 3D 

CNNs investigating in a volume of interest surrounding the inferred cord centerline.

From each volume, we extract 3D patches along the spinal cord centerline (Figure 3, step 2) 

with the following sizes: 64×64×48 for the spinal cord (i.e. CNN2-SC) and 48×48×48 for MS 

lesions (i.e. CNN2-Lesion). In preliminary experiments, we investigated different patch sizes 

(32×32×32, 48×48×48, 64×64×48, and 96×96×48) and decided on a compromise between 

the class imbalance, the risk of overfitting, and the computational cost. We apply an intensity 

normalisation algorithm on the stacked patches of each volume to homogenise the intensity 

distributions on a standardised intensity range (Nyúl and Udupa, 1999; Pereira et al., 2016; 

Shah et al., 2011). Finally, following the same process as in section 2.2.2, we normalise the 

patch intensities by centering the mean and normalising the standard deviation.

CNN2-SC and CNN2-Lesion architectures draw from the 3D U-net scheme (Çiçek et al., 

2016); however, we reduced the depth of the U-shape from three to two, thus limiting the 

number of parameters and the amount of memory required for training.

Training of CNN2-SC and CNN2-lesion were also undertaken for each contrast, even though 

CNN2-lesion was trained with MS data only. We trained the models using the Adam 

optimizer, the Dice loss, the Dropout (p=0.4), and the following parameters: a batch size of 

4, learning rate of 5×10−5, and total number of epochs of 300. Besides flipping operations, 

the data augmentation procedure included small local erosions and dilations of the manual 

lesion edges, which serve to test the confidence of the network on subjective lesion borders.

During the inference stage, CNN2-SC and CNN2-Lesion independently segment 3D patches 

extracted from a testing data. We apply a threshold of 0.5 to the CNNs predictions before 

reconstructing a 3D volume (Figure 3, step 4). The presented framework does not contain 

additional post-processing.

2.3. Implementation

We implemented the proposed method in the Python 2.7 language, using Keras1 (v2.6.0) and 

TensorFlow2 (v1.3.0) libraries. The code of the CNNs implementations is available at 

[URL]3. Moreover, the presented methods are readily available through the functions 

sct_deepseg_sc and sct_deepseg_lesion as part of the Spinal Cord Toolbox (SCT) (De 

Leener et al., 2017a) version v3.2.2 and higher. These functions are robust to any image 

resolution and orientation, as well as number of slices, even for single axial slice images.

CNN training was carried out on a single NVIDIA Tesla P100 GPU with 16GB RAM 

memory and took approximately 6, 70, and 102 hours, for CNN1, CNN2-SC, and 

CNN2-lesion, respectively. Training was stopped when the training loss kept decreasing while 

the validation loss steadily increased or settled down. Contrary to the training which requires 

1https://keras.io/
2https://www.tensorflow.org/
3https://github.com/neuropoly/spinalcordtoolbox/tree/master/spinalcordtoolbox/deepseg_sc
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high computational power such as that offered by a GPU, inference (i.e. segmentation) can 

run in only a few minutes on a standard CPU.

2.4 Evaluation

For each contrast (i.e. T1-, T2-, T2*-weighted), the networks were trained on 80% of the 

subjects, with 10% held out for validation and 10% for testing (i.e. for results presented in 

section 3.). In particular, the testing data set contained data from two sites (n=57), which 

were not present during the training procedure, in order to evaluate the generalisation of the 

pipeline to new image features.

2.4.1 Spinal cord centerline detection—We evaluated the cord centerline detection 

(i.e. output of OptiC, see Figure 3, step 1–2), by computing (i) the Mean Square Error 

(MSE) between the predicted and manual spinal cord centerlines, (ii) the localization rate, 

defined as the percentage of axial slices for which the predicted centerline was included in 

the manually-segmented spinal cord. We generated the manual spinal cord centerlines by 

computing the center of mass of each axial slice of the manual spinal cord segmentations, 

regularised with an approximated non-uniform rational bezier spline, as described in (De 

Leener et al., 2017b).

We compared our spinal cord detection method (Figure 3, step 1–2) to a recently-published 

study (Gros et al., 2018) that introduced a global curve optimisation algorithm (OptiC, 

Figure 3, Step 2) but used a trained Support-Vector-Machine (SVM) algorithm to produce 

the spinal cord heatmap (instead of the CNN1 at Step 1). We refer to this as “SVM+OptiC” 

in the remainder of this work. A non-parametric test (Kruskal-Wallis) was applied to assess 

potential performance differences between these two approaches.

2.4.2 Spinal cord segmentation—We assessed the spinal cord segmentation 

performance (i.e. output of CNN2-SC, see Figure 3, step 3), by calculating (i) the Dice 

Similarity Coefficient (Dice, 1945) and (ii) the relative volume difference in segmented 

volume (asymmetric metric) between the automatic and the manual segmentation masks. We 

compared the spinal cord segmentation method to a previously-published unsupervised 

method, “PropSeg”, which is based on multi-resolution propagation of tubular deformable 

models (De Leener et al., 2015). Kruskal-Wallis tests assessed performance differences 

between the two methods.

2.4.3 MS lesion segmentation—We estimated the intramedullary MS lesion 

segmentation performance (i.e. output of CNN2-lesion, see Figure 3, step 3), by calculating (i) 

the Dice, (ii) the relative volume difference, (iii) the voxel-wise sensitivity, and (iv) the 

voxel-wise precision between the automatic and the manual segmentation masks of the MS 

cohort. Voxel-wise metrics considered a voxel as correctly segmented by the algorithm (i.e. 

true positive) if it was labelled as “lesion” by the raters.

We also computed the lesion-wise sensitivity and the lesion-wise precision, where individual 

lesions (i.e. 3D connected objects) were analysed as entities (i.e. instead of each voxel 

separately, as for the voxel-wise metrics). We considered a candidate lesion as correctly 

detected (i.e. true positive) when the automatic segmentation connected-voxels overlapped 
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with more than 25% of the manual segmentation voxels, otherwise it was considered as 

incorrectly detected (i.e. false positive). If a confirmed lesion (i.e. manually labelled) had an 

insufficient overlap (<25%) with the automatic segmentation voxels, then we defined it as 

not-detected (i.e. false negative).

The specificity of the automatic lesion detector was computed on data from healthy controls 

and MS patients who did not have any intramedullary lesion detected, and called volume-

wise specificity in the remaining of this paper. We considered a volume as incorrectly 

detected (i.e. false positive) if at least one lesion was automatically detected. We assumed 

healthy control data to be lesion free.

2.4.4 Inter-rater variability of the MS lesion segmentation—We estimated the 

inter-rater variability of lesion segmentation among all participating raters (n=7), on a 

randomised subset of patients (n=10). For each of these patients, two scans were available, 

which allows the raters to segment both scans in parallel by combining their information. 

For this purpose, we calculated the Dice coefficient between each rater’s segmentation and a 

consensus reading mask, produced using “majority voting” across all the raters’ labels.

3. Results

3.1 Spinal cord centerline detection

Table 1 (A.) presents the medians and interquartile ranges (IQRs) of the metrics evaluating 

the spinal cord centerline detection across contrasts. When averaging the performance 

metrics across all contrasts, the centerline detection using CNN1 significantly outperformed 

the SVM-based method (p<0.001), as shown by the median MSE (IQR) of 1.0 (0.8) mm 

versus 5.5 (9.7) mm. While the two approaches produced similar results on 3D isotropic 

resolution and axial scans, CNN performed better on sagittal scans: median MSE 1.1 (0.9) 

mm for “CNN1+OptiC” versus 11.6 (11.4) mm for “SVM+OptiC” (p<0.001). In volumes 

that included part of the brain, the method accurately confined the segmentation to between 

the top of C1 and pontomedullary junction (i.e. differentiated brain and spinal regions) in 

87.0% of cases. The median MSE was largely improved by resorting to the curve 

optimisation algorithm, especially on degenerative cervical myelopathy patients, as it 

considerably decreased from 24.04mm (CNN1 output, Figure 3, step 1) to 1.14mm 

(“CNN1+OptiC” output, Figure 3, step 2).

3.2 Spinal cord segmentation

Figure 4 illustrates qualitative samples of spinal cord segmentation from the testing data set, 

comparing the manual against the automatic delineation. From visual inspection, the 

proposed method achieved encouraging results on (i) compressed and atrophied cords (e.g., 

see S5_DCM17, S5_DCM2, S25_ALS5), (ii) slices with poor contrast between cord and 

surrounding structures like cerebrospinal fluid (S16_HC1) or MS lesions (S15_MS24) and 

(iii) images with different Superior-to-Inferior coverage, e.g. including the brain (S4_HC15) 

or thoraco-lumbar levels (S20_MS101).

As reported in Table 1 (B.), the proposed spinal cord framework achieved significant 

superior results compared to PropSeg, with a median (IQR) Dice of 94.6 (4.6) versus 87.9 
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(18.3)% (p<0.001). In particular, the proposed method outperformed PropSeg in patients 

with severe cord atrophy in terms of (i) Dice: 92.9% versus 82.0% and (ii) relative volume 

difference: −3.6% versus +13.3%. The proposed framework was robust to MS-related 

pathology since the automatic segmentation yielded similar results between controls and MS 

subjects (median Dice: 95.2% versus 94.1%). The model generalized well to data from two 

sites unseen during the training (median Dice: 93.3%). For a typical T2-w acquisition 

(matrix size: 384×384×52, resolution: 1mm isotropic), the computation time on an iMac (i7 

4-cores 3.4 GHz 8Gb RAM), including reading and writing tasks, was 1min 55s for the 

proposed method versus 32s for PropSeg.

3.3 MS lesion segmentation

Figure 5 depicts several qualitative examples of MS lesion segmentations (both manual and 

automatic) from the testing data set. The main divergence between manual and automatic 

segmentations were located near normal-appearing structures (e.g. cerebrospinal fluid, grey 

matter) where the partial volume effect challenged tissue delineation (e.g. samples 

S1_SPMS9, S2_RRMS5). However, a visual inspection of the results shows that the network 

successfully learned the pattern of the normal-appearing grey matter despite its confounding 

intensities with MS lesions (e.g. samples S7_RRMS14). Instances where the automatic 

method correctly detected small lesions as well as lesions in atrophied cord are also shown 

in Figure 5 (see S1_RRMS17, S2_CIS1, S8_PPMS10). Although the Dice metric is widely 

used for medical image segmentation, it should be noted that it has a larger dynamic 

sensitivity to small versus large objects (see S2_CIS1, S3_RRMS7).

Table 1 (C.) shows the medians and IQRs of the metrics evaluating the automatic MS lesion 

segmentation. When pooling T2-w and T2*-w, the automatic segmentation method reached a 

median (IQR) Dice of 60.0 (21.4)%. While this result might appear weak, it should be seen 

in light of the inter-rater study, where the raters achieved a median Dice against the 

“majority voting” masks of 60.7% compared to 56.8% for the automatic method. In terms of 

volumetric considerations, the automatic method provided satisfactory results, exhibiting a 

median relative volume difference of −14.5% (i.e. tends to under-segment the lesions). 

Median voxel-wise precision and sensitivity were 60.5% and 55.9%, respectively. Regarding 

the lesion-wise detectability, the automatic method yielded a low number of false positive 

(median precision: 76.9%) and false negative (median sensitivity: 83.3%) lesion labels per 

volume. The method was notably sensitive in detecting lesions on T2-w sagittal scans 

(median sensitivity: 100.%). When confronted with data from sites excluded from the 

training data set, the method provided similar results as other sites (median sensitivity: 

100.0%, median Dice: 57.0%). Finally, the automatic lesion detector yielded a volume-wise 

specificity of 88.6% on healthy control data, although 66.7% on MS data without any 

intramedullary lesions according to the raters.

Figure 6 compares the raters and automatic MS lesion segmentation on 10 testing subjects. 

An inter-rater variability was observed: the Dice results against the “majority voting” masks 

varied by 85.0% among the raters for subject 004, and by 21.0% for subject 008 (see Figure 

6 A.). The disagreements between raters mainly occurred on the borders of the lesions, in 

particular, the lesion extension within the grey matter area on T2*-w images (see Figure 6 
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B.). The average time for manually segmenting lesions in one subject (two volumes per 

patient) was 18.7 minutes vs. 3.6 minutes using the automatic method (iMac i7 4-cores 3.4 

GHz 8Gb RAM).

4. Discussion

We introduced a robust method to segment the spinal cord and/or intramedullary MS lesions. 

The proposed framework is based on a sequence of two CNNs, trained individually to tailor 

a set of specific filters for each target structure. The first network is trained to detect the 

spinal cord centerline within the 3D volume, so that the volume investigated by the second 

network is restricted to a close neighborhood of the target structures to segment (i.e. either 

the spinal cord or the intramedullary MS lesions). Furthermore, the framework has been 

designed to handle the heterogeneity of image acquisition features. Evaluation was 

performed on a large multi-site cohort including participants with various clinical conditions 

as well as healthy controls. The developed tools are freely available as part of SCT (De 

Leener et al., 2017a), version v3.2.2 and higher, through the functions sct_deepseg_sc and 

sct_deepseg_lesion.

4.1 Spinal cord centerline detection

Robustly localizing the spinal cord centerline on MRI data is a key step for automating 

spinal cord segmentation (De Leener et al., 2015; Horsfield et al., 2010) and template 

registration (De Leener et al., 2018; Stroman et al., 2008). The proposed method works in 

two steps: (i) recognition by a CNN of the spinal cord pattern on axial slices,(ii) 

regularisation of the spinal cord centerline continuity along the Superior-to-Inferior direction 

using a global curve optimisation algorithm (Gros et al., 2018). Although the spinal cord 

pattern was well identified by CNN1 in the first step, resorting to the curve regularisation 

(step ii) was important for ensuring centerline consistency. This was especially true for 

patients with spinal cord atrophy, for whom the contrast between the cerebrospinal fluid and 

the spinal cord was frequently very low in large sections of the cord. Having produced 

detections of similar accuracy for axial and sagittal scans, this approach demonstrated its 

robustness to image resolution, especially when compared to its predecessor (Gros et al., 

2018). In particular, CNN1 enables a robust centerline detection on sagittal T2-w images, 

which was often unsatisfactory with the SVM, likely due to the lack of variability in its 

training set (nvol.=1) to apprehend the distortions of spinal cord shape when these images are 

resampled at (0.5)2mm2 in the cross-sectional plane. In addition, the new method can be 

used to separate spine and brain sections, which are regularly covered during cervical scans.

4.1.1 Limitations—The introduction of a detection step prior to the segmentation 

module was motivated by the high class imbalance (proportion of spinal cord and/or lesion 

compared to the rest of the volume) and the large heterogeneity of image features (contrast, 

field of view, etc.). However, the disadvantage of the sequential approach is that the 

segmentation framework is sensitive to the quality of the detection module. Fortunately 

though, the high performance of the spinal cord detection (median MSE of 1mm) is reliable 

enough to be cascaded by another CNN. When scans incorporated the brain, 13% of the 
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spinal cord centerlines extended above the pontomedullary junction, but without impacting 

the consecutive cord segmentation.

4.1.2 Perspectives—Besides the three MR contrasts investigated in this study (T1-, T2-, 

and T2*-w), we plan to cover other commonly-used sequences, such as diffusion-weighted 

scans and T2*-w echo-planar imaging (typically used for fMRI studies), and to make the 

additional trained models available in SCT. Apart from segmentation purposes, the 

centerline spatial information could guide an automatic tool for identification of the 

vertebral discs along the spinal canal (Ullmann et al., 2014), provide spinal cord curvature 

information for studying the biomechanics of the spine and planning surgery (Gervais et al., 

2012; Little et al., 2016), or be used for localized shimming (Topfer et al., 2018, 2016; 

Vannesjo et al., 2017).

4.2 Spinal cord segmentation

Spinal cord segmentation has important clinical value for measuring cord atrophy in MS 

patients (Dupuy et al., 2016; Kearney et al., 2014; Losseff et al., 1996; Lundell et al., 2017; 

Rocca et al., 2013, 2011; Singhal et al., 2017). Besides MS pathology, spinal cord 

segmentation could provide a valuable quantitative assessment of spinal cord morphometry 

in the healthy population (Fradet et al., 2014; Papinutto et al., 2015) or be used as a 

biomarker for other spinal cord diseases (Martin et al., 2017; Nakamura et al., 2008; Paquin 

et al., 2018). We proposed an automatic method to segment the spinal cord, and validated the 

method against manual segmentation on a multi-site clinical data set involving a variety of 

pathologies. We also compared this method to the previously published PropSeg method (De 

Leener et al., 2015). The proposed method achieved better results than PropSeg in terms of 

Dice and relative volume difference, especially in patients with severe cord compression. 

When cerebrospinal fluid/spinal cord contrast is low (e.g. compressed cord), PropSeg tends 

to cause segmentation leakage, while CNN benefits from a larger spatial view (e.g. to detect 

vertebra edges) and performs better in those difficult cases. The segmentation performed 

well across 3 different MR contrasts (T1-, T2-, and T2*-w), without assuming a particular 

field of view, orientation or resolution (thanks to automatic preprocessing steps).

When presenting our model with data from new sites, performance was similar to when the 

data came from the original sites (i.e. sites included in the supervised learning). The ability 

of our model to generalise is likely due to the large training data set, mostly composed of 

‘real-world’ clinical data and spanning a broad diversity of scanning platform and 

acquisition parameters (e.g. isotropic and anisotropic images, with both axial and sagittal 

orientations).

4.2.1 Limitations—The requirement for a large training data set is both a blessing and a 

curse. While the large size and heterogeneity played a key role in the ability of the model to 

generalise, it also has a few downsides: (i) need time and expert knowledge for manually 

labeling a large amount of data, (ii) when the data are not available for sharing (due to 

ethical constraints), it prevents reproducibility, and (iii) the heterogeneity of the dataset 

hampers the performance when compared to when the model is trained and applied on an 

homogeneous dataset. To mitigate this issue, models trained here were made publicly 
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available and can be fine-tuned with lesser amount of data (Ghafoorian et al., 2017a; Pan 

and Yang, 2010) for other specific applications (e.g., animal data, other pathologies, other 

MR contrasts).

Though the deformable model of PropSeg could be adjusted in cases of segmentation failure 

(e.g. alter the radius of the SC, or conditions of the deformation), there is less room with the 

CNN-based approach for changing input parameters during inference. Moreover, the 

presented method is slower than PropSeg, mainly due to the use of 3D convolutions (see 

section 4.4.2). It is, however, important to note that the evaluation was biased in favour of 

PropSeg, since most of the manual spinal cord delineations were produced by correcting the 

mask previously generated by PropSeg.

4.2.2 Perspectives—To improve image quality and reduce the variability across sites, 

preliminary experiments explored the impact of advanced preprocessing techniques, such as 

denoising (Coupe et al., 2008) and bias field correction (Tustison et al., 2010). Finding a set 

of generic preprocessing hyper-parameters that works for every data set is challenging. 

Preprocessing, fine-tuned for a specific and homogeneous data set, however, could improve 

the segmentation. Along with the spinal cord, the automatic segmentation of the 

cerebrospinal fluid could also provide a measure of the spinal canal volume for normalising 

cord volumes across people of different sizes, analogous to brain parenchymal fraction or 

brain to intra-cranial capacity ratio. Finally, the scan-rescan reproducibility of the proposed 

segmentation method will be the subject of future investigations.

4.3 MS lesion segmentation

Automating spinal cord MS lesion segmentation provides an efficient solution to evaluate 

large data sets for lesion burden analyses. A thorough search of the relevant literature did not 

yield available related work. Results of the automatic segmentation were similar to the inter-

rater results, with the advantage of higher efficiency and reproducibility (i.e. the algorithm 

will always produce the same segmentation for the same image). While the Dice scores were 

relatively low (median: 60.0%), it should be noted that this metric is highly sensitive to the 

total lesion load and lesion sizes (Guizard et al., 2015; Harmouche et al., 2015; Styner et al., 

2008). The median Dice of 60.7% between each rater and the consensus reading illustrates 

that point well, which is in line with recent inter-rater variability results obtained on brain 

lesions: 63% (Carass et al., 2017) and 66% (Egger et al., 2017). We also computed object-

based metrics (i.e. lesion-wise precision and sensitivity) which are less subjective to lesion 

borders (Geremia et al., 2011; Harmouche et al., 2015; Lladó et al., 2012; Styner et al., 

2008; Valverde et al., 2017a). In addition, monitoring the lesion count in the spinal cord is 

an important measure of disease activity, since each central nervous location where a new 

lesion appears would represent an entry point of the immune cells that mediate the 

inflammatory-demyelinating process, (i.e. a breach of the blood brain-barrier). In the clinical 

setting, intramedullary lesion count provides complementary information to what is obtained 

by brain lesion monitoring (Healy et al., 2017; Thompson et al., 2018). The relative volume 

difference was also reported since the total lesion volume is often used as a clinical 

biomarker.
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4.3.1 Limitations—False positives and/or false negatives were likely due to the partial 

volume effect between the cord and cerebrospinal fluid, and mostly observed with small 

lesions (< 50mm3), which are also essential for MS disease staging, prognosis, and during 

clinical trials. Results of the automatic method, as well as the raters’ assessments, hinted at 

variable levels of detectability across sites. Variations in sequences and image contrast are 

probably accountable for the observed differences in performance. We noticed an ability to 

generalise well to data exhibiting features which were absent in the training data, however 

the method is likely to perform best on data acquired with parameters similar to the training 

data (see Table A1). Recent initiatives to standardise spinal cord MRI acquisition (Alley et 

al., 2018), with spinal cord multi-parametric protocols available for the three main vendors 

(www.spinalcordmri.org/protocols), will likely help reducing such variability in the future.

Although the algorithm showed a good specificity overall when encountering lesion-free 

data, it is however important to note the difference in volume-wise specificity between 

healthy control data and MS data without intramedullary lesions. For healthy control data, 

low lesion volumes were segmented in the few false positive cases (median: 10.6mm3), 

which we observed to be largely induced by partial volume effects. Interestingly, the 

segmented lesion volumes were much larger in the false positive cases of the MS data 

(median: 150.5mm3), which is unlikely to be due to partial volume effects alone and could 

be owing to misdetections in the manual segmentations. Using data acquired with isotropic 

resolution (to minimise partial volume effect in one direction) and/or CNN architectures 

based on multimodal data (Havaei et al., 2016) would likely reduce the false positive rate 

and can be investigated in future studies (see also the next section below).

Lesion borders can often be diffuse, so that defining an “edge” can be somewhat arbitrary 

and highly subjective in these cases. As a result, lesion borders are frequently the site of 

disagreement between manual and automatic delineations, as well as among raters. This 

motivated our implementation of a data augmentation module to prompt the model to be less 

confident of the lesion border prediction (random and local erosion/dilation of the lesion 

masks during the training). Its specific effect on the segmentation performance will be 

validated in future work.

Another promising avenue would be to include an uncertainty measure for lesion delineation 

(Nair et al., 2018), which could allow radiologists to refine lesions with high boundary-

uncertainty.

4.3.2 Perspectives—In this work, MS lesion segmentation was achieved by processing 

each 3D scan independently, which is arguably a non-optimal use of the different available 

contrasts. In clinical settings however, it is not uncommon to have more than one acquisition 

covering the same region. Future work could consider recent advances in domain-adaptation 

(Ghafoorian et al., 2017b; Valindria et al., 2018) to overcome variations in imaging 

protocols. Indeed, a combination of the information from different MR contrasts should help 

the identification of very small lesions while reducing the number of false positives. The 

false positives could also be limited by extending the training data set with non-MS lesions 

(e.g. spinal cord injury), while generalising the lesion detector to other clinical conditions.
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Considering that image labelling is time consuming and tedious, semi-supervised learning 

approaches should be explored to take advantage of the wide number of available unlabeled 

data (Baur et al., 2017). Another interesting avenue would be to explore patterns that have 

been automatically learned by the CNN (see Figure 7), as suggested by a recent study on 

brain lesions (Kamnitsas et al., 2017). For example, we were surprised by the ability of the 

network to distinguish lesions in the normal-appearing grey matter on T2*-w scans, 

suggesting that the pattern of the healthy grey matter has been self-learnt. This observation 

could suggest that great potential lies in the combination of the CNN discriminative ability 

and clinical knowledge, such as spatial priors for cervical lesions (Eden et al., 2018). This is 

in line with previous segmentation work, where performance of traditional classifiers was 

significantly improved by incorporation of tissue priors (Harmouche et al., 2015; Shiee et 

al., 2010; Van Leemput et al., 1999). It would thus be interesting to investigate ways for 

encoding such available prior information into the network’s feature space, so that clinical 

knowledge could direct the network towards the optimal solution. This could indeed 

drastically simplify the optimisation problem and mitigate false positive detections.

4.4 CNNs Training

Due to the large heterogeneity in MRI contrast (see Figure 2), images were distributed 

among three MRI contrast data sets, for both the training and inference of the CNNs: (i) “T1-

weighted like” (i.e. dark cerebrospinal fluid / light cord), (ii) “T2-weighted like” (i.e. light 

cerebrospinal fluid / dark cord / grey matter not visible), (iii) “T2*-weighted like” (i.e. light 

cerebrospinal fluid / dark cord / grey matter visible). The performance of the framework was 

consistent when trained with the 3 different MR contrast data sets, which highlights its 

robustness to different training conditions.

4.4.1 Class imbalance—An important challenge to the design of automated MS lesion 

segmentation methods is the extremely unbalanced nature of the data. In this work, this issue 

of class imbalance was mitigated by using the Dice loss, by performing an extensive data 

augmentation, and by restricting the search around the spinal cord centerline thanks to 

CNN1.

In preliminary experiments, we explored the benefit of under-sampling the negative class 

during the training to address the massive class imbalance. While it significantly facilitated 

the training convergence, it biased the classifier towards the positive class and may have 

resulted in a drastic increase in false positive detections. More complex sampling schemes 

(Havaei et al., 2015; Jesson et al., 2017; Valverde et al., 2017a), successfully employed in 

medical image segmentation or detection tasks, could be investigated for spinal cord 

applications.

Moreover, in exploratory experiments, we also tested various loss functions specifically 

proposed to mitigate the class imbalance issues: the weighted cross-entropy (Ronneberger et 

al., 2015), the Dice (Milletari et al., 2016), and the “sensitivity - specificity” (Brosch et al., 

2015) loss functions. Although the Dice loss caused narrow boundaries of confidence 

intervals at the edge, it yielded better results. In the future, other loss functions, fashioned to 
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handle highly unbalanced data sets, could be tested, such as the Focal Loss (Lin et al., 2017) 

or the Generalised Dice overlap (Sudre et al., 2017).

4.4.2 3D spatial information—Prior experiments also explored the use of 3D instead of 

2D patches, as they were preferred in recent work on biomedical volumes (Çiçek et al., 

2016; Kamnitsas et al., 2017; Milletari et al., 2016). However, while 3D patches provide 

more context-rich information, 3D CNNs have more parameters, and thus more memory and 

computational constraints.

For the spinal cord detection step, 2D patches were used to localize the position of the cord. 

Two-dimensional axial patches were adopted here for the sake of computational simplicity, 

considering that 3D patches did not yield substantial improvements. The use of 2D dilated 

convolutions might account for the accurate detections. Indeed, by increasing the receptive 

fields, dilated convolutions benefit from a broader spatial context for detecting sparse 

structures, while maintaining a relatively low number of parameters to optimise.

In most cases, the spinal cord segmentation quantitative results were similar whether 2D or 

3D patches were used. However, in the cases with exceptional lesion load and severe 

atrophy, the incorporation of 3D contextual information showed noteworthy improvements, 

which consequently motivated the adoption of 3D patches. As mentioned before, the use of 

3D convolutions caused a drastic increase of memory consumption, computational cost and 

training time. Further studies could investigate solutions to reduce the memory consumption, 

such as the Reversible Residual Network architecture (Gomez et al., 2017) or multi-stream 

architectures (Prasoon et al., 2013). Furthermore, future work could explore the benefit of 

3D dense conditional random fields (Christ et al., 2016; Krähenbühl and Koltun, 2011; 

Zheng et al., 2015) to incorporate 3D context instead of using 3D convolutions.

5. Conclusion

We presented an original automated spinal cord and MS lesion segmentation method, based 

on a sequence of two convolutional neural networks. Spinal cord segmentation results 

outperformed a state-of-the-art method on a multi-site and highly heterogeneous clinical 

data set. Lesion segmentation results were generally within the range of manual 

segmentations, although the false positive rate warrants further investigations. The presented 

automatic methods are open-source and readily accessible in SCT (version v3.2.2 and 

higher).
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Authors 

Charley Gros1, Benjamin De Leener1, Atef Badji1,2, Josefina Maranzano4, 
Dominique Eden1, Sara M. Dupont1,3, Jason Talbott3, Ren Zhuoquiong5, Yaou 
Liu5,6, Tobias Granberg7,8, Russell Ouellette7,8, Yasuhiko Tachibana22, Masaaki 
Hori23, Kouhei Kamiya23, Lydia Chougar23,24, Leszek Stawiarz7, Jan Hillert7, Elise 

Gros et al. Page 15

Neuroimage. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Bannier9,10, Anne Kerbrat10,11, Gilles Edan10,11, Pierre Labauge12, Virginie 
Callot13,14, Jean Pelletier14,15, Bertrand Audoin14,15, Henitsoa 
Rasoanandrianina13,14, Jean-Christophe Brisset16, Paola Valsasina17, Maria A. 
Rocca17, Massimo Filippi17, Rohit Bakshi18, Shahamat Tauhid18, Ferran 
Prados19,26, Marios Yiannakas19, Hugh Kearney19, Olga Ciccarelli19, Seth Smith20, 
Constantina Andrada Treaba8, Caterina Mainero8, Jennifer Lefeuvre21, Daniel S. 
Reich21, Govind Nair21, Vincent Auclair27, Donald G. McLaren27, Allan R. Martin28, 
Michael G. Fehlings28, Shahabeddin Vahdat29,25, Ali Khatibi4,25, Julien Doyon4,25, 
Timothy Shepherd30, Erik Charlson30, Sridar Narayanan4, Julien Cohen-Adad1,25

Affiliations
1NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, 
Montreal, QC, Canada

2Department of Neuroscience, Faculty of Medicine, University of Montreal, Montreal, 
QC, Canada

3Department of Radiology and Biomedical Imaging, Zuckerberg San Francisco 
General Hospital, University of California, San Francisco, CA, USA

4McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, 
Canada

5Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 
100053, P. R. China

6Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, 
Beijing 100050, P. R. China

7Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden

8Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, 
USA

9CHU Rennes, Radiology Department

10Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Visages U1128, France

11CHU Rennes, Neurology Department

12MS Unit. DPT of Neurology. University Hospital of Montpellier

13Aix Marseille Univ, CNRS, CRMBM, Marseille, France

14APHM, CHU Timone, CEMEREM, Marseille, France

15APHM, Department of Neurology, CHU Timone, APHM, Marseille

16Observatoire Français de la Sclérose en Plaques (OFSEP) ; Univ Lyon, Université 
Claude Bernard Lyon 1 ; Hospices Civils de Lyon ; CREATIS-LRMN, UMR 5220 
CNRS & U 1044 INSERM ; Lyon, France

17Neuroimaging Research Unit, INSPE, Division of Neuroscience, San Raffaele 
Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy

Gros et al. Page 16

Neuroimage. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



18Brigham and Women’s Hospital, Harvard Medical School, Boston, USA

19Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences, 
University College London, London (UK)

20Vanderbilt University, Tennessee, USA

21National Institute of Neurological Disorders and Stroke, National Institutes of 
Health, Maryland, USA

22National Institute of Radiological Sciences, Chiba, Chiba, Japan

23Juntendo University Hospital, Tokyo, Japan

24Hospital Cochin, Paris, France

25Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, 
Canada

26Center for Medical Image Computing (CMIC), Department of Medical Physics and 
Biomedical Engineering, University College London, London, United Kingdom

27Biospective Inc., Montreal, QC, Canada

28Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, 
ON, Canada

29Neurology Department, Stanford University, US

30NYU Langone Medical Center, New York, USA

Acknowledgements:

The following people are acknowledged for MRI acquisition: Manuel Taso, Jamie Near, Ives Levesque, Guillaume 
Gilbert, Robert Barry, Johanna Vannesjo, Antonys Melek, and Charles Tremblay.

The following people are acknowledged for sharing data: Eric Klawiter (Massachusetts General Hospital), Julius 
Dewald, Haleh Karbasforoushan (Northwestern University), Pierre-François Pradat and Habib Benali (Pitié-
Salpêtrière Hospital), Barry Bedell (Biospective), Claudia AM Gandini Wheeler-Kingshott (University College 
London), Pierre Rainville (Université de Montréal), Bailey Lyttle, Benjamin Conrad, Bennett Landman (Vanderbilt 
University), Maryam Seif and Patrick Freund (Spinal Cord Injury Center Balgrist, University Hospital Zurich), 
Seok Woo Kim, Jisun Song, Tom Lillicrap, and Emil Ljungberg.

We acknowledge the NVIDIA Corporation for the donation of a GPU.

We would like to warmly thank the members of NeuroPoly Lab for fruitful discussions and valuable suggestions, 
especially Harris Nami and Ryan Topfer for reviewing the manuscript, and Christian Perone and Francisco 
Perdigón Romero for their inputs on deep learning.

Grant Support:

Funded by the Canada Research Chair in Quantitative Magnetic Resonance Imaging (JCA), the Canadian Institute 
of Health Research [CIHR FDN-143263], the Canada Foundation for Innovation [32454, 34824], the Fonds de 
Recherche du Québec - Santé [28826], the Fonds de Recherche du Québec - Nature et Technologies [2015-
PR-182754], the Natural Sciences and Engineering Research Council of Canada [435897-2013], IVADO, 
TransMedTech and the Quebec BioImaging Network, ISRT, Wings for Life (INSPIRED project), the SensoriMotor 
Rehabilitation Research Team (SMRRT), the National Multiple Sclerosis Society NMSS RG-1501-02840 (SAS), 
NIH/NINDS R21 NS087465-01 (SAS), NIH/NEI R01 EY023240 (SAS), DoD W81XWH-13-0073 (SAS), the 
Intramural Research Program of NIH/NINDS (JL, DSR, GN), the Centre National de la Recherche Scientifique 
(CNRS), The French Hospital Programme of Clinical Research (PHRC) for the EMISEP project, ClinicalTrials.gov 
Identifier: , the “Fondation A*midex-Investissements d’Avenir” and the “Fondation Aix-Marseille Université”, the 

Gros et al. Page 17

Neuroimage. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ClinicalTrials.gov


Stockholm County Council (ALF grant 20150166), a postdoc fellowship from the Swedish Society for Medical 
Research (TG), a postdoc non-clinical fellowship from Guarantors of Brain (FP), the French State and handled by 
the “Agence Nationale de la Recherche”, within the framework of the “Investments for the Future” programme, 
under the reference ANR-10-COHO-002 Observatoire Français de la Sclérose en plaques (OFSEP), with the 
assistance of Eugène Devic EDMUS Foundation against multiple sclerosis; EDMUS, a European database for 
multiple sclerosis. Confavreux C, Compston DAS, Hommes OR, McDonald WI, Thompson AJ. J Neurol 
Neurosurg Psychiatry 1992; 55: 671-676, NIH/NINDS R21 NS087465-01 (SAS), NIH/NEI R01 EY023240 (SAS), 
DoD W81XWH-13-0073 (SAS), Grant MOP-13034, National Multiple Sclerosis Society NMSS RG-1501-02840 
(SAS). Additional funding sources include NIH/NINDS R21 NS087465-01 (SAS), NIH/NEI R01 EY023240 (SAS) 
and DoD W81XWH-13-0073 (SAS).

Prof. Filippi is Editor-in-Chief of the Journal of Neurology; received compensation for consulting services and/or 
speaking activities from Biogen Idec, Merck-Serono, Novartis, Teva Pharmaceutical Industries; and receives 
research support from Biogen Idec, Merck-Serono, Novartis, Teva Pharmaceutical Industries, Roche, Italian 
Ministry of Health, Fondazione Italiana Sclerosi Multipla, and ARiSLA (Fondazione Italiana di Ricerca per la 
SLA).

Jan Hillert has received honoraria for serving on advisory boards for Biogen, Sanofi-Genzyme and Novartis; and 
speaker’s fees from Biogen, Novartis, Merck-Serono, Bayer-Schering, Teva and Sanofi-Genzyme.; and has served 
as P.I. for projects or received unrestricted research support from Biogen Idec, Merck-Serono, TEVA, Sanofi-
Genzyme and Bayer-Schering.

M.A. Rocca received speaker honoraria from Biogen Idec, Novartis, Genzyme, Sanofi-Aventis, Teva and Merck 
Serono and receives research support from the Italian Ministry of Health and Fondazione Italiana Sclerosi Multipla.

Dr. S. Narayanan reports personal fees from NeuroRx Research, a speaker’s honorarium from Novartis Canada, and 
grants from the Canadian Institutes of Health Research, unrelated to the submitted work.

P. Valsasina received speaker honoraria from Biogen Idec, Novartis and ExceMED.

Donald G. McLaren and Vincent Auclair are currently employees of Biospective, Inc.

Rohit Bakshi has received consulting fees from Bayer, EMD Serono, Genentech, Guerbet, Sanofi-Genzyme, and 
Shire and research support from EMD Serono and Sanofi-Genzyme.

Jean Pelletier received speaker honoraria from Biogen, Roche, Genzyme, Novartis, and research supports from the 
French Ministry of Health and ARSEP.

Abbreviations:

CNN convolutional neural network

IQR interquartile range

MS multiple sclerosis

MSE mean square error

SCT spinal cord toolbox

SVM support vector machine

References

Alley S, Gilbert G, Gandini Wheeler-Kingshott CA, Samson RS, Grussu F, Martin AR, Bannier E, 
Callot V, Smith SA, Xu S, Dewey B, Weber KA, Parrish TB, McLaren D, Barker GJ, Papinutto N, 
Seif M, Freund P, Barry RL, By S, Narayanan S, Cohen-Adad J, 2018 Consensus acquisition 
protocol for quantitative MRI of the cervical spinal cord at 3T, in: Proceedings of the 26th Annual 
Meeting of ISMRM. Presented at the ISMRM.

Arrambide G, Rovira A, Sastre-Garriga J, Tur C, Castilló J, Río J, Vidal-Jordana A, Galán I, 
Rodríguez-Acevedo B, Midaglia L, Nos C, Mulero P, Arévalo MJ, Comabella M, Huerga E, Auger 

Gros et al. Page 18

Neuroimage. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



C, Montalban X, Tintore M, 2018 Spinal cord lesions: A modest contributor to diagnosis in 
clinically isolated syndromes but a relevant prognostic factor. Mult. Scler. 24, 301–312. [PubMed: 
28301287] 

Bakshi R, Dandamudi VSR, Neema M, De C, Bermel RA, 2005 Measurement of brain and spinal cord 
atrophy by magnetic resonance imaging as a tool to monitor multiple sclerosis. J. Neuroimaging 15, 
30S–45S. [PubMed: 16385017] 

Baur C, Albarqouni S, Navab N, 2017 Semi-supervised Deep Learning for Fully Convolutional 
Networks, in: Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017. 
Springer International Publishing, pp. 311–319.

Brosch T, Yoo Y, Tang LYW, Li DKB, Traboulsee A, Tam R, 2015 Deep Convolutional Encoder 
Networks for Multiple Sclerosis Lesion Segmentation, in: Medical Image Computing and 
Computer-Assisted Intervention – MICCAI 2015. Springer International Publishing, pp. 3–11.

Buda M, Maki A, Mazurowski MA, 2017 A systematic study of the class imbalance problem in 
convolutional neural networks. arXiv preprint arXiv:1710. 05381.

Carass A, Roy S, Jog A, Cuzzocreo JL, Magrath E, Gherman A, Button J, Nguyen J, Prados F, Sudre 
CH, Jorge Cardoso M, Cawley N, Ciccarelli O, Wheeler-Kingshott CAM, Ourselin S, Catanese L, 
Deshpande H, Maurel P, Commowick O, Barillot C, Tomas-Fernandez X, Warfield SK, Vaidya S, 
Chunduru A, Muthuganapathy R, Krishnamurthi G, Jesson A, Arbel T, Maier O, Handels H, Iheme 
LO, Unay D, Jain S, Sima DM, Smeets D, Ghafoorian M, Platel B, Birenbaum A, Greenspan H, 
Bazin P-L, Calabresi PA, Crainiceanu CM, Ellingsen LM, Reich DS, Prince JL, Pham DL, 2017 
Longitudinal multiple sclerosis lesion segmentation: Resource and challenge. Neuroimage 148, 77–
102. [PubMed: 28087490] 

Carbonell-Caballero J, Manjón JV, Martí-Bonmatí L, Olalla JR, Casanova B, de la Iglesia-Vayá M, 
Coret F, Robles M, 2006 Accurate quantification methods to evaluate cervical cord atrophy in 
multiple sclerosis patients. MAGMA 19, 237–246. [PubMed: 17115124] 

Chen M, Carass A, Oh J, Nair G, Pham DL, Reich DS, Prince JL, 2013 Automatic magnetic resonance 
spinal cord segmentation with topology constraints for variable fields of view. Neuroimage 83, 
1051–1062. [PubMed: 23927903] 

Christ PF, Elshaer MEA, Ettlinger F, Tatavarty S, Bickel M, Bilic P, Rempfler M, Armbruster M, 
Hofmann F, D’Anastasi M, Sommer WH, Ahmadi S-A, Menze BH, 2016 Automatic Liver and 
Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural Networks and 3D 
Conditional Random Fields, in: Medical Image Computing and Computer-Assisted Intervention – 
MICCAI 2016. Springer International Publishing, pp. 415–423.

Christ PF, Ettlinger F, Grün F, Elshaera MEA, Lipkova J, Schlecht S, Ahmaddy F, Tatavarty S, Bickel 
M, Bilic P, Rempfler M, Hofmann F, Anastasi MD, Ahmadi S-A, Kaissis G, Holch J, Sommer W, 
Braren R, Heinemann V, Menze B, 2017 Automatic Liver and Tumor Segmentation of CT and 
MRI Volumes using Cascaded Fully Convolutional Neural Networks. arXiv [cs.CV].

Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O, 2016 3D U-Net: Learning Dense 
Volumetric Segmentation from Sparse Annotation, in: Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2016. Springer International Publishing, pp. 424–432.

Cohen AB, Neema M, Arora A, Dell’oglio E, Benedict RHB, Tauhid S, Goldberg-Zimring D, 
Chavarro-Nieto C, Ceccarelli A, Klein JP, Stankiewicz JM, Houtchens MK, Buckle GJ, Alsop DC, 
Guttmann CRG, Bakshi R, 2012 The relationships among MRI-defined spinal cord involvement, 
brain involvement, and disability in multiple sclerosis. J. Neuroimaging 22, 122–128. [PubMed: 
21447024] 

Compston A, Coles A, 2002 Multiple sclerosis. Lancet 359, 1221–1231. [PubMed: 11955556] 

De Leener B, Cohen-Adad J, Kadoury S, 2015 Automatic Segmentation of the Spinal Cord and Spinal 
Canal Coupled With Vertebral Labeling. IEEE Trans. Med. Imaging 34, 1705–1718. [PubMed: 
26011879] 

De Leener B, Fonov VS, Collins DL, Callot V, Stikov N, Cohen-Adad J, 2018 PAM50: Unbiased 
multimodal template of the brainstem and spinal cord aligned with the ICBM152 space. 
Neuroimage 165, 170–179. [PubMed: 29061527] 

De Leener B, Kadoury S, Cohen-Adad J, 2014 Robust, accurate and fast automatic segmentation of the 
spinal cord. Neuroimage 98, 528–536. [PubMed: 24780696] 

Gros et al. Page 19

Neuroimage. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



De Leener B, Lévy S, Dupont SM, Fonov VS, Stikov N, Louis Collins D, Callot V, Cohen-Adad J, 
2017a SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. 
Neuroimage 145, 24–43. [PubMed: 27720818] 

De Leener B, Mangeat G, Dupont S, Martin AR, Callot V, Stikov N, Fehlings MG, Cohen-Adad J, 
2017b Topologically preserving straightening of spinal cord MRI. J. Magn. Reson. Imaging 46, 
1209–1219. [PubMed: 28130805] 

De Leener B, Taso M, Cohen-Adad J, Callot V, 2016 Segmentation of the human spinal cord. 
MAGMA 29, 125–153. [PubMed: 26724926] 

Dice LR, 1945 Measures of the Amount of Ecologic Association Between Species. Ecology 26, 297–
302.

Dosovitskiy A, Springenberg JT, Riedmiller M, Brox T, 2014 Discriminative Unsupervised Feature 
Learning with Convolutional Neural Networks, in: Ghahramani Z, Welling M, Cortes C, Lawrence 
ND, Weinberger KQ (Eds.), Advances in Neural Information Processing Systems 27. Curran 
Associates, Inc., pp. 766–774.

Drozdzal M, Chartrand G, Vorontsov E, Shakeri M, Di Jorio L, Tang A, Romero A, Bengio Y, Pal C, 
Kadoury S, 2018 Learning normalized inputs for iterative estimation in medical image 
segmentation. Med. Image Anal. 44, 1–13. [PubMed: 29169029] 

Dupuy SL, Khalid F, Healy BC, Bakshi S, Neema M, Tauhid S, Bakshi R, 2016 The effect of 
intramuscular interferon beta-1a on spinal cord volume in relapsing-remitting multiple sclerosis. 
BMC Med. Imaging 16, 56. [PubMed: 27716096] 

Eden D, Gros C, Badji A, Dupont S, Maranzano J, Zhuoquiong R, Liu Y, Talbott J, Bannier E, Kerbrat 
A, Edan G, Labauge P, Callot V, Pelletier J, Audoin B, Rasoanandrianina H, Valsasina P, Filippi 
M, Bakshi R, Tauhid S, Prados F, Yiannakas M, Kearney H, Ciccarelli O, Treaba CA, Mainero C, 
Ouellette R, Granberg T, Narayanan S, Cohen-Adad J, 2018 Spatial Distribution of Multiple 
Sclerosis lesions in the Cervical Cord, in: Proceedings of the 26th Annual Meeting of ISMRM. 
Presented at the ISMRM.

Egger C, Opfer R, Wang C, Kepp T, Sormani MP, Spies L, Barnett M, Schippling S, 2017 MRI FLAIR 
lesion segmentation in multiple sclerosis: Does automated segmentation hold up with manual 
annotation? Neuroimage Clin 13, 264–270. [PubMed: 28018853] 

Filippi M, Rocca MA, 2007 Conventional MRI in multiple sclerosis. J. Neuroimaging 17 Suppl 1, 3S–
9S. [PubMed: 17425727] 

Fradet L, Arnoux P-J, Ranjeva J-P, Petit Y, Callot V, 2014 Morphometrics of the entire human spinal 
cord and spinal canal measured from in vivo high-resolution anatomical magnetic resonance 
imaging. Spine 39, E262–9. [PubMed: 24253776] 

García-Lorenzo D, Francis S, Narayanan S, Arnold DL, Collins DL, 2013 Review of automatic 
segmentation methods of multiple sclerosis white matter lesions on conventional magnetic 
resonance imaging. Med. Image Anal. 17, 1–18. [PubMed: 23084503] 

Geremia E, Clatz O, Menze BH, Konukoglu E, Criminisi A, Ayache N, 2011 Spatial decision forests 
for MS lesion segmentation in multi-channel magnetic resonance images. Neuroimage 57, 378–
390. [PubMed: 21497655] 

Gervais J, Périé D, Parent S, Labelle H, Aubin C-E, 2012 MRI signal distribution within the 
intervertebral disc as a biomarker of adolescent idiopathic scoliosis and spondylolisthesis. BMC 
Musculoskelet. Disord. 13, 239. [PubMed: 23206365] 

Ghafoorian M, Mehrtash A, Kapur T, Karssemeijer N, Marchiori E, Pesteie M, Guttmann CRG, de 
Leeuw F-E, Tempany CM, van Ginneken B, Fedorov A, Abolmaesumi P, Platel B, Wells WM, 
2017a Transfer Learning for Domain Adaptation in MRI: Application in Brain Lesion 
Segmentation, in: Descoteaux M, Maier-Hein L, Franz A, Jannin P, Collins DL, Duchesne S 
(Eds.), Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017, Lecture 
Notes in Computer Science. Springer International Publishing, Cham, pp. 516–524.

Ghafoorian M, Mehrtash A, Kapur T, Karssemeijer N, Marchiori E, Pesteie M, Guttmann CRG, de 
Leeuw F-E, Tempany CM, van Ginneken B, Fedorov A, Abolmaesumi P, Platel B, Wells WM III, 
2017b Transfer Learning for Domain Adaptation in MRI: Application in Brain Lesion 
Segmentation. arXiv [cs.CV].

Gros et al. Page 20

Neuroimage. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gomez AN, Ren M, Urtasun R, Grosse RB, 2017 The Reversible Residual Network: Backpropagation 
Without Storing Activations, in: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, 
Vishwanathan S, Garnett R (Eds.), Advances in Neural Information Processing Systems 30. 
Curran Associates, Inc., pp. 2214–2224.

Gros C, De Leener B, Dupont SM, Martin AR, Fehlings MG, Bakshi R, Tummala S, Auclair V, 
McLaren DG, Callot V, Cohen-Adad J, Sdika M, 2018 Automatic spinal cord localization, robust 
to MRI contrasts using global curve optimization. Med. Image Anal. 44, 215–227. [PubMed: 
29288983] 

Guizard N, Coupé P, Fonov VS, Manjón JV, Arnold DL, Collins DL, 2015 Rotation-invariant multi-
contrast non-local means for MS lesion segmentation. Neuroimage Clin 8, 376–389. [PubMed: 
26106563] 

Harmouche R, Subbanna NK, Collins DL, Arnold DL, Arbel T, 2015 Probabilistic multiple sclerosis 
lesion classification based on modeling regional intensity variability and local neighborhood 
information. IEEE Trans. Biomed. Eng. 62, 1281–1292. [PubMed: 25546852] 

Havaei M, Guizard N, Chapados N, Bengio Y, 2016 HeMIS: Hetero-Modal Image Segmentation, in: 
Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W (Eds.), Medical Image Computing and 
Computer-Assisted Intervention – MICCAI 2016, Lecture Notes in Computer Science. Springer 
International Publishing, Cham, pp. 469–477.

Healy BC, Buckle GJ, Ali EN, Egorova S, Khalid F, Tauhid S, Glanz BI, Chitnis T, Guttmann CRG, 
Weiner HL, Bakshi R, 2017 Characterizing Clinical and MRI Dissociation in Patients with 
Multiple Sclerosis. J. Neuroimaging 27, 481–485. [PubMed: 28261936] 

Horsfield MA, Sala S, Neema M, Absinta M, Bakshi A, Sormani MP, Rocca MA, Bakshi R, Filippi M, 
2010 Rapid semi-automatic segmentation of the spinal cord from magnetic resonance images: 
application in multiple sclerosis. Neuroimage 50, 446–455. [PubMed: 20060481] 

Hua LH, Donlon SL, Sobhanian MJ, Portner SM, Okuda DT, 2015 Thoracic spinal cord lesions are 
influenced by the degree of cervical spine involvement in multiple sclerosis. Spinal Cord 53, 520–
525. [PubMed: 25582716] 

Ioffe S, Szegedy C, 2015 Batch normalization: Accelerating deep network training by reducing 
internal covariate shift. International conference on machine learning.

Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM, 2012 FSL. Neuroimage 62, 
782–790. [PubMed: 21979382] 

Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B, 
2017 Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion 
segmentation. Med. Image Anal. 36, 61–78. [PubMed: 27865153] 

Kearney H, Altmann DR, Samson RS, Yiannakas MC, Wheeler-Kingshott CAM, Ciccarelli O, Miller 
DH, 2015a Cervical cord lesion load is associated with disability independently from atrophy in 
MS. Neurology 84, 367–373. [PubMed: 25540312] 

Kearney H, Miller DH, Ciccarelli O, 2015b Spinal cord MRI in multiple sclerosis--diagnostic, 
prognostic and clinical value. Nat. Rev. Neurol. 11, 327–338. [PubMed: 26009002] 

Kearney H, Yiannakas MC, Abdel-Aziz K, Wheeler-Kingshott CAM, Altmann DR, Ciccarelli O, 
Miller DH, 2014 Improved MRI quantification of spinal cord atrophy in multiple sclerosis. J. 
Magn. Reson. Imaging 39, 617–623. [PubMed: 23633384] 

Kingma D, Ba J, 2014 Adam: A Method for Stochastic Optimization. arXiv [cs.LG].

Koh J, Kim T, Chaudhary V, Dhillon G, 2010 Automatic segmentation of the spinal cord and the dural 
sac in lumbar MR images using gradient vector flow field. Conf. Proc. IEEE Eng. Med. Biol. Soc. 
2010, 3117–3120.

Krähenbühl P, Koltun V, 2011 Efficient Inference in Fully Connected CRFs with Gaussian Edge 
Potentials, in: Shawe-Taylor J, Zemel RS, Bartlett PL, Pereira F, Weinberger KQ (Eds.), Advances 
in Neural Information Processing Systems 24. Curran Associates, Inc., pp. 109–117.

LeCun Y, Bengio Y, Hinton G, 2015 Deep learning. Nature 521, 436–444. [PubMed: 26017442] 

Lin T-Y, Goyal P, Girshick R, He K, Dollár P, 2017 Focal Loss for Dense Object Detection. arXiv 
[cs.CV].

Gros et al. Page 21

Neuroimage. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van 
Ginneken B, Sánchez CI, 2017 A survey on deep learning in medical image analysis. Med. Image 
Anal. 42, 60–88. [PubMed: 28778026] 

Little JP, Pearcy MJ, Izatt MT, Boom K, Labrom RD, Askin GN, Adam CJ, 2016 Understanding how 
axial loads on the spine influence segmental biomechanics for idiopathic scoliosis patients: A 
magnetic resonance imaging study. Clin. Biomech. 32, 220–228.

Lladó X, Oliver A, Cabezas M, Freixenet J, Vilanova JC, Quiles A, Valls L, Ramió-Torrentà L, Rovira 
À, 2012 Segmentation of multiple sclerosis lesions in brain MRI: A review of automated 
approaches. Inf. Sci. 186, 164–185.

Losseff NA, Webb SL, O’Riordan JI, Page R, Wang L, Barker GJ, Tofts PS, McDonald WI, Miller 
DH, Thompson AJ, 1996 Spinal cord atrophy and disability in multiple sclerosis. A new 
reproducible and sensitive MRI method with potential to monitor disease progression. Brain 119 
( Pt 3), 701–708.

Lundell H, Svolgaard O, Dogonowski A-M, Romme Christensen J, Selleberg F, Soelberg Sørensen P, 
Blinkenberg M, Siebner HR, Garde E, 2017 Spinal cord atrophy in anterior-posterior direction 
reflects impairment in multiple sclerosis. Acta Neurol. Scand. 136, 330–337. [PubMed: 28070886] 

Martin AR, De Leener B, Cohen-Adad J, Cadotte DW, Kalsi-Ryan S, Lange SF, Tetreault L, Nouri A, 
Crawley A, Mikulis DJ, Ginsberg H, Fehlings MG, 2017 A Novel MRI Biomarker of Spinal Cord 
White Matter Injury: T2*-Weighted White Matter to Gray Matter Signal Intensity Ratio. AJNR 
Am. J. Neuroradiol. 10.3174/ajnr.A5162

Meier DS, Guttmann CRG, Tummala S, Moscufo N, Cavallari M, Tauhid S, Bakshi R, Weiner HL, 
2018 Dual-Sensitivity Multiple Sclerosis Lesion and CSF Segmentation for Multichannel 3T Brain 
MRI. J. Neuroimaging 28, 36–47. [PubMed: 29235194] 

Milletari F, Navab N, Ahmadi SA, 2016 V-Net: Fully Convolutional Neural Networks for Volumetric 
Medical Image Segmentation, in: 2016 Fourth International Conference on 3D Vision (3DV). pp. 
565–571.

Nair T, Precup D, Arnold DL, Arbel T, 2018 Exploring Uncertainty Measures in Deep Networks for 
Multiple Sclerosis Lesion Detection and Segmentation.

Nair V, Hinton GE, 2010 Rectified linear units improve restricted boltzmann machines, in: Proceedings 
of the 27th International Conference on Machine Learning (ICML-10). pp. 807–814.

Nakamura M, Miyazawa I, Fujihara K, Nakashima I, Misu T, Watanabe S, Takahashi T, Itoyama Y, 
2008 Preferential spinal central gray matter involvement in neuromyelitis optica. J. Neurol. 255, 
163–170. [PubMed: 18231705] 

Nyúl LG, Udupa JK, 1999 On standardizing the MR image intensity scale. Magn. Reson. Med. 42, 
1072–1081. [PubMed: 10571928] 

Pan SJ, Yang Q, 2010 A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359.

Papinutto N, Schlaeger R, Panara V, Zhu AH, Caverzasi E, Stern WA, Hauser SL, Henry RG, 2015 
Age, gender and normalization covariates for spinal cord gray matter and total cross-sectional 
areas at cervical and thoracic levels: A 2D phase sensitive inversion recovery imaging study. PLoS 
One 10, e0118576. [PubMed: 25781178] 

Paquin M-Ê, El Mendili MM, Gros C, Dupont SM, Cohen-Adad J, Pradat P-F, 2018 Spinal Cord Gray 
Matter Atrophy in Amyotrophic Lateral Sclerosis. AJNR Am. J. Neuroradiol. 39, 184–192. 
[PubMed: 29122760] 

Pereira S, Pinto A, Alves V, Silva CA, 2016 Brain Tumor Segmentation Using Convolutional Neural 
Networks in MRI Images. IEEE Trans. Med. Imaging 35, 1240–1251. [PubMed: 26960222] 

Perone CS, Calabrese E, Cohen-Adad J, 2017 Spinal cord gray matter segmentation using deep dilated 
convolutions. arXiv [cs.CV].

Pezold S, Fundana K, Amann M, Andelova M, Pfister A, Sprenger T, Cattin PC, 2015 Automatic 
Segmentation of the Spinal Cord Using Continuous Max Flow with Cross-sectional Similarity 
Prior and Tubularity Features, in: Yao J, Glocker B, Klinder T, Li S (Eds.), Recent Advances in 
Computational Methods and Clinical Applications for Spine Imaging, Lecture Notes in 
Computational Vision and Biomechanics. Springer International Publishing, pp. 107–118.

Popescu BFG, Lucchinetti CF, 2012 Pathology of demyelinating diseases. Annu. Rev. Pathol. 7, 185–
217. [PubMed: 22313379] 

Gros et al. Page 22

Neuroimage. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M, 2013 Deep feature learning for knee 
cartilage segmentation using a triplanar convolutional neural network. Med. Image Comput. 
Comput. Assist. Interv. 16, 246–253. [PubMed: 24579147] 

Rocca MA, Horsfield MA, Sala S, Copetti M, Valsasina P, Mesaros S, Martinelli V, Caputo D, Stosic-
Opincal T, Drulovic J, Comi G, Filippi M, 2011 A multicenter assessment of cervical cord atrophy 
among MS clinical phenotypes. Neurology 76, 2096–2102. [PubMed: 21670439] 

Rocca MA, Valsasina P, Damjanovic D, Horsfield MA, Mesaros S, Stosic-Opincal T, Drulovic J, 
Filippi M, 2013 Voxel-wise mapping of cervical cord damage in multiple sclerosis patients with 
different clinical phenotypes. J. Neurol. Neurosurg. Psychiatry 84, 35–41. [PubMed: 23064100] 

Ronneberger O, Fischer P, Brox T, 2015 U-Net: Convolutional Networks for Biomedical Image 
Segmentation, in: Navab N, Hornegger J, Wells WM, Frangi AF (Eds.), Medical Image Computing 
and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science. 
Presented at the International Conference on Medical Image Computing and Computer-Assisted 
Intervention, Springer International Publishing, pp. 234–241.

Roy S, Butman JA, Reich DS, Calabresi PA, Pham DL, 2018 Multiple Sclerosis Lesion Segmentation 
from Brain MRI via Fully Convolutional Neural Networks. arXiv [cs.CV].

Shah M, Xiao Y, Subbanna N, Francis S, Arnold DL, Collins DL, Arbel T, 2011 Evaluating intensity 
normalization on MRIs of human brain with multiple sclerosis. Med. Image Anal. 15, 267–282. 
[PubMed: 21233004] 

Shiee N, Bazin P-L, Ozturk A, Reich DS, Calabresi PA, Pham DL, 2010 A topology-preserving 
approach to the segmentation of brain images with multiple sclerosis lesions. Neuroimage 49, 
1524–1535. [PubMed: 19766196] 

Simard PY, Steinkraus D, Platt JC, Others, 2003 Best practices for convolutional neural networks 
applied to visual document analysis, in: ICDAR. pp. 958–962.

Simon JH, Li D, Traboulsee A, Coyle PK, Arnold DL, Barkhof F, Frank JA, Grossman R, Paty DW, 
Radue EW, Wolinsky JS, 2006 Standardized MR imaging protocol for multiple sclerosis: 
Consortium of MS Centers consensus guidelines. AJNR Am. J. Neuroradiol. 27, 455–461. 
[PubMed: 16484429] 

Singhal T, Tauhid S, Hurwitz S, Neema M, Bakshi R, 2017 The Effect of Glatiramer Acetate on Spinal 
Cord Volume in Relapsing-Remitting Multiple Sclerosis. J. Neuroimaging 27, 33–36. [PubMed: 
27466943] 

Sombekke MH, Wattjes MP, Balk LJ, Nielsen JM, Vrenken H, Uitdehaag BMJ, Polman CH, Barkhof 
F, 2013 Spinal cord lesions in patients with clinically isolated syndrome: a powerful tool in 
diagnosis and prognosis. Neurology 80, 69–75. [PubMed: 23243070] 

Srivastava N, Hinton G, Krizhevsky A, 2014 Dropout: A simple way to prevent neural networks from 
overfitting. The Journal of Machine.

Stroman PW, Figley CR, Cahill CM, 2008 Spatial normalization, bulk motion correction and 
coregistration for functional magnetic resonance imaging of the human cervical spinal cord and 
brainstem. Magn. Reson. Imaging 26, 809–814. [PubMed: 18499380] 

Styner M, Lee J, Chin B, Chin M, Commowick O, Tran H, Markovic-Plese S, Jewells V, Warfield S, 
2008 3D segmentation in the clinic: A grand challenge II: MS lesion segmentation. Midas J. 2008, 
1–6.

Sudre CH, Li W, Vercauteren T, Ourselin S, Jorge Cardoso M, 2017 Generalised Dice Overlap as a 
Deep Learning Loss Function for Highly Unbalanced Segmentations, in: Deep Learning in 
Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer 
International Publishing, pp. 240–248.

Tang L, Wen Y, Zhou Z, von Deneen KM, Huang D, Ma L, 2013 Reduced field-of-view DTI 
segmentation of cervical spine tissue. Magn. Reson. Imaging 31, 1507–1514. [PubMed: 
23993792] 

Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, Correale J, Fazekas F, Filippi 
M, Freedman MS, Fujihara K, Galetta SL, Hartung HP, Kappos L, Lublin FD, Marrie RA, Miller 
AE, Miller DH, Montalban X, Mowry EM, Sorensen PS, Tintoré M, Traboulsee AL, Trojano M, 
Uitdehaag BMJ, Vukusic S, Waubant E, Weinshenker BG, Reingold SC, Cohen JA, 2018 

Gros et al. Page 23

Neuroimage. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17, 162–
173. [PubMed: 29275977] 

Thorpe JW, Kidd D, Moseley IF, Kenndall BE, Thompson AJ, MacManus DG, McDonald WI, Miller 
DH, 1996 Serial gadolinium-enhanced MRI of the brain and spinal cord in early relapsing-
remitting multiple sclerosis. Neurology 46, 373–378. [PubMed: 8614497] 

Topfer R, Foias A, Rios NL, 2018 Integrated ∆B0/Rx coil array for improved spinal cord imaging at 
3T, in: Proceedings of the 26th Annual Meeting of ISMRM. Presented at the ISMRM, p. 8930.

Topfer R, Starewicz P, Lo K-M, Metzemaekers K, Jette D, Hetherington HP, Stikov N, Cohen-Adad J, 
2016 A 24-channel shim array for the human spinal cord: Design, evaluation, and application. 
Magn. Reson. Med. 76, 1604–1611. [PubMed: 27487798] 

Ullmann E, Thong W, Pelletier Paquette JP, Cohen-Adad J, 2014 Automatic labeling of vertebral levels 
using a robust template-based approach. Int. J. Biomed. Imaging Article ID 719520, 9 pages.

Valindria VV, Lavdas I, Bai W, Kamnitsas K, Aboagye EO, Rockall AG, Rueckert D, Glocker B, 2018 
Domain Adaptation for MRI Organ Segmentation using Reverse Classification Accuracy.

Valverde S, Cabezas M, Roura E, González-Villà S, Pareto D, Vilanova JC, Ramió-Torrentà L, Rovira 
À, Oliver A, Lladó X, 2017a Improving automated multiple sclerosis lesion segmentation with a 
cascaded 3D convolutional neural network approach. Neuroimage 155, 159–168. [PubMed: 
28435096] 

Valverde S, Oliver A, Roura E, González-Villà S, Pareto D, Vilanova JC, Ramió-Torrentà L, Rovira À, 
Lladó X, 2017b Automated tissue segmentation of MR brain images in the presence of white 
matter lesions. Med. Image Anal. 35, 446–457. [PubMed: 27598104] 

Van Leemput K, Maes F, Vandermeulen D, Suetens P, 1999 Automated model-based bias field 
correction of MR images of the brain. IEEE Trans. Med. Imaging 18, 885–896. [PubMed: 
10628948] 

Vannesjo SJ, Shi Y, Tracey I, Miller KL, Clare S, 2017 Slice-wise first-order shimming of the human 
spinal cord at 7T, in: Proceedings of the 25th Annual Meeting of ISMRM. p. 5210.

Weier K, Mazraeh J, Naegelin Y, Thoeni A, Hirsch JG, Fabbro T, Bruni N, Duyar H, Bendfeldt K, 
Radue E-W, Kappos L, Gass A, 2012 Biplanar MRI for the assessment of the spinal cord in 
multiple sclerosis. Mult. Scler. 18, 1560–1569. [PubMed: 22539086] 

Yu F, Koltun V, 2015 Multi-Scale Context Aggregation by Dilated Convolutions. arXiv [cs.CV].

Yushkevich PA, Gerig G, 2017 ITK-SNAP: An Intractive Medical Image Segmentation Tool to Meet 
the Need for Expert-Guided Segmentation of Complex Medical Images. IEEE Pulse 8, 54–57.

Zheng S, Jayasumana S, Romera-Paredes B, Vineet V, Su Z, Du D, Huang C, Torr PHS, 2015 
Conditional Random Fields as Recurrent Neural Networks, in: 2015 IEEE International 
Conference on Computer Vision (ICCV). pp. 1529–1537.

Gros et al. Page 24

Neuroimage. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: Spinal cord axial slice samples.
(a-f) show the variability of the images in terms of resolution, field of view, and MR 

contrasts. Images were acquired from 6 different sites, of subjects with different clinical 

status: healthy control (HC, b), amyotrophic lateral sclerosis (ALS, a), degenerative cervical 

myelopathy (DCM, c) and multiple sclerosis (MS, d-f). The in-plane resolutions vary across 

the images. For all images, the spinal cord and lesion voxels represent less than 1% and 

0.1%, respectively, of the entire volume. The shape, location, size, and level of contrast 

differ among MS lesions (d-f). The histograms for spinal cord and lesion voxels of the MS 

patient (d-f) images are shown at the bottom. Although lesions mostly appear hyperintense 
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in T2- and T2*-weighted, a substantial overlap between spinal cord and lesion intensities is 

observed, leading to low contrast, especially for T2*-w images (f) with similarities between 

grey matter and lesion appearance.
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Figure 2: Overview of the data set.
Samples of cross-sectional axial slices of the three MR contrast data sets (T1-weighted, T2-

weighted, T2*-weighted) are depicted (top row). Image characteristics in terms of 

orientation (orient.) and resolution (resol.), grouped by isotropic, anisotropic and with axial 

(Ax.) orientation or sagittal (Sag.) orientation are presented (middle row). The last row 

shows the proportion of clinical status among the imaged subjects, including: healthy 

controls (HC), multiple sclerosis (MS), degenerative cervical myelopathy (DCM), 

neuromyelitis optica (NMO), traumatic spinal cord injury (SCI), amyotrophic lateral 

sclerosis (ALS), and syringomyelia (SYR). Imaging parameters across participating sites are 

detailed in Table A1 (see Appendix).
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Figure 3: Automatic segmentation framework.
(1) detection of the spinal cord by CNN1 which outputs a heatmap (red-to-yellow) of the 

spinal cord location, (2) computation of the spinal cord centerline (pink) from the spinal 

cord heatmap (Gros et al., 2018), and extraction of 3D patches in a volume of interest 

surrounding the spinal cord centerline, (3) segmentation of the spinal cord (red) by 

CNN2-SC, and/or of lesions (blue) by CNN2-lesion. SC: Spinal cord ; CNN: Convolutional 

Neural Network ; S: Superior ; I: Inferior ; A: Anterior ; P: Posterior.
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Figure 4: 
Examples of automatic spinal cord segmentations on T1-w (top), T2-w (middle) and T2*-

w (bottom) MRI data. This includes a comparison between manual (green) and automatic 

(red) delineations, with Dice coefficient indicated just below each comparison. Note that the 

depicted samples represent a variety of subjects in terms of clinical status, and were scanned 

at different sites, identified by their ID (e.g. S10_HC23 is the ID of the HC subject #23, 

from the site #10). Abbreviations: A: Anterior ; P: Posterior ; L: Left ; R: Right ; I: Inferior ; 

S: Superior ; Auto.: Automatic ; HC: healthy controls ; MS: multiple sclerosis ; DCM: 

degenerative cervical myelopathy ; NMO: neuromyelitis optica ; ALS: amyotrophic lateral 

sclerosis.
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Figure 5: 
Examples of automatic lesion segmentations on Axial T2-w (top left), Axial T2*-w 

(bottom) and Sagittal T2-w (top, right) MRI data. This includes a comparison between 

manual (green) and automatic (blue) delineations, with Dice coefficients indicated just 

below each comparison. Note that the depicted samples were scanned at different sites, 

identified by their ID (e.g. S1_RRMS17 is the ID of subject #17 from site #1 with relapsing-

remitting multiple sclerosis).
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Figure 6: Inter-rater variability.
Comparison between raters and automatic MS lesion segmentation on 10 testing subjects. 

(A.) shows the Dice coefficient (range of [0-100] with 100% as best possible value) 

computed between the rater consensus (majority voting) and each individual rater (n=7) 

segmentation (purple distributions) as well as the automatic method (blue dot). (B.) depicts 

axial cross-sectional samples with the manual segmentation of the raters and the automatic 

delineation (blue). The consensus between raters vary from “low agreements” (in blues, 

mainly on the borders) to “strong agreement” (in reds, mainly on the cores). The green-to-

red (see colormap) voxels were considered as part of the majority voting masks. (C.) 

presents the segmentation time, averaged across subjects, for each rater and the automatic 

segmentation (iMac i7 4-cores 3.4 GHz 8Gb RAM). Abbreviations: Seg.: Segmentation ; A: 

Anterior ; P: Posterior ; L: Left ; R: Right ; I: Inferior ; S: Superior ; Auto.: Automatic.
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Figure 7: 
Visualisation of feature map instances, learnt by different layers of the CNN2-Lesion, applied 

to an input image (left) leading to a binary segmentation (right). The normalised values 

represent the responses to filters learnt during the training step, with a colormap from blues 

(weak filter match) to reds (strong filter match).
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Table 1:

Median (interquartile range) results, for the cord centerline detection (A), the spinal cord segmentation (B), 

and the MS intramedullary lesion segmentation (C). Results were computed from the testing data set, reported 

across contrasts. The best possible score value (i.e. not the best score reached) is indicated under each metric 

name. Performance comparisons between “SVM+OptiC” (Gros et al., 2018) and “CNN1+OptiC”, as well as 

between “PropSeg” (De Leener et al., 2015) and “CNN2-SC” were statistically assessed using Kruskal-Wallis 

tests, and significant differences are indicated in bold (p≤0.05, adjusted with Bonferroni correction).

A. Centerline Detection

Mean Square Error [mm]
Best value 0

Localization Rate [0-100]%
Best value: 100

SVM+OptiC CNN1+OptiC SVM+OptiC CNN1+OptiC

T1-w Data 11.1 (11.8) 0.9 (0.5) 33.3 (48.9) 100 (0)

T2-w Data 9.1 (12.8) 1.0 (0.9) 100. (33.3) 99.7 (4.2)

T2*-w Data 0.9 (0.3) 1.0 (0.6) 100 (0) 100 (0)

B. Spinal Cord Segmentation

Dice Coefficient [0-100]%
Best value: 100

Relative Volume Difference [0-100]%
Best value: 0

PropSeg CNN2-sc PropSeg CNN2-sc

T1-w Data 92.0 (13.5) 95.9 (1.5) −4.4 (11.1) −0.3 (5.7)

T2-w Data 83.2 (18.6) 92.4 (5.1) 7.0 (26.8) −0.2 (6.5)

T2*-w Data 94.1 (15.7) 95.5 (2.8) 4.3 (32.8) −3.5 (9.8)

C. MS Lesion Segmentation

Dice 
Coefficient 
[0-100]%

Best value: 100

Relative 
Volume 

Difference 
[0-100]%

Best value: 0

Lesion-wise 
Sensitivity 
[0-100]%

Best value: 100

Lesion-wise 
Precision 
[0-100]%

Best value: 
100

Voxel-wise 
Sensitivity 
[0-100]%

Best value: 100

Voxel-wise 
Precision 
[0-100]%

Best value: 
100

Volume-wise 
Specificity 
[0-100]%

Best value: 
100

T2-w 
Data

57.6 (22.4) −17.3 (61.3) 90.0 (33.3) 66.7 (58.3) 51.4 (39.4) 68.3 (39.6) 80.6

T2*-w 
Data

60.4 (25.0) −4.5 (74.9) 75.0 (47.2) 100.0 (38.4) 59.0 (38.6) 47.4 (59.2) 81.5
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