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Abstract

An Analysis of the Distribution of Genotypes for a Recent Model in Population Genetics

by

Moorea Brega

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Kenneth Wachter, Chair

Recent genetic studies suggest that many age-related diseases may be attributed not to a sin-
gle or small number of mutations, but rather to a large number of mutations, each of which
is individually slightly deleterious. Following in the tradition of Kimura and Maruyama, we
consider mutation accumulation in an infinite population with a large number of mutation
types. We compare the distribution of genotypes under two extreme assumptions regarding
genetic recombination: no recombination versus “free” recombination, in which recombina-
tion acts more rapidly than mutation and selection. Under a range of assumptions, including
realistic mutation rates and demographic fitness measures, we find unexpected similarities
in the predictions from the different models. While recombination predictably affects the
level of mutant alleles present in the population, the overall shape of the genotype distri-
bution under the two models is quite similar, as are the general behavior of demographic
outcomes such as lifespan and hazard rates. Furthermore, the distribution of genotypes un-
der the assumption of no recombination may be well approximated by a Poisson random
measure. The qualitative similarities in genotype distributions and demographic characters
under these extreme models of genetic recombination suggest that attempts to model recom-
bination in a more realistic manner may not add much to our understanding when viewed
from a demographic perspective.

The two models analyzed here, developed by Steinsaltz, Evans, and Wachter, are gen-
eral enough to connect age-specific effects on demographic characters, such as mortality, to
mechanisms of genetic change. While the 2005 model without recombination has a series
solution, it cannot be directly evaluated except in the simplest of cases. Sampling from the
distribution of genotypes in cases with a large number of mutation types is challenging. In
this work we utilize a multiple-try Metropolis algorithm to sample from the distribution of
genotypes for spaces containing up to 1000 different mutation types. We consider a vari-
ety of test cases, finding scenarios in which typical genotypes contain 100, 350 or even 850
mutations. Our success at accurately estimating genotype distributions and demographic
outcomes under assumptions that produce such a large average number of mutations sug-
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gests that this model could be utilized under more realistic scenarios, such as mutations
associated with age-related disease.
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“It is interesting to note that the uniqueness of individuals, which delights biologists so
much, may be caused by ‘littering’ the organisms with defects and thus forming a unique

pattern of individual damage.” Gavrilov and Gavrilova [14]

To our unique patterns of individual damage.
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Chapter 1

An Overview of Mathematical Models
in Population Genetics and
Demography

1.1 Introduction

In this work we study a recent model in population genetics proposed by David Steinsaltz,
Steven Evans and Ken Wachter [30]. This model is interesting because its broad mathemati-
cal framework allows standard mutation-selection balance models, well-known in population
genetics, to be connected to more sophisticated models of the effects of genetic mutations on
fitness. Of particular interest is the case in which mutations have explicitly defined effects
on demographic outcomes, such as hazard rates and survival probabilities. This flexibility
makes the model particularly useful in studying various evolutionary theories of senescence,
which posit that aging is due to the build-up over evolutionary time of mutations with
age-specific effects.

While Steinsaltz, Evans and Wachter presented a series solution to their mutation-
selection model in [30], it cannot be directly evaluated except in very simple cases. As a
result, not much is known about the distribution of genotypes when demographic outcomes
are used to measure genetic fitness. In order to characterize the distribution of genotypes
in these circumstances, we utilize Markov chain Monte Carlo methods to sample from the
distribution of genotypes. We find that the distribution of genotypes, with realistic mutation
rates and demographic outcomes, can be well-approximated by a Poisson random measure.
This result is rather surprising as it suggests that the process of mutation under this model
is dominant over the process of selection, driving the distribution of genotypes toward a
Poisson.

This result is also interesting because of its similarity to a second model proposed by
Evans, Steinsaltz and Wachter in [11]. The second model essentially extends the original
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mutation-selection model to include recombination. However, recombination is assumed to
act on a much faster time scale than either mutation or selection. As a result, recombination
ensures that all mutations are statistically independent and guarantees that the resulting
distribution of genotypes is a Poisson random measure. Because these two models represents
extremes – no recombination versus free recombination – the similarity in distribution of
genotypes under the two models suggests that more realistic models of recombination may
produce similar outcomes.

In the remainder of this chapter, we will review several evolutionary theories of senscence
(§1.2), which guide and motivates this work. In §1.3 we review relevant models in popu-
lation genetics, including classical mutation-selection balance equations, simple models of
recombination and Haldane’s principle, as well as discussing some recent models that use
more flexible mathematical formulations. We end the chapter with a discussion of com-
mon demographic terms, in §1.4, as well as presenting demographic models of theories of
senescence.

The mutation-selection model that is the focus of this work is presented in detail in §2.1.
In §2.1.7 we discuss using demographic outcomes within the framework of the mutation-
selection model. Because we will be comparing the distribution of genotypes for the Stein-
saltz, Evans and Wachter (SEW) mutation-selection model to that in which recombination
is present, we describe the free recombination model in §2.2, focusing in particular on using
demographic outcomes.

Chapter 3 reviews the numerical methods utilized in this work. A simple method for
numerically computing the solution to the Evans, Steinsaltz and Wachter (ESW) free re-
combination model is reviewed in §3.1. Several numeric approaches used to estimate the
distribution of genotypes under the SEW mutation-selection model are detailed in §3.2. To
illustrate the difficulty of numerically sampling from the distribution of genotypes we present
several simple test cases in §3.3.

Chapter 4 contains the bulk of our results. In this chapter we focus on cases inspired by
the evolutionary theories of senescence presented in §1.2. Specifically, we look at cases with
realistic mutation rates and hundreds of possible types of genetic mutations, with effects
ranging from large early-age effects to very small early-age effects. Most of these cases
assume that the age-specific effects are described by gamma distributions. We focus on
approximating the distribution of genotypes in these cases by a Poisson random measure
in §4.1.1 and also explore the similarity of the distribution of genotypes under the SEW
mutation-selection model and the ESW free recombination model. We briefly consider a
less realistic model of age-specific mutation effects in §4.2. In this case, too, the Poisson
approximation appears to be valid. Concluding comments are made in §4.3.
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1.2 Evolutionary Theories of Senescence

In 1952, Peter Medawar argued that the force of natural selection decreases with adult age.
Under this assumption, deleterious mutations with late-acting effects face less selective pres-
sure than those with early-acting effects. The idea of age-dependent selection force formed
the basis for several theories of the evolution of senescence, specifically the theories of muta-
tion accumulation [25], antagonistic pleiotropy [38] and reinforcing (or positive) pleiotropy.

In mutation accumulation, proposed by Peter Medawar, deleterious mutations with large
overall effects or with significant early-age effects (for example mutations that impact fertil-
ity) will face a high selective pressure and will eventually be weeded out of the population.
Because the force of selection decreases with age, mutations that are either slightly dele-
terious or have late-acting effects will face less selective pressure and are more likely to be
passed to the next generation. Under this theory, senescence is the result of an accumula-
tion over many generations of a large number of slightly deleterious mutations or deleterious
mutations with late-age (e.g. post-reproductive) effects.

Whereas mutation accumulation focuses on deleterious mutations, George C. Williams
considered pleiotropic mutations, that is, mutations in which a single gene corresponds to
several phenotypic traits. Introduced in 1957 [38], antagonistic pleiotropy is the theory that
a single mutation may have both deleterious and beneficial effects. The force of selection on
such a mutation would have to balance its deleterious and beneficial traits. In particular,
Williams argued that selection may favor genes that are beneficial early in life even if they
have deleterious effects later in life.

In reinforcing (or positive) pleiotropy, deleterious mutations are purely deleterious. How-
ever, this theory assumes that any mutation with late-age deleterious effects will also have
deleterious effects at younger ages. If the early-age deleterious effects are sufficiently small,
the mutation will not face a large selective pressure and mutation-selection balance will en-
sure that the mutation will not go to extinction. This theory may bypass some potential
difficulties with the theory of mutation accumulation as an evolutionary explanation of senes-
cence. In particular, it may avoid the issue of creating a “wall of death.” Under the theory
of mutation accumulation, mutations with only very late-age effects (i.e. mutations effecting
survival at post reproductive ages) may face such low selective pressure that these mutations
would accumulate uncontrollably. This could cause late-age mortality to spike and survival
to drop to zero, creating a wall of death, an age after which survival is impossible (see [34]).
The wall of death phenomenon in the context of the models considered in this work will be
discussed briefly in Appendix C.2 and is also discussed in [35].

In all three of these theories for an evolutionary explanation of senescence, age-specific
genetic effects are linked with demographic outcomes, such as mortality rates and fertility.
As a result, any mathematical model incorporating these theories would need to connect
mutation-selection models in population genetics to demographic characters. The models
proposed by Evans, Steinsaltz and Wachter ([30] and [11]) are sufficiently general to allow
demographic outcomes to be used as a constraint in the spread of deleterious mutations in



4

a population. These models will be discussed in detail in §2.1 and §2.2.

1.3 Mathematical models for mutation, selection and

recombination

This section provides a brief tour through the history of mutation, selection and recombina-
tion models used in population genetics. Many of the classic models presented below, as well
as quite a few others, are discussed in greater detail in the works of Bürger [6], Durrett[10],
and Ewens [12].

1.3.1 Single Locus Models

We begin this review of models in population genetics with a discussion of single locus
models. When focusing on a single locus, the genetics of the population can be influenced
by mutation (one allele changing to another type of allele), selection (pressure encouraging
the spread of beneficial genes and weeding out deleterious genes), and, in small populations,
random mating (which can cause the genetics of the population to “drift”). Models will be
presented in order of increasing complexity. First, we shall introduce the Hardy-Weinberg
law in which random mating alone drives the genetics of the population. We will also
briefly discuss the phenomenon of genetic drift. Next we will review classical model in which
mutation alone or selection alone drives the change in population genetics. After reviewing
how mutation alone and selection alone influence genetics, we turn to a classical mutation-
selection balance equation. We also discuss a more complicated model of mutation-selection
balance called Kingman’s House of Cards. Finally, we end with a discussion of Haldane’s
principle.

Hardy-Weinberg

Perhaps the beginning of mathematical models in population genetics began with the Hardy-
Weinberg law, which considers genetic variation under a Mendelian view of genetics and
heredity. To understand this law, we consider a large, randomly-mating monoecious diploid
population with discrete, non-overlaping generations. 1 This population consists of indi-
viduals with three possible genotypes, A1A1, A1A2 and A2A2, with A1 and A2 representing
the only possible allelic types at the locus in question. We will denote the proportion of
the initial population with these genotypes by X, 2Y and Z, respectively. Under random
mating, the proportion of the population with these genotypes in the second generation is
found using the following probabilities.

1In a monoecious population, every individual has both male and female sex organs. One can also
consider a dioecious population, that is, a population that has two distinct sexes, as long as the initial
genotype frequencies are the same for both sexes. See Bürger [6].
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Parent Types Mating Probability Conditional Probability of Offspring
A1A1 A1A2 A2A2

A1A1 × A1A1 X2 1 0 0
A1A1 × A1A2 4XY 1

2
1
2

0
A1A1 × A2A2 2XZ 0 1 0
A1A2 × A1A2 4Y 2 1

4
1
2

1
4

A1A2 × A2A2 4Y Z 0 1
2

1
2

A2A2 × A2A2 Z2 0 0 1

If we let X ′ denote the proportion of type A1A1 in the second generation (and similarly
for 2Y ′ and Z ′) then we have

X ′ = X2 + 2XY + Y 2 = (X + Y )2

2Y ′ = 2XY + 2XZ + 2Y 2 + 2Y Z = 2(X + Y )(Y + Z)

Z ′ = Y 2 + 2Y Z + Z2 = (Y + Z)2.

This procedure can be repeated again to find the proportions for the third generation, X ′′,
2Y ′′ and Z ′′. In doing so, we find that X ′′ = X ′, 2Y ′′ = 2Y ′ and Z ′′ = Z ′. That is, in a
randomly mating population with neither selection nor mutation forces, the population will
achieve stable frequencies in the second generation and maintain them for all subsequent
generations. The significance of this law is to recognize that a population maintains its
genetic variation over time. We note that the Hardy-Weinberg Law can also be extended to
k alleles with the same result. A population in Hardy-Weinberg equilibrium is one in which
genotypic frequencies obey the equations above (or their extension to k alleles).

Of course, the Hardy-Weinberg equation represents a highly simplified view of genetics.
It assumes that all alleles are genetically neutral, conferring neither benefit nor detriment to
the individual possessing that genetic material. It also assumes that alleles cannot change
type via mutation. Both of these assumptions will be relaxed in the following sections.
However, before we leave this simple model where mutation and selection have no influence
over the genetics of the population we wish to discuss the importance of population size.

Genetic Drift

While this thesis will focus on large populations, it is important in any survey of mathe-
matical population genetics to discuss finite population models and genetic drift. Genetic
drift refers to the situation in which random mating alone causes changes in the proportion
of the population with a certain allelic type. The earliest and simplest of model of genetic
drift is the Wright-Fisher model, which considers a single locus with two possible alleles, A1

and A2. The population in question is a diploid population with a constant size, N , and
discrete, non-overlapping generations labeled by n, where n = 0, 1, 2, . . .. We let Xn denote
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the number of copies of allele A1 in the population in generation n. Because the population
is diploid, there are 2N genes in each generation, so the proportion of A1 alleles in generation
n is given by Xn/2N .

The number of A1 alleles in the next generation (n+ 1) has a binomial distribution with
2N trials and probability of success Xn/2N . That is,

P (Xn+1 = j|Xn = i) = πij =

(
2N
j

)(
i

2N

)j (
1− i

2N

)2N−j

.

The Xn form a Markov chain with transition probabilities πij. It is easy to show that the
expected number of copies of allele A1 is constant over time, that is,

E[Xn+1] = E[Xn] = · · · = E[X0].

However, while the average frequency may be constant in time, it is important to note
that the states 0 and 2N are absorbing states of the Markov chain. Without mutation to
reintroduce a lost allele, once one of the allele types is lost to the population, it is lost for
every subsequent generation. Eventually, variation in the population will be lost and every
member of the population will have the same genotype. That is, all genes in the population
will be allele A1 or all genes will be allele A2. In a small population, random mating is an
important factor in determining the genetic make-up of the group. For example, genetic drift
can drive beneficial mutations to extinction or deleterious genes to fixation. The remaining
models considered in this work will assume that populations are large enough that genetic
drift can safely be ignored.

Mutation

In the basic Wright-Fisher model, once an allele is lost to a generation, it is lost to the
population forever. By introducing mutation, we consider the possibility that mutation may
change the allelic type of an offspring, either to an allele already present in the population
or to an entirely new allele. In this section we will present a basic model of mutation in
which there are a finite number of possible allelic types at the locus in question. The second
scenario, in which mutation events always produce new allelic types, is used by Kingman in
his mutation-selection balance model called Kingman’s House of Cards, that will be presented
in a later section.

In a simple model where mutation alone acts on the genetics of a population, we assume
that all alleles are neutral, that is, no allele produces an advantage or disadvantage to the
individual carrying it. We assume that the population is large enough that we can safely
ignore genetic drift. For simplicity we further assume that this population has discrete,
non-overlapping generations. Suppose that at a gene locus there are k possible allelic types,
A1, . . . Ak, with the frequency of type Ai given by pi. For i 6= j, the probability that an allele
of type Ai produces an offspring of type Aj is given by the mutation rate, µij. We adopt the
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mathematical convention that µii = 0 for i = 1, 2, . . . k. That is, a mutation event always
produces an allelic type that is different from the parent type. In the next generation the
frequency of type Ai is determined by those individuals of type Ai in the current generation
that do not experience mutation events and those individuals in the population of a different
type that produce offspring of type Ai through mutation. Using p′i to denote the frequency
of Ai in the next generation, we have

p′i = pi

(
1−

∑
j

µij

)
+
∑
j

µjipj

It is easy to show that in such a population there exists a unique equilibrium for allele
frequencies if all the mutation rates are positive and that the frequencies converge to this
equilibrium at a geometric rate.

Selection

Previously we considered alleles that are genetically neutral and assumed that mutation
was the driving force behind the frequencies of allelic types in a population. Now we want
to consider alleles that have different fitnesses, that is, they may confer some benefit or
be detrimental to the individual carrying said allele. The term “fitness” in this context
encompasses fertility (in terms of the average number of offspring) and viability (survival
of the offspring to reproductive maturity). We assume that mating is random and that
the population is large enough to ignore genetic drift. Generations are discrete and non-
overlapping. We begin with the case of a haploid population.

As before, we focus on a single locus with k possible alleles, A1, . . . Ak, with the frequency
of type Ai given by pi. We let Wi denote the fitness associated with allelic type Ai. Without
mutation, the relative frequency of type Ai in the next generation depends only on the fitness
of individuals of that type relative to the rest of the population. Using p′i to denote the allele
frequency in the next generation, we have

p′i = pi
Wi

W̄

where W̄ is the average population fitness, W̄ =
∑
piWi. Using n to denote the generation

number, n = 0, 1, . . ., the frequency of allele Ai in generation n is given by

pi(n) = pi(0)
(Wi)

n∑
j pj(0) (Wj)

n .

If any allele has a higher fitness than all other alleles, say A1, then it is clear that for
i 6= 1, (Wi/W1)n → 0 as n goes to infinity. As long as the initial frequency of the fittest
allele A1 is positive (p1(0) > 0), the fittest allele will go to fixation in the population and all
other alleles will be lost. That is, p1(n)→ 1 as n goes to infinity.
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More interesting dynamics can occur in a diploid population. We now use Wij to denote
the fitness of an individual with genotype AiAj. Note that Wij = Wji because both corre-
spond to the unordered genotype AiAj. Let Wi denote the marginal fitness of allelic type
Ai. Unlike the haploid case where the fitness of each type is fixed, the marginal fitnesses for
the diploid population depend on the relative frequencies for each allelic type,

Wi =
∑
j

Wijpj.

If we let Pij be the frequency of individuals of type AiAj, then the frequency in the next
generation is given by

P ′ij =
WijPij
W̄

=
Wijpipj
W̄

where

W̄ =
∑
i,j

WijPij =
∑
ij

Wijpipj =
∑
i

Wipi.

The frequency of allele Ai after selection is

p′i = pi
Wi

W̄
.

At this point we should note that the haploid model can be considered as a special case of
the diploid model when the fitnesses are multiplicative, that is, Wij = vivj for some constants
vi. Then,

Wi =
∑
j

Wijpj =
∑
j

vivjpj = viv̄

and

W̄ =
∑
ij

Wijpipj =
∑
ij

vivjpipj = v̄2.

Thus, the frequency in the next generation is

p′i = pi
Wi

W̄
= pi

viv̄

v̄2
= pi

vi
v̄

which is simply the haploid model.
We will now focus on the simplest diploid case: a single locus with only two allelic types,

A1 and A2. We let p denote the frequency of A1 and note that 1− p is the frequency of A2.
While there are several convenient mathematical notations to use for the fitness of genotypes
in this model (see, for example, [12]), we choose to follow the notation used by Bürger in [6].
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Because the frequencies of allelic types depend on the ratio between the fitness of type Ai
and the mean fitness, the frequency is unchanged if we multiply the fitnesses by a constant
value. As a result, we will use relative rather than absolute fitness for convenience. In all
future references, the term “fitness” can be read as “relative fitness.”

Let W11 = 1, W12 = 1 − hs and W22 = 1 − s be the relative fitnesses of the genotypes
A1A1, A1A2 and A2A2, respectively. The parameter h is called the degree of dominance
and s > 0 is the selection coefficient. The allele A1 is called dominant if h = 0, partially
dominant if 0 < h < 1/2, recessive if h = 1 and partially recessive if 1/2 < h < 1. In the
case where h = 1/2 there is no dominance by either allele.

The marginal fitnesses and mean fitnesses are computed as before and we find that

W1 = W11p+W12(1− p) = 1− hs+ hsp

W2 = W12p+W22(1− p) = 1− s+ s(1− h)p

W̄ = 1− s+ 2s(1− h)p− s(1− 2h)p2.

The change in frequency of A1 is given by

∆p = p′ − p = p
W1

W̄
− p =

p(1− p)
W̄

s(1− h− (1− 2h)p) =
p(1− p)

2W̄

dW̄

dp
.

Clearly p = 0 and p = 1 are equilibrium points of the system (in which there is only one
type of allele present in the population). There can exist at most one further solution, if
there is some 0 < p < 1 for which 1− h− (1− 2h)p = 0. If such an equilibrium exists, it is

p∗ =
1− h
1− 2h

.

There are three cases to consider for this equilibrium point:

• 0 ≤ h ≤ 1: In this case the homozygote A1A1 has higher fitness than either the
heterozygote or the homozygote A2A2. The mean fitness is an increasing function of
p for p ∈ [0, 1]. As a result, ∆p > 0 for all p ∈ (0, 1) and the only equilibria are at
p = 0 and p = 1. Assuming p(0) 6= 0, we will have p(n)→ 1 as n goes to infinity. That
is, the allele A1 becomes fixed in the population and A2 is lost. The rate at which A1

goes to fixation depends on whether A1 is dominant, intermediate or recessive. The
intuition that an initially rare advantageous dominant allele will go to fixation faster
than an initially rare recessive allele is supported by the mathematical description of
this model.

• h < 0: This case is called overdominance because the heterozygote in this scenario has
an advantage over both homozygotes. Here, W̄ (p) is a concave function of p with a
local maximum at the point p∗. Because ∆p < 0 for p < p∗ and ∆p > 0 for p > p∗,
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the equilibrium is stable. Furthermore, because p∗ is a globally asymptotically stable
point, p converges to p∗ monotonically. Unlike the first case, this scenario allows for a
polymorphic population.

• h > 1: This case is called underdominance because the heterozygote is less fit than
both the homozygotes. Here, the mean fitness function W̄ (p) has a local minimum at
the equilibrium point p∗. As a result, this equilibrium is unstable. The limit of p(n)
then depends on the initial state. Specifically, if p(0) < p∗ then p(n)→ 0 as n goes to
infinity while if p(0) > p∗ we have p(n) → 1 as n goes to infinity. In both cases one
allelic type is lost and the population becomes monomorphic.

Mutation-Selection Balance

Now that we have reviewed basic mathematical models in which mutation alone or selection
alone drives the genetics of a population, we want to model a scenario in which both mutation
and selection are present. As we saw in the haploid models, selection can drive all but
the fittest allele to extinction. Mutation can balance the force of selection by continually
reintroducing less fit alleles to the population. As before, we suppose that the population
is haploid and has discrete, non-overlaping generations. For this simple model, we assume
that selection precedes mutation, that is, individuals are first selected and then reproduce,
at which point their offspring may experience a mutation. As with the mutation-only model
discussed previously, we assume there are k possible allelic types, labeled A1, . . . Ak. A
mutation event results in an allele changing from type Ai to type Aj where i 6= j.

The frequency of individuals of type Ai in the next generation is determined by type Ai
individuals who survive to reproduce offspring of the same type and individuals of a different
type who survive but produce offspring of type Ai,

p′i =
piWi

W̄
+
∑
j

(
pjWjµji
W̄

− piWiµij
W̄

)
. (1.1)

This series of equations can be written more conveniently in matrix form. The mutation
matrix Ũ = (ũij) contains the mutation rates,

ũij =

{
1−

∑
k µik i = j

µji i 6= j
.

Notice that ũij represents the chance that there is no mutation event, resulting in an offspring
of the same type as the parent. The mutation-selection matrix C = (cij) is then given by

cij = ũijWj.

The frequency of each allelic type in the next generation is governed by the mutation-selection
equation (1.1), which we now write in terms of the mutation-selection matrix C,
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p′ =
1

c̄
Cp

where c̄ =
∑

i(Cp)i = W̄ and the frequencies are constrained to sum to one,
∑

i pi = 1.
Under certain conditions (specifically that C is a primitive matrix), this equation has a
unique equilibrium which is globally asymptotically stable. Furthermore, this equilibrium
produces a fully polymorphic population, pi > 0 for all i.

In a diploid population, the life cycle again begins with selection. After selection indi-
viduals produce (haploid) germ cells, that may undergo mutation. These haploid cells then
combine to form zygotes for the next generation. Allele frequencies are measured for zygotes
before selection occurs. Equation (1.1) continues to describe the mutation-selection dynam-
ics for the germ cells in a diploid population excepting that Wi now represents the marginal
fitness of allele Ai.

The dynamics of the mutation-selection equation in the diploid case can be quite compli-
cated. There is an obvious extension of the haploid result in the case where the fitnesses of
diploid individuals are multiplicative. The simplification where µij = µj for i 6= j, indicating
that the mutation rate does not depend on the type of the parent, is called the house-of-cards
model. One variation of the House of Cards model will be described in more detail in the
following section.

Kingman’s House of Cards

Kingman’s House of Cards model [21] considers the time evolution for genetic fitness of a
large haploid population with discrete, non-overlapping generations. Mutations occur at a
single locus and have a continuum of possible effects on fitness. Although the dynamics of
the model appear simple, the limiting distributions of fitness for the population may be quite
different, depending on the moments of the fitness of mutant individuals.

Let pn denote the distribution of fitness of the nth generation. Because fitness is measured
relative to the general population, the fitness distribution is modeled as a measure on the
unit interval, with 0 indicating the least fit individuals and 1 indicating the most fit. For this
model, fitness indicates an individual’s ability to reproduce offspring that reach maturity.
If selection alone were acting upon the population, the distribution of fitness in the next
generation would be skewed relative to the current population’s fitness distribution, reflecting
the fact that individuals who are more fit will have more surviving offspring. Because the
population is haploid, an offspring is genetically identical to the parent. Then,

pn+1(dx) =
xpn(dx)

wn
where wn =

∫
xpn(dx).

After selection, an individual experiences a mutation from the type of the parent with
probability β. The fitness of an individual who has experienced a mutation event is dis-
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tributed according to q, where q is a measure on the unit interval. With both mutation and
selection acting on the population, the fitness in the next generation is given by

pn+1(dx) = (1− β)
xpn(dx)

wn
+ βq(dx).

The limiting distribution for the fitness of this population depends on the sum of the
moments of q. If the sum of the moments of q are strictly greater than β−1, the limiting
distribution is the fitness distribution for individuals with mutant alleles, q, skewed toward
individuals with higher fitness

p(dx) =
βsq(dx)

s− (1− β)x

where s > 1− β.2 This case is called “democratic.” If the sum of the moments of q are less
than or equal to β−1, the limiting distribution is given by

p(dx) =
βq(dx)

1− x
+

(
1−

∫
βq(dy)

1− y

)
δ1(dx)

where δ1(dx) indicates a point-mass at x = 1. This second scenario leads to two different
situations, the meritocratic case and the aristocratic case. Both cases have the same form for
the limiting distribution, although the interpretation for the two cases is quite different. The
particular criteria for determining which of the two cases is applicable depends in a slightly
complicated way on the moments of q3. However, the difference in the genetic composition
of the population for the two cases is quite simple to understand. In the meritocratic case,
the point-mass at x = 1 consists of a group of mutant individuals whose fitness is higher
than all other individuals in the population. In the aristocracy case, on the other hand,
the upper bound of the fitness in the initial population was higher than the upper bound of
support for the mutant fitness distribution. As a result, there were individuals in the initial
population with fitness higher than any possible mutant. The point-mass at x = 1 represents
the non-mutant descendants of those inherently more-fit individuals.

Continuous Time Models

All of the models presented thus far assume that the population in question has discrete,
non-overlapping generations. It is sometimes convenient, however, to allow overlapping
generations and, thus, use a continuous rather than discrete time model. Unlike discrete
time models, where we often assume that selection precedes mutation in acting on every
individual in the population, continuous time models often decouple selection and mutation.

2The parameter s satisfies the equation
∫ βxq(dx)
s−(1−β)x = 1.

3Specifically, it depends on the limit of the quotient of terms in a renewal sequence dependent on the
moments of q.



13

Specifically, if you consider a small period of time, ∆t, the chance of both selection and
mutation acting on an individual in that time is of order (∆t)2 and thus negligible. The
familiar mutation-selection equation (1.1) now becomes

dpi
dt

= pi(ri − r̄) +
∑
j

(pjµji − piµij). (1.2)

The parameter ri is the marginal Malthusian fitness of allele Ai. The marignal Malthusian
fitness is the intrinsic growth rate of the subpopulation with allele Ai. It is related to the
fitness W by Wi = eri .

Haldane’s Principle

In a 1937 paper Haldane analyzed the decrease in mean fitness of a population due to
recurrent deleterious mutations. Studying large populations (so that genetic drift may safely
be ignored), Haldane noticed that “the loss of fitness to the species depends entirely on the
mutation rate and not at all on the effect of the gene upon the fitness of the individual
carrying it, provided this is large enough to keep the gene rare” [17]. This observation is
known as Haldane’s principle.

The genetic load of the population is a common mathematical tool for measuring the loss
of fitness to a population. Specifically, the genetic load of the population is (usually) defined
as the relative difference between the fitness of the best genotype Wmax and the average
fitness of the population W̄ . For discrete time models (those with discrete generations), the
genetic load is given by

L =
Wmax − W̄
Wmax

.

In continuous time models the genetic fitness is the difference between the Malthusian fitness
(the intrinsic growth rate) of the subpopulation with the best genotype mmax and the average
Malthusian fitness for the entire population m̄,

L = mmax − m̄.

Bürger in [6] provides a nice analysis of genetic load for several different mutation-
selection models, which will be summarized here. We begin by considering the classical
mutation-selection model with one site and finitely many alleles. For discrete generations
the model is formulated in terms of Wi, the fitness of allele Ai; pi(n), the relative frequency
of allele Ai at time n; and µij, the mutation rate from allele Ai to Aj (which models the
probability that an individual of type Ai will produce an offspring of type Aj). The change
in allele frequency over time is given by the system of dynamical equations
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p′i =
piWi

W̄
+
∑
j

(
pjWjµji
W̄

− piWiµij
W̄

)
.

The continuous time model is similar to its discrete time counterpart excepting the use of
the Malthusian fitness mi in place of the fitness Wi for allele Ai.

Bürger [6] shows that under many different mutation schemes, the genetic load for clas-
sical mutation-selection models is, to first order, equal to the total mutation rate from the
fittest allele to less fit alleles. This result holds as long as the equilibrium point of the system
without mutation is regular and externally stable. Furthermore, if the difference in fitness
between genotypes is of O(s) then the error in the approximation is of order O(µ2/s), where
µ is the total mutation rate and s is the selection coefficient. These results hold for both
haploid and diploid populations and for discrete or continuous time (see Chapter 3 of [6] for
details).

Bürger also discusses the genetic load for a more general formulation of the mutation-
selection model. This model, which employs a broader mathematical framework than those
mutation-selection models discussed thus far, will be presented in the following section. How-
ever, because of the flexibility in mathematically describing mutations and genotypes, the
general mutation-selection model includes as special cases many classical mutation-selection
models, such as the continuum of alleles model. In the continuum of alleles model, there is
a continuum of possible allelic types rather than a finite number. Bürger is able to show
using the more flexible model that Haldane’s principle can be extended to the continuum of
alleles model as follows. To first order in µ: For any number of discrete optimal types, the
equilibrium mean fitness is independent of the fitness function and the mutation distribution;
the mutational load is L = µ.

1.3.2 Multiple Loci Models

The classical mutation and selection models reviewed so far all focus on alleles at a single
locus. However, the evolutionary theories of senescence discussed in §1.2 focus on the accu-
mulation of mutations along lineages. To incorporate mutation accumulation into models of
population genetics, it will be necessary to consider mutations occurring at many different
loci. This section will focus on model of mutation, selection and recombination when alleles
can occur at multiple loci.

Because selection acts on the fitness of individuals in a population, it is necessary to
describe the interaction of mutations at different loci to determine the fitness of an individual.
There are two primary categories of interactions between mutations at different loci: non-
epistatic and epistatic. Non-epistatic fitness means that there is no interaction between loci.
In this case, the fitness of an individual is additive; it can be expressed as a sum of single-
mutation fitness coefficients. In cases where the fitness is epistatic, the model must specify
how the loci interact to create the overall fitness of the individual.
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Bürger’s Mutation-Selection Model

As previously mentioned, Bürger presents a more general formulation of the mutation-
selection model in [6]. In this more general model, X is a locally compact space representing
possible mutations. The Borel set Y ⊂ X represents a genotype whose relative frequency
in the population at time t is given by Pt(Y ). Following selection, the relative frequency of
individuals of type Y , P s

t (Y ), is given by

P s
t (Y ) =

1

W̄ (t)

∫
Y

W (y)Pt(dy).

where W̄ (t) represents the mean fitness at time t. Under this more general representation of
allelic types (a locally compact set versus a countable set) the mean fitness is computed by

W̄ (t) =

∫
X
W (x)Pt(dx).

However, while the representation of alleles and genotypes is more general than the models
considered previously, the selection-only equation is a very natural extension to the case with
a single locus and a finite, discrete number of alleles presented in §1.3.1.

Similarly, the mutation-only equation presented in §1.3.1 has a natural extension when
considering a more general representation for possible mutations. When mutation alone acts
on the genetics of a population, the change in relative frequency of genotype Y is due to
three events. First, there are individuals do not have genotype Y but who produce offspring
of genotype Y due to a mutation event. In this case, some allele x mutates to an allele
y ∈ Y resulting in an individual with the genotype Y . Second, there are individuals with
genotype Y who produce offspring of type Y . This event occurs when there is no mutation
event between the generations. Third, there are individuals with genotype Y who produce
offspring with a different genotype. In this last case, some allele y ∈ Y mutated to another
allele so that the resulting genotype is not Y .

These events can be expressed mathematically if we introduce some notation. Let µ(x)
denote the mutation probability of allelic type x. That is, µ(x) represents the probability
that an allele of type x mutates to an allele of another type. Because µ(x) is a probability
we must have 0 ≤ µ(x) ≤ 1. The term 1 − µ(x), then, is the probability that there is no
mutation event of type x. The mutation kernel u(x, y) is the probability of a mutation from
allelic type x to type y conditioned on a mutation event occurring. As a result, the product
µ(x)u(x, y) represents the fraction of type y individuals that mutated from type x. Finally,
in order to integrate over the alleles contained in genotype Y we need to define a σ-finite
measure λ. The relative frequency of individuals with genotype Y after mutation, P µ

t , is
given by

P µ
t (Y ) =

∫
Y

(1− µ(y))Pt(dy) +

∫
Y

(∫
X
µ(x)u(x, y)Pt(dx)

)
λ(dy).
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We can put these two processes together by assuming that mutation follows selection. In
that case, the time evolution of the frequency measure Pt is given by

W̄Pt+1(Y ) =

∫
Y

(1− µ(y))W (y)Pt(dy) +

∫
Y

(∫
X
W (x)µ(x)u(x, y)Pt(dx)

)
λ(dy).

This more general mutation-selection formulation includes the continuum of alleles model, as
previously mentioned, the stepwise-mutation model, and Kingman’s House of Cards model,
among others.

Recombination

All of the models presented so far assume that the genetics of the population, represented
by the frequency of allelic types or by the distribution of fitness in the population, are
determined by mutation, selection or genetic drift. In studying alleles at multiple loci,
recombination becomes a factor as well. Before discussing more complicated models that
incorporate recombination as well as mutation and selection, we wish to present a simple
model in which recombination alone drives the genetics of the population.

Consider the simple case of a diploid population in which mutations occur at two loci,
called site A and site B. At each loci there are several possible alleles, labeled Ai and Bi,
respectively. Without genetic recombination, a population which initially has only gametes of
the form AiBi will never produce gametes AiBj where i 6= j. That is, without recombination,
the two loci are completely statistically dependent; knowing the type at locus A tells you
the type at locus B. When two (or more) loci are statistically dependent, we say they are
in linkage disequilibrium.

Let Pij denote the frequency of gamete type AiBj. We let pi be the frequency of allele Ai,
so that pi =

∑
j Pij and similarly define qj to be the frequency of allele Bj, with qj =

∑
i Pij.

Linkage equilibrium occurs when the loci are statistically independent, so that for every i
and j we have

Pij = piqj.

Linkage disequilibrium is usually measured by the differences Dij, where

Dij = Pij − piqj.

The parameter r denotes the recombination rate, which is the probability of a cross-
over recombination event. In general, r depends on the distance between the loci along the
chromosome, with more distant loci having a higher recombination rate than closer loci. The
parameter r satisfies 0 ≤ r ≤ 1/2, where r = 0 is the case where the loci are completely
linked and can be treated as a single locus and r = 1/2 indicates that the loci are completely
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unlinked. We can now determine the gamete frequencies in the next generation under the
assumption of random mating in the population.

If no cross-over event occurs, a parent of type AiBj/AkBl will produce a gamete of
type AiBj or AkBl. Because the probability of no recombination event is 1 − r, each of
these gametes is produced with probability 1

2
(1− r). If a cross-over event does occur, which

happens with probability r, the possible gametes produced are AiBl and AkBj, each of which
has probability 1

2
r. As a result,

P ′ij = (1− r)Pij + rpiqj.

Notice that

p′i =
∑
j

P ′ij =
∑
j

(1− r)Pij +
∑
j

rpiqj = (1− r)pi + rpi = pi

and similarly, q′j = qj. Thus, in a randomly mating diploid population with recombination,
gamete frequencies may change but allele frequencies remain constant.

The linkage disequilibria in the next generation are given by

D′ij = P ′ij − piqj = (1− r)Pij + rpiqj − piqj = (1− r)Dij.

Clearly, then, the linkage disequilibria in generation n depend only on the recombination
rate r and the linkage disequilibria in the initial population,

Dij(n) = (1− r)nDij(0).

For any non-zero recombination rate, as n goes to infinity, the linkage disequilibria go to zero
geometrically with rate 1 − r. Any model with multiple loci that incorporates recombina-
tion will include a discussion of how quickly the statical dependence between loci is broken
through the process of recombination. In models with more than two loci, it is necessary to
analyze the linkage disequilibria between all groups of at least two loci.

Mutation Counting

Kimura and Maruyama [20] were among the first to consider the mutation counting model,
in which an individual’s fitness depends only on the number of mutant alleles in the genome.
Mathematically it convenient to think of the mutations as copies of one type of mutation
because they all have the same effect on fitness, even though from a biological perspective
these mutations may be different because they occur at different locations in the genome.

In [20] Kimura and Maruyama consider a very large population with epistatic fitness, that
is, mutant alleles at different loci interact in a non-additive way when determining fitness.
Specifically, the authors assume that fitness is a quadratic function of the number of mutant
alleles i,
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wi = 1− h1i− h2i
2,

where wi is the fitness of an individual with i mutations and h1 and h2 are non-negative
constants. To avoid negative fitness, Kimura and Maruyama assume wi = 0 for i ≥ n,
where n is the smallest integer for which the quadratic function is negative. The authors
study the effect of quadratic fitness on mutation load, which is the same as the genetic load
of the population, discussed previously in §1.3.1. Because the highest possible fitness in
the population is 1, the authors define mutational load as the difference between 1 and the
average fitness of the population. The mutational load is approximated for three different
populations: a randomly mating diploid population with free recombination among the
genes, a randomly mating population with no cross-over events, and a haploid asexually
reproducing population. The authors find that quadratic fitness has very different effects on
mutational load for the three populations.

When the population undergoes free recombination, the number of mutations per genome
is Poisson distributed with rate λ, where λ is the average number of mutations per genotype
before selection. When the gene frequency is low, the change in gene frequency over time
may be estimated by

dp

dt
= u− hp

where p is the gene frequency, u is the mutation rate and h is the average selection coefficient
against the mutant gene. The average selection coefficient is given by

−h =

∑
i fi(wi+1 − wi)∑

i fiwi

where fi is the frequency of individuals with i mutations before selection. Using the quadratic
fitness function the average selection coefficient can be approximated by

h =
h1 + h2 + 2h2λ

1− (h1 + h2)λ− h2λ2
.

The mutational load can then be approximated by the expression

L = (h1 + h2)λ+ h2λ
2.

The approximation is reasonable as long as the average selection coefficient h is much larger
than the mutation rate u. The authors find that under the free recombination assumption,
quadratic gene interactions reduce the mutational load by about a half relative to the mu-
tational load for non-epistatic mutations as long as |h1| < h2. That is, L ≈

∑
u (where

∑
u

is the number of new mutations produced per gamete per generation) when h1 is small but
L ≈ 2

∑
u when h2 = 0, the case with no epistasis.
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The authors also consider two other populations. The first is a diploid population with
only one pair of chromosomes in which no cross-over events occur. Assuming random mating,

the frequency of diploid individuals with i mutations is found by expanding
(∑

j gj

)2

where

gj is the frequency of chromosomes with j mutations before selection. The relative selective
value, vi, of chromosomes with i mutations is given by

vi =
∑
j

wi+jgj = 1− h1(i+ µ′1)− h2(i2 + 2iµ′1 + µ′2)

where µ′1 and µ′2 are the first and second moments of the distribution of mutations among
chromosomes,

µ′1 =
∑
j

jgj and µ′2 =
∑
j

j2gj.

This population undergoes selection, which works as usual to skew the distribution of geno-
types according to the selective value of the chromosome,

gi →
givi
v̄

where v̄ is the mean selective value. Mutation follows selection. For simplicity the authors
assume that a fixed proportion M of the chromosomes with i mutations gain an additional
mutation rather than modeling the number of new mutations by a Poisson distribution. Of
course the approximation is reasonable when the mean number of new mutations is small.
The change in frequency of chromosomes with i mutations is then given by

g′i =
givi(1−M)

v̄
+
gi−1vi−1M

v̄

for i ≥ 1. The authors find that under this model the average number of mutant genes per
individual is λ = 2µ′1. The mutational load is given by

L = 1− w̄ = 2h1µ
′
1 + 2h2(µ′1 + µ′2).

The last population that the authors consider is an asexually reproducing population with
no recombination. For this model the authors assume that the number of new mutations
follows a Poisson distribution with mean 2M . Under this assumption, the frequency of
individuals with i mutations in the next generation is given by

f ′i =
i∑

j=1

wi−jfi−j
w̄

(2M)j

j!
e−2M .

At equilibrium the frequency of individuals with i mutations is constant. In particular, it
must hold that f ′0 = f0. As a result, at equilibrium
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f ′0 =
w0f0

w̄
e−2M =⇒ w̄ = w0e

−2M .

Because the mutational load is the difference between the fittest genotype (that with no
mutations) and the average fitness of the population, it holds that

L = 1− e−2M ≈ 2M.

This is exactly the mutational load expected with non-epistatic gene interactions.

Barton and Turelli

Barton and Turelli [3] consider a model for analyzing selection and recombination on many
loci. This paper is an extension of the authors’ previous work on selection on polygenic
characters [32]. The model presented in [3] is general enough to model a haploid organism
which experiences both viability and sexual selection or a diploid organism that experiences
only viability selection. Because our interest at this time is on models of natural selection, we
will summarize their model with respect to a diploid organism undergoing viability selection.
We note that the notation and equations are the same for the haploid organism, although
the interpretations of the variables presented are different.

The model assumes that natural selection works via sex-independent viability selection
and that mating among diploids is random. The loci in this model are assumed to be
autosomal, meaning that they are not on sex chromosomes. Let Xi denote the state of locus
i so that X = (X1, X2, · · ·Xn) represents the genotype of a haploid (germ) cell. In the
diallelic case Xi could be an indicator function for one of the two possible alleles. In a case
with multiple possible alleles at a single locus, Xi could be a vector where ‘1’ indicates the
allele is present and ‘0’ indicates that it is not.

For a diploid organism X will denote the maternally inherited genotype and X∗ will
denote the paternally inherited genotype. In generation t the frequency of the newly formed
diploid organism (X,X∗) = (x,x∗) is given by f(x,x∗) = f(x)f(x∗). W (x,x∗) is a fitness
measure that determines the viability of the diploid with genotype (x,x∗). For the haploid
model W (x,x∗) can also include sexual selection, fertility interactions between haploids and
nonrandom mating. The fraction of offspring produced by (x,x∗) is given by E[W (X,X∗)]
where the expectation is taken with respect to the zygote frequencies produced by random
mating.

The response to selection is determined by the selection coefficients aU,∅, a∅,V and aU,V
where U is a non-empty collection of possibly repeated indices for the maternally inherited
genotype and V is similarly defined for the paternally inherited genotype. These factors are
defined by the relation

W

W̄
= 1 +

∑
U

aU,∅(ζU − CU) +
∑
V

a∅,V (ζ∗V − CV ) +
∑
U,V

aU,V (ζU − CU)(ζ∗V − CV ).
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where

ζi = Xi − E[Xi] = Xi −mi = Xi −
∑
x

f(x)xi

ζU =
∏
i∈U

ζi and

CU = E[ζU ].

The terms ζ∗V and CV are defined similarly for the paternally inherited genotype.
Assume selection proceeds recombination. Let ·′ denote the quantity · after selection and

let ∆s denote the change due to selection. The change in diploid genotype frequency due to
selection is given by

∆sf(x,x∗) =f(x)f(x∗)
W (x,x∗)− W̄

W̄

=f(x)f(x∗)

(∑
U

aU,∅(ζU − CU) +
∑
V

a∅,V (ζ∗V − CV )

+
∑
U,V

aU,V (ζU − CU)(ζ∗V − CV )

)
.

The change in mean frequency for locus i is given by

∆smi,∅ =
∑
U

aU,∅CU+i

∆sm∅,i =
∑
V

a∅,VCV+i.

The moments after selection, C ′S,T , are measured relative to the original means mi and is
given by

∆sCS,T ≡ C ′S,T − CS,T =
∑
x,x∗

ζSζ
∗
T∆sf(x,x∗).

Let ·′′ denote the quantity · after both selection and recombination. After recombination,
the diploid organism undergoes meiosis and random mating to produce the next generation,
t + 1. Because the diploid population mates randomly it suffices at this point to consider
allele frequencies and means for the haploid cells only.
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As the simple recombination-only model illustrates, recombination simply shuffles exist-
ing genotypes; it does not affect allele frequency. Thus, the mean of Xi for new haploids in
the next generation is the average of the frequencies for maternally and paternally inherited
genotypes after selection

m′′i =
m′i,∅ +m′∅,i

2
.

Denote by rS,T the frequency of recombination events that partition the loci into the sets
S and T . Let rN be the total frequency of recombination rates that break up the set of loci
N , so that for non-empty S and T we have

rN =
∑

S+T=N

rS,T .

Then

C ′′N =
∑

S+T=N

rS,T

(
C ′S,T + C ′T,S

2

)
+ (1− rN)

(
C ′N,∅ + C ′∅,N

2

)
.

As before, the moments C ′′N given above are relative to the original means mi before selection.
Using the expressions for the means after selection and recombination, it is possible to find
an expression for the change in central moments between successive generations, ∆CN , given
by

∆CN =
∑
x

∏
i∈N

(xi −m′′i )(f(x) + ∆f(x))− CN

=
∑
x

∏
i∈N

(ζi −∆mi)(f(x) + ∆f(x))− CN

where the change is means between successive generations is given by

∆mi =
∆smi,∅ + ∆sm∅,i

2

and ∆f(x) denotes the change in the distribution of haploid genotypes between successive
generations.

The authors explore their model further using specific examples, including natural se-
lection on diploids with Gaussian stabilizing selection on an additive polygenic trait and
sexual selection due to female choice. They also provide a method of computing the linkage
disequilibria and discuss approximations for the linkage disequilibria under the assumption
of weak selection.
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Baake Models

Recent models for mutation, selection and recombination that employ more general mathe-
matical frameworks are those by Ellen Baake [1] (for mutation and single cross-over recom-
bination) and Michael and Ellen Baake [2] (which extends the methods of the earlier model
to consider mutation, cross-over recombination and selection). Here, we will focus on the
extended model that includes recombination, mutation and selection. In order to provide
explicit solutions, the authors assume that fitness is additive, that is, total fitness is a sum
of independent fitness contributions from each site.

The authors consider an infinitely large, haploid population and assume that there exists
a linearly ordered set of n+ 1 sites or loci at which genetic mutations may occur. Each site
i has an associated set of possible mutations, denoted by Xi. This space of mutations is
referred to as an alphabet when the space contains only a finite number of alleles. In this
model, the space Xi can be either a finite set or a more general set such as a compact subset
of R. For mathematical convenience, the allele space for site i, Xi, is assumed to be locally
compact. The authors also assume that the genotype space X has a product structure so
that X = X0 ×X1 × · · · ×Xn. The set of positive regular Borel measures on X is denoted
by M+(X) and P(X) denotes the set of probability measures on X.

The authors define three operators acting onM+(X): Φmut, the mutation operator, Φrec,
the recombination operator, and Φsel, the selection operator. We begin with a discussion of
the mutation operator. The mutation rate matrix is denoted by Q where Qk,l is the rate at
which genotype l mutates to genotype k. This matrix has non-negative entries everywhere
except the diagonal and is, in fact, a Markov generator. With the product structure assumed
above for the genotype space, the mutation generator Q may be written as the sum of Qi

where Qi is the tensor product of a rate matrix at site i and identity matrices at all other
sites. If each of the Xi is finite, containing Mi alleles, then

Qi = 1M0 ⊗ 1M1 · · · ⊗ 1Mi−1
⊗ qi ⊗ 1Mi+1

⊗ 1Mn

where qi the rate matrix for site i of dimension Mi. For a measure ω ∈ M+(X), the pure-
mutation equation given by

ω̇ = Φmut(ω) := Qω =

(
n∑
i=0

Qi

)
ω.

When the initial condition is a probability measure, ω0 ∈ P(X), the pure-mutation equation
has the unique solution

ωt = exp

(
t

n∑
i=0

Qi

)
ω0.

In other words, given an initial probability distribution on the space of genotypes, the above
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equation describes the probability distribution at time t assuming that the population is
subject to mutation alone.

The process of recombination breaks the link between two adjacent sites in a randomly
chosen genotype and combines each fragment with the complementary fragment from another
randomly chosen genotype that was broken at the same location. Let L denote the set of all
links between sites (or loci), with the link between sites i and i+1 denoted by the half-integer
i + 1

2
. Let πi : X → Xi be the projection of the genotype onto site i. The mapping πi.ω is

defined by πi.ω(E) = ω(π−1
i (E)) for any Borel E ⊂ Xi. That is, the mapping πi.ω is the

ω-measure of all genotypes whose ith site has a mutation in the set E. The recombination
operator is defined in terms of the recombinator Rα where

Rα :=
1

||ω||
((π<α.ω)⊗ (π>α.ω)) for ω ∈M+(X) and α ∈ L.

The abbreviation π<α is used to denote π{1,...bαc}, the projection onto sites 1 . . . bαc.
To derive the pure-recombination equation, one can first consider the recombination

process applied to a finite population. In the finite population scenario each individual has
independent Poisson clocks associated with each link in their genome. The parameter of
the Poisson clock at link α is denoted by %α. Link α breaks when the Poisson clock rings,
indicating a recombination event. Taking the limit as the population size goes to infinity
gives us the pure-recombination differential equation,

ω̇ = Φrec(ω) :=
∑
α∈L

%α(Rα − 1)(ω).

With initial condition ω0 ∈ M+(X), the pure-recombination equation has the unique
solution

ωt =
∑
G⊂L

aG(t)RG(ω0)

where

aG(t) = exp

(
−
∑
α∈Ḡ

%αt

)
·
∏
β∈G

(1− exp(−%βt))

and RG is the composite recombinator

RG :=
∏
α∈G

Rα.

The final process considered is selection. Let P be a bounded linear operator that maps
the space of signed finite regular Borel measures on the space of genotypes to itself, P :
M(X) → M(X). Furthermore, suppose that P satisfies the following property: For ν ∈
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M+(X) and E a Borel set with ν−measure 0, ν(E) = 0, we have (P (ν))(E) ≥ 0. The
pure-selection equation is then given by

ω̇ = Φsel(ω) := Pω − Pω(X)

||ω||
ω

where Φsel(ω) := 0 for ω = 0. This equation is clearly motivated by the standard selection-
only model discussed in §1.3.1 and the interpretation of the linear operator P in this case is
much the same as in the standard selection-only model. That is, P describes the genetic fit-
ness of different genotypes. With initial condition ω0 ∈M+(X), the pure-selection equation
has a unique solution given by

ωt =
||ω0||
||ηt||

ηt

where

ηt = exp(tP )ω0.

Putting together the processes of selection, mutation and recombination leads to the
nonlinear differential equation

ω̇ = Φmut(ω) + Φrec(ω) + Φsel(ω)

where ω is a measure on the space of genotypes. Assuming that both the mutation generator,
Q, and linear operator P from the selection operator have product structures, there exists
a unique solution to the mutation-recombination-selection process. Setting S = Q + P =∑n

i=1 Si and

ηt = exp(tS)
∑
G⊂L

aG(t)RG(η0)

the mutation-recombination-selection equation has the solution

ωt =
||ω0||
||ηt||

ηt

where ω0 = η0 ∈M⊗
+ is the initial condition.

The authors also provide closed-form expressions for the linkage disequilibria and their
evolution in time.

1.4 Demographic Models

The models reviewed above lie in the realm of population genetics – they describe the
change in allele or gamete frequencies of a population over time with specific forces (such as
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selection, mutation and recombination) acting on individuals in the population. While the
fitness of the individual incorporates both fertility of the parent type and viability of the
offspring, these models do not explicitly include demographic features, such as lifespan and
how fertility changes with age. Because we are interested in studying how the frequencies
of mutations with age-specific fitness effects (on either fertility or survival or both) change
over time, we must explicitly include demographic outcomes in a population genetics model.
Our primary interest in this work is characterizing how deleterious mutations affect lifespan.
Individuals whose genomes contain mutations that reduce lifespan may produce, on average,
fewer offspring than individuals with a longer lifespan. This will result in a smaller proportion
of the population in the following generation who have those deleterious mutations in their
genomes. To model this process mathematically it is necessary to first introduce some
demographic terms and concepts. We will also present some recent models that incorporate
both demographic characters and evolutionary theories of senescence.

1.4.1 Demographic Terms and Background

We begin our discussion of demography by introducing terminology used in models of popu-
lation growth. The growth of a population is measured by the net reproduction ratio, NRR,
which is the ratio of the size of the next population to the current population size. The
NRR is determined by finding the expected number of female offspring borne by a randomly
chosen woman in the population,

NRR =

∫
fxlxdx.

The fertility function, fx, represents the chance that a woman produces a female offspring
(a daughter) in the infinitesimal age range x to x + dx. The survivorship function, lx,
describes the chance that a randomly chosen woman from the population survives to age x.
Survivorship functions, which are computed in practice as the proportion of the population
that survives to age x, refer to cohorts of individuals, that is, individuals born at the same
time.

The survivorship function is related to the hazard function, or force of mortality, by the
equation

lx = exp

(
−
∫ x

0

hada

)
= exp(−Hx)

where ha is the hazard function and Hx is called the cumulative hazard function. The
cumulative hazard function is the sum of hazard rates up to age x. Notice that the hazard
function can be recovered from the survivorship by taking the negative of the derivative of
log survivorship,
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hx = − d

dx
log(lx) = − 1

lx

dlx
dx
.

1.4.2 Gompertz

The Gompertz model for hazard functions was proposed by Benjamin Gompertz in 1825 to
model hazard rates in adult populations. In this model, the hazard function is exponential,

hx = α exp(βx)

where α is the initial hazard and β determines how quickly mortality increases with age. In
the Gompertz model survivorship is given by

lx = l0 exp

(
−α
β

(
eβx − 1

))
where l0 is the initial survivorship. Closely related, the Gompertz-Makeham model assumes
that the hazard function has both a constant (non-age dependent) and non-constant (age
dependent) term,

hx = λ+ α exp(βx).

In practice, the Gompertz model for hazard rates is not valid for younger adult ages or
for the oldest ages in the population. Among younger adults, deaths tend to have definitive
causes and events like accidents rather than illness drive mortality. For middle aged and
older adults (say those 35 to 85 years [39]), Gompertz hazards rate provide reasonable fits
to human mortality data [36]. This could be because causes of death become less definitive
in older ages, with adults suffering from a variety of ailments and illnesses, all of which may
contribute to declining health and eventual death. However, among the oldest segment of
the population, such as centenarians and supercentenarians, hazards rates appear to flatten.
A discussion of this trend can be found in [34].

Ultimately, the goal of any model that incorporates both elements of population genetics,
such as mutation, selection and recombination, and demographic characters, such as lifespan
and fertility, is to reproduce realistic population lifespan functions. That is, there should be
some conditions under which the expected lifespan from the model follows the general trend
observed in adult human populations. Specifically, there should be a range of mid-adult
ages for which hazard rates are approximately exponential but where hazard rates plateau
or even decrease at the oldest human ages.

1.4.3 Charlesworth

Brian Charlesworth considered the problem of including demographic characters in a mutation-
selection model in [7]. This model, which has been very influential to experimentalists in
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the field of evolutionary senescence incorporates age-specific fitness effects for deleterious
mutations to a mutation-selection equation. Mutations in this model have age-specific ef-
fects on survival and fecundity which, in turn, effect the net reproduction of individuals
with those mutations in their genome. Assuming that the population size is constant, the
decrease in reproduction for these individuals can be used as a measure of fitness to assess
the equilibrium proportion of the population with certain genotypes. Charlesworth explored
this model further in [8], presenting specific models for mutation age-effects. The notation
below is taken from [8].

Charlesworth’s model is a continuous time model for a large, diploid, randomly mating
population in which wild-type alleles mutate to deleterious alleles at a large number of widely
separated sites. An individual with no mutations has a mortality rate at age y of µ(y) and
a reproductive rate of m(y). Mutations are assumed to be heterozygous (non-recessive) and
are characterized by an effect age x. Charlesworth presents two possible models for mutation
effects. The window effect model assumes that a mutation increases mortality over a limited
range or window of ages. In this model, x represents the average age of effect, so that the
mutation increases mortality over the ages (x − ε/2, x + ε/2) for some ε. The cumulative
effect model, on the other hand, assumes that the mutation increases mortality at all ages
after the age x. In this model x can be thought of as the age of onset or the age of activation
for the mutation.

Because all mutations are assumed to be deleterious, a copy of mutation with age effect
x increases mortality. This increase in mortality at age y caused by mutation x is denoted
by δµ(y, x). Mutations can also reduce fertility. The reduction in fecundity at age y by
mutation x is denoted by δm(y, x). S(y) represents sensitivity in the net fitness, denoted by
w, to a decrease in mortality at age y. This is determined by the partial derivative

S(y) = − ∂w

∂µ(y)
.

Similarly, the sensitivity in net fitness due to an increase in fecundity at age y is denoted by
S ′(y) and computed by

S ′(y) =
∂w

∂m(y)
.

Fitness is measured by the intrinsic growth rate of the subpopulation with a specific
genotype to the growth rate of the subpopulation with the wild-type genotype. Mutations
in this model are assumed to have very small effects on mortality and reproduction so that
the reduction in net fitness due to a mutation with age effect x can be approximated by
integrating over the effects on fitness only for those ages at which the mutation is active,

δw(x) ≈
∫

(S(y)δµ(y, x) + S ′(y)δm(y, x)) dy.
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Charlesworth assumes that the balance between the force of selection and the rate at which
mutations enter the population at a given locus results in a small equilibrium frequency for
that mutation. Under those assumptions (see p. 125-126 in [7]), the equilibrium frequency
of non-recessive mutations with effect age x at a given locus is the ratio of the mutation
rate at that locus over the reduction in net fitness, δw(x). The equilibrium total number
of mutations per diploid individual with effect ages in the range x to x + dx is found by
summing over all loci,

n(x)dx ≈ ν(x)dx

δw(x)

where ν(x) in the rate of new mutations acting at age x per individual per age. For simplicity,
Charlesworth assumes that ν(x) is independent of the age x, so that if U is the total diploid
mutation rate and d is the longest age to which any individual can survive, ν(x) = U/d.
The net increase in mortality at age z relative to the mortality of an individual with the
wild-type genotype can be approximated by

∆µ(z) ≈ ν

∫
δµ(z, x)dx∫

(S(y)δµ(y, x) + S ′(y)δm(y, x)) dy
.

A similar formula can be found for the net decline in fertility at age z by replacing δµ(z, x)
with δm(z, x). Charlesworth also provides an approximation to the additive genetic covari-
ance between the mortality rate at age z and at age z′, denoted by CA(µ(x), µ(z′)).

In [8] Charlesworth assumes that reproduction begins at age b and continues at a constant
rate until the end of life. Under this model, γ represents the extrinsic rate of mortality, which
is assumed to have a larger effect than genetic mutations on mortality. In this scenario,
S(y) = exp(−γ(y − b)) for y > b and S(y) = 1 for y ≤ b. Using the window model
and assuming that the effect of the mutation x on mortality at age y depends only on the
difference |y − x|, Charlesworth finds that the increase in mortality at age z is exponential
after a lag of size ε from the age of reproduction,

∆µ(z) = ν exp(γ(z − b))

for z > b + ε. The net mean rate of mortality is approximately given by the Gompertz-
Makeham form

µ(z) = γ + ν + ν exp(γ(z − b)).

Charlesworth also considers the cumulative effect model for mutations under the assump-
tion of a constant extrinsic mortality rate and a constant fertility rate beyond the age of
maturity. In this case the effect of the mutation on mortality depends on y − x for ages
y > x. One possible model suggested is µ(y, x) = (δµ)

(
1− e−k(y−x)

)
. Under the cumulative

effect model, the net increase in mortality is different from the Gompertz-Makeham form for



30

ages near the start of reproduction, age b, but closely approaches the Gompertz-Makeham
form for late ages.

In an attempt to produce mortality rates that plateau at the oldest ages, Charlesworth
also considered a mixed model in which mutations have both age-specific and non-age-
specific effects. In this model, the change in mortality rate at age z does approach a limit
as z →∞. As a result, the mean mortality approaches a limit as age goes to infinity rather
than continuing to increase, as was the case with previous models where mutations only have
age-specific effects.

1.4.4 Gavrilov and Gavrilova

Gavrilov and Gavrilova consider a very different explanation for aging in [14] by applying
reliability theory to biological organisms. Reliability theory models the failure time of a
component or system of components and has been used to estimate the lifetime of mechanical
systems. Gavrilov and Gavrilova show that applying reliability theory to a biological system
(organism) can result in the well-known Gompertz form for the mortality rate and can also
reproduce the leveling of hazard curves observed in human (and other) populations.

Under reliability theory, a system can be composed of one or more vital components. The
system fails when any of the vital components fail. Much of the terminology and ideas of
reliability theory are already used in demography. In particular, the survival function S(x)
denotes the probability that a component or system fails after time x. The failure rate λ(x),
also called the hazard rate, has the familiar form

λ(x) = − 1

S(x)

dS(x)

dx
.

In demography the hazard rate is also called the force of mortality. It will be denoted by
µ(x) in the following models of biological systems.

A system can be classified as either aging or non-aging according to its failure rate. When
the failure rate is constant over time, λ(x) = λ, the system is non-aging and the lifespan
distribution follows the exponential form, S(x) = S0 exp(−λx). For biological populations,
this lifespan distribution is found in wild populations with high extrinsic mortality rates
(that is, deaths caused by accident, disease, predation, etc.). A system that fails more often
over time or one in which the failure rate increases with time is called an aging system.
In demography, the Gompertz-Makeham form is an example of a failure rate with both a
non-aging (constant) term and an aging (non-constant) term. In a biological system, the
aging component of the hazard rate would be due mainly to age-related diseases, such as
certain cancers and heart disease in human beings.

It is well known in reliability theory that the limiting distribution for the lifespan of a
system follows either a Gompertz distribution or a Weibull distribution. That is, when the
failure of the system is determined by the failure of the first component, as the number
of components grow, the distribution of lifespan for the system converges to one of two
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distributions. The Weibull distribution is most commonly observed in mechanical systems
whereas the Gompertz distribution is most commonly seen in biological systems.

From a reliability perspective, aging in biological systems could be modeled as an ac-
cumulation of damage to the system over time. In a simple organism each component is
unique and vital and any damage to a single component will result in the organism’s death.
Such an organism does not experience aging because damage to the system cannot accu-
mulate over time. For more complex organisms, systems are filled with redundancies that
allow a component to be damaged without causing the immediate death of the organism.
In this model aging is a natural consequence of having redundant systems that increase the
organism’s reliability and lifespan. Mortality plateaus can also be explained by redundant
systems. In particular, it is possible for enough damage to accumulate to overcome all the
redundancies in the system, meaning that the organism cannot sustain any further damage
to any component without dying. Similar to the simple organism, survival now depends on
the failure of a single, vital component. This would result in a leveling of mortality rates.

Gavrilov and Gavrilova consider three models for biological organisms of varying com-
plexity and show that the models produce different hazard rates. We begin by discussing
the simplest of the three models. A system is composed of initially functional elements that
are arranged into m blocks. A block fails when every element in the block fails. All of the
blocks are assumed to have the same number of elements, denoted by n and all elements
are assumed to have a constant rate of failure, called k. Under this simple model a block
behaves as an aging system even though all the components of the block are non-aging. In
other words, even though the components have constant failure rates, the failure rate for the
block is not constant over time. Specifically, the failure rate for a block, µb, initially follows
a power law, µb(x) ≈ nknxn−1, where x denotes time, for small x (x� 1/k), but eventually
approaches the limit µb(x) ≈ k when x � 1/k. If the blocks are arranged in parallel, so
that the system fails when one of the blocks fails, the failure rate for the system, µs, exhibits
the same general behavior: it follows a power law for x � 1/k, µs(x) ≈ mnknxn−1 but
eventually plateaus to mk for x� 1/k.

A slightly more complicated model, which may better describe biological systems, as-
sumes that most components are initially non-functional. Let q denote the probability that
a component is initially functional and assume that q is small. Then, the number of initially
functional elements in a block follows a truncated Poisson distribution with λ = nq and nor-
malizing constant c.4 Under this model the failure rate for the system follows a Gompertz
law for large n and small x, µs(x) ≈ R exp(αx), where R = cmλke−k and α = λk. For large
x, x� 1/k, failure rate plateaus to µs(x) ≈ mk.

In the most general model, the probability that an element is initially functional is q where
0 < q ≤ 1. Because q is no longer restricted to be small, the distribution of the number of
initially functional elements in a block is a truncated binomial with parameters n and q.5

4The distribution is truncated on the left because each block requires at least one functional element for
the entire system to function and on the right because blocks are assumed to have exactly n elements.

5As with the previous case, the distribution is truncated on the left because the system needs at least
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Under this model the system follows a binomial law for mortality µs(x) ≈ cmn(qk)n(x0 +
x)n−1 where x0 = (1 − q)/qk represents the time it would take for an ideal system (with
all elements initially functional) to accumulate the number of defects seen in the non-ideal
system (see [13] for more details). When q < 1 there is an initial period (whose length
depends on q) where the hazard rate increases approximately exponentially. Depending on
the value of q, the hazard rate can also follow the binomial law for mortality and the Weibull
law (power law) before approaching the upper limit of mk.

1.5 Discussion

The evolutionary theories of senescence reviewed in §1.2 all utilize the idea that the force of
natural selection decreases with adult age and posit that genetic mutations have age-specific
fitness effects. This suggests that incorporating evolutionary theories of senescence in a
mathematical model of mutation and selection requires that genetic fitness be a function
of both the genotype and the age of the individual. Many of the mathematical population
genetics models reviewed in §1.3.1 and §1.3.2 assume that fitness is a constant factor. Differ-
ent models use different approaches to represent the number of types of mutations and even
the number of loci at which mutations occur. For example, the classical mutation-selection
model assumes that there is a single locus with a finite number of different mutations. King-
man’s House of Cards model also assumes a single locus but allows uncountably many allele
types. In both cases, however, fitness is described by a single number.

Of course, single locus models, such as the classical mutation-selection model and King-
man’s House of Cards model, are unsuited to studying evolutionary theories of senescence
precisely because they focus on alleles at a single locus. Recent work by geneticists suggests
that aging and age-related disease may be caused by many mutations occurring throughout
the genome. While there are some age-related diseases, such as age-related macular degener-
ation, in which a small number of alleles explain most of the genetic risk of the illness, most
age-related maladies appear to have many associated alleles, each of which produces a very
small increase in the risk of disease when considered individually [22]. The finding that many
loci appear to be correlated with common age-related diseases means that we must consider
a mathematical model that allows for multiple loci. Furthermore, because these alleles have
been studied individually, it is currently unknown if there is some interaction between alleles
that explains more of the genetic disease risk or if there are many more loci, each with small
individual risk, that have yet to be discovered. As a result, any mathematical model would
need to be flexible enough in its formulation to allow for either epistatic or non-epistatic
fitness.

In §1.3.2 we reviewed several models that employ abstract spaces to model multiple loci,
each of which may have any number of possible alleles. Of particular interest are the models
of Bürger, Barton and Turelli, and Baake and Baake. While none of these models explicitly

one functioning element per block to function.
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defines fitness as having an age-specific component, the models may be general enough to
extend the definition of fitness to include age. On the other hand, the Baake and Baake
selection-mutation-recombination model explicitly assumes that genetic fitness is additive
in order to provide closed form solutions. If we wish to model epistatic fitness, the Baake
and Baake model may not be easy to analyze. Barton and Turelli provide a general model
for natural selection and recombination but do not include genetic mutation in their model.
Without mutation to reintroduce deleterious mutations to the population, there can be no
mutation accumulation.

Charlesworth, on the other hand, approaches the problem from a demographic perspec-
tive. His model includes both mutation and selection and has explicit age-specific effects on
both fertility and mortality. As with the continuous time mutation-selection models, fitness
in Charlesworth’s model is measured by the change in growth rate of the subpopulation with
a specific genotype to the growth rate of the subpopulation with the fittest genotype (in this
model, the null genotype). However, as we reviewed in §1.4.1, the growth of the popula-
tion is determined by the net reproduction ratio, which is a nonlinear function of mortality.
Charlesworth’s approach uses a linear approximation to estimate the change in NRR due
to a genetic mutation. While Charlesworth’s model is clearly a step in the right direction,
even reproducing realistic lifespan functions with the type of mortality plateaus observed in
human populations, it leaves room for improvement.

In the next chapter we will review a model of mutation and selection proposed by David
Steinsaltz, Steven Evans and Ken Wachter [30]. It employs an abstract mathematical frame-
work along the lines of Bürger, Barton and Turelli, and Baake and Baake. Like Charlesworth,
the model can incorporate age-specific effects on mortality. Unlike Charlesworth, however,
the model explores the full, nonlinear effects of mutations on genetic fitness. We will also
present two functions that will be used to describe age-specific effects of mutations on mor-
tality. One such function, a gamma function, was inspired by the model of Gavrilov and
Gavrilova [37]. Gavrilov and Gavrilova take a very different approach to modeling senes-
cence, assuming that biological systems have built-in redundancies. Ageing in their model
is a direct result of vital systems having redundant components, meaning that systems can
accumulate a certain amount of damage before causing death. While this work will not focus
on reliability models of senescence, Wachter, Steinsaltz and Evans discuss the possibility of
incorporating such models into the theory of mutation accumulation in [37].
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Chapter 2

SEW Models

The goal of this chapter is to review the mutation-selection model proposed by David
Steinsaltz, Steven Evans and Ken Wachter in [30] and discuss in detail the open questions
regarding the Steinsaltz, Evans and Wachter (SEW) model that this work will address.
Like the models proposed by Bürger (see §1.3.1 or Chapter IV of [6]) and Michael and
Ellen Baake (see §1.3.2 or [2]), this model employs an abstract but versatile mathematical
framework for representing mutations and genotypes. The SEW mutation-selection model
allows mutations to occur at (possibly) infinitely many locations and is flexible enough to
model mutations with age-specific effects on survival along the lines of Charlesworth [8] (see
§1.4.3). Throughout the remainder of this work the SEW mutation-selection model may be
referred to as the SEW model, the mutation-selection model or the no recombination model.
At the end of the chapter we will also review an extension of the SEW model that includes
genetic recombination.

2.1 SEW Mutation-Selection Model

The no recombination model assumes an infinite population of haploid individuals. Mutation
and selection occur continuously in time, with mutation accumulating among lineages. As
a result, there is no mutation back to the ancestral wild-type genome. The model further
assumes that all mutations are deleterious, meaning that the ancestral wild-type genotype
is the fittest possible genotype in the population.

The next section will focus on the mathematical framework, discussing in detail how
mutations and genotypes are represented mathematically in the SEW model. We will then
review the derivation of the model, focusing on the expressions that describe the influence of
mutation alone or selection alone on the genetics of the population under this mathematical
framework. The processes of mutation and selection are then combined to produce the full
SEW model. We will also present the SEW model in the context of the evolutionary theories
of senescence, reviewing how age-specific mutation effects on mortality can be represented
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in this framework.

2.1.1 Mathematical Framework

As previously mentioned, the SEW model has a very general mathematical framework. Po-
tential mutations are represented as elements of a complete and separable metric space,
denoted by M. Each mutation is associated with a description of the fitness effects of that
mutant allele. For our purposes, this description will be a function indicating age-specific
increases in mortality. In the SEW model mutant alleles are not tied to specific sites or
locations in the genome. Two mutations occurring at different locations in the genome but
having the same effect (e.g. the same age-specific effects on mortality) are modeled as two
copies of the same mutation type. As a result, a genotype has the form

∑
δmi , where δ is

the delta function and the mi ∈ M are not necessarily distinct. The space of all possible
genotypes is denoted by G. Mathematically, G is represented by the space of integer-valued
boundedly finite Borel measures on M.

An individual randomly chosen from the population at time t has genotype g with prob-
ability Pt(g). Pt is a probability measure on the measures in the genotype space G. That
is, Pt is the distribution of a random measure. Because Pt is the distribution of a random
measure, it has an associated intensity measure, which we denote by ρt. Mutations arise in
the population from B ⊂ M at the rate ν(B). The mutation rate ν is a boundedly finite
Borel measure on the space of mutation types M.

The genetic fitness of an individual depends on the selective cost of the individual’s
genotype, denoted by S(g). As with other continuous time mutation-selection models (see
§1.3.1 for an overview of continuous time models in population genetics), the fitness of a
genotype is measured by the growth of the subpopulation with that genotype. That growth
rate depends on the selective cost. This will be discussed in more detail when we review
the mechanism of selection. Mathematically, S is represented by a continuous function that
maps the space of genotypes to the positive reals, S : G → R+, and vanishes only on the null
genotype. Here, the null genotype refers to the genotype without any deleterious mutations.
The null genotype represents the ancestral wild-type selectively neutral genotype. As a result,
the null genotype has the highest fitness of any possible genotype. As mentioned previously,
all mutations are deleterious, meaning that adding mutations to a genotype always increases
selective cost, S(g + g′) ≥ S(g) for any genotypes g and g′.

2.1.2 Mutation

Suppose genetic mutation is the only force acting on the genotypes of a haploid population.
Additionally, assume that back-mutations (from a mutant allele back to a wild-type allele)
are not allowed. Under these assumptions, the genotype of an individual will be identical to
the genotype of the parent except possibly for additional mutations in the child’s genome.
Any change in the proportion of the population with genotype g will be due to individuals
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of type g who produce offspring of a different genotype due to a mutation event and to
adults of type g′ who produce offspring of type g due to a mutation event. Mutations are
introduced to the population over time according to a Poisson process with rate ν×λ where
λ is the Lebesgue measure. Because mutation is a Poisson process, the probability of two or
more mutation events occurring in an individual in time ∆t is at least order (∆t)2, which
can safely be ignored.

To represent the mechanism of mutation within the mathematical framework discussed
above, we employ a Pt-integrable test function that maps the space of genotypes to the reals,
Φ : G → R. The term PtΦ denotes the Pt-expected value of the test function Φ over the
space of potential genotypes,

PtΦ =

∫
G

Φ(g)Pt(dg).

The change in Pt-expected value of Φ over time due to mutation alone acting on the genetics
of the population is described by the expression

d

dt
PtΦ = Pt

(∫
M

(Φ(·+ δm)− Φ(·)) ν(dm)

)
. (2.1)

Although the expression describing the change in population genetics due to mutation
alone is rather abstract under this general mathematical framework, it can, with an appropri-
ate choice of the space of mutationsM reduce to a classical mutation-only model. In partic-
ular, suppose there are a finite number of possible mutations, so thatM = {m1,m2 . . .mn}.
In this case, a genotype may be represented as g =

∑
niei, where ni is the number of copies

of mutation i and ei is the ith coordinate vector. If we let the test function Φ be the indicator
function for genotype g, Φ(g) = 1g, then equation (2.1) simplifies to

d

dt
Pt(g) =

N∑
i=1

[Pt(g − ei)− Pt(g)]ν(mi).

This is precisely the classical mutation model in which a genotype can contain countably
many copies of each of n different mutation types, discussed by Bürger in Section III.1.2 of
[6].

It is useful to note that the mutation-only model has a familiar solution in some cases.
We will begin, however, by discussing the general solution before proceeding to the special
case. Let Π be a Poisson random measure on M× R+ with intensity ν ⊗ λ where λ is the
Lebesgue measure.1 The measure Π represents the process of introducing mutations to the

1Because Poisson random measures will be discussed throughout this chapter and the next, it may be
prudent to review their defining properties. If Π is a Poisson random measure on the spaceM with intensity
measure ρ then Π(B) is a Poisson random variable with rate ρ(B) for B ⊂M. In other words, the number of
events from the set B has a Poisson distribution. If the subsets B and D are disjoint, B ∩D = ∅, then Π(B)
and Π(D) are independent Poisson random variables. More details can be found in a standard probability
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population over time according to the mutation rate ν. Let Zt be a finite integer-valued
random variable on M defined by

Zt :=

∫
M×[0,t]

δmΠ(d(m,u)).

Zt represents a genotype at time t. Then, the distribution of genotypes at time t is given
by Pt = E[Φ(W + Zt)] where W is a random measure on M with distribution P0 that is
independent of Zt. In the special case where the initial random measure P0 is Poisson, the
measure at time t is also a Poisson random measure. Because Pt is also a Poisson random
measure in the case where P0 is Poisson, we can characterize the distribution at time t by
its intensity measure at time t, ρt. The intensity measure at time t is given by

ρt(B) = ρ0(B) + tν(B)

for B ⊂M where ρ0 is the intensity of the initial random measure P0.

2.1.3 Selection

Now we will consider the scenario in which selection is the only force acting on genotypes
in the population. Because the selective cost of a genotype affects the growth rate of the
subpopulation with that genotype, the change in genotype frequency over time is determined
by the growth of the subpopulation relative to the growth of the entire population,

d

dt
Pt(dg) =

d

dh

e−S(g)hPt(dg)∫
G e
−S(g′)hPt(dg′)

= (PtS − S(g))Pt(dg). (2.2)

For a general test function, Φ : G → R, this becomes

d

dt
PtΦ = −

∫
G

Φ(g)

[
S(g)−

∫
G
S(g′)Pt(dg

′)

]
Pt(dg). (2.3)

As with the mutation-only model, we can connect this selection-only model with those
presented in §1.3.1 and §1.3.2 by using an indicator function as our test function, Φ(g) =
1g=g′ . With the indicator as our test function we have PtΦ =

∫
G 1g=g′Pt(dg) = Pt(dg

′) and,
thus,

d

dt
Pt(dg

′) = −S(g′)Pt(dg
′) + Pt(dg

′)

∫
G
S(g′′)Pt(dg

′′).

This reduces exactly to equation (2.2). Recall from §1.3.1 that for continuous time models,
the fitness is measured by the Malthusian parameter, ri, which is the intrinsic growth rate

text such as Kallenberg [19].
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for the subpopulation with allele Ai. The classical continuous time pure selection equation
is

ṗi = pi(ri − r̄)

where r̄ is the mean fitness of the population. The more general selection-only model de-
scribed by equations (2.2) (and more abstractly by equation (2.3)) is clearly analogous to
the classical selection-only model. While ri represents the rate of (exponential) growth in
the population with allele Ai, the selective cost S(g) indicates the decrease in the size of the
subpopulation with genotype g relative to the growth of the subpopulation with all wild-type
alleles.

When the selective cost function is non-epistatic, so that the cost of a genotype is the
sum of the costs of each mutation in the genotype, this general selection-only model can have
a familiar solution. In particular, if the initial distribution P0 is a Poisson measure then the
distribution of genotypes at time t will also be a Poisson random measure whose intensity
at time t satisfies

ρt(dm) = ρ0(dm′)−
∫ t

0

(
S(δm)−

∫
M
S(δm′)ρs(dm

′))

)
ρs(dm)ds.

When the selective cost function is epistatic, or non-additive, the distribution of Pt will not
generally be a Poisson random measure, even if P0 is a Poisson random measure.

2.1.4 Mutation and Selection

In the combined mutation-selection model, the chance of a mutation and a selection event
occurring in a time interval of length ∆t is of order (∆t)2 and, thus, negligible. As a result,
the change in genotype distribution, Pt, over time due to both mutation and selection acting
on genotypes in the population is simply the sum of the contribution from mutation acting
alone and the contribution from selection acting alone,

d

dt
PtΦ =Pt

(∫
M

[Φ(·+ δm)− Φ(·)] ν(dm)

)
−
∫
G

Φ(g)

[
S(g)−

∫
G
S(g′)Pt(dg

′)

]
Pt(dg)

=Pt

(∫
M

(Φ(·+ δm)− Φ(·)) ν(dm)

)
− Pt(ΦS) + (PtΦ)(PtS). (2.4)

As before, it is easiest to see the similarity between this model and the mutation-selection
models presented previously in §1.3.1 and §1.3.2 when the test function Φ is an indicator
function, Φ(g) = 1g=g′ . Using an indicator function as the test function, equation (2.4)
becomes
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d

dt
Pt(g

′) =

∫
M
Pt(g

′− δm)ν(dm)−Pt(g′)
∫
M
ν(dm)−S(g′)Pt(dg

′) +Pt(dg
′)

∫
G
S(g′′)Pt(dg

′′).

This equation is clearly analogous to the continuous time mutation-selection model given
by equation (1.2), discussed in §1.3.1, as well as Bürger’s more general mutation-selection
model reviewed in §1.3.2.

2.1.5 Solution to the SEW Mutation-Selection Model

In [30] Steinsaltz, Evans and Wachter show that equation (2.4) has the following solution.
Let Π denote a Poisson random measure on M× R+ with intensity measure ν × Lebesgue.
Then, define

Xt := X0 +

∫
M×[0,t]

δmdΠ(m,u)

where X0 is a random measure with distribution P0 that is independent of Π. Suppose that
there is a positive T such that

E
[
exp

(
−
∫ t

0

S(Xu)du

)
S(Xt)

]
<∞

for all t ∈ [0, T ). Then

PtΦ =
E [exp

(
−
∫ t

0
S(Xu)du

)
Φ(Xt)]

E exp
(
−
∫ t

0
S(Xu)du

) (2.5)

is the solution to equation (2.4) on [0, T ).
More useful for our purposes is the following series expansion, whose proof can also be

found in [30]. For the series expansion, we let PtΦ = P̃tΦ/P̃t1 where P̃tΦ =
∑

n P̃tJnΦ.
Jn restricts Xt to the event where there are exactly n mutations in the genome by time t.
Let τ(1), τ(2), · · · τ(n) denote the arrival times of the first n mutations that are laid down
according to the Poisson random measure Π. We define Yi = Xτ(i). Then, we have

P̃tJnΦ = ν(M)ne−ν(M)tE
[

Ht,nΦ(Yn)

S(Y1) · · ·S(Yn)

]
(2.6)

where

Ht,n = P
(∑

Zj/S(Yj) < t
∣∣∣Y1, . . . Yn

)
for independent, identically distributed exponential rate one random variables Z1, Z2 · · · . If∑
ν(M)nE[(S(Y1) · · ·S(Yn))−1] is finite then Pt converges in distribution as t goes to infinity.

If the sum is infinite, PtJn goes to zero for all n.
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2.1.6 Mutation Counting Model

A simple, concrete example of the SEW mutation-selection model may be illuminating.
Suppose that every mutation, regardless of location in the genome, has the same effect on
selective cost so that they can be considered as copies of the same mutation. Because selective
cost determines genetic fitness in the SEW mutation-selection model, this scenario is the
familiar set-up for the mutation counting model discussed in §1.3.2. Using the mathematical
framework for the SEW model, the mutation space in this scenario contains only one type
of mutation, M = {m}. A genotype g in this case is simply an integer representing the
number of mutations in the genome.

To find the expression for the change in the proportion of the population with n mutations
in their genome, we let Φ = 1g=n. With this choice of indicator function as the test function
Φ, we have

Φ(g + δm) = 1g+δm=n =

{
1 when g = n− 1

0 otherwise
.

The SEW mutation-selection model given by equation (2.4) then reduces to

dPt(n)

dt
= νPt(n− 1)− νPt(n)− S(n)Pt(n) + Pt(n)

∑
j

S(j)Pt(j).

This simple example is instructive for several reasons. In the first place, it shows that
the general, abstract mathematical framework employed in formulating the SEW model is
sufficiently flexible to describe classical scenarios that are well-known and widely studied in
population genetics. As hinted earlier, the scenario with finitely many mutations can also
be modeled by choosing an appropriate form forM. In the second place, the solution to the
SEW model reduces to a particularly simple form when there is only one type of mutation.
The mutation counting formulation of the SEW model will be useful later when we test
several methods for sampling from the distribution of genotypes, as it represents one of the
few scenarios in which we can easily and accurately estimate the true distribution directly
from the series solution, equation (2.6). We shall now present this solution.

Solution to the Mutation Counting Model

If the population has reached equilibrium so that the genetic make-up of the population is
not changing over time, then d

dt
Pt = 0. At equilibrium, then, the mutation counting form of

the SEW model becomes

0 = νP (n− 1)− νP (n)− S(n)P (n) + P (n)
∑
j

S(j)P (j).

Solving this equation recursively we find that
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P (n) =
νP (n− 1)

S(n)
=

νnP (0)

S(1) · · ·S(n)
.

Alternately, we can use the series solution given by equation (2.6). Using Φ = 1g=n we have
P̃ JnΦ = ν(M)−n and

P (n) =

νn

S(1)···S(n)

1 +
∑

j
νj

S(1)···S(j)

=
νnP (0)

S(1) · · ·S(n)
.

The second equality comes from that the fact that

P (0) =
1

1 +
∑

j
νj

S(1)···S(j)

,

which can be easily verified by noting that
∑

n P (n) = 1.

Solution to the Mutation Counting Model with Non-Epistatic Selective Cost
Functions

The solution to the mutation counting model can be even further simplified when the selective
cost is assumed to be additive. In the additive or non-epistatic case we have S(n) = nS(1).
Then,

1 =
∞∑
n=0

P (n) =
∞∑
n=0

νnP (0)∏n
i=1 S(i)

=
∞∑
n=0

νnP (0)∏n
i=1 iS(1)

= P (0)
∞∑
n=0

νn

n!S(1)n
.

Recall that

∞∑
n=0

1

n!

(
ν

S(1)

)n
= exp

(
ν

S(1)

)
.

Then, P (0) = exp
(
− ν
S(1)

)
and

P (n) = exp

(
− ν

S(1)

)
1

n!

(
ν

S(1)

)n
.

That is, the stationary distribution in this case is Poisson distributed with rate −ν/S(1).
Although we will not consider non-epistatic cost functions in this work, we include this

case to emphasize the connection between the SEW model and classical mutation-selection
models.
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2.1.7 Demographic Example

The case that we are interested in exploring in this work is that of demographic selective
cost functions. In particular we will model the cost associated with a genotype by assuming
that mutations produce an increase in the hazard function relative to the hazard rate for
individuals with the null or wild-type genotype. By increasing the hazard rate or force of
mortality, the genotype causes reduced survivorship relative to individuals with selectively
neutral (wild-type) genotypes. This, in turn, produces a decrease in the growth of the
subpopulation with that genotype relative to the growth of the subpopulation with the null
genotype. The selective cost of a genotype will be measured by the difference in growth, or
the net reproduction ratio, of these two subpopulations.

We follow the common practice of assuming that there is a background (extrinsic) hazard
rate which is constant for all ages beyond the age of maturity and is zero before the age of
maturity. The age of maturity, α, represents the earliest age of fertility. Using the notation
introduced in §1.4.1 we let ha(g) denote the hazard function at age a of genotype g. The
null or wild-type genotype represents the fittest possible genotype in the population and
will be denoted by g = 0. These individuals are only subject to the background hazard
rate, which will be denoted by ha(0) ≡ λ for ages a > α. For individuals with the null
genotype, the cumulative hazard function, the sum of the hazard rates up to age x, is given
by Hx(0) = λ(x− α).

A single copy of mutation m increases the cumulative hazard function for an individual
by the amount η(m)κ(m,x). If the genotype is represented by g =

∑
δm then the cumulative

hazard function for an individual with genotype g is

Hx(g) = λ(x− α) +
∑
m∈g

η(m)κ(m,x)

= Hx(0) +
∑
m∈g

η(m)κ(m,x).

The parameter η represents the size of the effect of mutation m. In this work we will assume
that the mutation effect is comparable to the background hazard rate λ. Although this
assumption is not necessary we employ it to model the theory of senescence that posits that
aging is due to an accumulation of slightly deleterious mutations over evolutionary time. The
function κ(m,x) is the cumulative mutation profile for mutation m at age x. This function
describes the age-specific effects of the mutation on the cumulative hazard rate. We will
consider several types of cumulative mutation profiles in this work. For example, inspired by
Charlesworth’s “window effect” model [8], where a mutation causes an increase in mortality
rate in a window of ages, we consider point-mass mutations. A point mass mutation is
the limit of the “window effect” model as the window of effect ages goes to a single age, m.
Because the mutation increases the hazard rate at a single point, the effect on the cumulative
hazard function will be modeled by a step function. In this case, the mutation has no effect



43

on the cumulative hazard function at ages before m and a constant effect on the cumulative
hazard at ages above m. We will also discuss cases where mutations have gamma profiles
and κ(m,x) is the cumulative distribution function of a gamma. For this model, we assume
that all mutations have the same gamma rate parameter but different shape parameters.
Because the mean of a gamma distribution is the ratio of the shape parameter to the rate
parameter, mutations in this case will have different mean effect ages.

As mentioned previously, the selective cost of a genotype will be measured by the differ-
ence in growth rates between the subpopulation with that genotype and the subpopulation
with the null genotype. The growth of the subpopulation with genotype g is measured by
the net reproduction ratio, which depends on the lifespan function and the age-specific fer-
tility rate. Following the same convention used above we denote the baseline survivorship
function by lx(0). The baseline survivorship (or lifespan) function represents the probability
that an individual with the null genotype survives to age x. The survivorship is related to
the cumulative hazard rate by the follow expression,

lx(0) = exp(−Hx(0))

= exp(−λ(x− α)).

An individual with genotype g =
∑
δm has the survivorship function lx(g), which is given

by

lx(g) = exp(−Hx(g))

= lx(0) exp

(
−
∑
m∈g

η(m)κ(m,x)

)
.

The age-specific fertility rate is denoted by fx. In this work we assume that mutations
increase hazard rates but do not effect fertility. Future work could include creating mutation
effect models that depress fertility as well as increasing hazard rates. To further simplify
the model we assume that the rate of fertility is constant between the ages of α and β and
zero for all other ages. Throughout this work we will set the youngest age of fertility to
15 and the oldest age of fertility to 50 in an attempt to align this simple model with the
ages of fertility in humans. We note, however, that this simple model of fertility does not fit
the pattern of human reproduction, in which fertility rates peak shortly after reproductive
maturity and decline thereafter [7].

Introduced in §1.4.1, the net reproduction ratio (NRR) measures the ratio of the size of
the next population to the size of the current population. The net reproduction ratio for
the subpopulation with the null genotype is found by taking the product of the age-specific
fertility and the lifespan function for individuals with the null genotype and integrating over
all ages,
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NRR(0) =

∫ ∞
0

fxlx(0)dx.

Similarly, the NRR for the subpopulation with genotype g is given by

NRR(g) =

∫ ∞
0

fxlx(g)dx.

With a demographic selective cost function, the fitness of a genotype is measured by the
difference in net reproduction ratios between the subpopulation with genotype g and the
subpopulation with the optimal genotype,

S(g) =

∫ ∞
0

fxlx(0)dx−
∫ ∞

0

fxlx(g)dx.

Because the population consists of individuals with varying hazards (depending on their
genotypes), the NRR for the entire population depends on the expectation of the survivorship
function over genotypes present in the population,

NRR =

∫ ∞
0

fxElx(G)dx.

The difference in the NRR produced by a single additional copy of mutation m is the expected
marginal selective cost,

E[S(G+ δm)− S(G)] =

∫ ∞
α

fx
(
1− e−η(x)κ(m,x)

)
Elx(G)dx

=

∫ ∞
α

fx
(
1− e−η(x)κ(m,x)

)
lx(0)E

[
exp

(
−
∑
m∈G

η(m)κ(m,x)

)]
dx.

For simplicity we assume that the population is stationary, meaning that the population
is not growing over time. In other words, the overall size of the population is constant even
though subpopulations may experience growth or decline depending on their genetic fitness.
Under the assumption of stationarity, the population NRR is equal to one. In practice it will
be necessary to rescale the fertility rate to ensure that the population is, indeed, stationary.

2.2 ESW Free Recombination Model

Evans, Steinsaltz and Wachter extended their mutation-selection model reviewed in §2.1.4
to include recombination in [11]. Recall that recombination is the process of creating the
genotype of a new individual via a random combination of the genotypes of the parents.
Previous approaches, such as those of Barton and Turelli [3], Ellen Baake [1], and Michael and
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Ellen Baake [2], model recombination by looking at either a single cross-over event or multiple
cross-over events between two randomly chosen genotypes in the population. In studying
cross-over events, it is necessary to have some representation for the physical locations of the
loci and specifically, their distances from each other on a chromosome. This is because in a
cross-over event, a break occurs at some location along the chromosome and the resulting
two fragments combine with corresponding fragments from a homologous chromosome. For
such models it is necessary to determine how quickly the linkage disequilibria goes to zero,
that is, how quickly the loci become statistically independent.

In the free recombination model of Evans, Steinsaltz and Wachter, it is unnecessary to
have a physical representation of the loci because the loci are statistically independent. As
with the SEW mutation-selection model, mutations can be modeled by their age-specific
effects without reference to their location on the chromosome. Furthermore, because the
loci are statistically independent, a new genotype is simply a random assortment of alleles
present in the population relative to their frequencies in the population at that time. We
note, however, that the derivation of the free recombination model does not assume that loci
are independent. Rather, the independence of loci is a consequence of the assumptions used
to create the model.

Although technical details of the derivation of the ESW free recombination model will
not be repeated here, we will provide a brief overview. The free recombination model can be
derived by adding recombination to the SEW mutation-selection model under the assumption
that selection and mutation act on much slower time scales than recombination and that
no part of the genome is immune to recombination. The authors begin by considering a
discrete time analog of the SEW mutation-selection model. Genotypes undergo selection
followed by mutation followed by recombination. Recombination is modeled in a manner
similar to that of Barton and Turelli. Specifically, the set R ⊂ M denotes the collection of
sites that segregate together during a recombination event. A new genotype is formed by
g(· ∩ R) + g′(· ∩ Rc) where g and g′ are the genotypes of two individuals chosen uniformly
at random from the population. Taking the limit of the discrete time model as the time
between generations goes to zero assuming that recombination acts on a faster time scale
than both mutation and selection results in the free recombination model.

In adding recombination, the distribution of genotypes under the ESW free recombination
model becomes a Poisson random measure. Because a Poisson random measure is completely
characterized by its intensity measure, the free recombination model can be expressed as the
change in the intensity measure ρt over time,

dρt(dm)

dt
= ν(dm)− ρt(dm)Eρt [S(G+ δm)− S(G)] , (2.7)

where G is a genotype randomly chosen from the population at time t. To be more precise,
G is a Poisson random measure on the space of mutationsM with intensity measure ρt. The
intensity at time t can be found by integrating over time,
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ρt(dm) = ρ0(dm) + tν(dm)−
∫ t

0

E[S(G+ δm)− S(G)]ρs(dm)ds. (2.8)

Notice that the first part of this solution is the solution to the mutation-only model discussed
in §2.1.2.

2.2.1 Formal Description of the ESW Free Recombination Model

We now review the more technical description of the model and its solution. Let H+ denote
the space of finite nonnegative measures on M. That is, H+ is the space of intensities for
Poisson random genotypes. Define F :M×H+ by

Fπ(x) := E[S(Xπ + δx)− S(Xπ)]

for x ∈M and π ∈ H+. Define the operator D : H+ → H+ by

d(Dπ)

dπ
(m) := Fπ(m)

meaning, for any bounded f :M→ R, we have∫
M
f(x)d(Dπ)(x) =

∫
M
f(x)Fπ(x)dπ(x).

Assuming that the selective cost function satisfies a Lipschitz condition (see [11] for details),
then for any ρ0 ∈ H+,

ρt = ρ0 + tν −
∫ t

0

Dρsds

is the intensity measure for the Poisson random measure with distribution Pt and this solution
is unique.

2.2.2 Demographic Example

Because this work will focus on demographic selective cost functions, we will briefly discuss
the ESW free recombination model with the demographic selective cost function introduced
in §2.1.7. Recall that for the demographic selective cost function

S(g + δm)− S(g) =

∫ ∞
0

(
1− e−η(m)κ(m,x)

)
fxlx(g)dx.

Replacing the specific genotype g with a random genotype G and taking the Pt-expected
value over all genotypes in the population at time t we have
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Eρt [S(G+ δm)− S(G)] =

∫ ∞
0

(
1− e−η(m)κ(m,x)

)
fxEρt [lx(G)]dx.

Plugging in the demographic selective cost function to equation (2.8), we find that the
intensity at time t is given by

ρt(dm) = ρ0(dm) + tν(dm)−
∫ t

0

ρs(dm)

∫ ∞
0

(
1− e−η(m)κ(m,x)

)
fxEρs [lx(G)]dxds. (2.9)

The aggregate survivorship function for the population is the expectation of the survivorship
function taken over all possible genotypes, Elx(G). From §2.1.7 we know that

Eρs [lx(G)] = lx(0)Eρs

[
exp

(
−
∑
m∈G

η(m)κ(m,x)

)]
.

Because the number of copies of each mutation type is Possion distributed in the free recom-
bination model, the expected population survival function has a particularly simple form,

Eρs [lx(G)] = lx(0) exp

(
−
∫
M

(
1− e−η(m′)κ(m′,x)

)
ρt(dm

′)

)
.

Putting everything together we have

ρt(dm) = ρ0(dm) + tν(dm)

−
∫ t

0

ρs(dm)

[∫ ∞
0

(
1− e−η(m)κ(m,x)

)
fxlx(0)

× exp

(
−
∫
M

(
1− e−η(m′)κ(m′,x)

)
ρt(dm

′)

)
dx

]
ds. (2.10)

2.3 Discussion

The two model presented in this chapter represent two extremes in modeling genetics: either
the genome undergoes no recombination (the SEW mutation-selection model) or recombi-
nation is occurring continuously and on a much faster time scale than either mutation or
selection (the free recombination model). Both assumptions are unrealistic for modeling
much of our DNA. However, studying these two extremes may provide an idea of the spec-
trum of possible outcomes under these related models. Specifically, we are interested in
determining how much demographic outcomes (such as mortality curves and hazard rates)
depend on the assumptions of the two models. While we know that the solution to the
mutation-selection model is not a Poisson random measure in general, it would be useful to
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know if the solution can be well-approximated by a Poisson random measure, which has many
convenient properties (such as, in this application, independence in the number of copies of
different types of mutations). Determining that both models produce similar demographic
outcomes would give us some confidence in applying our results to real-world populations
that experience less extreme forms of genetic recombination. Furthermore, if the solution
to the mutation-selection model is “close” to that of the free recombination model then the
free recombination solution could be used to approximate mutation distributions in cases
with more realistic recombination rates. This is important because the free recombination
solution is much easier to estimate than the solution for the SEW mutation-selection model.

Although we previously presented a series solution to the SEW model (equation (2.6)),
this solution cannot be evaluated directly except in some cases with very simple mutation
spaces, such as the mutation counting model of §2.1.6. In particular, the term

E
[

Ht,nΦ(Yn)

S(Y1) · · ·S(Yn)

]
requires evaluating the selective cost function for every genotype with n mutations and every
possible ordering of mutations over time that would result in that genotype. In addition
to the difficulty of evaluating each term of the series, it is also necessary to determine the
normalizing constant P̃t1.

By contrast, the solution to the free recombination model with demographic selective
cost functions can be found using standard methods for numerically solving equation (2.10).
Furthermore, recent results have shown that, assuming that the population initially contains
only those individuals with wild-type alleles (that is, all individuals have the null genotype),
then equation (2.10) has a unique, stable equilibrium point. This means that the intensity
function converges to a unique measure. While we also know that the distribution of geno-
types under the SEW model converges to a unique solution when the population initially
contains only wild-type individuals, the limiting distribution for the mutation-selection case
is, as mentioned previously, much harder to evaluate. Comparing the outcomes of the two
models, then, will require accurately estimating the series solution for the SEW model. We
will discuss details of the numerics in the next chapter.
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Chapter 3

Numerical Methods

In this chapter we present the numerical methods used to estimate the solutions to the
ESW free recombination model and the SEW mutation-selection model reviewed in the
previous chapter. We also provide results for several cases with small mutation spaces to
illustrate some of the difficulties of estimating the limiting distribution in the model without
recombination. Because the equilibrium solution to the free recombination model is much
easier to estimate than that for the SEW mutation-selection model, we begin with our
discussion with the free recombination model.

3.1 Shortcut Method for the Free Recombination Model

As mentioned previously, it is possible to estimate the limiting distribution for the free
recombination model by numerically solving the system given by (2.9) and integrating over
a long period of time. In practice, one would continue to update the intensity ρn until it does
not appear to change much between subsequent time intervals. However, a much simpler
“shortcut” method has been suggested by Steve Evans. At equilibrium, d

dt
ρt = 0, so the

equilibrium intensity ρ must satisfy

0 = ν(m)− ρ(m)Eρ[S(G+ δm)− S(G)].

Solving for ρ produces the following update scheme,

ρn+1(m) =
ν(m)

Eρn [S(G+ δm)− S(G)]
.

For demographic selective cost functions, the shortcut method is given by

ρn+1(m) =
ν(m)∫∞

0
(1− e−ηκ(m,x)) fxlx(0)e−

∫
m′∈M ρn(m′)(1−exp(−ηκ(m′,x)))dm′dx

. (3.1)
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Evans has shown that the shortcut method converges to the minimal solution when starting
with ρ ≡ 0.

In the special case where mutations have point-mass profiles (see §2.1.7) the integration
can be computed exactly and does not need to be numerically approximated. The update
for the shortcut algorithm in this case has a reasonably simple form. First, though, we wish
to remind the reader that a point-mass mutation is one that increases the hazard rate at a
single age, which we shall call the age of onset, m. Such a mutation increases the cumulative
hazard function by a constant value after age m. The cumulative mutation profile κ, which
describes the age-specific increase in the cumulative hazard function, for a point-mass profile
is modeled by a Heaviside function, κ(m,x) = H(x − m). With this mutation profile we
have

1− e−ηH(x−m) =

{
1− e−η if x ≥ m

0 if x < m
.

We have assumed above that η, the size of the mutation effect, is the same for all mutation
types. Although this assumption is not necessary, we will use it in all cases discussed in this
work.

Suppose the mutation space contains k point-mass profile mutations with mutation i
having age of onset mi, where mi < mi+1. Fertility is constant between the age of maturity,
α, and the oldest age of reproduction, β. Let hn(mi) = (1− exp(−η))ρn(mi) and recall that
lx(0) = exp(−λ(x− α)), where λ is the background or extrinsic hazard rate. Then,

hn+1(m1) =ν(m1)

(
f

λ

[(
e−λ(m1−α) − e−λ(m2−α)

)
e−hn(m1)

+
(
e−λ(m2−α) − e−λ(m3−α)

)
e−hn(m1)−hn(m2)

+ · · ·+
(
e−λ(mk−α) − e−λ(β−α)

)
e−hn(m1)−hn(m2)−···−hn(mk)

])−1

hn+1(m2) =ν(m2)

(
f

λ

[(
e−λ(m2−α) − e−λ(m3−α)

)
e−hn(m1)−hn(m2)

+ · · ·+
(
e−λ(mk−α) − e−λ(β−α)

)
e−hn(m1)−hn(m2)−···−hn(mk)

])−1

...

hn+1(mk) =
ν(mk)

f
λ

[(e−λ(mk−α) − e−λ(β−α)) e−hn(m1)−hn(m2)−···−hn(mk)]
.

For general mutation profiles, however, it is necessary to numerically approximate the
integrals in equation (3.1). In the implementation of Evans’ shortcut method used in this
work, the integrals are approximated using Simpson’s rule. Simpson’s rule requires an even
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number of intervals to evaluate the integral. As a result, we choose appropriate step sizes
in age, Dx, to ensure an even number of intervals. We must also ensure that the net
reproduction ratio for the population is one, meaning that the population size is fixed over
time. We do so by computing the NRR after each update of ρ and rescaling the fertility by
the factor 1/NRR. The final rate of fertility from the shortcut method is saved and will be
used as the fertility rate for the SEW mutation-selection model tests. In many cases the
fertility rate for the free recombination model proves to be very close to the fertility rate
needed to ensure a stationary population under the SEW model. The shortcut update is
run until the L2 norm of the difference ρn+1 − ρn is smaller than a given tolerance. In all
test cases this tolerance was 10−6.

3.2 Numerical Approaches for the Mutation-Selection

Model

Because of the difficulty of estimating the equilibrium distribution under the SEW mutation-
selection model, we consider three different numerical approaches to this problem. The first
and simplest method we employ will act as a baseline for cases with very small mutation
spaces. This algorithm is referred to as the naive algorithm. The remaining two approaches
both utilize Markov chain Monte Carlo methods.

3.2.1 Naive Algorithm

A naive approach to approximating the equilibrium distribution of mutations, P (m), is to
model the Poisson process laying down the mutations (over evolutionary time) according
to ν × Lebesgue. In particular, fix a largest number of possible mutation events, M , and
a number of trials, N . For each trial, record the order in which the mutations arrive,
m(1),m(2), · · ·m(M). Then, for trial j, let the Y

(j)
i represent the genotype with i mutations,

(see §2.1.5 for a description of the solution to the SEW model),

Y
(j)

1 = m(1)

Y
(j)

2 = m(1) +m(2)

...

Y
(j)
M = m(1) +m(2) + · · ·+m(M).

For n ≤M , we can approximate the expected value by
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E
[

Φ(Yn)

S(Y1) · · ·S(Yn)

]
≈ 1

N

N∑
j=1

Φ
(
Y

(j)
n

)
S
(
Y

(j)
1

)
· · ·S

(
Y

(j)
n

) .
The probability that a genotype contains exactly n mutations, where n ≤ M , is estimated
by

P1|g|=n =

∑
n P̃ Jn1|g|=n∑

n P̃1

≈

∑M
n=1 ν(M)n 1

N

∑N
j=1

1

S
(
Y

(j)
1

)
···S
(
Y

(j)
n

)
1 +

∑M
n=1 ν(M)n 1

N

∑N
j=1

1

S
(
Y

(j)
1

)
···S
(
Y

(j)
n

) .

Although we have used the variablesN andM in the above description of the naive algorithm,
we will henceforth use NumEv as the largest number of possible mutations (formerly M)
and NumTrials as the number of trials or number of genotypes generated by the algorithm
(formerly N). These more specific names will help to avoid confusion in later sections when
we will be using all three numerical approaches to estimate the distribution under the SEW
model.

The naive method is the most intuitive approach and the simplest to implement. As
we shall see, it works well for cases with a small number of possible mutations where the
mutation rate and fertility are low enough that genotypes with high probability all contain
a small number of mutations. The approach is less useful as the space of possible mutations
(M) gets larger or in cases with very late-acting mutations and high mutation rates. In
particular, by setting the largest possible number of mutation events, NumEv, the user
is restricting the algorithm to consider only those genotypes containing NumEv or fewer
mutations. If the user chooses a value of NumEv that is too low, the algorithm may be stuck
exploring a subset of G (the space of all possible genotypes) that has low probability. The
results of such experiments may be wildly misleading, causing local maxima in an otherwise
low probability space to appear more likely than they actually are.

In addition, in spaces with a large number of mutations, many of the possible genotypes
may be highly unlikely. With a fixed number of trials it may happen that the most likely
genotypes (specifically, the most likely time-ordered genotypes) won’t be among the geno-
types generated randomly by the Poisson process. Again, this can lead to an inaccurate
picture of the distribution of genotypes. Taking a cue from Bayesians, who have long needed
algorithms to sample from distributions where the normalizing factor is unknown or diffi-
cult to compute, we instead turn our attention to Markov chain Monte Carlo methods [15].
In particular, we will focus on the Metropolis-Hastings algorithm. See [26] for the original
Metropolis algorithm and [18] for Hastings’ generalization.
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3.2.2 Metropolis-Hastings Algorithm

The goal of the Metropolis-Hastings algorithm is to draw samples from a distribution π(x).
A proposal distribution Q(x′|xt), which depends on the current state of the chain, xt, is used
to generate a new proposed state x′. This proposed state is either accepted or rejected using
the rule

xt+1 =

{
x′ with probability α = min

{
π(x′)Q(xt|x′)
π(xt)Q(x′|xt) , 1

}
xt with probability 1− α

.

The original Metropolis algorithm required that the proposal distribution Q be symmetric.
Hastings’ generalization of the Metropolis algorithm removed that requirement. Because the
distribution π appears only in a proportion, one need only know a function that dominates
the distribution. The algorithm is most efficient when Q(x′|xt) ≈ π(x′).

With the series solution to the SEW model, it is necessary to compute the normalizing
constant P̃1 in order to determine the distribution of genotypes. Without the normalizing
constant, the probability that a randomly chosen individual has genotype g is proportional
to the numerator P̃1g,

P (g) ∝ ν(M)nE
[

1(Yn = g)

S(Y1) · · ·S(Yn)

]
.

The difficulty in using the Metropolis-Hastings algorithm to sample from the distribution
of genotypes is in computing this expectation. For example, if g =

∑
k nkδk and |g| = N

then there are

(
N

n1, . . . nm

)
ways in which the mutations could have arrived (according to

the Poisson process that is laying down mutations according to ν × Lebesgue). Thus, com-

putation of the expectation involves

(
N

n1, . . . nm

)
terms. These computations are untenable

in practice. A possible alternative is to keep track of the order in which mutations arrive so
that

P (g) =
∑
~g∈G

P (~g)

where G = {~g} = {all orderings of the mutations in g}. In keeping track of the order,
however, the space over which the random walk has to crawl is much larger, since each
possible genotype now has many different representations.

Details of the Implementation

The implementation of the Metropolis-Hastings algorithm assumes that the mutation space
M contains a finite number of mutations, M . This assumption is not terribly restrictive for
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the cases that we consider since we are dealing with easily discretized spaces.

Initialization

The user chooses an initial genotype. This genotype is represented as a vector that describes
the number of copies of each type of mutation present in the genome,

g = n = (n1, n2, . . . nM)

where ni indicates the number of copies of mutation type i. Let N = |g| =
∑

i ni be the
number of mutations in the unordered genotype g. The algorithm takes this initial genotype
and creates an ordered genotype, ~g,

~g = (m(1),m(2), . . .m(N))

where m(i) denotes the ith mutation laid down by the underlying Poisson process. The
ordered genotype contains the same number of mutations as g but describes the order in
which these mutations arrived. The probability of the ordered genotype is proportional to

P (~g) ∝ ν(M)N

S(m(1))S(m(1)m(2)) · · ·S(m(1)m(2) · · ·m(N))
PΠ

(
m(1)m(2) · · ·m(N)

)
=

ν(M)N

S(m(1))S(m(1)m(2)) · · ·S(m(1)m(2) · · ·m(N))

ν
(
m(1)

)
· · · ν

(
m(N)

)
ν(M)N

.

Proposed Step

The proposed ordered genotype is generated in two steps. First, a new (unordered) genotype,
g′, is proposed. For each mutation type, a proposed number of copies of the mutation is drawn
according to a double-sided discrete exponential distribution centered about the number of
copies contained in the current genotype. The double exponential is restricted to nonnegative
numbers.

{
n′i ← ni − k for k = 0, 1, . . . ni with probability 1−exp(−λ(ni+1))

2−exp(−λ(ni+1))
(1−exp(−λ)) exp(−kλ)

1−exp(−λ(−ni+1))

n′i ← ni + k for k = 0, 1, . . . with probability 1
2−exp(−λ(ni+1))

(1− exp(−λ)) exp(−kλ).

This implementation uses the same the exponential parameter λ for each mutation type.
Repeating this process for each type of mutation produces the proposed genotype, g′ =
(n′1, n

′
2, . . . n

′
M).

The second step is to randomly generate an ordered genotype ~g′ corresponding to the
proposed genotype g′,
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~g′ =
(
m(1)′ ,m(2)′ , . . .m(N ′)′

)
where N ′ is the total number of mutations in the proposed genotype, N ′ =

∑
i n
′
i. Notice that

the proposed genotype and the current genotype may have a different number of mutations.

Accepting or Rejecting the Proposed Step

In order to compute α, the probability of accepting the proposed move, we must calculate
the ratio of the probabilities of the ordered genotypes, denoted by a1,

a1 =
π(x′)

π(xt)
=
P (~g′)

P (~g)
,

and the ratio of the jump (or proposal) probabilities, denoted by a2,

a2 =
Q(xt|x′)
Q(x′|xt)

=
Q(~g|~g′)
Q(~g′|~g)

.

The probability of accepting the move is then

α = min{a1a2, 1}.

The ratio of the probabilities of the ordered genotypes is given by

a1 =
P (~g′)

P (~g)
=

ν(M)N
′

S(m(1)′)S(m(1)′m(2)′)···S(m(1)′m(2)′ ···m(N′)′)

ν
(
m(1)′

)
···ν
(
m(N′)′

)
ν(M)N

′

ν(M)N

S(m(1))S(m(1)m(2))···S(m(1)m(2)···m(N))

ν(m(1))···ν(m(N))
ν(M)N

.

We compute the probability of jumping to the ordered genotype in two steps. First, we
compute the probability of jumping to the unordered genotype. Because each mutation type
is updated independently we have

Q(g′|g) =
M∏
i=1

q(n′i|ni).

Notice that if n′i = ni + k then

q(n′i|ni) =
1

2− exp(−λ(ni + 1))
(1− exp(−λ)) exp(−kλ)

and ni = n′i − k so

q(ni|n′i) =
1− exp(−λ(n′i + 1))

2− exp(−λ(n′i + 1))

(1− exp(−λ)) exp(−kλ)

1− exp(−λ(−n′i + 1))
.
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Then,

q(ni|n′i)
q(n′i|ni)

=
2− exp(−λ(ni + 1))

2− exp(−λ(n′i + 1))
.

Clearly the same result holds for the case where n′i = ni − k.
There are (

N
n1n2 . . . nM

)
possible ordered genotypes corresponding to the unordered genotype g and(

N ′

n′1n
′
2 . . . n

′
M

)
possible ordered genotypes corresponding to the unordered genotype g′. Because the ordered
genotypes are generated randomly, we have

Q(~g′|~g) =
1(
N ′

n′1n
′
2 . . . n

′
M

) M∏
i=1

q(n′i|ni)

and

Q(~g|~g′) =
1(
N

n1n2 . . . nM

) M∏
i=1

q(ni|n′i).

The ratio is

a2 =
Q(~g|~g′)
Q(~g′|~g)

=
N ′!

N !

M∏
i=1

2− exp(−λ(ni + 1))

2− exp(−λ(n′i + 1))

ni!

n′i!
.

In practice there have been several difficulties with this approach. As with the naive
algorithm, this approach has proven to be somewhat problematic in cases with either a
large number of mutations or with mutations that have late-acting effects coupled with
high mutation rates. It appears that the main issue is that ordered genotypes are created
randomly. Although the number of each type of mutation is determined according to a
double exponential distribution centered around the number of copies of that mutation type
in the current genotype, the time-ordered genotype is a random shuffling of the unordered
genotype. This can result in proposed steps that are highly unlikely, especially when the
mutation space is large.

Consider the simple case where mutations have point-mass profiles. Suppose there are
only two possible mutation types and these two types have ages of onset m1 and m2 with
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m1 < m2. It is clear that of all the possible orderings of an unordered genotype g, the
one with mutations in descending order will be most likely. Intuitively this is because the
mutation with later-age effects (in this case, m2) has less of an impact on lifespan and,
consequently, less of an impact on the number of offspring produced. Over time, as more
mutations accumulate in the population, individuals who receive an additional copy of m2

will have a longer lifespan (and more offspring) than individuals who instead receive a copy
of m1. For example, of all genotypes with exactly two mutations, the ordered genotype
(m2,m2) will be most likely, followed by (m2,m1), then (m1,m2) and finally (m1,m1). By
randomly generating the order, we have an equal chance of generating (m2,m1) and (m1,m2)
(for example) even though we know individuals with the genotype (m2,m1) are more likely
to survive and reproduce. Exactly how much more likely that order is depends on a number
of factors (including the ages of onset). One can imagine how much more problematic this
issue may be when there are hundreds of mutations in the genotype.

A secondary (but somewhat related) issue is the fact that each step of the algorithm
involves updating the number of copies of every type of mutation. In practice it appears that
the chain can get stuck, accepting virtually no moves because most orders of the genotype
with one additional copy of an early-acting mutation will be highly unlikely relative to the
current state. This is particularly an issue when one mutation has significantly later effects
than the other mutations. For the same reason, using the same exponential rate parameter for
all mutation types is also unwise. Mutations with late-age effects will occur more frequently
in the genome and with more variation in the number of copies than mutations with early-age
effects. All of these issues will be illustrated by several concrete examples in §3.3.

3.2.3 Multiple-Try Metropolis Algorithm

In an attempt to partially side-step the issues present in the Metropolis-Hastings approach,
we consider a third approach to sampling from the genotype distribution under the SEW
model. This last approach uses the multiple-try Metropolis algorithm [23], which proceeds
as follows:

• At time t, k independent states are chosen from the proposal distribution Q(x(t), ·),
where x(t) is the current state of the chain.

• For each proposed move, yj, we compute the weight,

w(yj, x
(t)) = P (x(t))Q(x(t), y)λ(x(t), y)

where λ is a symmetric, non-negative function. For the implementation used in this
work we set λ = 1.

• Choose y ∈ {y1, y2 . . . yk} according to the weights w(y1, x
(t)), . . . w(yk, x

(t)).

• Draw k − 1 independent states, x1, . . . xk−1, from Q(y, ·), setting xk = x(t).
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• Compute the weights associated with these states, w(x1, y) . . . w(xk, y).

• Accept the proposed move to state y with probability

min

(
1,
w(y1, x

(t)) + · · ·+ w(yk, x
(t))

w(x1, y) + · · ·+ w(xk, y)

)
.

As with the Metropolis-Hastings algorithm, in the implementation of the multiple-try
Metropolis algorithm used in this work, the chain crawls over the space of ordered genotypes.
This approach eliminates the need to compute the expectation over all possible orders in the
P̃1g=n term. In what follows, all genotypes should be understood to be time-ordered. That
is, the genotype ~g = (mi,mj) indicates that the mutation event producing mi occurred
before the mutation event that produced mj.

A proposed state differs from the current state by no more than one mutation. Specifi-
cally, given the current (ordered) genotype, we can choose one of three actions:

• Add a mutation anywhere along the genotype (that is, we can add another mutation
event at any point in time).

• Remove a mutation (erase one of the mutation events that occurred).

• Change the type of one mutation (keep the mutation event but change the mutation
from type i to type j).

If the current ordered genotype contains N mutations, then a mutation is added to it with
probability N+1

2N+1
. A mutation is deleted with probability p N

2N+1
and a mutation changes

type with probability (1− p) N
2N+1

. In the case with only one type of mutation, p is set to 1.
As a simple example, suppose that the current genotype is ~g = (m). In this example,

N = 1 and we have the following four options for the proposed ordered genotype ~g′,

~g′ =


(m′,m) with probability 1

3
ν(m′)
ν(M)

(m,m′) with probability 1
3
ν(m′)
ν(M)

() with probability 1
3
p

(m′) with probability 1
3
(1− p)ν(m′)

ν(M)

where m′ ∈M is any mutation in the space of mutation types. The genotype ~g = () denotes
the null or wild-type genome. Please note that in the tests that follow, the probability of
deleting a chosen mutation will be referred to as DelP, rather than p.

This approach has an advantage over the Metropolis-Hastings algorithm in cases where
the mutation space is large. Because the algorithm produces several proposed steps and
then chooses one of them according to their weights, it is more likely to accept the proposed
move than in the Metropolis-Hastings algorithm when dealing with a large mutation space.
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In practice it also appears less likely for the chain to get stuck, probably due to the different
method of generating ordered genotypes. However, because the proposed genotypes differ
from the current genotype by at most one mutation, this method can require thousands of
iterations to locate highly likely genotypes, especially when the mutation space is large.

3.3 Illustrative Test Cases

Our ultimate goal in this work is to characterize the distribution of genotypes under the SEW
mutation-selection model for mutation spaces that have hundreds or thousands of different
mutation types. In particular we will eventually focus on mutations with profiles that are
described by gamma distributions. Such profiles are of interest to us because they allow us to
easily model both mutations that have large early-age effects and mutations that have small
early-age effects but much larger late-age effects. Before considering these large mutation
spaces, however, we will present results for small mutation spaces, consisting of at most four
distinct types of mutations.

The purpose of these smaller cases is two-fold. First, it allows us to verify that the
implementations of algorithms presented in §3.2-§3.2.3 are functioning properly and can be
used to sample from the target distribution (in this case, the distribution of genotypes).
Second, it will illustrate why some of the methods described above are ill-suited to sampling
from the space of genotypes when the mutation space is large. In particular we find that the
naive algorithm and the Metropolis-Hastings algorithm fail for even small mutation spaces
when the mutations have gamma profiles.

We begin by focusing on a mutation space with a single type of mutation. We chose to
start with this case, which we discussed previously in §2.1.6 as the mutation counting model,
because the series solution to the SEW model for a mutation space with a single type of
mutation is much simpler than it is in cases with more than one type of mutation. To make
the series solution even more tractable we will use a highly stylized form for the age-specific
effects of the mutation on the hazard rate. The mutation profile used, called a point-mass
profile, concentrates the effect of the mutation to a single age, resulting in an increase in
hazard rate at a single point. Although this type of mutation profile is highly unrealistic
and thus not useful in attempting to model mutations in the real world, its simplicity will
allow us to accurately estimate the true distribution of genotypes.

We next consider a mutation space containing two types of mutations, each with a point-
mass profile. This example is slightly more complicated than the mutation counting model
because with two mutation types the series solution becomes intractable. As a result, we
can only estimate the distribution of genotypes using the three numerical methods presented
previously, namely the naive (N) algorithm, the Metropolis-Hasting (MH) algorithm and
the multiple-try Metropolis (MTM) algorithm. However, while we cannot compute the true
distribution exactly, agreement between the output of the three algorithms strengthens our
belief that the algorithms are performing correctly.
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Our last test case involves a mutation space with four types of mutations. Unlike the
previous two cases, the mutation profiles in this case are described by gamma distributions
where all four mutations have the same rate parameter but each has a different shape param-
eter. The shape parameters are chosen so that the age-specific effects of each mutation are
quite different. One mutation has an early mean-age effect, indicating that much of the effect
of the mutation is concentrated during early reproductive years. A second mutation has a
mean-age effect in middle age, indicating moderate early-age effects. The third mutation has
a late mean-age effect and the fourth mutation has a very late mean-age effect. These last
two mutations have small to very small early-age effects. This test case is primarily used to
illustrate the difficulty of sampling from the distribution of genotypes under the SEW model
when the mutation space contains more than a small number of mutations.

3.3.1 Mutation Counting Model with Point-Mass Profiles

In the first scenario we consider, the mutation spaceM consists of a single mutation with a
point-mass profile. As mentioned previously, for the point-mass profile case, the effect of the
mutation on the hazard rate is concentrated at a single age, m. The effect on the cumulative
hazard rate, then, is modeled by a Heaviside step function with step at the age of onset m.
Recall from §2.1.6 that when the mutation space consists of a single type of mutation, the
series solution to the ESW free recombination model simplifies considerably to

P (n) =
ν(M)n 1

S(1)···S(n)

1 +
∑

j ν(M)j 1
S(1)···S(j)

. (3.2)

When the mutation has a point-mass profile and the fertility rate is constant from the age
of maturity, α, to the oldest age of reproduction, β, and zero otherwise, the selective cost
function can be evaluated exactly and has the simple form

S(1) =(1− e−η)f
λ

(
e−λ(m−α) − e−λ(β−α)

)
S(2) =(1− e−2η)

f

λ

(
e−λ(m−α) − e−λ(β−α)

)
...

S(n) =(1− e−nη)f
λ

(
e−λ(m−α) − e−λ(β−α)

)
.

The product of the selective cost functions is then given by

S(1)S(2) · · ·S(n) =

(
f

λ

)n (
e−λ(m−α) − e−λ(β−α)

)n
(1− e−η)(1− e−2η) · · · (1− e−nη).
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Plugging this product into equation (3.2), we find that the probability that a randomly
chosen individual has a genotype with exactly n mutations is given by the expression

P (n) =

ν(M)n

( fλ)
n
(e−λ(m−α)−e−λ(β−α))

n∏n
k=1 1−exp(−kη)

1 +
∑

j
ν(M)j

( fλ)
j
(e−λ(m−α)−e−λ(β−α))

j∏j
k=1 1−exp(−kη)

. (3.3)

We compared the true distribution of genotypes in the single point-mass profile case, given
by equation (3.3), to the estimates obtained from the naive algorithm, the MH algorithm and
the MTM algorithm for three test cases. The three test cases discussed here have ages of onset
25, 35 and 45 years, respectively. Demographic parameters, such as the background hazard
rate λ and the mutation rate ν, as well as algorithm parameters for the three numerical
approaches, are listed in Table 3.1. The term “Parameter” listed in the Metropolis-Hastings
(MH) row refers to the exponential parameter that determines the number of copies of
each mutation type in the proposed genotype (details can be found in §3.2.2). The term
“Burn” refers to an initial number of steps that were discarded before samples were collected
for analysis. Questions of whether or not the Markov chain has converged to the target
distribution are considered in Appendix A.1 and will not be repeated here. As will be
typical for all the cases discussed in this work, the MH and MTM algorithms were initialized
with the null genotype.

The fertility rate for each case was set equal to the fertility rate that ensures a stationary
population under the ESW free recombination model. The shortcut method was used to solve
the free recombination model under the same mutation space and with the same parameters.
The number of iterations before convergence of the shortcut method and the resulting fertility
rate are listed in Table 3.2.

Histograms of the number of mutations per genotype resulting from the three algorithms
as well as the distribution given by equation (3.3) are shown in Figure 3.1 (age of onset 25
years), Figure 3.2 (age of onset 35 years) and Figure 3.3 (age of onset 45 years). A quick
visual analysis suggests that in all three cases, the empirical distributions are similar to the
true distribution. For a more concrete measure, we consider the L∞ distance between the
true distribution and the output from the three algorithms, which is provided in Table 3.4.
The table shows that the naive algorithm is more accurate than the MH and MTM algorithms
in the cases with younger ages of onset (25 and 35). In the last case (with an age of onset of
45 years) the three algorithms perform similarly. The difference between the naive algorithm
and the true distribution is largely caused by the fact that the naive algorithm estimates
the selective cost function by numerically integrating rather than using the closed-form
expression presented above.

Because we are ultimately interested in demographic outcomes, Figure 3.4 shows the
expected population survival function, E[lx(G)], computed using the actual probability dis-
tribution, and the estimates from the naive algorithm, the MH algorithm and the MTM
algorithm. For all three cases, the survival functions estimated from the three algorithms
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Table 3.1: Parameters for test cases with a single point-mass mutation.

All Tests η λ α β Dx
0.1 0.05 15 50 0.1

Trial ν(M) Mutation Age
1 0.3 25
2 0.1 35
3 0.02 45

NH NumEv NumTrials
100 10000

MH Burn Samples Parameter
10000 100000 0.5

MTM Burn Samples DelP Kmax
10000 100000 0.75 5

Table 3.2: Results from the free recombination model for the single point-mass mutation
cases.

Trial Mutation Age Iterations Fertility Rho
1 25 131 0.095884234 12.74311634
2 35 58 0.070267910 9.34025338
3 45 26 0.062151901 6.04213278

Table 3.3: Proportion of the proposed moves accepted by the MH and MTM algorithms for
the three single point-mass profile cases.

Acceptance Rate
Trial Mutation Age MH Algorithm MTM Algorithm

1 25 0.82088 0.89839
2 35 0.82129 0.90091
3 45 0.81340 0.89664
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Figure 3.1: Histograms for the single point-mass case with age of onset 25 years. True
probability distribution (top left), naive algorithm (top right), MH algorithm (bottom left)
and MTM algorithm (bottom right).
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Figure 3.2: Histograms for the single point-mass case with age of onset 35. True probability
distribution (top left), naive algorithm (top right), MH algorithm (bottom left) and MTM
algorithm (bottom right).
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Figure 3.3: Histograms for the single point-mass case with age of onset 45. True probability
distribution (top left), naive algorithm (top right), MH algorithm (bottom left) and MTM
algorithm (bottom right).
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are essentially the same, with L2 distances between the actual survival function and the
approximations on the order of 10−3 (see Table 3.5 for details).

Table 3.4: Distance (L∞) between the actual probability distribution and the empirical
distribution from the naive algorithm (N), the MH algorithm and the MTM algorithm for
the three single point-mass profile cases.

Trial Actual & N Actual & MH Actual & MTM
1 0.0007096 0.00226183 0.00294207
2 0.0009512 0.00262767 0.00241233
3 0.00232584 0.00370885 0.00178069

Table 3.5: Distance between E[lx(G)] using the actual probabilities and the output from the
algorithms.

Actual & N Actual & MH Actual & MTM
Trial || · ||2 || · ||∞ || · ||2 || · ||∞ || · ||2 || · ||∞

1 0.00161847 0.00051097 0.00165686 0.00052309 0.00384565 0.00121412
2 0.00134495 4.24646e-04 0.00030519 9.63588e-05 0.00022359 7.05952e-05
3 0.00172254 0.00054396 0.00102528 0.00032377 0.00103437 0.00032664

3.3.2 Mutation Space with Two Point-Mass Profile Mutations

Unlike the cases with a single mutation type, the true probability distribution for spaces with
two mutations cannot be directly computed. As a result, output from the three algorithms
(N, MH and MTM) were compared only against one another. The results for two such test
cases are reproduced below. The first case has mutations with ages of onset 20 years and
30 years; the second case has mutations with ages of onset 20 years and 40 years. The
parameters used in these two cases are listed in Table 3.6. The fertility rates, set to ensure
no population growth under the free recombination model, are listed in Table 3.7.

It is worth taking a minute to call attention to the acceptance ratios for the MH and
MTM algorithms. In the cases with a single point-mass profile mutation, the acceptance
ratio (the ratio of accepted moves to proposed moves) was about 82% for the MH algorithm
and 90% for the MTM algorithm (see Table 3.3). With two point-mass profile mutations,
the acceptance ratios for both algorithms have dropped, with the MH algorithm accepting
only 42-54% of the proposed steps and the MTM accepting almost 73% of the proposed
steps. Note that the MH algorithm has a higher acceptance ratio for the case where both
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Figure 3.4: Expected population survival for the single point-mass case with age of onset 25
(top left), 35 (top right), and 45 (bottom).



68

mutations have early to mid-range ages of onset and a lower acceptance ratio for the case
where one mutation has a much later age of onset (40 years) than the other mutation (20
years). The MTM algorithm, by contrast, has essentially the same acceptance ratio for both
test cases. This difference becomes even more pronounced when considering larger mutation
spaces, as we will do in the next section.

Table 3.6: Parameters for test cases with two point-mass mutations.

All Tests η λ α β Dx
0.1 0.05 15 50 0.1

Trial Number ν(M) Mutation Age
4 0.2 (20,30)
5 0.1 (20,40)

NH NumEv NumTrials
1000 10000

MH Burn Samples Parameter
10000 100000 0.5

MTM Burn Samples DelP Kmax
10000 100000 0.75 5

The plots in Figure 3.5 show the histograms for the total number of mutations per geno-
type in the case with ages of onset m1 = 20 years and m2 = 30 years. The marginal
distributions for the two mutation types were also computed using samples from each al-
gorithm and are shown in Figure 3.6. The plots on the left side of Figure 3.6 show the
marginal distributions for the number of copies of m1 per genotype while the plots on the
right show the marginal distributions for the number of copies of m2. The three algorithms
produce similar histograms for the total number of mutations, as well as similar marginal
histograms. The L∞ distance between the distributions for the total number of mutations

Table 3.7: Output for the free recombination model for the cases with two point-mass
mutations.

Trial Number Mutation Age Iterations Fertility Rho
4 (20,30) 13 0.0755627 (1.57387, 3.91628)
5 (20,40) 34 0.0683494 (0.751241, 7.31567)
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Table 3.8: Acceptance rates for proposed moves in the Metropolis-Hasting algorithm and
the multiple-try Metropolis algorithm.

Trial Number MH Algorithm MTM Algorithm
4 0.54146 0.72870
5 0.42910 0.72864

per genotype between the three algorithms are listed in Table 3.9. The table confirms that
the three approaches yield very similar results. Figure 3.7 (left) shows the expected pop-
ulation survival function computed from the output of the three algorithms. Again, the
visual observation that the expected survival functions are nearly identical is supported by
computing the distances between the functions, shown in Table 3.10.

Figure 3.8 shows the histograms for the total number of mutations in the case where
the ages are onset are m1 = 20 years and m2 = 40 years. The marginal distributions are
shown in Figure 3.9. As with the previous case, the three algorithms all produce similar
results, a finding that is confirmed by comparing the L∞ distance between the distributions
(Table 3.9).

In both of the cases considered here, the empirical distribution estimated by the naive al-
gorithm and that from the MTM samples appear closest of the three comparisons. Although
we don’t know the true distribution of genotypes in the cases with two mutations, we expect
the naive algorithm to provide a reasonable estimate because the mutation space is small and
the mutations have early- to mid-reproductive ages of onset. This ensures that the selective
pressure against the mutations is fairly strong, which, in turn, means that typical genotypes
will contain few copies of each type of mutation. The method utilized by the naive algorithm
– fixing a largest possible genotype (in this case containing at most 1000 mutations, which
is much larger than the typical genotype) and choosing a random order of arrival for those
mutations – suggests that genotypes with high probability will be encountered often in these
cases. As a result, we expect the naive algorithm to perform pretty well on these test cases.
Close agreement between the naive algorithm and the algorithms using Markov chains to
sample from the distribution of genotypes is encouraging.
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Figure 3.5: Histograms for the two point-mass mutations case with ages of onset m1 = 20
years and m2 = 30 years. Naive algorithm (top), MH algorithm (bottom left) and MTM
algorithm (bottom right).
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Figure 3.6: Marginal distribution histograms for the two point-mass mutations case with
ages of onset m1 = 20 years (left column) and m2 = 30 years (right column) for the naive
algorithm (top row), the MH algorithm (middle row) and the MTM algorithm (bottom row).
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Figure 3.7: Expected population survival function for the two point-mass mutations case
with ages of onset m1 = 20 years and m2 = 30 years (left) and m1 = 20 years and m2 = 40
years (right).

Table 3.9: Distance (L∞) between the distributions of the total number of mutations obtained
from the three algorithms.

Trial N & MH N & MTM MH & MTM
4 0.00583465 0.00368195 0.00857
5 0.00538978 0.00289 0.00416
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Figure 3.8: Histograms for the two point-mass mutations case with ages of onset m1 = 20
years and m2 = 40 years. Naive algorithm (top), MH algorithm (bottom left) and MTM
algorithm (bottom right).
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Figure 3.9: Marginal distribution histograms for the two point-mass case with ages of onset
m1 = 20 years (left column) and m2 = 40 years (right column) for the naive algorithm (top
row), the MH algorithm (middle row) and the MTM algorithm (bottom row).
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Table 3.10: Distance between the expected survival functions for the three algorithms.

N & MH N & MTM MH & MTM
Trial || · ||2 || · ||∞ || · ||2 || · ||∞ || · ||2 || · ||∞

4 0.00316648 0.00102678 0.00121233 0.00035107 0.00361067 0.00137785
5 0.00070704 0.00017743 0.00087384 0.00029289 0.00070317 0.00019434
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3.3.3 Mutation Space with Four Gamma Profile Mutations

The previous cases presented in this chapter consist of spaces where mutations have point-
mass profiles. Essentially, these mutations have an age of onset or an age of activation before
which the mutation is benign. The simplicity of this model of mutation effect on hazard rates
allowed us to accurately estimate the true probability distribution in the mutation counting
case (M = {m}). However, it is the simplicity of this profile that makes it biologically
unrealistic for modeling real mutations. Perhaps a more realistic model for the age-specific
effects of genetic mutations on the hazard rate assumes that a mutation has non-zero effects
at every age. In this section we will model mutation effects on the hazard rate with a gamma
distribution.

Each mutation in the space has the same gamma rate parameter of 0.05 but different
shape parameters. The shape parameters used are 1.125, 2.25, 4.125 and 6.00. These
parameters where chosen in line with tests from [37], which discusses the behavior of the
ESW free recombination model. Figure 3.10 shows the cumulative gamma profiles for this
case. Recall that the cumulative mutation profile adds to the baseline cumulative hazard
function when an individual has a copy of that mutation in their genome. For gamma
profiles, mutations with smaller shape parameters have a larger effect on the cumulative
hazard function at younger ages than do those with larger shape parameters. Compare, for
example, a shape parameter of 6.00 and 1.125. The mutation with shape parameter 6.00
has a very small effect on the cumulative hazard function over reproductive ages, increasing
it by less than .01η over the entire range of reproductive ages, 15 to 50 years. Indeed, the
mean age-effect on hazard rate for the mutation with shape parameter 6.00 is 120 years.
The mutation with shape parameter 1.125, on the other hand, has quite large effects even
at younger reproductive ages. For example, the increase in the cumulative hazard function
due to a single copy of a mutation with shape parameter 1.125 is nearly 0.5η by age 30 and
nearly 0.8η by the age of 50. Because the force of selection decreases with age, we expect
the typical genotype to contain substantially more mutations with large shape parameters
than mutations with smaller shape parameters.

Table 3.11 lists the parameters for the test case with four gamma mutations. The MH
algorithm and the MTM algorithm were both run twice on the same mutation space with the
same demographic parameters (such as background hazard rate and mutation rate) but with
different algorithm parameters. Trial 1 refers to the first set of algorithm parameters; Trial
2 refers to the second set of parameters. For the MH algorithm, the exponential parameter
(used in choosing the number of copies of each mutation type in the proposed genotype) was
set to 0.5 for the first trial and 0.7 for the second. For the MTM algorithm, the probability
of deleting a chosen mutation in the current genotype (“DelP”) was 0.75 for the first trial
and 1.0 for the second. Details of the algorithm parameters can be found in §3.2.2 (for the
description of the MH algorithm) and §3.2.3 (for the description of the MTM algorithm).

As before, the fertility rate used in the SEW model was set to the fertility rate under the
free recombination model applied to the same parameters and mutation space. The output
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from the free recombination model for the four gamma mutations case, including the fertility
rate and the intensity measure, can be found in Table 3.12. Notice that the intensity measure
for the free recombination model, which describes the mean number of each mutation type
in a genotype, follows the expected pattern. That is, on average there are substantially more
copies of the mutations with larger shape parameters than there are copies of mutations with
smaller shape parameters. Indeed, the expected number of copies of the fourth mutation
type (with shape parameter 6.00) is much larger than for any of the other mutation types
(190 vs fewer than 14 for the other three combined). While the question of the similarity of
the distribution of genotypes under the two models will not be addressed until Chapter 4,
this huge difference in the expected number of copies of different mutation types is something
that appears to cause difficulties for both the naive and MH algorithms, as we shall now see.

Table 3.11: Parameters for the test case with four gamma mutations.

All Tests η λ α β Dx ν(M) Gamma rate
0.1 0.05 15 50 0.1 0.05 0.05

NH NumEv NumTrials
1000 10000

MH Trial Burn Samples Parameter
1 10000 100000 0.5
2 10000 100000 0.7

MTM Trial Burn Samples DelP Kmax
1 10000 100000 0.75 5
2 10000 100000 1.0 5

Figure 3.11 shows the histograms for the total number of mutations estimated from the
three algorithms. The axes on the five histograms are the same to enable a direct comparison
of the results. The most obvious observation is that the three algorithms (naive, top row;

Table 3.12: Results from the free recombination shortcut algorithm run with the parameters
listed in Table 3.11.

Iterations Fertility Gamma shape parameter Rho
11 0.06378240 1.125 0.362802

2.25 1.17842
4.125 12.1020
6.00 190.108
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Table 3.13: Ratio of proposed moves to accepted moves for the MH and MTM algorithms
under both sets of parameters.

Trial Number MH Algorithm MTM Algorithm
1 0.00289 0.58550
2 0.00085 0.57889

Table 3.14: Net reproduction ratio (NRR) computed using the results of the algorithms for
the four gamma mutations case.

Algorithm Trial NRR
Naive – 1.00397
MH 1 1.03015
MH 2 1.03969

MTM 1 1.00139
MTM 2 1.00397

MH, center row; MTM, bottom row) all produce vastly different histograms. Indeed, even
the two trials with the MH algorithm produce very different histograms from each other. For
example, using the naive algorithm, the mean number of mutations per genotype is 14.042
with a variance of 5.725. For the MH algorithm, Trial 1, the mean is 153.182 mutations
with a variance of 83.192; for Trial 2, the mean is much smaller, 91.987 mutations with a
variance of 9.431 mutations. For the MTM algorithm, the mean is 170.106 mutations with a
variance of 181.294 for Trial 1 and the mean is 174.466 with a variance of 181.584 mutations
for Trial 2. Unsurprisingly, the expected population survival functions, shown in Figure 3.12
are also noticeably different. Given the relatively close agreement between the distributions
generated by the three algorithms in the test cases with one or two point-mass mutations,
this discrepancy seems unlikely to be caused by a simple programming error. Rather, it is
probably caused by issues inherent in the different approaches.

To delve into this issue more thoroughly, we will consider several ordered genotypes and
compute the associated factors P̃ (~g) given by the expression

P̃1~g =
ν(M)N

S(m(1))S(m(1)m(2)) · · ·S(m(1)m(2) · · ·m(N))
PΠ

(
m(1)m(2) · · ·m(N)

)
=

ν(M)N

S(m(1))S(m(1)m(2)) · · ·S(m(1)m(2) · · ·m(N))

ν
(
m(1)

)
· · · ν

(
m(N)

)
ν(M)N

.

The P̃ (~g) are not probabilities as they have not been normalized. However, the probability
of the ordered genotype is proportional to P̃ (~g). Table 3.15 lists several ordered genotypes,
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ranging from those containing a single mutation to several genotypes with 180 mutations.
Computations were done in python using 128-bit floating point precision. The mutation m1

(or simply 1) refers to the mutation with gamma shape parameter 1.125, m2 (or 2) to shape
parameter 2.25, m3 (or 3) to 4.125, and m4 (or 4) to 6.00. As expected, when considering
genotypes containing a single mutation, the unnormalized probability P̃ (g) is largest for
the genotype with a single copy of m4 and smallest for the genotype with a single copy of
m1. This result is perfectly in line with our understanding of the force of natural selection
decreasing with age. Less selective pressure against mutation type m4 translates to a better
chance of having a copy of mutation m4. What is more interesting is to note the difference
in scale in the P̃ (~g) for these four genotypes. Specifically, we find that the unnormalized
probabilities for these four genotypes are all within two orders of magnitude, ranging from
0.3 to 76.9. While this may seem like a large difference, the ordered genotypes containing
180 mutations tell us otherwise.

In addition to the four genotypes with a single mutation, Table 3.15 lists a randomly
generated ordered genotype with twelve mutations, a randomly generated genotype with
180 mutations, the same genotype with mutations in descending order, the genotype with
180 copies of m4, the genotype with 179 copies of m4 followed by one copy of m1 and the
genotype with one copy of m1 followed by 179 copies of m4. These cases with 180 mutations
show us that the difference in scale between the unnormalized probabilities can be hundreds
of orders of magnitude. We have chosen to focus on genotypes containing 180 mutations
because the results from the MTM trials, if they are to be believed, suggest that typical
genotypes will contain roughly 160-185 mutations.

Knowing that the force of selection decreases with age tells us that the most likely
genotype with 180 mutations will be the genotype with 180 copies of m4. The unnormalized
probability of that ordered genotype is roughly 7.4 × 1065. Although not quite as likely,
the ordered genotype with 179 copies of m4 followed by a single copy of m1 is also very
likely, with an unnormalized probability of 2.1× 1065. However, by moving the copy of the
mutation m1 to the beginning of the time-ordered genotype, the unnormalized probability
drops drastically to 2.3×10−99. Of course we have chosen to look at these genotypes knowing
that the selective pressure against one is much larger than the selective pressure against the
other. As a result, these are cases in which we already know that the ordered genotype will
be highly likely (or unlikely). The randomly generated genotype with 180 mutations gives us
a better sense of a “typical” ordered genotype drawn according to ν(M), which in this case
and all other cases considered in this work is uniformly distributed across all mutations in
the space. This randomly generated genotype, however, is the least likely ordered genotype
considered in the table. It is significantly less likely than the same genotype in descending
order (P̃ = 6.1 × 10−272, vs 5.2 × 10−94) as well as the randomly generated genotype with
only twelve mutations.

Given that the naive algorithm generates genotypes randomly (in this test it randomly
generates 1000 mutation events, 10000 times), it is entirely reasonable to believe that the
algorithm is simply not generating those few cases that are most likely. The discrepancy



80

Table 3.15: Several ordered genotypes ~g and P̃ (~g) for each.

Genotype P̃ (~g)
() 1

(1) 0.331528

(2) 1.03786

(3) 10.1387

(4) 76.8756

(2, 2, 1, 2, 4, 2, 4, 3, 2, 3, 2, 2) 2.96721e-09

(4, 2, 4, 4, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 2, 4, 4, 1, 3, 4, 4, 3, 2, 2, 3, 3, 2, 3, 1, 4,
4, 4, 3, 4, 4, 2, 1, 1, 1, 4, 3, 3, 4, 4, 4, 3, 2, 1, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 1, 2,
1, 3, 2, 1, 2, 3, 3, 4, 2, 1, 3, 3, 1, 3, 1, 4, 3, 3, 3, 1, 4, 2, 2, 4, 1, 2, 4, 3, 2, 1,
4, 1, 1, 3, 4, 1, 1, 4, 1, 1, 3, 3, 2, 3, 3, 2, 3, 3, 3, 4, 3, 2, 4, 2, 4, 4, 3, 3, 3, 4,
2, 3, 4, 1, 4, 3, 2, 1, 4, 3, 3, 1, 1, 1, 1, 1, 1, 2, 4, 4, 2, 4, 3, 3, 2, 4, 2, 3, 3, 1,
1, 3, 4, 3, 1, 4, 2, 4, 2, 2, 2, 1, 2, 3, 4, 4, 3, 4, 1, 3, 4, 3, 2, 3, 1, 4, 1, 2, 3, 3)

6.12663e-272

(4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

5.22111e-94

(180 copies of m4) 7.42234e+65

(179 copies of m4, m1) 2.05789e+65

(m1, 179 copies of m4) 2.34470e-99
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seen in the MH algorithm output is due to a similar problem. A new genotype is proposed
by selecting the number of copies of each mutation type (from a discrete double exponential
distribution centered on the current number of copies of that mutation) and then randomly
ordering those mutations. Randomly ordering the proposal genotypes appears to be resulting
in a large number of proposed steps that are unlikely, and thus rejected. This is evident by
the extremely low acceptance ratios for the algorithm. In the first trial, the acceptance rate
was about 0.3% and it was even lower (about 0.01%) for the second trial.

A second problem is that the number of copies of each type of mutation is updated in
every proposal and that the distribution from which the number is chosen has the same rate
parameter for all mutation types. Because we expect more copies of mutation m4 than m1

it would make more sense to propose bigger changes in the number of copies of m4 than
in the number of copies of m1. These problems could possibly be alleviated by changing
how the proposed states are chosen. Specifically, updating only one mutation type at a
time (that is, one mutation type per step) would probably increase the acceptance ratio.
Similarly, allowing different rates for the exponential distribution governing the number of
copies of each mutation type would probably also increase the number of proposed genotypes
accepted. These ideas were deemed to have too little virtue to be worth the time needed to
implement them, however, as the overall acceptance rate would probably still be low due to
the fact that some mutations (such as m1, m2, and m3 in this case) may have a very small
presence in the population. Even after tuning the additional parameters needed to ensure
reasonably sized steps for each mutation type, the issue of randomly ordering the proposed
genotypes would remain problematic.

It is worth noting that the discrepancy between the output of the three algorithms when
M consists of four gamma mutations is not a result of the fact that the mutation profiles
changed from point-mass to gamma distributions. To ensure that the discrepancy is due
to having a larger mutation space rather than different mutation profiles, we ran all three
algorithms on a smaller mutation space containing gamma mutations. For this test, the
mutation space had only two types of gamma mutations with the same rate parameter
of 0.05 and shape parameters 1.125 and 2.25. The three algorithms all produce similar
histograms for the total number of mutations (see Figure 3.13).
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Figure 3.10: Gamma mutation profiles for the four gamma mutations case. All four muta-
tions have the same rate parameter of 0.05 but different shape parameters.
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Figure 3.11: Histograms for the four gamma mutations case. Naive algorithm (top), MH
Trial 1 (second row, left), MH Trial 2 (second row, right), MTM Trial 1 (bottom row, left),
MTM Trial 2 (bottom row, right).
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Figure 3.12: Expected population survival for the four gamma mutations case. The plot on
the left shows the expected survival from all five cases considered originally (naive algorithm,
MH and MTM). The plot on the right reproduces only the expected survival from the two
trials of the MTM algorithm.
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Figure 3.13: Histograms for the two gamma mutations case.
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3.3.4 Comments

The ultimate goal of this work is to shed light on the distribution of genotypes under the SEW
model. Specifically, we are interested in applications to senescence, which current research
suggests may be caused by a large number of slightly deleterious mutations. However, before
we move on to consider cases with a large number of possible mutations, it is worthwhile to
spend a moment reflecting on the simple, small mutation space cases considered so far.

In the first place, it is clear that the MH algorithm, implemented as described in §3.2.2,
has an acceptance ratio that is too low to be useful in the larger cases we will consider next.
Similarly, the naive algorithm has also been shown to fail to generate likely genotypes even
in the relatively small case of four possible mutations. While it is the most exact method for
estimating the distribution of genotypes for very small mutation spaces (consisting of only
one or two types of mutations), it will be terribly inefficient and misleading when applied
to larger spaces. As a result, all further tests will rely on the MTM algorithm, which had
acceptance rates of 58% (compared to less than 1% for the MH algorithm) for the case with
four gamma mutations.

In the second place, it is worth mentioning that the number of mutations per genotype
under the SEW model in these small test cases can be very different from the average geno-
type genotype length under the free recombination model. Table 3.16 shows the estimated
mean and variance for the three single point-mass mutation cases discussed in §3.3.1. Com-
paring the mean number of mutations per genotype from Table 3.16 to ρ (the mean number
of mutations under the free recombination model) in Table 3.1, it is clear that there is a
greater accumulation of mutations under the free recombination model than under the SEW
mutation-selection model, which has no recombination. For example, with an age of onset
of 25 and a total mutation rate of 0.3, the average genotype under the free recombination
model will have 12.7 mutations to the 4.7 copies when there is no recombination. Similarly,
when the age of onset of the mutation is 45 and the total mutation rate is 0.02, the typical
genotype under free recombination will have 6 mutations compared to 4.2 copies if there is
no recombination.

Similarly, we can compare the mean number of mutations per genotype under the two
models for the cases with two point-mass mutations, discussed in §3.3.2. Table 3.17 shows
the estimated mean and variance for the total number of mutations in the two point-mass
mutations cases while Table 3.18 show the mean and variance for each type of mutation. In
the case with ages of onset m1 = 20 and m2 = 30, under free recombination, the average
genotype would have 1.57 copies of m1 and 3.9 copies of m2 (see Table 3.6 for ρ for these
cases). With no recombination, a typical genotype has fewer copies of each type of mutation:
1.3 copies of m1 and 2.75 copies of m2. When the ages of onset for the two mutations are
m1 = 20 and m2 = 40, the difference between the mean number of mutations between the
two models is more pronounced. Under the free recombination model, a genotype contains
an average of 0.75 copies of m1 and 7.3 copies of m2. With no recombination, however, a
typical genotype has roughly 0.7 copies of m1 but only 4.17 copies of m2.
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Finally, we wish to emphasize that many of the histograms for the number of mutations
per genotype in the previous sections look approximately Poisson. We can make this state-
ment more concrete by analyzing the differences between the means and the variances for
the various test cases considered so far. Table 3.16 provides the mean and variance in the
number of mutations per genotype for the single point-mass mutation cases and Tables 3.17
and 3.18 provide the means and variances in the two point-mass mutations cases. If the
distribution of genotypes is a Poisson random measure (or can be well approximated by a
Poisson), then the mean number of mutations per genotype should be approximately equal
to the variance in the number of mutations per genotype. For the cases with two mutations,
we should also find that the average number of each type of mutation should be roughly the
same as the variance in the number of that type of mutation per genotype.

To test the difference between the means and variances, we use the Poisson dispersion
test, also called the variance test. Under the null hypothesis that the data Xi come from a
Poisson distribution, the test statistic

D =
∑
i

(Xi − X̄)2

X̄
=

(n− 1)S2

X̄

has a chi-squared distribution with n − 1 degrees of freedom. Table 3.19 show the test
statistics and p-values for the dispersion test applied to each case. For the cases involving
mutation spaces with two mutations, we test the total number of mutations per genotype
and the number for each type of mutation. A small p-value indicates that we reject the null
hypothesis that the data comes from a Poisson distribution. The test statistics and p-values
reported use all the samples collected after the burn-in period even though these samples
are not independent.

With the large number of samples (10,000 samples for the naive algorithm and 100,000
samples for the MH and MTM algorithms) even small differences between the mean and
variance can be statistically significant. However, while the difference between the mean
and variance may be statistically significant, it may not be practically different. Take, for
example, the two point-mass mutations case with ages of onset m1 = 20 and m2 = 30. The
average number of copies of m1 is 1.3 while the variance is about 1.4. For m2, the average
is 2.76 with a variance of 3.2. Because we are interested in demographic outcomes, such
as the expected population survival function and the hazard rate, these differences, while
statistically significant, may not have much impact on the outcomes we wish to measure. If
this observation holds for the larger test cases considered next, it would suggest that although
the distribution of genotypes under the SEW model is not Poisson, it may be approximately
Poisson. Or rather, it may be reasonably approximated by a Poisson in light of demographic
outcomes, such as lifespan.
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Table 3.16: Estimated mean and variance for the number of mutations per genotype in the
single point-mass mutation cases.

Actual Naive Algorithm
Trial Mean Var Mean Var

1 4.77669 6.12061 4.76244 6.09767
2 4.86328 6.26069 4.84358 6.22872
3 4.19290 5.20710 4.15403 5.14815

MH Algorithm MTM Algorithm
Trial Mean Var Mean Var

1 4.79212 6.17943 4.74764 6.18059
2 4.85405 6.14073 4.86386 6.33499
3 4.1665 5.09810 4.16261 5.00479

Table 3.17: Estimated mean and variance for the total number of mutations in the two
point-mass mutations cases.

Naive Algorithm MH Algorithm MTM Algorithm
Trial Mean Var Mean Var Mean Var

4 4.09013 4.85732 4.11066 4.91203 4.0984 4.86112
5 4.86469 5.84422 4.86484 6.04809 4.87237 5.96136

Table 3.18: Estimated mean and variance for the each mutation type in the two point-mass
mutations cases.

Naive Algorithm MH Algorithm MTM Algorithm
Trial MutAge Mean Var Mean Var Mean Var

4 20 1.33538 1.43392 1.31847 1.39301 1.33911 1.40317
4 30 2.75475 3.16186 2.79219 3.24809 2.75929 3.20347
5 20 0.695436 0.723934 0.69868 0.742106 0.69908 0.715327
5 40 4.16925 5.01342 4.16616 5.22987 4.17329 5.15158
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Table 3.19: Poisson dispersion test results for the single point-mass mutation cases (discussed
in §3.3.1) and two point-mass mutations cases (discussed in §3.3.2).

Naive Algorithm MH Algorithm MTM Algorithm
Trial MutAge χ2 p-value χ2 p-value χ2 p-value

1 25 12812 0 128948 0 130181 0
2 35 12872 0 126506 0 130244 0
3 45 12417 0 122358 0 120230 0
4 (20,30) 11874 0 119493 0 118608 0
4 20 10736 1.70e-07 105652 0 104783 0
4 30 11476 0 116326 0 116096 0
5 (20,40) 12012 0 124321 0 122349 0
5 20 10408 2.09e-03 106214 0 102323 1.24e-07
5 40 12023 0 125530 0 123440 0
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Chapter 4

Large Mutation Spaces

The purpose of this chapter is twofold. First, we wish to characterize the distribution of
genotypes under the SEW model in cases with a large numbers of mutations. In particular, we
want to determine how similar or dissimilar this distribution is to a Poisson random measure
and whether a Poisson approximation can be used in estimating demographic outcomes such
as expected survival and population hazard rates. Second, we will explore how similar the
distribution of genotypes and demographic outcomes are under the SEW mutation-selection
and ESW free recombination models. To this end, we begin by considering large spaces of
mutations with gamma profiles.

4.1 Mutations with Gamma Profiles

Each mutation in the space M has the same rate parameter of 0.05 but different shape
parameters. In the cases considered below, the shape parameters range from 1.0 to ξ,
where ξ is between 5 and 7. In all of these cases the mutation space is composed of 1000
mutations with equally-spaced shape parameters. These parameters were chosen in line with
tests from [37], which discusses the behavior of the free recombination model with gamma
mutations.

Table 4.1 lists the parameters used in four cases involving gamma mutations. The back-
ground hazard rate, λ, and the mutation effect size, η, are the same for all four cases and
were set to biologically reasonable values. The fertility rate, fx, is assumed to be constant
from the age of maturity, α = 15 years, to the oldest age of reproduction, β = 50 years. This
rate was determined using the shortcut algorithm for the free recombination model applied
to the same mutation space and with the same background hazard rate and mutation rate.
The number of iterations before convergence of the shortcut algorithm and the resulting
fertility rates for the four cases are shown in Table 4.2.

As we mentioned in the previous chapter, the fertility rate is tuned at each iteration
of the shortcut algorithm to ensure that the net reproduction ratio (NRR) is equal to one.
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Using the fertility rate from the free recombination model does not, however, ensure that
the net reproduction ratio will be equal to one under the SEW mutation-selection model.
The expected survival function under the mutation-selection model is estimated by averaging
over the survival function for each sampled genotype obtained by the MTM algorithm. To
ensure that the NRR is equal to one, we would need to rescale the fertility by the factor
1/NRR. The approximation to the NRR for the four cases under the SEW model are shown
in Table 4.3. In all four cases the NRR is close to 1.0, with the smallest NRR of 0.978
belonging to Case 3 and the largest NRR of 1.06 belonging to Case 2. This indicates that
the fertility rate for the free recombination model with the same parameters and mutation
space is quite similar to the fertility rate necessary to ensure a stationary population under
the SEW model.

Three of the four cases use the same value for DelP, the probability of deleting a cho-
sen mutation from the current genotype (see §3.2.3 for details regarding the multiple-try
Metropolis algorithm). The choice of DelP does have an effect on how quickly the chain
traverses the space of possible genotypes. For example, we must have DelP > 0; otherwise,
the proposed genotype could never contain fewer mutations than the current genotype and
the associated Markov chain would not be reversible. With a very small value for DelP,
DelP ≈ 0, the proposed genotypes would almost always have at least as many mutations as
the current genotype. In this case, it could be possible for the chain to become trapped in
extremely low-probability genotypes containing a large number of mutations. On the other
end of the spectrum, when the deletion probability is one, the proposed genotype will contain
exactly one more or one fewer mutation than the current genotype; the algorithm will never
propose a genotype that has the same number of mutations. This means that for the chain
to move from the genotype g = m1 to the genotype g = m2 the chain must take at least two
steps. For example, the chain could move from m1 → ()→ m2 (where () represents the null
or wild-type genotype). Alternatively, the chain could move from m1 → m1 +m2 → m2.

The values for DelP used in all of the large mutation space experiments presented here
are 0.375 and 0.5. These values were chosen because they produced reasonable acceptance
ratios, 30% to 38%, for Case 4, in which ξ = 5. Eight independent chains were started
in the null state (a wild-type genotype) using different values for DelP (0.125, 0.25, 0.375,
0.5, 0.625, 0.75, 0.875 and 1.0). All eight chains produced similar histograms for the total
number of mutations, as well as similar estimates for the average number of mutations per
genotype. These plots are included in Appendix B. Smaller values for DelP produced higher
acceptance rates than values near 1.0. Notice that theses values for the deletion probability
are much lower than those used in the test cases with four or fewer mutations. The low
number of mutation types (as well as the generally small number of mutations in a typical
genotype) in those test cases suggested that adding and deleting mutations in a genotype
would allow the chain to traverse the space faster than changing the mutation type. In cases
with very large mutation spaces (and large numbers of mutations in a typical genotype),
there are many more possible genotypes with the same total number of mutations. This
makes changing mutation types very appealing. As a result, for large mutation spaces, it is
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necessary to choose a value for DelP that balances exploration of genotypes with the same
total number of mutations against moving to genotypes with a different total number of
mutations.

The acceptance ratios for the MTM runs are also provided in Table 4.3. The rate of
acceptance varies among the four cases with a low of 34% for Case 3 and a high of 44%
for Case 1. In collecting samples for the four cases, each chain was started in the state
representing the null genotype. The chains in the four cases were run for a different number
of steps before collecting the samples. This is due to the fact that some of the chains appeared
to converge to the genotype distribution more quickly than other chains. In particular, the
cases with larger shape parameters (such as Case 3, where ξ = 7) appeared to require longer
burn-in periods and more samples overall than the cases with smaller shape parameters. A
discussion of the MCMC convergence diagnostics applied to the data for these four cases can
be found in Appendix A.1.

Table 4.1: Parameters for the test cases with 1000 gamma mutations with shape parameters
from 1.0 to ξ (inclusive).

All Tests η λ α β Dx Gamma rate
0.1 0.05 15 50 0.5 0.05

MTM Case ξ ν(M) Burn Samples DelP Kmax
1 6 0.15 150000 1000000 0.375 5
2 5.5 0.17 150000 750000 0.375 5
3 7 0.12 250000 2250000 0.5 5
4 5 0.12 150000 550000 0.375 5

Table 4.2: Output from shortcut algorithm for the free recombination model. The four test
cases considered have mutation spaces with 1000 gamma mutations with shape parameters
from 1.0 to ξ (inclusive).

Case ξ Fertility Iterations
1 6 0.07330193 25
2 5.5 0.07537674 26
3 7 0.07036571 25
4 5 0.069345238 13

Figure 4.1 shows the histograms for the total number of mutations per genotype for
the four cases. The histogram corresponding to Case 4 is the most symmetric of the four
histograms. Case 4 has both the smallest mutation rate and the shortest interval of shape
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Table 4.3: Output from the MTM algorithm for the SEW model under test cases with 1000
gamma mutations with shape parameters from 1.0 to ξ (inclusive).

Case ξ Acceptance Rate NRR
1 6.0 0.442601 1.01993
2 5.5 0.398316 1.06021
3 7.0 0.3438732 0.978127
4 5.0 0.382936 1.02591

parameters for the four test cases, with shape parameters ranging from 1.0 to 5.0. Because
shape parameters near 1.0 correspond to mutations that have larger early-age effects and
because the strength of selection decreases with age, we expect more of the mutations in Case
4 to face heavy selection. In the other cases considered here, the shape parameters have a
larger range, meaning that a larger proportion of the possible mutations have small early-age
effects and face less selective pressure. Case 4 also has the lowest number of mutations in
a typical genotype. This is due both to the low mutation rate and the fact that it has the
highest proportion of mutations with large early-age effects on the cumulative hazard. For
example, from Table 4.4 we see that less than 1/3 of the mutations in an “average” genotype
for Case 4 have shape parameters in the range 1.0 to 4.0.

Case 2 provides a nice comparison to Case 4 because the range of shape parameters in
Case 2, 1.0 to 5.5, is similar to the range in Case 4. However, while these cases have similar
shape parameter ranges, the overall mutation rate for Case 4 is much smaller than it is for
Case 2: 0.12 for Case 4 whereas it is 0.17 for Case 2. Although the histogram for Case 2 is
generally symmetric, it is less symmetric than the histogram for Case 4. Common genotypes
under Case 2 also have substantially more mutations, from 100 to 180, than do common
genotypes under Case 4, which contain 40 to 90 mutations.

Cases 1 and 3 have the largest range of shape parameters. They also have the least
symmetric histograms for the total number of mutations. However, although the histograms
in Cases 1 and 3 are not as symmetric as those for Cases 2 and 4, they are approximately
symmetric. Genotypes in these cases also contain more mutations than in Cases 2 and 4.
For example, common genotypes in Case 3 contain roughly 250 to 450 mutations. For Case
1, common genotypes contain 140 to 220 mutations. Although the number of mutations
per genotype in Case 1 is similar to the number of mutations per genotype in Case 2, it is
important to remember that the mutation rate in Case 1 is lower than the mutation rate in
Case 2. That means that there are more mutations being introduced into the population in
Case 2 than in Case 1. However, because the shape parameter range in Case 2 is smaller
than in Case 1, more of the possible mutations in Case 2 face higher selective pressure than
do mutations in Case 1. This results in a smaller number of mutations per genotype for Case
2, even though it has a higher mutation rate.
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Figure 4.1: Histograms for the total number of mutations per genotype for the four cases
with gamma mutations with shape parameters from 1.0 to ξ.
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4.1.1 Similarity to a Poisson Random Measure

In addition to producing the most symmetric histogram of the four cases, Case 4 may also
be the most similar to a Poisson random measure. For example, consider Table 4.4, which
lists the mean and variance in the total number of mutations per genotype for each of the
four cases. We note that the mean and variance in the total number of mutations per
genotype are not that close; the variance in the total number of mutations per genotype is
70.4, which is about 14% higher than the mean of 61.8. However, when we compare the
means and variances in the number of mutations with shape parameters in a smaller range,
say 1.5 < m ≤ 2.0 or 3.5 < m ≤ 4.0, we see that the difference is much smaller. However,
in only one of the seven subintervals listed, does the marginal mean and variance actually
pass the dispersion test. This means that, in general, the difference between the mean and
the variance cannot be explained by chance.

Although the difference between the mean and variance in each subinterval of shape
parameters is statistically significant, the actual difference tends to be quite small. In all
but the last interval, where the shape parameters range from 4.5 to 5.0, the variance is
within about 3% of the mean and in many of these subintervals it is within 1%. The
generally close agreement between the average and the variance in the number of mutations
within a subinterval of shape parameters is most evident when considering the dispersion
statistics (listed in the χ2 column) and their associated p-values. Because there are the
same number of observations in each shape interval within a given case, we can directly
compare the dispersion statistics and the p-values for different shape intervals within a given
case. Looking at Case 4, we find the smallest p-value is associated with the largest shape
parameters, 4.5 < m ≤ 5.0. The table suggests that, for Case 4 at least, the number
of mutations per genotype may be approximately Poisson distributed within small shape
parameter intervals and that this approximation is best when the shape parameters are
less than 4.5. The distribution of the number of mutations seems less similar to a Poisson
distribution when the shape parameters are above 4.5.

The trend where the mean and variance are most similar for small shape parameters
is not readily apparent in the other cases. Consider, for example, Case 2. The closest
agreement between the mean and the variance is in the subinterval of shape parameters with
4.5 < m ≤ 5.0, where the observed difference is not statistically significant. In all other
subintervals, the difference is statistically significant, with p-values that are essentially 0.
Furthermore, in almost every subinterval (excepting 1.0 ≤ m ≤ 1.5 and 4.5 < m ≤ 5.0),
the variance is 12-20% higher than the mean in that interval. Similarly, for Case 1, the
variances are almost all within 5-15% of the mean, with no clear pattern. However, while
it is not obvious from the p-values, we do find the same pattern in Case 3. That is, the
variance appears to be closer to the mean (relative to the size of the mean) for smaller shape
parameters than for larger shape parameters. For the subintervals with shape parameters
larger than 5.0, the variance is 17-40% larger than the mean, whereas it is within about 6%
for subintervals with smaller shape parameters.
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The sometimes large difference observed between the mean and variance in the subinter-
vals of shape parameters presented in Table 4.4 could be due to the difficulty of sampling
from the genotype distribution under the SEW model. Although several diagnostic criteria
were applied to each case (see Appendix A.1 for details), it is possible that even the large
number of steps used to generate these data is inadequate to sufficiently explore the space
of possible genotypes when there are so many different types of mutations. However, when
we compare the data in Table 4.4 to means and variances estimated using fewer samples,
we find that although the means and variances are different, the differences are generally
small. An example is included in Appendix A.1. This suggests that more samples would not
substantially change the conclusions that we will draw from the data presented here.

As noted previously, the distribution of the number of mutations per genotype may
be approximately Poisson even though it is not actually Poisson. Indeed, the similarity
between the means and the variances in the subintervals considered above suggest that a
Poisson approximation may be reasonable. In order to get a better sense of how similar
to a Poisson random measure the genotype distribution is under the SEW model, we turn
to a finer partition of the mutation space. Rather than looking at intervals of mutation
types, we now look at each mutation individually. If the distribution of genotypes were in
fact a Poisson random measure, then the number of copies of two different mutations, say
m1 and m2, would be independent and Poisson distributed with means ρ(m1) and ρ(m2),
respectively. Furthermore, the number of copies of m1 or m2 would be Poisson distributed
with mean ρ(m1) + ρ(m2). As a result, we can compare the sum of the marginal variances
(the variance in the number of copies of mi for each i) to the variance in the cumulative sum
of the mutations. That is, we compare the sum of the variances,

SVk =
k∑
i=1

Var(number of copies of mi)

to the cumulative variance,

CVk = Var(number of mutations m ∈ {m1, . . .mk}).
For a Poisson random measure, of course, these two numbers should be the same.

Figures 4.2 and 4.3 show the sum of the variances, the cumulative variance and the
cumulative sum of the means for each of the four cases. As expected from the data provided
in the table, the sum of the marginal variances is very similar to the sum of the marginal
means. The cumulative variance, however, is quite different from the sum of the variances,
particularly for large shape parameters. The difference between the cumulative variance
and the sum of the variances indicates that there are large correlations between the number
of different mutation types. This observation is not terribly surprising because the SEW
mutation-selection model does not include genetic recombination, which breaks statistical
dependencies between loci in the genome. As expected, the cumulative variance and the sum
of the variances are closest in Case 4. In that case, the cumulative variance is quite close
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to the sum of the variances until around m = 4.5, at which point the cumulative variance
increases more rapidly than the sum of the variances.

Figure 4.2: The plots on the left show the sum of the variances, the cumulative variance and
the cumulative mean for Case 1 (top row) and Case 2 (bottom row). The plots on the right
show the difference in the variances for Case 1 (top row) and Case 2 (bottom row).
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Figure 4.3: The plots on the left show the sum of the variances, the cumulative variance and
the cumulative mean for Case 3 (top row) and Case 4 (bottom row). The plots on the right
show the difference in the variances for Case 3 (top row) and Case 4 (bottom row).
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4.1.2 Approximations using a Poisson Random Measure

The data provided in Table 4.4 suggest that while the distribution of mutations is not a
Poisson random measure, it may be possible to approximate it by a Poisson random measure.
To this end we estimated the average number of each type of mutation per genotype for the
four gamma cases. Figure 4.4 shows the marginal mean number of mutations per genotype
for Case 1 (top row) and Case 2 (bottom row), while Figure 4.5 shows the marginal mean
number of mutations for Case 3 (top row) and Case 4 (bottom row). The intensity measure ρ,
which corresponds to the mean number of each type of mutation under the free recombination
model, is also shown for each case.

The most striking element of these plots is that the marginal means data in all four
cases appear to be approximately exponential in shape parameter. The appearance of this
exponential behavior under the SEW model is of interest because it also appears in the free
recombination model for large mutation spaces where mutations have gamma profiles. This
behavior was first noted by Wachter, Steinsaltz and Evans in [37]. We present exponential
approximations to ρ for the four gamma cases in Appendix C.

Because all four of the large gamma cases show a clear, exponential pattern in the
marginal means plot, the means were fitted with an exponential curve using the python
package scikits.statsmodels. The model

log(Marginal Mean) = α Shape Parameter + β

was fitted using OLS. Table 4.5 shows the resulting parameters.
In the four gamma cases considered, all of the 1000 possible mutations had non-zero

means, as shown in Table 4.5 in the “Number of observations” column. The fitted values
of α range from 0.881 to 1.18, with larger values of α corresponding to smaller values of ξ.
Similarly, the fitted values of β range from -5.53 to -7.17, with -7.17 corresponding to the
smallest value of ξ, ξ = 5, and -5.53 corresponding to the largest, ξ = 7.0. The exponential
approximations are overlaid (dotted line) on the marginal means data in Figures 4.4 and
4.5. The exponential fit appears to be best in Cases 2 and 4, which are the cases with the
shortest ranges for mutation shape parameters. In Cases 1 and 3, the approximation is good
for small shape parameters but overestimates the mean for large shape parameters. In Case
1, the approximation is too high for m > 5.5, whereas in Case 3, it is too high for m > 6.5.

Because of the strong exponential pattern and the vaguely Poisson behavior observed
in the marginal distributions, it is natural to estimate the expected population survival
function and the expected population hazard rate under the SEW model by assuming that the
resulting distribution is a Poisson random measure whose intensity function is the exponential
curve fitted to the marginal means data. Figure 4.6 shows the expected population survival
function calculated directly from the samples as well as the Poisson approximation. In
general there is a close agreement between the population survival function estimated from
the MTM samples and from the Poisson approximation. Table 4.6 shows the ages associated
with various survival probabilities computed from the expected population survival function.
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The survival function estimated directly from the MTM samples (labeled “Empirical” in the
table) and the survival function from the Poisson approximation (labeled “Approx.” in the
table) produce very similar results. For example, in Case 1, the survival probability 0.5
corresponds to the age 27.0 under both the empirically determined survival function and the
Poisson approximation. That means that a randomly chosen individual in the population has
a 50% chance of surviving to age 27. Of the probabilities listed in the table, the empirically
determined survival function and the Poisson approximation differ by at most half a year.
For a different view of the similarity between the empirical survival function and the Poisson
approximation, consider Table 4.7, which shows the L2 distance and the L∞ distance between
these survival functions for Cases 1–4. In all four cases, the L2 norm of the difference in
survival functions is around 0.006. The L∞ distance ranges from 0.0012 to 0.0017 for the
four cases.

Table 4.5: Coefficients from using scikits.statsmodels.OLS to fit the model log(Marginal
Means) = α Shape Parameter + β.

Case ξ Number of observations Coefficients
1 6.0 1000 α 0.940180

β -5.85360
2 5.5 1000 α 1.10918

β -6.48347
3 7.0 1000 α 0.880654

β -5.52569
4 5.0 1000 α 1.18243

β -7.17319

The expected population hazard functions for the four cases are shown in Figure 4.7.
Recall that the hazard function is the negative rate of change of the log survival function. As
expected from the close agreement between the empirical survival function and the survival
function using a Poisson approximation, the hazard functions are also in close agreement.
In most of the cases, the biggest difference between the empirical hazard function and the
Poisson approximation occur at very late ages. The population hazard function under the
free recombination model is also shown. In all four cases, the three hazard rates are similar
for ages near the age of maturity (age 15) and become more dissimilar at later ages. In
particular, the hazard rates under the free recombination model are much higher than the
hazard rates under the SEW model. The hazard rates under the two models are most similar
in Case 4.

Figure 4.6 shows, and Table 4.7 confirms, that a Poisson approximation to the distribution
of genotypes under the SEW model can be used in these cases when the outcome that we
wish to estimate is the expected population survival function. The approximation is quite
good even in Cases 1 and 3, where the exponential approximation overestimated the average
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Figure 4.4: The figures on the left show the intensity measure ρ under the free recombina-
tion model for Case 1 (top row) and Case 2 (bottom row). The figures on the right show
the empirical mean number of mutations, as well as the exponential approximation to the
marginal means data, for Case 1 (top row) and Case 2 (bottom row).
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Figure 4.5: The figures on the left show the intensity measure ρ under the free recombina-
tion model for Case 3 (top row) and Case 4 (bottom row). The figures on the right show
the empirical mean number of mutations, as well as the exponential approximation to the
marginal means data, for Case 3 (top row) and Case 4 (bottom row).
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Table 4.6: Survival probabilities computed from the expected population survival functions
from the samples obtained by the MTM algorithm (“Empirical”), the Poisson approximation
with the exponential function fit to the marginal means in place of the intensity function
(“Approx.”), and free recombination model (“ESW”).

Case 1 Case 2
Survival Probability Empirical Approx. ESW Empirical Approx. ESW

0.5 27.0 27.0 27.0 27.0 27.0 27.0
0.4 30.0 30.0 30.5 30.5 30.5 30.0
0.3 34.0 34.0 34.0 34.5 34.5 33.0
0.2 39.0 39.0 38.0 39.0 39.0 37.0
0.1 46.0 46.0 43.5 46.0 46.0 42.5
0.05 52.0 52.0 48.0 52.0 52.0 47.0
0.01 63.5 63.5 55.5 64.0 64.0 55.5
0.005 67.5 68.0 58.0 68.0 68.5 58.5
0.001 77.0 77.0 63.5 78.0 78.0 64.5

Case 3 Case 4
Survival Probability Empirical Approx. ESW Empirical Approx. ESW

0.5 27.0 27.0 28.0 27.5 27.5 27.5
0.4 30.0 30.0 31.0 31.0 31.5 31.0
0.3 34.0 34.0 35.0 35.5 35.5 35.0
0.2 39.0 39.0 39.0 41.0 41.0 40.0
0.1 46.0 46.0 44.5 49.0 49.5 47.5
0.05 51.5 51.5 49.0 56.5 57.0 54.0
0.01 62.0 62.0 55.5 72.0 72.5 67.0
0.005 65.5 66.0 57.5 78.5 79.0 72.0
0.001 73.5 73.5 62.0 93.5 94.0 84.0

Table 4.7: Distance between the expected population survival function estimated directly
from the MTM samples and from the Poisson approximation.

Case || · ||2 || · ||∞
1 0.00649023 0.00147418
2 0.00659143 0.00168235
3 0.00533242 0.00127027
4 0.00698008 0.00135615
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number of mutations with large shape parameters. To understand why this is the case, it
helps to recall that when the distribution of genotypes is a Poisson random measure, the
expected population survival function can be computed by

E[lx(G)] = lx(0) exp

(
−
∫
M

(
1− e−η(m′)κ(m′,x)

)
ρ(m′)dm′

)
.

Using the MTM algorithm, we assume that the chain has run for long enough to forget its
initial state and that the resulting samples are taken from the true distribution of genotypes.
When estimating the expected population survival function from the MTM samples directly,
we use

E[lx(G)] ≈ 1

sample size

∑
g

lx(0) exp

(
−
∑
m∈g

η(m)κ(m,x)

)
,

where the sum is over the genotypes contained in the sample.
For mutations with large shape parameters, the mutation profile κ(m,x) is small over the

ages of fertility. For example, consider a gamma mutation with shape parameter 6.0. This
mutation profile was plotted against age in Figure 3.10. Over the ages of fertility, ages 15
to 50, a single copy of this mutation increases the cumulative hazard by at most 0.00913η.
Using η = 0.1 (which we used in all the large gamma mutations cases presented here), a
single additional copy of this mutation decreases survival by at most 9.129e-04 over the ages
of fertility. Using a Poisson approximation to the distribution of genotypes and assuming
that ρ(m = 6.0) = 0.8, a value chosen to be in line with the empirically determined mean
number of copies of this mutation for Cases 1 and 3, we find that this mutation decreases
expected survival by at most 7.300e-04 over the ages of fertility. If we increase ρ(m = 6.0) to
1.0, simulating the overestimate of the empirical mean when using an exponential function,
the expected population survival decreases by at most 9.125e-04 due to the presence of this
mutation in the genome.
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Figure 4.6: Expected population survival functions for the 1000 gamma mutations cases.
Each plot shows the expected survival function under the SEW model estimated from the
MTM samples and the Poisson approximation, as well as the survival function under the
free recombination model.
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Figure 4.7: Expected hazard function for the 1000 gamma mutations cases. Each plot shows
the expected hazard rate estimated from the MTM samples and the Poisson approximation,
as well as the hazard rate under the free recombination model.
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4.1.3 Similarity to the Free Recombination Model

It is interesting that the distribution of genotypes under the mutation-selection (no recom-
bination) model and the free recombination model in the large gamma mutations cases de-
scribed above exhibit an approximately exponential relationship between the gamma shape
parameter for each mutation and the mean number of copies of each mutation. However, the
intensity under the free recombination model is larger, overall, than the marginal means un-
der the SEW model. This indicates that there are more mutations per genotype, on average,
when there is free recombination than when there is no recombination.

Consider, for example, Case 1. Under free recombination, the average genotype con-
tains 523.7 mutations, as opposed to 166.3 mutations with no recombination. For small
shape parameters, the free recombination model actually has slightly fewer copies of these
mutations on average than the no recombination model. For example, under the free recom-
bination model, a typical genotype has roughly 0.57 mutations with shape parameters in
1.0 ≤ m ≤ 1.5, 1.0 mutations in 1.5 < m ≤ 2.0, 1.84 mutations in 2.0 < m ≤ 2.5 and 3.48
mutations in 2.5 < m ≤ 3.0. Compare these to the average number of copies of mutations
under the SEW model, found in Table 4.4. For large shape parameters, say m > 4.5, the
average free recombination model genotype has at least twice as many mutations in a given
interval as the average genotype under the mutation-selection model. For example, under
the free recombination model, there are roughly 58.72 mutations with shape parameters in
4.5 < m ≤ 5.0, whereas there are 27.08 copies in under the SEW model; there are 127.26
copies of mutations in 5.0 < m ≤ 5.5 in the free recombination model genotype but only
41.34 under the SEW model; there are 282.74 copies of mutations in 5.5 < m ≤ 6.0 in the
free recombination genotype but only 55.60 in the SEW genotype.

Similarly, in Case 3, the average genotype under the free recombination model has fewer
mutations for m ≤ 4.0 than the average genotype under the SEW model. In fact, the average
free recombination genotype can have as many as 60% fewer mutations in a given subinterval
for shape parameters near 1.0. For large shape parameters, m > 5.0, the free recombination
genotype has at least twice as many mutations in the subintervals considered as the average
genotype under the SEW model. The average number of mutations per genotype under
the free recombination model is also much larger than the average for the no recombination
model, with 1584.9 mutations under the free recombination model and 346.8 mutations under
the SEW model. Of the four cases considered here, the outcomes for the two models in this
case are the least similar.

In Cases 2 and 4, on the other hand, the average genotype under the free recombination
model has more mutations in nearly every subinterval considered. The average number of
mutations under the two models is fairly similar for small shape parameters, with the average
mutation number under the free recombination model at most 20% higher than the SEW
model mutation average for m ≤ 2.5. However, the differences can be quite large for large
shape parameters. For Case 2, the free recombination genotype contains twice as many
mutations, on average, with shape parameters in the range 4.5 < m ≤ 5.5 as the average
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genotype under the SEW model. The average number of mutations in the subintervals
considered were most similar between the two models for Case 4. In Case 4, the average
genotype for the free recombination model contained, at most, 55% more mutations in a given
shape interval than is present in the average genotype under the SEW model. In addition,
the average number of mutations per genotype in the two models was also most similar in
Case 4. Under the free recombination model, the average genotype contains 88.92 mutations
whereas it has only 61.77 mutations under the SEW model. As previously mentioned, the
mutation spaces in Cases 2 and 4 also have the shortest ranges of shape parameters, with
shape parameters ranging from 1.0 to 5.0 (in Case 4) and from 1.0 to 5.5 (in Case 2). Cases
1 and 3, having larger ranges of shape parameters, also have the smallest proportion of
mutations with large early-age effects. For example, in Case 1, there are 100 mutation types
with shape parameters in the range 1.0 ≤ m ≤ 1.5, whereas in Case 3 there are only 84.

The average genotype under the free recombination model, having more mutations than
the corresponding genotype under the SEW model, produces an expected population survival
function that decreases to zero more rapidly than the expected population survival function
with no recombination (see Figure 4.6). With similar number of mutations with small shape
parameters under the two models, the difference is largely due to the fact that under the free
recombination model, genotypes contain many more mutations, on average, with large shape
parameters than do genotypes under the no recombination model. The difference between
the expected population survival function is most similar in Case 4, as measured by the L2

and L∞ distances between the functions in this case, see Table 4.8.

Table 4.8: Distance between the expected population survival functions under the SEW
model and the free recombination model.

Case || · ||2 || · ||∞
1 0.126034 0.0308901
2 0.184985 0.0427490
3 0.123913 0.0276150
4 0.0936692 0.0186994

The similarity between the expected population survival functions under the two mod-
els is important for constraining more realistic models of recombination. The two models
considered in this work represent extremes in modeling recombination. In the free recom-
bination model, recombination happens continuously, so that a genotype is composed of
mutations drawn in proportion to their frequency in the population. The SEW mutation-
selection model, by contrast, has no recombination. Under the SEW model, the genotype
of an individual is the same as the genotype of the parent excepting perhaps an additional
mutation. Mutations under this model simply accumulate along lineages with no way of
shedding mutations from genotypes over time. This model may be useful when considering
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mitochondrial DNA in humans. However, in much of our DNA, we experience both mutation
and recombination, albiet at slower scales than modeled here. As a result, a more realistic
model of recombination can be nicely sandwiched between these two extremes.

From the perspective of more realistically modeling recombination in human populations,
it is important to note that both models produce similar average numbers of mutations for
mutations with large early-age effects. This results in a fairly close agreement between
the expected population survival functions for the two models for early-reproductive ages,
approximately ages 15 to 40. For later ages, over age 40, the free recombination model
produces a lower survival rate than the SEW model. The similarity in the models for younger
ages is even more apparent when considering the population hazard rates (see Figure 4.7).
The two models produce fairly similar hazard rates for young ages, roughly ages 15 to 30 or
35, before the hazards diverge. The free recombination model, producing genotypes with a
larger number of mutations, on average, than the SEW model, also has much higher hazard
rates for later ages. In particular, the hazard rates for the two models generally experience
their greatest difference between ages 75 and 120.

4.1.4 Additional Gamma Cases

In the four large gamma mutations cases considered so far, the distribution of genotypes
appears to be approximately Poisson distributed. However, all four of these cases involve
mutation spaces with both early mean-age effects and late mean-age effects. One may
reasonably ask if these results hold when the mutation space consists of only those mutations
with late mean-age effects or only those mutations with early mean-age effects. We shall
briefly consider both cases in this section.

As with the previous four cases, the mutation spaces in the following two cases each
contain 1000 gamma mutations with the rate parameter 0.05. Both cases have the same
overall mutation rate of 0.12. In Case 5, shape parameters range from 3.5 to 7.0, representing
a space in which all mutations are primarily late-acting. Case 6 represents the scenario in
which all mutations are primarily early-acting, with shape parameters ranging from 1.0 to
3.5. Recalling that the mean for a gamma distribution is the shape parameter divided by the
rate parameter, we see that the mutations in Case 5 have mean-age effects in the range of
70 years to 140 years, while the mutations in Case 6 have mean-age effects ranging from 20
years to 70 years. The other parameters for these cases, such as background hazard rate and
mutation effect size, are the same as in the previous four cases and are listed in Table 4.9.
The fertility rate was set to the fertility rate needed to ensure a stationary population under
the free recombination model on the same mutation space with the same parameters, see
Table 4.10.

As one would expect, the histograms for the number of mutations per genotype in these
two cases, shown in Figure 4.8, are quite different. Because the mean-age effects for mutations
in Case 5 occur significantly after the latest age of reproduction, here set to 50 years, the
selective pressure against such mutations is quite low. The incredibly low level of selective
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Table 4.9: Parameters for additional gamma test cases.

All Tests η λ α β Dx Gamma rate Kmax
0.1 0.05 15 50 0.5 0.05 5

MTM Case ν(M) Burn Samples DelP ξ0 ξ1

5 0.12 300000 1150000 0.5 3.5 7.0
6 0.12 100000 400000 0.5 1 3.5

Table 4.10: Output from shortcut algorithm for the free recombination model. The test case
considered have mutation spaces with 1000 gamma profile mutations.

Case ξ0 ξ1 Fertility Iterations
5 3.5 7.0 0.074995506 96
6 1.0 3.5 0.06888683 9

pressure allows many copies of these mutations to build in the genome over evolutionary
time. As a result, typical genotypes in Case 5 contain many more mutations than in any case
considered so far (see Figure 4.8, left). Specifically, typical genotypes under the mutation-
selection model in Case 5 generally contain 750 to 950 mutations, with an average of 847
mutations (see Table 4.12 for the mean and the variance in the number of mutations per
genotype). By contrast, three-fifths of all the mutations in the Case 6 mutation space have
mean-age effects during reproductive years. As a result, the selective pressure against most of
the mutations in Case 6 is quite high, leading to genotypes with many fewer mutations. The
histogram of the number of mutations per genotype for Case 6, Figure 4.8, right, shows that
genotypes typically have been 5 and 30 mutations, with an average of about 14 mutations.
The number of mutations per genotype in Case 6 is much lower than in the other four large
gamma mutations cases considered previously. These two additional gamma test cases, then,
provide a nice bookend to the cases considered in the previous section.

Table 4.11: Output from the MTM algorithm for the SEW model under test cases with 1000
gamma profile mutations.

Case ξ0 ξ1 Acceptance Rate NRR
5 3.5 7.0 0.343654 1.12458
6 1.0 3.5 0.318394 1.01730
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Figure 4.8: Histograms for the total number of mutations per genotype for the additional
test cases with gamma mutations.

Poisson Approximation

Although Cases 5 and 6 represent extremes among the large gamma mutations cases, with
a large number of mutations in typical genotypes in Case 5 and a fairly small number of
mutations per genotype in Case 6, we find the histograms for the number of mutations per
genotype are reasonably symmetric in both cases, suggesting that they may be approximately
Poisson distributed. As with the previous four large gamma mutations cases, we compare
the mean number of mutations to the variance in the number of mutations per genotype for
both cases using the Poisson dispersion test. Unsurprisingly, we find that the differences are
all statistically significant, indicating that chance cannot explain the observed differences
between the means and the variances. However, we also find that the differences, while
significant, are generally small. That the second case (Case 6) would produce a symmetric
histogram and have means and variances that are generally similar is not that surprising.
The large early and mid-range age effects guarantee that selection will be high, which is
similar to Case 4.

However, the observation that the means and the variances are similar in these two cases
with extreme gamma mutation spaces suggests a more general result. The previous four
examples suggested that a Poisson approximation may be reasonable in cases with realistic
mutation rates, demographic selective cost functions and where the mutation spaces have the
following characteristics: the mutation space is large; the mutation profiles are smooth and
non-zero for all adult ages; and the mutation space contains mutations with early mean-age,
middle mean-age, and late mean-age effects. The results from Cases 5 and 6 suggest that a
Poisson approximation may also be reasonable in cases where all mutations have generally
late or very late mean-age effects (such as the mutation space in Case 5) and in cases where
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all mutations have early to middle mean-age effects (such as the mutation space in Case 6).

Table 4.12: Estimated means and variances for Cases 5 and 6. The marginal means and
variances correspond to the number of mutations per genotype with shape parameters (m)
in the given intervals.

Case 5
Mean Variance χ2 p-value

3.5 ≤ m ≤ 7.0 847.346 1360.42 1846334 0

3.5 ≤ m ≤ 4.0 12.2210 14.2776 1343520 0
4.0 ≤ m ≤ 4.5 23.1624 22.2137 1102897 5.58e-218
4.5 ≤ m ≤ 5.0 41.8042 44.9539 1236643 0
5.0 ≤ m ≤ 5.5 74.7267 73.9202 1137587 1.07e-016
5.5 ≤ m ≤ 6.0 132.987 138.757 1199897 3.99e-231
6.0 ≤ m ≤ 6.5 225.032 288.289 1473264 0
6.5 ≤ m ≤ 7.0 337.412 387.746 1321554 0

Case 6
Mean Variance χ2 p-value

1.0 ≤ m ≤ 3.5 14.4236 16.0241 444386 0

1.0 ≤ m ≤ 1.5 0.76413 0.755297 395375 1.06e-7
1.5 < m ≤ 2.0 1.29440 1.31930 407693 6.22e-18
2.0 < m ≤ 2.5 2.13082 2.27458 426985 8.18e-192
2.5 < m ≤ 3.0 3.68605 3.75472 407451 6.12e-17
3.0 < m ≤ 3.5 6.54823 6.59680 402966 4.67e-4

Figure 4.9, which shows the cumulative variance (the variance in the number of muta-
tions with shape parameters in ξ0 to k, where k ∈ [ξ0, ξ1]) and the sum of the variances (the
cumulative sum of the marginal variances). In general, the cumulative variance is approxi-
mately the same as the sum of the variances for smaller shape parameters, but can be much
larger than the sum of the variances for higher shape parameters. The difference appears to
be much smaller in Case 6 than in Case 5. This result is not surprising when we recall the
close agreement between the sum of the variances and the cumulative variance in Case 4,
which has the same mutation rate but a shorter range of shape parameters.

To determine how well the distribution of genotypes is approximated by a Poisson, we
turn our attention to the empirical mean number of each mutation type for the two cases,
shown in Figure 4.10. We have included the intensity measure ρ under the free recombination
for comparision. The first thing to notice is that the intensity function in both cases is
still approximately exponentially distributed, as are the marginal means data. As with
the previous cases, we fitted the marginal means data to an exponential function. The
fitted coefficients are listed in Table 4.13. The pattern observed previously appears to hold
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Figure 4.9: The plots on the left show the sum of the variances, the cumulative variance and
the cumulative mean for Case 5 (top row) and Case 6 (bottom row). The plots on the right
show the difference in the variances for Case 5 (top row) and Case 6 (bottom row).
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here as well. The empirically determined marginal means data for Case 6, in which the
average number of mutations per genotype is small, follows the exponential curve more
closely than in Case 5. As we observed with Cases 1 and 3, the exponential approximation
fails at later ages. It is somewhat unclear whether this result is caused by an insufficient
number of samples in those cases. Cases 1, 3 and 5 represent cases in which we expect
average genotypes to contain large numbers of mutations and it is possible that more samples
may reduce this trend. It is also possible that there is some type of natural depression
in the number of mutations with the oldest mean-age effects. Because mutations are not
statistically independent under the SEW model, it is possible that the presence of mutations
with earlier age effects could be pulling down the number of copies of mutations with the
latest age effects. Over evolutionary time, individuals that experience mutation events with
large early-age or mid-age effects were much less likely to survive and reproduce than those
individuals with mutations that primarily act on older ages. Without recombination to split
genotypes, having a mutation that substantially depresses lifespan would guarantee that
all future generations of this genetic line are severely disadvantaged. Given this fact, it is
surprising that the distribution of genotypes can be approximated by a Poisson distribution,
in which mutation types are statistically independent. As with the previous cases, it seems
that this approximation holds best for mutations with smaller shape parameters.

Table 4.13: Coefficients from using scikits.statsmodels.OLS to fit the model log(Marginal
Means) = α Shape Parameter + β.

Case m Number of observations Coefficients
5 [3.5,7.0] 1000 α 1.12963

β -6.65665
6 [1.0,3.5] 1000 α 1.07445

β -6.96019

Although the exponential approximation is better in Case 6 than in Case 5, in both cases
the fit is reasonable. As a result, we use the exponential approximation to the marginal means
data in place of the intensity measure ρ in approximating the distribution of genotypes by a
Poisson random measure. The approximation is quite good in both cases when our interest
lies in estimating the expected survival function, shown in Figure 4.11, or the expected
hazard rate, shown in Figure 4.12. We can confirm this visual observation by computing the
difference between the expected survival function estimated directly from the MTM samples
and the Poisson approximation, which is around 0.01 under the L2 norm for Case 5 and
0.006 for Case 6, as we can see from Table 4.14.

We can also confirm this observation by comparing survival probabilities estimated from
the MTM samples directly and from the Poisson approximation. These data are provided
in Table 4.15. In Case 6, the approximation and the empirical survival functions are nearly
identical. However, we point out that the accuracy of the table is limited by the choice of
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Figure 4.10: The figures on the left show the intensity measure ρ under the free recombina-
tion model for Case 5 (top row) and Case 6 (bottom row). The figures on the right show
the empirical mean number of mutations, as will as the exponential approximation to the
marginal means data, for Case 5 (top row) and Case 6 (bottom row).
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discretization in age, in this case 0.5 years. Notice that for Case 6 we have not included the
age to which at most 0.001 of the population survives. This is because for all three expected
survival functions, the empirical, the approximation and the survival function under free
recombination, more than 0.001 of the population survives to the oldest age considered, 120
years. The Poisson approximation in Case 5 is not quite as good as it is in Case 6, although
the difference in estimated age for the various survival probabilities listed is small, no more
than 0.5 years.

Table 4.14: Distance between the expected population survival functions estimated directly
from the MTM samples and from the Poisson approximation.

Case || · ||2 || · ||∞
5 0.00519794 0.00136816
6 0.00570866 0.00106093

Finally, we wish to draw attention to the fact that the expected survival function under
the SEW model and the expected survival function under the free recombination model are
quite close in Case 6. Indeed, the hazard rates under the two models in Case 6 are only
slightly different, with the largest differences occurring around middle age (40 to 60 years).
At middle age, the hazard rate under the free recombination model is slightly larger than the
hazard rate under the no recombination model. This suggests that with a mutation space
in which mutations face high selective pressure (resulting from their large reproductive-age
effects), the two models produce very similar demographic outcomes. Case 5, by contrast,
produces the largest differences between expected survival function and hazard rates yet
observed. Indeed, the expected survival function approaches zero much faster in Case 5 than
in any of the other gamma test cases, with only 0.001 of the population surviving to age 52
years. This drop in survival probability occurs at a much age than in Case 3, where 0.001
of the population survived to age 62 years. This observation is also confirmed by looking
at the L2 distance between the expected survival functions under the two models. Listed in
Table 4.16, the distance is 0.37, which is much higher than we observed for Cases 1-4, where
the distances ranged from 0.09 (Case 4) to 0.18 (Case 2).
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Table 4.15: Survival probabilities computed from the expected population survival functions
from the samples obtained by the MTM algorithm (“Empirical”), the Poisson approximation
with the exponential function fit to the marginal means in place of the intensity function
(“Approx.”), and free recombination model (“ESW”).

Case 5 Case 6
Survival Probability Empirical Approx. ESW Empirical Approx. ESW

0.5 28.5 28.5 28.0 27.5 27.5 27.0
0.4 32.0 32.0 31.0 31.0 31.0 30.5
0.3 36.0 36.5 34.0 35.5 35.5 35.5
0.2 41.0 41.0 37.0 41.5 41.5 40.5
0.1 46.5 46.5 40.5 51.5 51.5 50
0.05 51.0 51.0 43.0 62.0 62.0 60
0.01 58.5 59.0 47.5 87.0 87.5 83.5
0.005 61.0 61.5 49.0 99.0 99.0 94.5
0.001 66.5 66.5 52.0 ¿ 120 ¿ 120 ¿ 120

Table 4.16: Distance between for the SEW model and the free recombination model.

Case || · ||2 || · ||∞
5 0.378329 0.105509
6 0.0583749 0.0105569
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Figure 4.11: Expected population survival functions for the additional 1000 gamma muta-
tions cases. Each plot shows the expected survival function under the SEW model estimated
from the MTM samples and the Poisson approximation, as well as the survival function
under the free recombination model.

Figure 4.12: Expected hazard function for the additional 1000 gamma mutations cases. Each
plot shows the expected hazard rate estimated from the MTM samples and the Poisson
approximation, as well as the hazard rate under the free recombination model.
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4.2 Mutations with Modified Point-Mass Profiles

The previous gamma mutations cases have suggested that while the distribution of genotypes
is not Poisson, it can be well approximated by a Poisson random measure if the goal is
measuring expected survival or population hazard rate. We have also discovered that those
demographic outcomes are often similar to the outcomes under the free recombination model.
This has been demonstrated with demographic selective cost functions and realistic mutation
rates (0.12–0.17) for several scenarios involving gamma profile mutations, namely, mutation
spaces containing mutations with both early mean-age effects and late mean-age effects
(Cases 1–4), a mutation space with primarily late-age effects (Case 5) and a mutation space
with primarily early-age effects (Case 6). One might ask, however, if these results apply to
other types of mutation profiles or if the gamma profile case is, in some way, unique. To this
end we present one last test case.

The final test case uses highly stylized mutation profiles that would not be used in
practice to describe realistic age-specific mutation effects. These profiles will be referred to
as “modified point-mass” profiles because they are a slight modification of the point-mass
profile used in §3.3. Recall that under the point-mass model for mutation profiles, mutations
concentrate their effects on the hazard rate at a single age, called the age of onset and denoted
by m. This results in a step increase in cumulative hazard starting at age m. Although such
a model is unrealistic from a biological perspective, its simplicity proved useful in testing the
MCMC algorithms applied to this problem. Because of its extreme simplicity and stylized
nature, the point-mass profile also provides a nice contrast to the more realistic gamma
profiles. Unfortunately, it has been shown in [35] that the solution to the free recombination
model unravels in the case with constant fertility, constant mutation rate ν above the age of
maturity and point-mass profiles with ages of onset m where M = [α,∞]. This result also
holds when fertility is constant only in a range of ages and zero otherwise, and when the age
of onset for point-mass mutations are restricted to this range of fertile ages.

Large spaces of point-mass mutations, then, are not a good test case. However, it was
speculated by Wachter, Evans and Steinsaltz in [35] that attaching an initial small effect at
young ages to those mutations whose main effect is concentrated at older ages would prevent
the solution to the free recombination model from unraveling. We have chosen to follow that
suggestion and call the resulting mutation profile a modified point-mass profile. With the
modified point-mass profile, the mutation profile is modeled as a double step function, with
a small step of size δ = 0.001 at the age of maturity α, and a second step of size 1− δ at the
age of onset m. The test case considered here contains 351 modified point-mass mutations
with ages of onset ranging from α = 15 years to β = 50 years in step sizes of 0.1 years.
The background hazard rate for this test was set to the standard 0.05 and the size of the
mutation effect was 0.1. Other parameters used in this test, such as the burn-in period for
the MTM algorithm and the number of samples collected, are listed in Table 4.17. As with
the gamma mutations cases discussed previously, the fertility rate was set to the fertility
rate that ensures a stationary population under the free recombination model.
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The fertility rate under the free recombination model was 0.088 (Table 4.18). Unlike
the cases with gamma mutations, the fertility rate under the free recombination model for
the modified point-mass mutations is too high to ensure that a stationary population under
the SEW model. The net reproduction ratio estimated from the MTM samples using this
fertility rate was 1.29, much higher than the 1.0 which ensures a stationary population. As
a result, the fertility would need to be rescaled by 1/1.29, resulting in a fertility rate of
0.068544. This suggests that the output from the free recombination model and the SEW
model in this case may be more different than in the gamma cases.

Table 4.17: Parameters for the test case with 351 modified point-mass mutations.

Parameters η λ α β Dx δ ν(M)
0.1 0.05 15 50 0.1 0.001 0.17

MTM Parameters Burn Samples DelP Kmax
150000 600000 0.375 5

Indeed, compare the intensity measure for the free recombination model with modified
point-mass mutations, shown in Figure 4.13, left, to the plot of the mean number of each
mutation type under the SEW model, shown on the right. Unlike the gamma cases considered
previously, the intensity measure and the marginal means data in this case have different
shapes. Specifically, the intensity function is sigmoid in nature (see Appendix C.3 for details)
while the marginal mean number of mutations under the SEW model is neither sigmoid nor
exponential. The log of the marginal means data, shown in Figure 4.14 (left), does appear
to be approximately exponential and was, thus, fitted by an exponential curve,

log(Marginal Mean) = a+ exp(bx+ c).

The exponential curve was fitted using curve fit from scipy.optimize. The resulting parame-
ters were a = −5.67638, b = 0.0767402 and c = −2.22687. The fitted exponential is plotted
in a dashed line on the same figure. The exponential approximation to the log means is best
for smaller ages of onset. In particular, the log of the marginal means increases much more
rapidly for late ages of onset (above 45 years) than does the exponential approximation. The
plot on the right in Figure 4.14 shows the marginal means data for the SEW model (solid
line) and the double exponential approximation (dashed line). Again, the fit is best for small
ages of onset, with the approximation increasing much less dramatically at late ages than
the actual means.

With the intensity measure and the marginal means data exhibiting different patterns in
this case, one may wonder if the Poisson approximation, which proved to be quite good in the
gamma mutations cases, might not hold in this case. Surprisingly, the Poisson approximation
also holds for modified point-mass profiles. Table 4.20 shows the mean and variance in the
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Table 4.18: Output from shortcut algorithm for the free recombination model when the
mutation space contains 351 modified point-mass mutations.

Fertility Iterations
0.08846245 211

Table 4.19: Output from the MTM algorithm for the SEW model when the mutation space
contains 351 modified point-mass mutations.

Acceptance Rate NRR
0.341496 1.29062

Figure 4.13: The plot on the left shows the intensity measure ρ for the free recombination
model in the modified point-mass mutations case. The plot on right is the empirical mean
number of mutations under the SEW model.
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Figure 4.14: The log of the mean number of each type of mutation (solid line) fitted with
an exponential curve (dashed line) are shown on the left. The marginal means data (solid
line) and the double exponential approximation (dashed line) are shown on the right.

total number of mutations per genotype as well as the mean and variance in the number of
mutations with age of onset in subintervals of size 5 years. In all cases, the means and the
variances are reasonably close. As with the gamma cases, the differences between the means
and variances are nearly all (excepting one subinterval) statistically significant. However,
the differences are small enough that a Poisson approximation is actually quite good, as we
shall demonstrate below.

The double exponential fitted to the marginal means data was used for the intensity
function of the Poisson approximation to the genotype distribution under the SEW model.
While the double exponential approximation does not accurately reflect the behavior of the
means data for late ages of onset, this discrepancy results in a negligible difference when
considering the expected population survival function (Figure 4.15, left) or the expected
hazard rate (right). The difference between the population survival functions estimated
directly from the MTM samples and the Poisson approximation is quite small, with an L2

distance of 0.0370246 and an L∞ distance of 0.00973396.
This observation is confirmed by comparing the youngest age at which the probability

of survival is at most p, shown in Table 4.21. The ages are very close for the empirical
expected population survival function and the approximation for most of the probabilities
tested. The differences become more pronounced when dealing with small probabilities of
survival (less than 1%) with the Poisson approximation based on the double exponential
tending to overestimate the age.

While the Poisson approximation in this case is quite good, it is clear that the difference
between the demographic outcomes for free recombination model and the SEW model are
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Table 4.20: Estimated means and variances for the test case with modified point-mass mu-
tations. The marginal means and variances correspond to the number of mutations per
genotype with age of onset (m) in the given intervals.

Mean Variance χ2 p-value
15 ≤ m ≤ 50 22.6355 28.5054 755590 0

15 ≤ m ≤ 20 0.240712 0.248565 619574 3.01e-70
20 ≤ m ≤ 25 0.313238 0.313918 601300 1.17e-1
25 ≤ m ≤ 30 0.473408 0.483884 613276 1.20e-33
30 ≤ m ≤ 35 0.754100 0.774506 616235 3.73e-49
35 ≤ m ≤ 40 1.26960 1.34050 633504 1.71e-198
40 ≤ m ≤ 45 2.62594 2.87120 656038 0
45 ≤ m ≤ 50 16.9585 20.4001 721762 0

Figure 4.15: The figure on the left shows the expected population survival function under
the SEW model estimated from the MTM samples and the Poisson approximation, as well
as the survival function under the free recombination model. The figure on the right shows
the expected hazard rates.
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Table 4.21: Survival probabilities computed from the expected population survival functions
from the samples obtained by the MTM algorithm (“Empirical”), the Poisson approximation
with the exponential function fit to the log marginal means in place of the intensity function
(“Approx.”), and free recombination model (“ESW”).

Survival Probability Empirical Approx. ESW
0.5 27.4 27.4 25.9
0.4 31.1 31.2 29.1
0.3 35.5 35.7 32.5
0.2 40.9 41.0 35.4
0.1 46.8 46.4 37.1
0.05 49.3 49.0 37.7
0.01 64.6 72.3 38.2
0.005 78.5 86.2 38.4
0.001 110.7 118.4 38.8

more different for modified point-mass profiles than they were for the gamma profiles. In
particular, the expected population survival function for the two models is only similar for
younger ages, less than 35 or so. The survival probabilities go to zero much faster under
the free recombination model than under the SEW model – for example, only 0.1% of the
population survives to age 38.8 under the free recombination model whereas 0.1% of the
population survives to age 110.7 under the SEW model.
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4.3 Conclusion

This work primarily explores two questions. First, how similar is the distribution of geno-
types under the SEW model to a Poisson random measure? Second, how similar are the
distributions of genotypes under the two models, free recombination and no recombination?

4.3.1 Similarity to a Poisson Random Measure

With a low mutation rate, the distribution of genotypes under the SEW model can be ap-
proximated by a Poisson random measure. Of more interest are cases with realistic mutation
rates. The four large gamma mutation profile cases discussed in §4.1 are all examples with
mutation rates similar to those experienced by human beings. These four cases, while very
specific, have been instrumental in delving into the first question. They show that while the
distribution of genotypes is not Poisson, it can be well approximated by a Poisson random
measure in some cases when the ultimate goal is to model demographic outcomes. In par-
ticular, we find that using a Poisson random measure whose intensity is estimated from the
empirically observed mean number of each type of mutation produces demographic outcomes
(such as lifespan) that are quite similar to the outcomes determined from the data directly.

By looking at two additional gamma cases, we find that the approximation holds even
when the mutation space is primarily composed of mutations with mean-age effects in repro-
ductive years, and when the mutation space is primarily composed of mutations with late
mean-age effects. We also find that the Poisson approximation is not limited to mutations
with gamma profiles. This was determined by considering a large mutation space with modi-
fied point-mass profiles. Although modified point-mass profiles are highly unrealistic models
for the age-specific effects of real-world mutations, it is encouraging to know that these re-
sults hold for both the smooth gamma profiles and the highly stylized modified point-mass
profiles.

However, the similarity between the empirically determined means and variances is not
limited to the large mutation space cases considered in this chapter. Indeed, the similarity
was first encountered when considering small mutation spaces, in particular those with only
one or two types of mutations with point-mass profiles (see §3.3.4 and Tables 3.16, 3.17
and 3.18 for more details). In all of these cases, while the distribution is not a Poisson
random measure and the difference between the means and the variances in the number of
mutations are statistically significant, the variances are generally within about 25% of the
means, with the variance usually larger than the mean. In these cases, too, the distribution
can be approximated by a Poisson random measure when the desired outcome is expected
population survival.

It is important to emphasize how very unexpected this result actually is. It is well known
in population genetics models that because recombination breaks genotypes at random loci,
the process eventually produces statistical independence between loci. Most models that
include recombination take some pains to explicitly characterize how quickly statistical inde-
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pendence occurs. In the ESW free recombination model discussed is this work, recombination
occurs so quickly that loci are statistically independent, producing a Poisson distribution of
mutations.

It is common in population genetics to model mutation by assuming that a Poisson
process is responsible for introducing mutations to a population over evolutionary time. If
mutation alone were acting on the genetics of the population, the distribution of genotypes
would be Poisson. Selection, however, forces the system away from a Poisson distribution.
As we discussed in Chapter 2, except in very special cases (such as non-epistatic or additive
selective cost functions), the solution to the SEW mutation-selection model is not Poisson
distributed.

It is therefore, very interesting and unexpected to find that while the distribution of
genotypes without recombination is not Poisson, it can be reasonably approximated by a
Poisson random measure. The approximation is not perfect, of course – the mutations
under the SEW model are statistically dependent, which appears to cause a depression in
the number of mutations with the oldest-age effects when the mutation space also contains
mutations with large early reproductive age effects. However, the approximation is perfectly
serviceable when the goal is to model expected survival or population hazard rates.

4.3.2 Similarity to the Free Recombination Model

We can make several general observations regarding the similarity of the distribution of
genotypes under the two models, free recombination and no recombination. In the first place,
we find that the mutation space itself is quite important in determining the similarity between
the outcomes of the two models. In particular we find that, for mutations with gamma
profiles, the outcomes of the two models are closer for mutation spaces in which a large
proportion of the mutations face heavy selective pressure (resulting from those mutations
having large early or mid-reproductive age effects). As the fraction of mutations with large
late or very late-age effects grows, the statistical dependence between mutations under the
SEW model appears to depress the number of copies of the mutations with the smallest
effects. Of course, in all cases, the average number of mutations per genotype is higher
under the free recombination model than under the SEW model. However, because much
of the difference is concentrated at mutations with late-age effects, when there are few
survivors in the population (due to the extrinsic hazard rate), the difference in mutation
numbers causes only moderate differences in lifespan. More importantly, however, we find
substantial qualitative similarities between the outcomes from the two models. For example,
with gamma mutations, both models produce mean numbers of mutations types that are
roughly exponential in shape parameter.

The two models are probably most different in the case of mutations with modified point-
mass profiles. In all of the test cases involving the gamma mutations, the intensity measure ρ
and the marginal means data had the same general shape (roughly exponential) even though
the marginal means data was usually smaller than the intensity measure. In the case with
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modified point-mass profiles, however, the marginal means data and the intensity measure
had very different shapes. This translated into quite noticeable differences between lifespan
and hazard rates under the two models. However, because this type of mutation profile is
highly stylized and not realistic for real-world mutations, this difference may not be terribly
important.

4.3.3 Senescence

In our tests we considered two models for age-specific mutation effects, representing two dif-
ferent theories of the evolution of senescence, mutation accumulation and positive pleiotropy.
The simplicity of point-mass mutations makes them simple models for studying mutation ac-
cumulation. With the point-mass profile mutations, all mutations are deleterious and those
with young ages of onset face more selective pressure and are less common in the population
than mutations with late ages of onset. This is apparent even in the small mutation space
cases we tested. For example, with two point-mass profile mutations, there are fewer copies
of the mutation with age of onset 20 than the mutation with a later age of onset. When the
two possible mutations both had early to middle ages of onset, m1 = 20 and m2 = 30, there
were about twice as many copies of m2 (the later acting mutation) in an average genotype,
than copies of m1 (the early acting mutation). Specifically, there were about 2.75 copies of
m2 = 30 to the 1.33 copies of m1 = 20. When the second mutation had later age effects, such
as the case where m1 = 20 and m2 = 40, there were almost six times as many copies of the
mutation with the later age of onset, on average, as there were copies of the mutation with
an early age of onset, 4.17 copies of m2 = 40 to 0.70 copies of m1 = 20. In the second case,
copies of the mutation with a later age of onset are building over evolutionary time because
the selective pressure on the second mutation is so much less than the selective pressure on
the mutation with early-age effects.

One of the problems with using point-mass profiles, however, is that it can result in a wall
of death unless the mutation space is small. Mutations with gamma profiles, on the other
hand, are in line with the theory of reinforcing pleiotropy. In this case, all mutations are
deleterious and have nonzero effects at every adult age. That is, even mutations that have
a large late-age effects will have some (perhaps quite small) deleterious effect at early ages,
too. In this model as well, mutations with primarily late-age effects were more common, on
average, than mutations with large early-age effects.

In studying senescence, the hazard rates for the cases with gamma mutations are quite in-
teresting. The Gompertz model, introduced in 1825 and standard in the field of demography,
posits that the rate of mortality increase is roughly exponential after the age of maturity. Al-
though this model fits human and some laboratory animal data (such as Drosophila, see [33])
for most adult ages, it fails to hold for the oldest ages, where mortality rates appear to flat-
ten. Charlesworth, who also considered adding age-specific mutation effects to population
genetics models, was able to reproduce the familiar Gompertz-Makeham form for mortality
and was also able to reproduce the flattening that appears at the oldest ages by adding a
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non-age-specific effect for each mutation (see §1.4.3 for a brief description of his model and
see [7] and [8] for more details). However, Charlesworth’s model relies on a linear approxima-
tion to estimate the effects of the mutations on genetic fitness. The two models considered
in this work do not rely on a linear approximation but, instead, consider the full nonlinear
effects of mutations on fitness. It was previously observed that a flattening or even decrease
in hazard rate can occur for gamma profile mutations under the free recombination model
(see [37]). However, this work has shown the same behavior in hazard rates under the no
recombination model as well.

We note that modified point-mass profiles did not produce realistic hazard rates. We
did not expect them to do so. Rather, this case was used to test the limits of the Poisson
approximation by utilizing much less realistic models for mutation effects. However, it is
encouraging that with gamma profiles for mutation effects, we are able to reproduce a range
of plateaus by simply changing the range of gamma shape parameters. By restricting shape
parameters to smaller values, we can produce hazard rates that decrease for the oldest ages.
For example, in Case 6, in which shape parameters range from 1.0 to 3.5, the hazard rate
increases until around middle age and then decreases to nearly its original level by the age
of 120 years. Allowing shape parameters to take on larger values can produce little to no
leveling in hazard rates. In Case 5, where the shape parameters range from 3.5 to 7.0,
the hazard rates increased steadily until very late ages (around 100) and then appeared to
plateau. However, the hazard rates in this case did not decrease, even in the oldest ages.
This range of behaviors, from hazard rates that increase and then decrease to hazard rates
that increase and then plateau, suggests that the gamma model for mutation effects is very
flexible and could be used in practice.
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Appendix A

MCMC Convergence

A.1 Convergence

In this work, we are interested in determining how similar the distribution of genotypes under
the SEW model is to a Poisson random measure. Attempting to answer a question so very
vague naturally requires one to first refine the question. “How similar is similar enough?”
and “Similar under what measure?” are two natural refinements. “Is the distribution of
the total number of mutations per genotype Poisson/approximately Possion?” and “Are the
number of copies of different mutation types independent?” also immediately spring to mind.
However, given the flexibility of the no recombination and free recombination models and the
ultimate goal of determining demographic outcomes such as lifespan and the expected hazard
rate for the population modeled, we can further refine our questions. Even finding that the
distribution of genotypes is not exactly Poisson may not make much practical difference in
the demographic outcomes we measure. Regardless, it should be clear that whatever avenue
we choose to refine our central question, much relies on our ability to accurately sample from
the distribution of genotypes under the SEW mutation-selection.

A series solution to the distribution of genotypes under the SEW model was stated
in equation (2.6). Given the difficulty of directly estimating the solution using the series
expansion (which involves computing expectations over the order of arrival of mutations for
each genotype), it is necessary to use some other method to estimate the distribution. We
have chosen to use the multiple-try Metropolis algorithm, which defines a Markov chain with
the appropriate limiting distribution that crawls over the space of time-ordered genotypes.
The sampled genotypes are, in turn, used to estimate a variety of outcomes. For example, the
sampled genotypes are used to estimate the distribution of the total number of mutations, the
average number of mutations per genotype, the average number of copies of each mutation
type, and the expected population lifespan, to name a few.

Except for methods of “perfect” sampling (where one samples exactly from the target
distribution), samples obtained via Markov chain Monte Carlo methods contain error. The
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central idea behind MCMC is to construct a chain whose stationary distribution is the
distribution from which you wish to sample and to run this chain for long enough that it has
forgotten its starting state and is close to its stationary distribution. Naturally, we would
like to have some way of checking whether that has actually happened. There is a great deal
of literature regarding this topic and we will not attempt to reproduce it here. Rather, we
will briefly discuss a small number of diagnostic methods that are applied to samples from
the chain in question (see [9] and [5] for summaries of a number of methods, including some
that are not applicable to the problem at hand). From the literature it is clear that there
is uncertainty within the community as to how useful these techniques actually are and we
have been cautious not to rely too heavily on the output of any one diagnostic.

A.1.1 One chain or multiple?

Even a cursory search for MCMC convergence diagnostics will show a division between the
camps that suggest using multiple chains, start at different locations in the parameter space
(possibly based on an over-dispersed estimate of the sampling distribution) and a single
chain, run for a very long time. In this work, we have chosen to consider several methods
from the second camp: a single chain run for a very long time. In part this is because the
MTM algorithm, as we have implemented it, takes very small steps (producing a genotype
that is at most one mutation different from the genotype of the current iteration). Taking
small steps keeps the acceptance rate fairly high and has proven to be easy to implement.
Unfortunately, it also means that the chain explores the space of possible genotypes very
slowly. As a result, a single long run of the chain will have a better chance of covering the
space of genotypes than several chains with much shorter runs.

A.1.2 Geweke

Geweke’s diagnostic uses a single long run of the Markov chain and compares the mean of
some function g of the output from the beginning of the run to the mean from the end of
the run. Although the algorithm is generally described in terms of its application to a Gibbs
sampler, the method can be applied to any MCMC output (see [9]). As such, the description
of the algorithm provided here will not assume use of a Gibbs sampler.

Applying the function g to the state of the Markov chain at each step creates a time
series, g(Xi). The expectation E[g(X)] can be estimated by averaging over n steps of the
chain,

ḡn =

∑n
i=1 g(Xi)

n
.

This estimator has an asymptotic variance given by Sg(0)/n where Sg(ω) is the spectral
density for the time series g(Xi). If the Markov chain has converged to the stationary
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distribution then the estimate of the mean from the beginning of the chain should not be
significantly different from the estimate of the mean from the end of the chain.

The estimate ḡnA is based on the first nA samples and has asymptotic variance SAg (0),
while the estimate ḡB uses the last nB samples and has asymptotic variance SBg (0). We
assume that nA + nB < n, where n is the number of samples. Geweke suggested setting the
parameters nA and nB are to be 0.1n and 0.5n, respectively. Assuming that the chain is
stationary and the ratios nA/n and nB/n are fixed, the distribution of the test statistic

Zn =
ḡnA − ḡnB√

SAg (0)/nA + SBg (0)/nB

approaches a standard normal as n→∞. Thus, for large enough samples, this statistic can
be used to test the null hypothesis that the chain has converged by time n.

For this work there are several obvious advantages of Geweke’s method as a diagnostic
tool. First, the method can be applied to any MCMC output, not just output from a Gibbs
sampler. Second, it uses a single chain as opposed to methods (such as the popular method
by Gelman and Rubin [16]) that require multiple, independent chains. Third, it is common
enough to be included in many standard MCMC packages, including PyMC, a Markov chain
Monte Carlo package for python (see [27]). Unfortunately for us, Geweke’s method can
be used to show that the chain has not converged but cannot be used to show that it has
converged. Knowing that the chain has not converged (meaning that the difference in means
is statistically significant) is useful because it indicates that the chain must be run longer.
However, failing to reject the null hypothesis does not give us much information. It could
indicate that the chain has converged or it could indicate that the chain is mixing slowly
and is stuck in one region of the space.

A.1.3 CUSUM Plots

Yu and Mykland [40] propose a graphical method for assessing convergence from a single
chain of length n. The algorithm requires that another method be used to determine the
burn-in period, n0, for the chain before taking samples. The samples are used to create a
CUSUM (or partial sum) plot of some summary statistic of the output. Let µ̂ be the estimate
of the mean of the summary statistic T , based on the samples after the burn-in period:

µ̂ =
1

n− n0

n∑
i=n0+1

T (Xi).

The CUSUM is the sum of the differences between the summary statistic for each sample
and the mean µ̂,
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Ŝt =
t∑

τ=n0+1

(T (Xτ )− µ̂)

for t = n0 + 1, . . . n. The Ŝt are plotted against t to create the CUSUM plot.
The smoothness of the CUSUM plot indicates whether or not the chain is mixing slowly.

The smoother the plot, the slower the mixing of the chain. Yu and Mykland suggested using
iid samples from a Normal distribution with mean and variance set equal to the sample
mean and sample variance as a benchmark. The iid samples, according to Yu and Mykland,
approximate the “ideal” CUSUM path for an iid sequence from the limiting distribution.
As a result, similar amounts of smoothness and wandering away from zero between the two
paths indicates good mixing.

This method can be made slightly less qualitative (since graphical interpretations of “sim-
ilarity” and “hairiness” between the paths are quite subjective) by defining the “hairiness”
of the path by the following process (see [4]). First, compute

dt =


1 if St−1 > St and St < St+1

or St−1 < St and St > St+1

0 else

(A.1)

for t = n0 + 1 . . . n− 1. Then, the average of the dt

Dn0,n =
1

n− n0 − 1

n−1∑
t=n0+1

dt (A.2)

is a number between 0 and 1, where 0 indicates that the plot is completely smooth and 1
indicates that the plot is “hairy.” For large samples, Dn0,n will be approximately normal
with mean 1

2
and variance 1

4(n−n0−1)
, allowing us to test for non-convergence of the chain. A

value of Dn0,n outside of 1
2
± Zα/2

√
1

4(n−n0−1)
indicates non-convergence.

However, as Brooks points out in [4], this test rests on the assumptions that the samples
T (Xi) are iid and distributed symmetrically about the mean. Because MCMC samplers gen-
erally produce dependent samples, the first assumption will certainly be violated in practice.
To attempt to remove the dependence on the first assumption, Brooks notes that the chain
can be made approximately independent by thinning the samples, a dubious solution at best.
An alternative to thinning that may be used for sticky chains (where the parameter may
remain in the same state for several iterations) is to use a different definition for dt, given by
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dt =



1 if St−1 > St and St < St+1

or St−1 < St and St > St+1

or St−1 < St, St+k > St and St = St+1 = · · ·St+k for k ∈ Z
or St−1 > St, St+k < St and St = St+1 = · · ·St+k for k ∈ Z

1
2

if St−1 = St = St+1

0 else

(A.3)

Brooks does not recommend using the alternative definition due to its added computational
costs. For the chains we wish to analyze, it is often the case that the chain will move to a
different genotype with the same total number of mutations. If we define T (X) to be the
total number of mutations per genotype then we expect there to be many instances in which
T (Xt) = T (Xt+1) Unfortunately, while it may be true that T (Xt) = T (Xt+1), it will not
generally be true that St = St+1. As a result, the expanded definition of dt will probably not
be worth the additional computation time or power.

The second assumption may be addressed by using the empirically estimated median
rather than the mean in computing Ŝt, which would ensure that P(dt = 1) = 1/2. If the
mean is used in computing Ŝt, P(dt = 1) can be computed using the one-step transition
density for the Markov chain (see [4] for details). In this case the burn-in period can also
be estimated by the following procedure: Given N observations, begin by setting n = N/20
and n0 = n/2. Compute Dn0,n to determine if the chain has converged after n/2 iterations.
Now repeat the process with the first 2n iterations, computing Dn,2n. Continue the process
until all N observations have been used, resulting in the sequence Dn/2,n, Dn,2n, · · ·D10n,N .
Plot the sequence to determine if the D appear to approach a single value. If Dt/2,t marks
the point at which the D generally converge to a single value, then the burn-in period can
be estimated by n0 = t/2.

Yu and Mykland provide a nice diagnostic tool for the problem at hand because it can be
applied to the output of any MCMC algorithm and because it requires only a single chain.
However, it suffers from some of the same problems as Geweke’s diagnostic, namely that it
cannot be used to show convergence and that it requires another method to be used first to
determine the length of the burn-in period. Further, for the chains we wish to analyze, the
output may be highly correlated, making the assumption that P(dt = 1) = 1/2 unlikely to
hold. It will also be difficult to calculate P(dt = 1).

A.1.4 Raftery and Lewis

The Raftery-Lewis diagnostic [28] assumes that one is interested in computing the 100 · qth

quantile of a given parameter θ to within a certain accuracy. Although the diagnostic was
first described in terms of the Gibbs sampler, it can applied to any MCMC output.

We denote the 100 · qth quantile by θq so that P (θ ≤ θq) = q. To estimate the quantile
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θq, one can simply order n samples of the parameter θ and take the n · 100 · qth sample

as the estimate θ̂q. As the number of samples grows, the sample distribution converges to

the true distribution and the estimated probability P (θ ≤ θ̂q) = P̂q converges to q. This

diagnostic allows the user to specify how accurately they wish to estimate P̂q by setting the
parameters r and s. For example, if q = 0.025, r = 0.005 and s = 0.95 then the diagnostic
will determine how many samples are required to estimate the 2.5th percentile to within
±0.005 with probability 95%.

After θ̂q is estimated from the samples, a binary sequence {Zt} is defined as follows

from the samples: Zt = 1 if θt ≤ θ̂q and 0 otherwise. The binary sequence is not itself a
Markov chain but is approximately a Markov chain if sufficiently thinned. Once the thinning
parameter k has been determined, the diagnostic then determines the number of iterations,
M , that can be discarded for the burn-in and, finally, the number of additional iterations,
N , needed to obtain the desired accuracy. The additional iterations will be thinned by the
factor k.

Because one of our primary goals is to characterize the distribution of the total number of
mutations per genotype, the Raftery-Lewis diagnostic may be useful. However, the method
focuses on convergence for a single quantile rather than convergence of the chain in general.
Unfortunately, different quantiles may require different values of k, M and N to achieve
the desired accuracy in estimation. When estimating multiple quantiles, Raftery and Lewis
suggest running the diagnostic on each quantile separately and choosing the maximum values
of k, M and N . In doing so we assure that for each quantile, the estimate will be with r
of the true value with probability s. That is, if we test Q quantiles, we expect at least sQ
of the estimates to be within r of their true values. Furthermore, the practice of thinning
the collected samples is questionable. While thinning the samples reduces autocorrelation,
simple subsampling methods (such as retaining every kth sample) reduce the accuracy of the
estimated parameter (see [24]).

A.2 Results

As an illustrative example of applying these convergence diagnostics to the output of the
MTM algorithm, we will focus on the output from one of the large gamma cases. In particu-
lar, we will be applying these methods to the case with 1000 gamma profile mutations with
shape parameters ranging from 1.0 to 7.0 (referred to as Case 3 in §4.1). We have chosen
to focus on this case because we expect more mutations per genotype on average for this
case than for the other three large gamma cases (where the largest shape parameter is 5.0,
5.5 or 6.0). Mutations with larger shape parameters have smaller age effects over the range
of fertility (ages 15-50) and thus have much less selective pressure on them than mutations
with shape parameters close to 1.0. With less selective pressure, we expect more copies of
these mutations in a typical genotype. Because all tests in §4.1 are started in the null geno-
type and because every proposed genotype contains at most one more mutation than the
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current genotype, it will take longer for the chain to explore genotypes with a large number
of mutations. As a result, we expect the Markov chain to converge to the limiting distri-
bution more slowly in Case 3 than in the other cases considered. We will provide results of
the convergence diagnostics applied to the other large gamma cases in subsequent sections.
However, we will not provide the same detailed discussion of the various diagnostics applied
to those cases.

A.2.1 Case 3

Figure A.1: Geweke scores for the first 50,000 iterations (left) and the first 100,000 iterations
(right). Each point is the Geweke score comparing the first 10% of the subchain to the last
50% of the subchain. The score is plotted against the first iteration used in the subchain.

We begin by applying Geweke’s diagnostic. Recall that the output from the MTM
algorithm, denoted by Xi in §A.1.2, consists of genotypes. Each (unordered) genotype
is represented by a vector whose ith element is the number of copies of mutation type i,
X = (n1, n2, . . . nM). We apply Geweke’s diagnostic to the total number of mutations per
genotype. Using the notation from §A.1.2 we have g(X) = |X| =

∑
i ni. Figure A.1 shows

Geweke scores for output from Case 3. These plots were generated using pymc.geweke with
each plot containing the Geweke scores for 20 subchains. Each point is the Geweke score
comparing the first 10% of the subchain to the last 50% of the subchain. The score is plotted
against the “first iteration,” which marks the beginning of the subchain used to generate the
score. The plot on the left uses the first 50,000 iterations of the MTM output while the plot
on the right uses the first 100,000 iterations.

Several of the scores on the left-hand plot are clearly outside of two standard deviations
of zero, indicating that the chain has not converged. Recall that the diagnostic assumes
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that the chain has reached its stationary distribution and tests the null hypothesis that the
difference in means between the first and last part of the chain are zero against the alternative
that they are not 0. As a result, we clearly need a longer burn-in than 50,000 iterations. In
the plot on the right hand side, all the Geweke scores are within two standard deviations of
zero. Although we cannot reject the null hypothesis that the chain has converged, we cannot
say that the chain has converged.

Figure A.2: Total number of mutations per genotype plotted against iteration number.

Yu and Mykland’s CUSUM plot for analyzing convergence of the chain requires another
method to first determine the length of the burn-in period. The Geweke’s scores for the
first 50,000 iterations suggest that the chain has not converged in that time. However, when
considering the first 100,000 iterations, we cannot reject the hypothesis that the chain has
converged. This suggests that we may want to discard several tens of thousands of iterations
for the burn-in. To get a better idea of how quickly the chain is traversing the space of
genotypes, and how many iterations we may want to discard for the burn-in, we next plot
the total number of mutations in a genotype against the iteration number.

Figure A.2 shows the number of mutations per genotype for the first 100,000 iterations
of one run of the MTM algorithm when the chain was started in the null genotype. The
number of mutations per genotype increases fairly steadily from its starting point of 0 to
around 300 mutations per genotype by 5,000 iterations. Between 5,000 and 28,000 iterations
the chain explores genotypes containing 275 to 350 mutations. For the next 30,000 iterations
the chain generally explores genotypes with containing even more mutations, roughly 300
to 400 mutations per genotype. In the next 20,000 iterations, the chain explores still larger
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genotypes, these containing between 350 and 425 mutations. Then, in the final 20,000
iterations shown here, the chain returns to genotypes containing 300 to 350 mutations.

This plot provides several insights to the movement of the chain. First, it suggests that
at least the first 10,000 iterations should be discarded as burn-in. It also shows the chain
is mixing fairly slowly. This is not terribly surprisingly because at each step the proposed
genotype will differ from the current genotype by at most one mutation. That means that it
will take the chain many iterations to move from genotypes with 300 mutations to genotypes
with 400 mutations. The plot also shows that there are long periods where the number of
mutations per genotype is generally increasing (such as between iterations 56,000 to 65,000)
or generally decreasing (such as between iterations 75,000 to 91,000). Although output from
MCMC algorithms are generally correlated, this plot also suggests that the samples will
have high autocorrelation even over long lag periods. This is confirmed by Figure A.3. The
autocorrelation was plotted after discarding the first 10,000 iterations. High autocorrelation
over a long lag suggests that the chain is not mixing very well.

Figure A.3: Autocorrelation after discarding the first 10,000 iterations.

We next generated CUSUM plots for the output. As with the Geweke’s scores, we used
the total number of mutations per genotype as the summary statistic for the output from the
MTM algorithm. We generated two CUSUM plots, both shown in Figure A.4. In the plot
on the left hand side the first 10,000 iterations were discarded as burn-in and the plot was
generated with the next 40,000 iterations. In the plot on the right the first 10,000 iterations
were discarded and the plot was generated with the next 90,000 iterations. The smoothness
of the CUSUM plot for the MTM samples provides further evidence that the chain is mixing
slowly. Each plot also shows a “benchmark” CUSUM path, generated by an iid sequence
from a Normal distribution with the same mean and variance as the MTM output. In both
plots, the benchmark path stays much closer to 0 than the CUSUM path for the MTM data.
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Figure A.4: CUSUM plot after discarding the first 10,000 iterations as burn-in. The plot on
the left is for the next 40,000 iterations. The plot on the right is for the 90,000 iterations
after the burn-in period.

Naively testing the hairiness of each plot, we find that Dn0,n1 = 0.002 when n0 = 10, 000
is the burn-in period and n1 = 50, 000. This value of D falls quite far outside of the
range (0.4951, 0.5049), indicating that the chain has not converged. For the second case,
Dn0,n2 = 0.0028 when n0 = 10, 000 and n2 = 100, 000. Again, this value is outside of the
range (0.49673, 0.50327), indicating non-convergence of the chain. However, the degree to
which the output is autocorrelated clearly breaks the assumption of independence required
for this test, making the results uninformative.

We next followed the suggestion of Brooks [4] and compute a sequence of Dn0,n to deter-
mine if the D statistics appear to approach a single value. For this test we let N = 500, 000,
n = N/20 = 25, 000 and n0 = n/2. Following the procedure described in A.1.3, we obtained
a sequence of D statistics which are plotted in Figure A.5 against n. The sequence of D
statistics appears to oscillate between 0.00388 and 0.0046 for n larger than 250,000. However,
given the large number of mutations used to calculate these statistics, and the fact that the
D statistics are very small in general, this does not appear to be evidence of convergence.

Of course, the total number of mutations per genotype is only one statistic that we could
use to assess convergence. We are also interested in the number of mutations falling within
various ranges, such as the number of mutations per genotype with shape parameter in 1.0
to 1.5. Categorizing mutations by shape parameters in ranges of size 0.5 (so 1.0 ≤ m ≤ 1.5,
1.5 ≤ m ≤ 2.0, etc), we performed the same procedure for each subset of mutations. The
D statistics for subsets of mutations with shape parameters less than 3.0 are shown in
Figure A.6; mutations with shape parameters between 3.0 and 5.0 are shown in Figure A.7;
mutations with shape parameters greater than 5.0 are shown in Figure A.8. As with the D
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Figure A.5: Sequence of Dn/2,n plotted against n for n ∈ {25000, 50000, · · · 500000}.

statistics for the total number of mutations per genotype, the D statistics in these marginal
cases are very small. Even in cases where theD statistics may visually appear to be oscillating
around a single value for large enough n, say n > 250, 000, the D still oscillate by as much
as 25% of their lowest value over that range. For example, in Figure A.6, bottom left, where
2.0 ≤ m ≤ 2.5, the D statistics appear to oscillate between 0.009 and 0.0011 for n > 200, 000.
However, this difference of 0.002 is fairly large considering the size of the D statistics in this
range. Similarly, in Figure A.8 top right, where 5.5 ≤ m ≤ 6.0, the D statistics range from
0.0029 to 0.0033 for n > 275, 000. The difference of 0.0004 is still about 14% of the smallest
D statistic over this range.

One of the primary problems in assessing convergence with the CUSUM approach is that
the chain may have the same total number of mutations for several iterations, even if it has
accepted moves to other states. That is, there are many genotypes with the same number of
mutations. In addition, the chain only takes small steps, changing a genotype by at most one
mutation each iteration. This means that the chain will have fairly long excursions above
the empirical mean number of mutations per genotype, as well as below it. This is most
evident when looking at the total number of mutations over 500,000 iterations, shown in
Figure A.9. The empirical mean number of mutations computed from all 500,000 iterations
is also plotted. The CUSUM diagnostic tells us that the chain is mixing very slowly and will
require many iterations to satisfactorily explore the genotype space.

The final diagnostic tool that we apply to the output for Case 3 is the Raftery-Lewis
diagnostic. We tested nine quantiles, q ∈ {0.1, 0.2, · · · 0.9}, each with r = 0.05 and s =
0.95, see §A.1.4 for detailed descriptions of these parameters. The diagnostics were applied



144

Figure A.6: Sequence of Dn/2,n plotted against n for n ∈ {25000, 50000, · · · 500000}. The D
are calculated from the number of mutations in the following intervals, 1.0 ≤ m ≤ 1.5 (top
left), 1.5 ≤ m ≤ 2.0 (top right), 2.0 ≤ m ≤ 2.5 (bottom left), 2.5 ≤ m ≤ 3.0 (bottom right).
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Figure A.7: Sequence of Dn/2,n plotted against n for n ∈ {25000, 50000, · · · 500000}. The D
are calculated from the number of mutations in the following intervals, 3.0 ≤ m ≤ 3.5 (top
left), 3.5 ≤ m ≤ 4.0 (top right), 4.0 ≤ m ≤ 4.5 (bottom left), 4.5 ≤ m ≤ 5.0 (bottom right).
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Figure A.8: Sequence of Dn/2,n plotted against n for n ∈ {25000, 50000, · · · 500000}. The D
are calculated from the number of mutations in the following intervals, 5.0 ≤ m ≤ 5.5 (top
left), 5.5 ≤ m ≤ 6.0 (top right), 6.0 ≤ m ≤ 6.5 (bottom left) and 6.5 ≤ m ≤ 7.0 (bottom
right).
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Figure A.9: Total number of mutations per genotype plotted against iteration number. The
empirical mean number of mutations per genotype (shown in red) was computed using all
500,000 iterations.

to two subsets of a run of the MTM algorithm: the first 50,000 iterations and the first
100,000 iterations. The results are shown in Table A.1. Although the estimates of M , the
length of the burn-in period, and N , the additional number of mutations needed to obtain
the desired accuracy, are different for each quantile (and for the two subsets of data), the
results are reasonably consistent. For example, when using only the first 50,000 iterations,
the diagnostic suggests a burn-in period of 2000-9600 iterations, while the suggested burn-
in period is 3000-12000 when the diagnostic is applied to the first 100,000 iterations. The
additional number of iterations needed ranges from a low of about 80,000 to almost 100,000
when applied to the first 50,000 iterations. When the diagnostic is applied to the first
100,000 iterations, the additional number of iterations ranges from about 120,000 to 1.4
million. Although the upper range in the number of mutations needed is quite high (1.4
million), most quantiles were estimated to require about 600,000 iterations after the burn-in
to estimate the given quantile. However, this number assumes that one will thin the data
by the factor k, something we have elected not to do.

Overall, the diagnostics applied to data from the MTM algorithm run with Case 3 pa-
rameters suggests that the chain crawls over the space of genotypes fairly slowly. As a result,
a large number of iterations will be needed to ensure confidence in the conclusions drawn
from the data. We also note that when the same diagnostics were applied to data from
the other cases considered in §4.1, the results were consistent with what has been presented
here. That is, Geweke failed to indicate a lack of convergence, the CUSUM plots suggested
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Table A.1: Results from applying the Raftery-Lewis diagnostic to the first 50,000 iterations
(left hand side) and 100,000 iterations (right hand side) of the MTM output for Case 3.
Detailed descriptions of the parameters can be found in §A.1.4. In all cases r = 0.05
and s = 0.95; q is the quantile to be estimated, k is the thinning factor required for an
independence chain, M in the length of the burn-in period and N is the number of additional
iterations needed after the burn-in.

50k Iterations 100k Iterations
q k M N q k M N

0.1 1414 6384 221664 0.1 1247 4860 186570
0.2 1410 2856 206592 0.2 1425 4095 290430
0.3 1152 4180 395580 0.3 1616 5576 539806
0.4 1476 5950 674100 0.4 1911 4625 524882
0.5 1289 3185 389697 0.5 1905 6120 755856
0.6 1638 4553 523682 0.6 2441 11931 1386210
0.7 1526 9630 954360 0.7 2153 10519 1045620
0.8 1067 3200 232832 0.8 2629 7900 571328
0.9 718 2064 80352 0.9 1024 3219 126799

that the chain was mixing slowly, the output was highly correlated and the Raftery-Lewis
diagnostic suggested a large number of iterations.

A.2.2 Case 1

We will now briefly present the convergence diagnostics applied to Case 1, in which the
mutation space consists of 1000 gamma profile mutations with shape parameters ranging
from 1.0 to 6.0.

Figure A.10 shows the Geweke scores for 20 subchains. The plot on the left uses the first
50,000 iterations while the plot on the right uses the first 100,000 iterations. In each plot,
the empirical mean number of mutations from the first 10% of the subchain is compared to
the mean number of mutations in the last 50% of the subchain. Each score is plotted against
the first iteration of the subchain. In both plots, all scores lie in the range ±2, suggesting
that the chain fails to show a lack of convergence. As with the previously discussed case
(Case 3), the chain moves very slowly from the perspective of the total number of mutations
per genotype. This is because many different genotypes will have the same total number
of mutations. As a result, the Geweke diagnostic may not detect that the chain has not
converged.

Figure A.11 shows the total number of mutations per genotype plotted against iteration
number. The plot on the left shows the first 100,000 iterations and the plot on the right
shows the first 600,000 iterations of the chain. The chain was started in the null genotype.
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Figure A.10: Geweke scores for the first 50,000 iterations (left) and the first 100,000 iterations
(right) of the MTM output for Case 1. Each point is the Geweke score comparing the first
10% of the subchain to the last 50% of the subchain. The score is plotted against the first
iteration used in the subchain.

From the plot on the left we see that the total number of mutations per genotype increases
from 0 to the range 150-200 mutations fairly quickly. Looking more closely we find that
the chain first reaches 100 mutations in iteration 607. The plot on the right shows that the
chain primarily stays in the 150-200 mutation range over the 600,000 iterations with brief
excursions to genotypes with more than 200 mutations. The horizontal line in the plot on
the right indicates the empirical mean number of mutations per genotype over the entire
600,000 iterations.

Figure A.12 shows the autocorrelation in the chain after discarding the first 10,000 itera-
tions for burn-in. Notice that the chain, while still highly correlated, is much less correlated
than the output for Case 3. In particular, the output for Case 3 had a consistently high
correlation (0.5 or higher) for lags of at least the first 5,000 iterations (after discarding 10,000
iterations as the burn-in period). In this case the correlation drops to around 0.25 after 1,000
or so iterations.

Figure A.13 shows the CUSUM plots for the first 50,000 iterations (left) and the first
100,000 iterations (right). In both cases the first 10,000 iterations were discarded as burn-in.
As with Case 3, the CUSUM plots show that the chain is making very long excursions away
from the empirically determined mean.

Figure A.14 shows the sequence of Dn/2,n plotted against n for n ∈ {30000, 60000, · · ·
600000}. While the sequence of D statistics do not approach 0.5, they are consistently in
the range 0.0097 to 0.0103 for n ≥ 270000. Figures A.15-A.17 show the D statistics for the
total number of mutations within a given range of shape parameters. In most, but not all, of
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Figure A.11: Total number of mutations per genotype plotted against iteration number.

Figure A.12: Autocorrelation of the MTM output for Case 1 after discarding the first 10,000
iterations.
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Figure A.13: CUSUM plot for the first 50,000 iterations (left) and first 100,000 iterations
(right) after discarding the first 10,000 iterations as burn-in.

these plots, the D statistics are within an interval of width 0.0005 or smaller for sufficiently
large n. These plots suggest that burn-in periods of 150,000 or 200,000 iterations may be
appropriate.

Table A.2 shows the results of applying the Raftery-Lewis diagnostic to the first 50,000
iterations (left hand side of the table) and to the first 100,000 iterations (right hand side of
the table). In all cases, r = 0.05 and s = 0.95. The quantiles 0.1 to 0.9 in steps of size 0.1
were all tested. The results from the Raftery-Lewis diagnostics were fairly consistent whether
using 50,000 iterations or 100,000 iterations. The longest estimated burn-in period was just
over 2000 iterations and the longest run for additional samples was just under 250,000.

Finally, Figure A.18 shows the Geweke scores for iterations 150,000 to 250,000 (left)
and for iterations 200,000 to 300,000 (right). Both plots fail to show a lack of convergence
over these iterations. From the above analysis we conclude that a burn-in period of 150,000
iterations should be sufficient and we should collect at least 350,000 samples.
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Figure A.14: Sequence of Dn/2,n plotted against n for n ∈ {30000, 60000, · · · 600000}.

Table A.2: Results from applying the Raftery-Lewis diagnostic to the first 50,000 iterations
(left hand side) and 100,000 iterations (right hand side) of the MTM output for Case 1.
Detailed descriptions of the parameters can be found in §A.1.4. In all cases r = 0.05
and s = 0.95; q is the quantile to be estimated, k is the thinning factor required for an
independence chain, M in the length of the burn-in period and N is the number of additional
iterations needed after the burn-in.

50k Iterations 100k Iterations
q k M N q k M N

0.1 339 968 42504 0.1 349 901 37577
0.2 339 1200 88300 0.2 373 1100 87150
0.3 420 1344 132992 0.3 497 1496 150128
0.4 498 1820 212870 0.4 550 1564 183192
0.5 563 2178 265056 0.5 516 2071 244378
0.6 572 1620 183360 0.6 612 2046 231384
0.7 590 2160 200880 0.7 591 2346 227700
0.8 539 1232 86768 0.8 539 2096 139515
0.9 397 1395 55935 0.9 424 1428 51663



153

Figure A.15: Sequence of Dn/2,n plotted against n for n ∈ {30000, 60000, · · · 600000}. The D
are calculated from the total number of mutations in the following intervals, 1.0 ≤ m ≤ 1.5
(top left), 1.5 ≤ m ≤ 2.0 (top right), 2.0 ≤ m ≤ 2.5 (bottom left), 2.5 ≤ m ≤ 3.0 (bottom
right).
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Figure A.16: Sequence of Dn/2,n plotted against n for n ∈ {25000, 50000, · · · 500000}. The D
are calculated from the total number of mutations in the following intervals, 3.0 ≤ m ≤ 3.5
(top left) and 3.5 ≤ m ≤ 4.0 (top right) 4.0 ≤ m ≤ 4.5 (bottom left), 4.5 ≤ m ≤ 5.0 (bottom
right).



155

Figure A.17: Sequence of Dn/2,n plotted against n for n ∈ {25000, 50000, · · · 500000}. The D
are calculated from the total number of mutations in the following intervals, 5.0 ≤ m ≤ 5.5
(left), 5.5 ≤ m ≤ 6.0 (right).

Figure A.18: Geweke scores for iterations 150,000 to 250,000 (left) and for iterations 200,000
to 300,000 (right). Each point is the Geweke score comparing the first 10% of the subchain
to the last 50% of the subchain. The score is plotted against the first iteration used in the
subchain.
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A.2.3 Case 2

In Case 2 of the large gamma-profile mutation test cases, the shape parameters for the
mutation profiles range from 1.0 to 5.5. This is the second shortest range of shape parameters
tested (the shortest being Case 4). This case also has the highest mutation rate.

Figure A.19 shows the Geweke scores for 20 subchains. The plot on the left uses the first
50,000 iterations while the plot on the right uses the first 100,000 iterations. The scores for
both plots are with ±2, indicating a failure to show lack of convergence.

Figure A.19: Geweke scores for the first 50,000 iterations (left) and the first 100,000 iterations
(right) of the MTM output for Case 2. Each point is the Geweke score comparing the first
10% of the subchain to the last 50% of the subchain. The score is plotted against the first
iteration used in the subchain.

Figure A.20 shows the total number of mutations per genotype plotted against iteration
number. The plot on the left shows the first 100,000 iterations and the plot on the right
shows the first 500,000 iterations of the chain. The chain was started in the null genotype.
As with the previous case, the total number of mutations per genotype rapid increases from
0 (the starting state) to the range 120 to 160 mutations. In this case, the chain first reaches
120 mutations on iteration 1233. From the plot on the right it is clear that the chain
primarily explores genotypes with 120-160 mutations, making brief excursions to genotypes
with significantly fewer (∼100) or significantly more (∼180) mutations. The horizontal line
in the plot on the right is the empirical mean number of mutations per genotype calculated
using all 500,000 iterations.

Figure A.21 shows the autocorrelation of the MTM output for Case 2 after discarding
the first 10,000 iterations. The output for Case 2 is significantly less autocorrelated than the
output for Case 3. For example, the correlation is less than 0.25 for lags larger than about
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Figure A.20: Total number of mutations per genotype plotted against iteration number.

1,000 iterations for Case 2 whereas in Case 3 the autocorrelation is above 0.5 for lags of up
to 5,000 iterations.

Figure A.22 shows the CUSUM plots for the first 50,000 iterations (left) and the first
100,000 iterations (right), discarding the first 10,000 iterations as burn-in. As with Case
3, the CUSUM plots show that the chain is making very long excursions away from the
empirically determined mean. However, the excursions in this case appear to be of a shorter
duration than in either Case 1 or Case 3.

Figure A.23 shows the sequence of Dn/2,n plotted against n for n ∈ {25000, 50000, · · ·
500000}. Again, the sequence of D statistics do not approach 0.5. The D statistics are
fairly flat around n = 300,000 but then consistently increase starting around n = 400, 000.
Figures A.24-A.26 show the D statistics for the total number of mutations within a given
range of shape parameters. In almost all of these plots, the D statistics appear to be within
15% of one another for large values of n. Again, these plots suggest that burn-in periods of
150,000 to 200,000 may be appropriate.

Table A.3 shows the results of applying the Raftery-Lewis diagnostic to the first 50,000
iterations (left hand side of the table) and to the first 100,000 iterations (right hand side of
the table). In all cases, r = 0.05 and s = 0.95. The quantiles 0.1 to 0.9 in steps of size 0.1
were all tested. The Raftery-Lewis estimates for the burn-in and thinning parameter were
larger when using 100,000 iterations. As a result, the estimate for the number of additional
iterations needed was also longer when using 100,000 iterations rather than 50,000 iterations.
The longest estimated burn-in period was just under 1700 iterations and the longest run for
additional iterations was just under 150,000.

Finally, Figure A.27 shows the Geweke scores for iterations 150,000 to 250,000 (left)
and for iterations 200,000 to 300,000 (right). Both plots fail to show a lack of convergence
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Figure A.21: Autocorrelation of the MTM output for Case 2 after discarding the first 10,000
iterations.

Figure A.22: CUSUM plot for the first 50,000 iterations (left) and first 100,000 iterations
(right).
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Figure A.23: Sequence of Dn/2,n plotted against n for n ∈ {25000, 50000, · · · 500000}.

Table A.3: Results from applying the Raftery-Lewis diagnostic to the first 50,000 iterations
(left hand side) and 100,000 iterations (right hand side) of the MTM output for Case 2.
Detailed descriptions of the parameters can be found in §A.1.4. In all cases r = 0.05
and s = 0.95; q is the quantile to be estimated, k is the thinning factor required for an
independence chain, M in the length of the burn-in period and N is the number of additional
iterations needed after the burn-in.

50k Iterations 100k Iterations
q k M N q k M N

0.1 479 1332 53983 0.1 546 1674 72261
0.2 407 1209 91962 0.2 557 1596 115836
0.3 497 1134 116298 0.3 587 1513 149609
0.4 380 1105 122395 0.4 392 1275 148125
0.5 344 936 111345 0.5 459 1197 145908
0.6 302 918 100764 0.6 457 1280 147360
0.7 325 960 90560 0.7 409 1330 129010
0.8 325 1080 65438 0.8 378 1078 70609
0.9 274 780 29991 0.9 323 960 31860
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Figure A.24: Sequence of Dn/2,n plotted against n for n ∈ {25000, 50000, · · · 500000}. The D
are calculated from the total number of mutations in the following intervals, 1.0 ≤ m ≤ 1.5
(top left), 1.5 ≤ m ≤ 2.0 (top right), 2.0 ≤ m ≤ 2.5 (bottom left), 2.5 ≤ m ≤ 3.0 (bottom
right).
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Figure A.25: Sequence of Dn/2,n plotted against n for n ∈ {25000, 50000, · · · 500000}. The D
are calculated from the total number of mutations in the following intervals, 3.0 ≤ m ≤ 3.5
(top left), 3.5 ≤ m ≤ 4.0 (top right), 4.0 ≤ m ≤ 4.5 (bottom left) and 4.5 ≤ m ≤ 5.0
(bottom right).
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Figure A.26: Sequence of Dn/2,n plotted against n for n ∈ {25000, 50000, · · · 500000}. The
D are calculated from the total number of mutations in the interval 5.0 ≤ m ≤ 5.5 (bottom
row).

Figure A.27: Geweke scores for iterations 150,000 to 250,000 (left) and for iterations 200,000
to 300,000 (right). Each point is the Geweke score comparing the first 10% of the subchain
to the last 50% of the subchain. The score is plotted against the first iteration used in the
subchain.
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over these iterations. From the above analysis we conclude that a burn-in period of 150,000
iterations should be sufficient and we should collect at least 250,000 samples.
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A.2.4 Case 4

Finally we consider Case 4, in which the mutation space consists of 1000 gamma profile
mutations with shape parameters ranging from 1.0 to 5.0. This case has the shortest range
of shape parameters and also one of the lowest mutation rates.

Figure A.28 shows the Geweke scores for 20 subchains. The plot on the left uses the
first 50,000 iterations while the plot on the right uses the first 100,000 iterations. In both
plots, all scores lie well within the range ±2, suggesting that the chain fails to show a lack
of convergence.

Figure A.28: Geweke scores for the first 50,000 iterations (left) and the first 100,000 iterations
(right) of the MTM output for Case 4. Each point is the Geweke score comparing the first
10% of the subchain to the last 50% of the subchain. The score is plotted against the first
iteration used in the subchain.

Figure A.29 shows the total number of mutations per genotype plotted against iteration
number. The plot on the left shows the first 100,000 iterations and the plot on the right
shows the first 500,000 iterations of the chain. The chain was started in the null genotype. As
with the other cases, the chain rapid moves from genotypes with no mutations to genotypes
with 50-80 mutations. The chain first hits a genotype with 60 mutations at iteration 1864.
The plot on the right shows that the chain primarily stays in the region of genotypes with
roughly 45-80 mutations, although it periodically explores genotypes with more than 80 or
fewer than 40 mutations.

Figure A.30 shows the autocorrelation in the output of the MTM algorithm for Case 4
after discarding the first 10,000 iterations as the burn-in period. The output for this chain
shows the least autocorrelation of any of the cases considered so far.

Figure A.31 shows the CUSUM plots for the first 50,000 iterations (left) and the first
100,000 iterations (right), discarding the first 10,000 iterations as burn-in. As with the other
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Figure A.29: Total number of mutations per genotype plotted against iteration number.

Figure A.30: Autocorrelation of the MTM output for Case 4 after discarding the first 10,000
iterations.
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cases, the CUSUM plots show that the chain is making very long excursions away from the
empirically determined mean. The excursions in this case appear to be on par with those of
Case 2 and are generally shorter than those of Cases 1 and 3.

Figure A.31: CUSUM plot for the first 50,000 iterations (left) and first 100,000 iterations
(right).

Figure A.32 shows the sequence of Dn/2,n plotted against n for n ∈ {25000, 50000, · · ·
500000}. The D statistics are fairly flat starting around n = 200,000, with an absolute dif-
ference between the largest D and the smallest D in that range of 0.00065. This corresponds
to a relative difference of about 4% (relative to the smallest D statistic for n ≥ 200, 000).
Figures A.33 and A.34 show the D statistics for the total number of mutations within a
given range of shape parameters. In almost all of these plots, the D statistics appear to be
within 10% of one another for large values of n. These plots suggest that a burn-in period
of 150,000 iterations may be appropriate.

Table A.4 shows the results of applying the Raftery-Lewis diagnostic to the first 50,000
iterations (left hand side of the table) and to the first 100,000 iterations (right hand side
of the table). In all cases, r = 0.05 and s = 0.95. The quantiles 0.1 to 0.9 in steps of size
0.1 were all tested. The Raftery-Lewis estimates for the burn-in and thinning parameter
were fairly consistent for most quantiles when using either 50,000 or 100,000 iterations.
The longest estimated burn-in period was just over 1100 iterations and the longest run for
additional iterations was just under 125,000.

Finally, Figure A.35 shows the Geweke scores for iterations 150,000 to 250,000 (left)
and for iterations 200,000 to 300,000 (right). Both plots fail to show a lack of convergence
over these iterations. From the above analysis we conclude that a burn-in period of 150,000
iterations should be sufficient and we should collect at least 200,000 samples.
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Figure A.32: Sequence of Dn/2,n plotted against n for n ∈ {25000, 50000, · · · 500000}.

Table A.4: Results from applying the Raftery-Lewis diagnostic to the first 50,000 iterations
(left hand side) and 100,000 iterations (right hand side) of the MTM output for Case 4.
Detailed descriptions of the parameters can be found in §A.1.4. In all cases r = 0.05
and s = 0.95; q is the quantile to be estimated, k is the thinning factor required for an
independence chain, M in the length of the burn-in period and N is the number of additional
iterations needed after the burn-in.

50k Iterations 100k Iterations
q k M N q k M N

0.1 265 589 24304 0.1 272 602 29541
0.2 241 1000 80250 0.2 311 845 64155
0.3 258 816 80631 0.3 309 966 93564
0.4 285 880 101200 0.4 311 897 103638
0.5 328 1008 123792 0.5 329 966 114471
0.6 353 945 102935 0.6 378 1120 131520
0.7 351 1160 108286 0.7 400 1122 105666
0.8 300 864 58800 0.8 328 910 63140
0.9 181 621 21816 0.9 269 935 32890
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Figure A.33: Sequence of Dn/2,n plotted against n for n ∈ {25000, 50000, · · · 500000}. The D
are calculated from the total number of mutations in the following intervals, 1.0 ≤ m ≤ 1.5
(top left), 1.5 ≤ m ≤ 2.0 (top right), 2.0 ≤ m ≤ 2.5 (bottom left), 2.5 ≤ m ≤ 3.0 (bottom
right).
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Figure A.34: Sequence of Dn/2,n plotted against n for n ∈ {25000, 50000, · · · 500000}. The D
are calculated from the total number of mutations in the following intervals, 3.0 ≤ m ≤ 3.5
(top left) and 3.5 ≤ m ≤ 4.0 (top right). 4.0 ≤ m ≤ 4.5 (bottom left), 4.5 ≤ m ≤ 5.0
(bottom right).
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Figure A.35: Geweke scores for iterations 150,000 to 250,000 (left) and for iterations 200,000
to 300,000 (right). Each point is the Geweke score comparing the first 10% of the subchain
to the last 50% of the subchain. The score is plotted against the first iteration used in the
subchain.

A.3 Additional Iterations

Of course, all diagnostic tests for MCMC should be taken with a grain of salt. The burn-in
periods and sample sizes discussed in the previous sections are, while guided by the diagnostic
tools, somewhat arbitrary. There always remains the question of whether or not additional
iterations may substantially change the outcome. In this work in particular, where the chain
crawls over the space of ordered genotypes, there are so many highly unlikely orderings of a
genotype that we do not expect the chain to fully explore the space the genotypes. However,
we do want to have some faith that the chain has discovered the region of the space of
ordered genotypes which is most likely and that it has not gotten stuck in local maximums.

One method that we can employ is to let the chain run for much longer. We will briefly
discuss the effects of additional iterations on two cases, Case 1 and Case 3. We begin with
Case 3. Figure A.36 shows several histograms for Case 3. In all four histograms the first
250,000 iterations were discarded as the burn-in. The plot on the top left shows the histogram
computed using 750,000 samples; the top right uses 1.25 million samples; the bottom left
uses 1.75 million samples and the bottom right, reproduced from §4.1 uses 2.25 million
samples. The histograms generated with additional samples are certainly smoother than the
histogram with only 750,000 samples. Despite this, the means and variances estimated from
the four cases are reasonably similar, with the main difference being a general reduction in
variance. Means and variances corresponding to the four histograms are listed in Table A.5.

Case 3, of course, is one of the more difficult cases we consider and appears to require
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Figure A.36: Histograms for Case 3. In all four plots the burn-in period is 250,000 iterations.
The plot on the top left uses 750,000 samples, the plot on the top right is generated from
1.25 million samples, the plot on the bottom left uses 1.75 million samples and the plot on
the bottom uses 2.25 million samples.
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many more iterations than Cases 1, 2 or 4. As a result, we will now consider the effect of
additional iterations on Case 1. The results shown here are also more typical of Cases 2
and 4. Figure A.37 shows several histograms for Case 1. All three histograms discard the
first 150,000 iterations as the burn-in. The plot on the top left in generated using 150,000
samples, the plot on the top right uses 350,000 samples and the plot on the bottom uses
750,000 samples. Again, while the histogram generated with the most samples is certainly
smoother than the other two histograms, the three histograms are not terribly different.
The means for the number of mutations per genotype are also reasonably close for all three
sample sizes, as seen in Table A.6. For example, using 750,000 samples, the mean number
of mutations per genotype is 166.35 and the variance in the number is 193.22. With only
350,000 samples, the mean number of mutations per genotype is 166.6 but the variance is
larger, 214.9. In general, running the chain for longer reduces variance but does not radically
change the means.

Table A.6: Estimated mean and variance for Case 1 using 350,000 samples, 750,000 samples,
and 1 million samples.

350,000 Samples 750,000 Samples 1,000,000 Samples
Mean Variance Mean Variance Mean Variance

1.0 ≤ m ≤ ξ 166.598 214.889 166.354 193.224 166.334 190.679

1.0 ≤ m ≤ 1.5 0.959089 1.09235 0.934101 1.01544 0.942218 1.02505
1.5 < m ≤ 2.0 1.50962 1.54981 1.48184 1.52674 1.51251 1.59733
2.0 < m ≤ 2.5 2.44802 2.43936 2.43595 2.57175 2.40218 2.53109
2.5 < m ≤ 3.0 3.91711 4.67557 3.93335 4.16092 3.92265 3.98447
3.0 < m ≤ 3.5 6.42722 7.20124 6.40836 6.88547 6.32708 6.94444
3.5 < m ≤ 4.0 10.0595 10.8118 10.2112 11.2320 10.2278 11.0687
4.0 < m ≤ 4.5 16.9484 18.8845 16.9794 18.5256 16.9770 17.9433
4.5 < m ≤ 5.0 27.0122 26.0140 26.9847 26.5366 27.0789 27.1953
5.0 < m ≤ 5.5 41.3653 46.2364 41.3794 45.4949 41.3440 45.5066
5.5 < m ≤ 6.0 55.9517 67.8250 55.6058 64.0315 55.5995 64.2969
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Figure A.37: Histograms for Case 1. In all three plots the burn-in period is 150,000 iterations.
The plot on the top left uses 350,000 samples, the plot on the top right is generated from
750,000 samples, the plot on the bottom left uses 1 million samples.
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Appendix B

Deletion Probability for the
Multiple-Try Metropolis Algorithm

To determine a reasonable value for DelP, the probability that a chosen mutation is
deleted (the chosen mutation changes type with probability 1 - DelP), we ran the following
eight trials. For each of these trials, labeled 1-8, the mutation space contained 1000 gamma
mutation profiles with the same rate parameter of 0.05 and shape parameters ranging from
1.0 to 5.0. In each trial the chain was run with a burn-in period of 50,000 steps and an
additional 100,000 steps were collected as samples. The deletion probabilities tested were
0.125 (Trial 1), 0.25 (Trial 2), 0.375 (Trial 3), 0.5 (Trial 4), 0.625 (Trial 5), 0.75 (Trial 6),
0.875 (Trial 7) and 1.0 (Trial 8). All other parameters for the eight test cases were the same
and can be found in Table B.1. The fertility rate, determined by the short-cut algorithm for
the ESW free recombination model, was 0.069345238.

The histograms for the total number of mutations for Trials 1-8 are shown in Figures B.1
and B.2. All eight trials produced histograms with the total number of mutations ranging
from around 40 mutations per genotype to around 90. The average number of mutations
per genotype for the eight trials were also similar: 61.7 mutations for Trial 1, 63.8 for Trial
2, 60.7 for Trial 3, 60.9 for Trial 4, 61.7 for Trial 5, 60.9 for Trial 6, 62.9 for Trial 7 and
61.1 for Trial 8. However, while the histograms for the eight trials are generally similar, the
acceptance rates for proposed steps were not. Shown in Table B.2, the acceptance rates were
highest in the first two trials (about 56% for Trial 1 and 48% for Trial 2) and lowest for the
last trial (6% for Trial 8).

Because a high acceptance rate means we move around the genotype space more fre-
quently, we ideally would like to choose a value for DelP that produces a high acceptance
rate. For the eight trials considered here, smaller values for DelP produced higher accep-
tance rates than values near 1.0. However, small values for DelP also mean that proposed
genotypes will infrequently have fewer mutations than the current genotype. Because we
start the Markov chain in the null genotype, having a small value for DelP is initially useful.
In that case, proposed genotypes will generally contain at least as many mutations as the
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current genotype, allowing the chain to move more quickly to genotypes with many muta-
tions. However, a small value for DelP may be less useful once the chain nears genotypes
that are highly likely. As a result we have chosen to use either DelP = 0.375 or DelP = 0.5
for all of the large mutation space tests.

Table B.1: Parameters for the eight test cases with 1000 gamma profile mutations with shape
parameters from 1.0 to 5.0 (inclusive).

All Tests η λ α β Dx ν(M) Gamma rate ξ
0.1 0.05 15 50 0.5 0.12 0.05 5

Trial Kmax DelP Burn Samples
1 5 0.125 50000 100000
2 5 0.25 50000 100000
3 5 0.375 50000 100000
4 5 0.5 50000 100000
5 5 0.625 50000 100000
6 5 0.75 50000 100000
7 5 0.875 50000 100000
8 5 1.0 50000 100000

Table B.2: Output from the MTM algorithm for the eight test cases with 1000 gamma profile
mutations with shape parameters from 1.0 to 5.0 (inclusive).

Trial DelP Acceptance Ratio
1 0.125 0.56530
2 0.25 0.48007
3 0.375 0.38214
4 0.5 0.29093
5 0.625 0.21528
6 0.75 0.15113
7 0.875 0.10173
8 1.0 0.06407
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Figure B.1: Histograms for the total number of mutations per genotype for the test cases
with 1000 gamma profile mutations with shape parameters from 1.0 to 5.0. The top rows
shows the histograms for Trial 1 (DelP = 0.125), left, and Trial 2 (DelP = 0.25), right. The
bottom row displays the histograms for Trial 3 (DelP = 0.375), left, and Trial 4 (DelP =
0.5), right.
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Figure B.2: Histograms for the total number of mutations per genotype for the test cases
with 1000 gamma profile mutations with shape parameters from 1.0 to 5.0. The top rows
shows the histograms for Trial 1 (DelP = 0.625), left, and Trial 2 (DelP = 0.75), right. The
bottom row displays the histograms for Trial 3 (DelP = 0.875), left, and Trial 4 (DelP =
1.0), right.
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Appendix C

The Nature of ρ in the ESW Free
Recombination Model

C.1 Exponential Behavior

Recall that the solution to the ESW free recombination model is a Poisson random measure
with intensity measure ρ. This means that for mutation type m ∈M, the number of copies
of m in a genotype will be Poisson distributed with mean ρ(m). As mentioned in §4.1.2, the
intensity measure ρ appears to be approximately exponential for cases with large mutation
spaces where mutations have gamma profiles. In particular, we are referring to Cases 1-4,
in which the mutation space contains 1000 gamma profile mutations with the same gamma
rate parameter of 0.05 but different gamma shape parameters. The shape parameters range
from 1.0 to ξ, inclusive, where ξ is between 5.0 and 7.0.

To verify that the intensity measures for these four cases are approximately exponential,
each intensity measure was fitted with an exponential curve. This was accomplished using
the python package scikits.statsmodels [29] to fit the linear model

log(ρ) = αShape Parameter + β

using OLS. The coefficients α and β from the fitted curves are shown in Table C.1. Fig-
ure C.1 shows the intensity measure ρ from the free recombination model and the exponential
approximation for the four cases. In all four cases the intensity measure is larger than the
approximation for both small values (near 1) and large values (near ξ) of the shape parameter
but is smaller than the approximation for middle values of the shape parameter. Here, the
terms “large” and “middle” are relative to ξ, the maximum shape parameter for the case.

The plots of absolute and relative difference between ρ and its exponential approximation
for all four cases can be found in Figures C.2 and C.3, respectively. In all four cases the largest
absolute difference occurs near the top of the range of possible shape parameters for the case.
As a particular example, consider Case 3, where the largest possible shape parameter is 7.0.
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In Case 3, the absolute difference between ρ and its exponential approximation is small (at
most 0.07) for shape parameters smaller than 5.5. For shape parameters ranging from 6.0 to
7.0, the absolute difference grows from 0.17 to 4.4. The relative difference, however, is large
(between 0.2 and 0.3) for both small shape parameters (1.0-1.3) and large shape parameters
(between 6.7 and 7.0). The same general pattern is displayed in the other cases as well. For
example, consider Case 4, where the largest possible shape parameter is 5.0. In Case 4, the
absolute difference is small (less than 0.008) for shape parameters less than 4.4 but grows
from 0.02 when the shape parameter is 4.6 to 0.07 when the shape parameter is 5.0. The
relative difference is largest (between 0.1 and 0.15) for shape parameters in the range 1.0 to
1.25 and 4.75 to 5.0.

Table C.1: Coefficients determined using scikits.statsmodels.OLS to fit the model log(ρ) =
αShape Parameter + β.

Case ξ Number of observations Coefficients
1 6.0 1000 α 1.37664

β -7.07234
2 5.5 1000 α 1.36028

β -6.86402
3 7.0 1000 α 1.41517

β -7.47105
4 5.0 1000 α 1.26068

β -7.14568

C.2 Unraveling

It is natural to wonder if the approximately exponential behavior observed in the intensity
function ρ for large mutation spaces with gamma profile mutations is also observed with dif-
ferent types of mutation profiles. Large spaces of point-mass profile mutations are not a good
candidate because they can lead to an unraveling of the solution to the free recombination
model. Unraveling occurs when mutations that have only very late-acting effects build up
over time due to the low selective pressure against them. With the number of such mutations
tending to infinity, hazard rates spike at the oldest ages, producing a Wall of Death, that
is, an age after which no one survives. The Wall of Death at a late age leads to a reduction
in selective pressure against mutations with infinitesimally younger late-age effects. This
reduction in selective pressure, in turn, allows infinitesimally younger late-age mutations to
accumulative, producing a spike in hazard rates at this infinitesimally younger old-age. With
a Wall of Death at an infinitesimally younger age, selective pressure is reduced for mutations
with slightly younger age effects. And so on. This process can continue until the Wall of
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Death reaches the age of maturity. In this case lifespan approaches what Tuljapurkar [31]
calls the “salmon limit”: an individual grows to maturity, reproduces and instantly dies.
Wachter, Evans and Steinsaltz discuss this phenomenon in more detail in [35]. In particular,
they show that unraveling occurs when the mutation space consists of point-mass profiles
with ages of onset m at all reproductive ages, M = [α,∞] for any constant mutation rate
ν. However, this also holds when fertility is constant over a finite range of ages, α to β.

C.3 Sigmoid Behavior

A candidate suggested by Wachter, Evans and Steinsaltz [35] is the modified point-mass
profile. With a modified point-mass profile, each mutation has a small initial cost. The
mutation profile is modeled as a double step function, with a step of size δ at the age of
maturity α, and a second step of size 1−δ at age m, the age of onset. The test case considered
here is a mutation space with 351 modified point-mass profiles was ages of onset ranging
from α = 15 to β = 50 in step sizes of 0.1 years. The background hazard rate for this test
was set to the standard 0.05 and the size of the mutation effect was 0.1. The parameter δ
was 0.001.

Figure C.4 (left) shows ρ (solid line) for the modified point-mass profile case. Unlike the
cases with gamma profile mutations, ρ in this case does not exponentially increase. Rather,
it follows a sigmoid curve: the intensity function is fairly flat, ρ ≈ 0, until around age 35,
then it rapidly increases to ρ ≈ 4.8 by age 40 and remains fairly constant at 4.8 for ages of
onset above 40. The intensity measure was fitted by the curve

ρ̂(m) =
k

1 + exp(−t0m− t1)

using curve fit from scipy.optimize. The algorithm was not seeded with initial values for
the parameters. The coefficients returned by the curve fit function were k = 4.85527, t0 =
2.88929 and t1 = −109.039. The approximation using these coefficients is plotted with a
dotted line. In general the approximation is quite close to the actual intensity ρ, although
the intensity function is slightly larger and increases more gradually than the approximation
over the ages 30 to 35. This observation is verified by considering the absolute difference
between ρ and its sigmoid approximation, shown in Figure C.4, right.
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Figure C.1: Intensity measure ρ (solid line) and the exponential approximation to ρ (dotted
line) for the free recombination model in Case 1 (top left), Case 2 (top right), Case 3
(bottom left) and Case 4 (bottom right). The intensity measure for each case was fitted
with an exponential curve whose parameters are listed in Table C.1.



183

Figure C.2: Absolute difference between the intensity measure ρ and the exponential ap-
proximation to ρ for the free recombination model in Case 1 (top left), Case 2 (top right),
Case 3 (bottom left) and Case 4 (bottom right). The intensity measure for each case was
fitted with an exponential curve whose parameters are listed in Table C.1.



184

Figure C.3: Relative difference between the intensity measure ρ and the exponential approx-
imation to ρ for the free recombination model in Case 1 (top left), Case 2 (top right), Case
3 (bottom left) and Case 4 (bottom right). The intensity measure for each case was fitted
with an exponential curve whose parameters are listed in Table C.1.
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Figure C.4: The plot on the left shows the intensity measure ρ (solid line) and the sigmoid
approximation to ρ (dotted line) for the free recombination model with modified point-
mass profiles. The plot on the right shows the absolute difference between the ρ and the
approximation.




