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Machine learning pattern recognition algorithms
with application to coherent laser combination

Dan Wang, Qiang Du, Tong Zhou, Antonio Gilardi, Mariam Kiran, Bashir Mohammed, Derun Li, Russell
Wilcox

Abstract—Coherent beam combined (CBC) lasers require feed-
back stabilization of many optical phases, which can be accom-
plished using machine learning (ML) to recognize phase errors
from characteristic interference patterns. Several ML algorithms
have been developed as deterministic and fast feedback methods
to control CBC lasers. However, learning is difficult when the
initially unstabilized phases are constantly drifting. Here, we
introduce a novel and general solution to the problem of teaching
an ML model to recognize patterns and derive error information
from an unstable system, and apply it to spatial and temporal
coherent optical combinations. This scheme also provides for
learning during operation in order to track changes. Instead of
learning absolute values of observation and action in phase space,
the ML model learns differential values quickly while the phases
drift. Simulations of feedback stabilization demonstrate this new
learning method works for both diffractive spatial combining
and temporal stacking, and scales to 81-beam spatial combining
while maintaining high stability and efficiency.

Index Terms—Machine Learning, Photonic Signal Processing,
Pattern Recognition, Neural Network, Phase Drift, Coherent
Beam Combination, Control

I. INTRODUCTION

Coherent beam combining (CBC) is a promising technique
for laser power scaling, and is key to a broad range of
applications [1], [2], [3]. Laser energy can be combined in
different ways, including temporal pulse stacking [4] and
spatial beam addition using schemes such as binary tree [5],
tiled aperture, and filled aperture diffractive combining [6],
[7], [8]. In all cases, it is imperative that the coherence of
the whole beam array be maintained against environmental
perturbations using an active stabilization controller [9], [10],
[11]. Often, there are challenges to identify errors and build a
deterministic error detector.

Control challenges in complex CBC lasers include large
dimensionality in the control parameters. For example in
a two-dimensional, NxM beam combination system with a
diffractive optical element [8], [12], the number of input phase
control variables is NxM, and the output/observable variables
include (2N-1)x(2M-1) beams in an interference pattern.
Optical coherence stabilization requires fast control to sup-
press noise from the environment with high bandwidth [12].
Also, measurement of laser intensity loses phase information
when using an optical power measurement from cameras or
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photodiodes, thus phase information must be retrieved with
an iterative process and this tends to be slow [13]. Another
consequence of measuring optical power is that there might be
nonlinear response and non-unique input conditions for each
output pattern, making model-based active control difficult.

Stochastic parallel gradient descent (SPGD) is a general
and commonly used solution for CBC lasers control, which
uses a simple, single detector [10], [7]. SPGD finds phase
errors by dithering the input phases and measuring combined
beam power to search for the right direction to move in
phase space. The number of correction steps SPGD takes to
converge is approximately ten times the number of combined
beams [11], which slows down when scaling to many beams.
Most importantly, SPGD introduces noise in the output power
by its need for dithering and searching, adding noise to
operational systems [12].

Machine learning control (MLC) is a promising technique
to provide the controls needed for complex systems [14]. MLC
solves optimization control problems using machine learning
(ML) methods. It takes advantage of both the data-driven
field of ML and well-developed methods from control theory,
and has already led to many exciting ideas and innovative
applications in complex nonlinear systems [15], [16], [17].
Some preliminary results have indicated the value of MLC in
complex CBC lasers. For the unsupervised approach, a deep
reinforcement-learning (RL) controller has shown promising
capabilities when applied to 2-beam spatial combination [18],
with more beams combined in simulations [19]. A new algo-
rithm combined RL with SPGD to demonstrate robust control
in simulations with 128 beams in temporal combination [20].
With an RL controller, 100 beams have been spatially com-
bined in a simplified experimental setup, using two spatial-
light-modulators [21]. For supervised MLC, our previous
work solved the problem of non-uniqueness of patterns, and
showed that a simple, fully-connected neural network (NN)
can be trained to combine 81 beams using interference pat-
tern recognition in simulations [22]. However, while there is
progress with MLC in CBC lasers, there are also significant
challenges.

The lack of labelled data for training prevents pattern recog-
nizing MLC from being applied to real systems [22]. Because
most coherent combination systems depend on uncontrolled
parameters which slowly drift [23], a machine trained to
control the system in one state of key parameters may not be
able to control the system if those parameters change. There
is also the problem of training the machine initially: if the
system is not stable, then the absolute value of the input and
output is always unknown due to random perturbations from



the environment, and it will drift away with time. How can
we label the inputs and outputs for the ML model to learn?

In this paper, we solve these problems by training the
machine using pairs of measurements separated by a known
step change of input phase, performed quickly enough so
that random drift is small by comparison. We call this the
“deterministic differential remapping method (DDRM)”. We
show that this general approach can be used to control coherent
beam combination by recognizing interference patterns and
adjusting optical phases, providing robust and low-noise sta-
bilization of the output beam power. DDRM in pattern recog-
nition enables machine learning models to learn on unstable
systems as a general approach in different applications.

The approach presented in this paper is a general solution
for machine learning controls in CBC lasers, and it has
been experimentally demonstrated specifically in a diffractive
spatial combining system, with less than one percent stabil-
ity [24], [25]. This paper explores the details of this approach
in simulations, as well as demonstrating generalization to
different CBC lasers with different learned patterns.

We first show how phase drift causes failure to label patterns
in Sec. II. We then introduce the deterministic differential
remapping method (DDRM) in Sec. III, which addresses
the problem of making the neural network (NN) approach
robust against system drift. Sec. IV presents a general way to
implement DDRM in a feedback loop, and also an incremental
learning process based on DDRM. Sec. V introduces the
sampling method to obtain the NN training dataset. Sec. VI
shows the performance of DDRM NN-based feedback, both
on a 9-pulse, 4-cavity temporal pulse stacker [4], and an 8-
way, 2D diffractive combiner [8], [12], where we analyze the
combining efficiency and stability of the scheme. Sec. VII
shows an example of how this approach is applied to a
large-scale case of 9 x 9, 81-beam 2D diffractive combing
in simulation.

II. PATTERN RECOGNITION IN CBC AND ITS
CHALLENGES FROM PHASE DRIFT

Coherent beam combiners can serve as mapping functions
from laser beam phase space to an interference pattern in-
tensity space. Here we assume we only have photodiodes to
measure the pulse intensity in temporal stacking, and only a
camera to look at the interference patterns in diffractive spatial
combining. Those sensors are easily implemented in optical
setups, while providing incomplete measurements that lose the
output phase information.

The pattern recognition process used for control is the
reverse of the combining process, in that we need to recognize
the control variable of input beam phases based on inten-
sity patterns. We have shown that deterministic stabilization
can be achieved by pattern recognition after characterizing
the transmission function of the combiner optic. A two-
dimensional beam array has been experimentally combined
with high efficiency, utilizing a physical model of the system,
including 8 beams in an 3 x 3 array [12], and 81 beams in
an 9 x 9 array [26]. Alternatively, it is desirable to implement
a controller without having knowledge of the combiner itself.

A machine learning controller has proven to be an effective
solution where the mapping information can be learned from
experimental data. It was shown that a simple, fully connected
neural network (NN) can be trained to combine 81 beams [22]
from diffractive pattern recognition. We have also shown pre-
viously in coherent spatial beam combining that the problems
of non-uniqueness of the output state and large numbers of
dimensions associated with increased beam number can be
mitigated by training only on data from a limited range of
phase space [22].

There are other problems with the simplified approach
outlined above. One is that we need to train the NN on a
drifting system. If the system could be completely trained
before any significant drift, that would work, but with the
current sample rate ( 1kHz) this is not possible. Several
thousand samples are required and with a sample time of 1ms
this requires several seconds, during which time the drift will
be unacceptable [23].

Figure 1 shows the large error from accumulated phase drift
if we try to label the absolute value of phase during pattern
recognition (Fig. 1a). One thousand samples exhibit a large
random phase drift value from the original setting, thus the
real absolute value of phases is unknown. In contrast, we see
a relatively small error from drift when we only label adjacent
samples (Fig. 1b), which is the basis of our Deterministic
Differential Remapping Method (DDRM) as discussed below.
For a realistic case, phase drift is only a few degrees during
millisecond sample delay [24].

The other problem is that parameters not controlled by the
phase actuator (such as relative beam power) change during
long term operation and cause the phase/pattern correlations
to change. Similar to phase drift, error from uncontrolled
parameters is also small when we only label adjacent patterns
during a short sample delay.

III. THE DETERMINISTIC DIFFERENTIAL REMAPPING
METHOD (DDRM) FOR PATTERN RECOGNITION

Here we present the machine learning approach of Deter-
ministic Differential Remapping Method (DDRM), which ad-
dresses above challenge of phase drift in pattern recognition. In
DDRM, instead of learning the absolute value of observation
and action, we let the ML controller learn differential values
in unstable systems. In this case we input a known action,
observing the result before and after. During feedback control,
we feed the ML a current measurement together with a target
pattern (with the highest combining efficiency), and the ML
predicts the action needed to move the system between the
two states in a deterministic way. In other words, we opted to
solve these problems by training the NN to correlate pattern
differences with phase differences, so that we can train on a
drifting system and then retrain during operation in order to
track changes. The NN becomes a device which learns which
differences in interference patterns are correlated with which
vectors in phase space (control variables’ space), so that given
an ideal pattern, it can find the error vector for feedback.

Fig. 2a shows the training process. Since the absolute beam
phase state is unknown due to drift, we can inject a known
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Fig. 1: example show large error from accumulated phase drift
(a) and relatively small error from drift rate (b)

phase dither and measure the diffraction patterns before and
after (pattern A and pattern B), with the time interval ¢
between 2 frames. Then we can build up a mapping between
the phase space and the pattern space using the correlated data
samples of [pattern A, phase dither, pattern B]. In the figure,

and are states in phase space, which correspond to
pattern A and pattern B in pattern space. They are the labelled
states for NN training. There is an error in the labelled phase
dither between A and B, @ drifts to state @ due to the
random drift rate within 2 samples. And the drift rate is small
as shown in Fig. 1b.

The dither vector is a random sample from an n-dimensional
space, with the RMS value of ogimer for a set of selected
samples. The vector is drawn from uniformly distributed
orthogonal matrices generated by the special orthogonal group
SO(n), which is widely used in many numerical applications
including Monte-Carlo methods for best sampling efficiency
in a high-dimensional data space. The generated vectors will
be statistically independent variables having zero mean and
equal variances. This is the same as is being used in Stochastic
Parallel Gradient Descent (SPGD) algorithms for CBC [11].

The unknown drift function is random and time varying,
which changes the absolute value of system phase contin-
uously. Here we are concerned about the drift rate as we
measure successive intensity patterns. The RMS value is o4ift
for a set of picked samples, which is fixed for a given system
and given sampling speed. For most cases, the drift rate
is small. For example, in the pulse stacking experiment we
control at 1.2 kHz, which corresponds to a feedback delay
less than 1 millisecond on a a field-programmable gate array
(FPGA). The drift rate is less than 40 mrad per cavity [27].
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(a) DDRM-based training. @ and in phase space correspond to
pattern A and pattern B in pattern space, which are learned states
by the NN. We label the phase distance between @ and as the
injected dither, which has an error from the random dither rate during
sampling delay, as the state @ drifts to state @
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(b) DDRM-based feedback, @ and @ in phase space correspond
to current pattern C and near-target pattern D’ in pattern space. The
distance/correction needed between those states can be predicted by
the trained NN with errors from prediction error. Correction is also
affected by the random drift rate, due to sampling/feedback delay as
state © drifts to state @
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Fig. 2: DDRM-based training and feedback. a: training the
NN with two patterns and a corresponding phase dither in
between. b: feedback by correcting a predicted phase error
between the current pattern and target pattern. The measured
intensity patterns on the right sides of the figures are associated
with the circled phase states shown at left.

In our 8-beam diffractive combining experiment, the feedback
delay is about 4 milliseconds when we operate the feedback
control on a CPU without hardware acceleration, and the
natural drift rate is 3.5 degrees [24]. In our simulations, we
can tune the value of the drift rate to explore the capability of
the algorithms.

Highly accurate prediction by the trained NN can be
achieved if the dither speed is much faster than the natural
drift rate, by reducing the sampling period € or increasing the
dithering amount, so that the drifting contribution can be made
negligible during training. Thus we require: Tgiter > Tarife for
the training dataset, i.e., the RMS dither amount o 1s larger
than the RMS value of unknown drift o g5 (¢). But ogimer can’t
go beyond the range of ([—7/2, w/2]) around the optimal state,
to avoid pattern ambiguity in the full 27 range [22].

In summary, in the training process, if the dither speed is
much faster than the drift rate, there are mappings between
phase space and pattern space: [pattern A, pattern B] to
[applied dither vector].

Fig. 2b shows the feedback process, where the trained



neural network predicts the distance vector in phase space
from any given pair of pattern space samples. For coher-
ent combining stabilization it is important to have the best
achievable combining efficiency, which corresponds to a target
diffraction pattern D. We find a target pattern (one with highest
combining efficiency) in the training dataset and use it as the
destination (an input to the neural network) together with a
measured current pattern C, which corresponds to an arbitrary
phase state @ Although @ may not have been seen in the
training dataset, the inference of the neural network acts as a
multidimensional interpolation to predict the distance vector
to the target state D from its experience of @ and , given
that the sampling grid is smaller than the discontinuity of the
multidimensional landscape. Because of the delay of feedback
€, the beam phase state may have drifted away from the phase
state © to @ by the time the feedback is applied, resulting
an inaccurate correction. This leads to a near-target pattern D’
instead of the exact target pattern D, due to errors from NN
predictions as well as random drift rate. These errors result
in combining efficiency instability. A larger feedback delay
leads to a larger instability and lower combining efficiency.
This is a common problem for all feedback control systems,
and can be mitigated by introducing a controller such as a
simple proportional—-integral-derivative (PID) controller [28]
or a Kalman filter [29], which is more tolerant to measurement
inaccuracy. Here in the simulations we simplified the feedback
delay, making it equal to the sampling time interval e, and
the PID controller is only proportional without integral and
derivative.

In summary, in the feedback process, the NN pattern
recognizer acts as a multidimensional phase detector and the
correction vector is predicted from a pair consisting of a target
pattern and a measured pattern. The combiner phase state
is stabilized close to optimal, a state which has the highest
combining efficiency seen from the training dataset.

IV. DDRM IN FEEDBACK LOOP AND INCREMENTAL
LEARNING

This DDRM method can be applied to any type of coherent
combining control, including temporal combining and spatial
combining, and can be extended to generic multi-in-multi-out
control feedback systems.

Fig. 3 shows how the DDRM algorithm-based neural-
network and iteration is implemented in a feedback loop, with
one whole cycle around the loop counting as one feedback
step. We take the in-time interference pattern together with
a target pattern (ideal pattern) as input into the trained NN.
The NN recognizes the phase error between the patterns, and
sends error signals to the PID controller which applies a phase
correction to bring the current pattern toward the target pattern.
The laser beams’ phase is then updated, and a new interference
pattern is generated and so on. Once the phase matrix is
close to the optimal point, the phase correction from the NN
recognition algorithm is always less than the prediction errors,
i.e., always keeping the optimal/stable state within a given
tolerance during the iterative process.

We now show that the training samples can be from the
recorded observation and action pair of any existing controller

that can roughly maintain the optimal combining state. Such
a controller can be a popular SPGD process [11], or the
neural network based controller itself, which in turn becomes
a continuous relearning process that can capture and track the
system variations as shown in Fig. 3.

For incremental learning, we keep the original trained NN
models and introduce new data from the feedback process.
As long as the phase correction signal is larger than the drift
rate, the data includes new information and can be used to
update the trained model and track changes in uncontrolled
parameters.

V. SAMPLING METHOD FOR DDRM TRAINING

As mentioned above, samples used to train the NN models
must be within ([—7/2,7/2]) around the optimal state, to
avoid pattern ambiguity. Also, the RMS dither ogjhey must
be much larger than the RMS drift rate ogif in order to
have high signal-to-noise labelled data for NN training. As
reported in Ref. [30], randomly chosen samples can be used
when drift is slow (drift rate ogi <6degree) as we start
from the optimal state. This selection criterion fails for fast
drift(ogife > 8 degree), as even for a small number of samples
the system drift would bring phase over the 7 range. Thus we
use a selected sampling method which only selects patterns
near optimal as samples to train the NN and rejects patterns
with low combining efficiency in order to avoid ambiguity. In
practice, closeness to an optimal state can be maintained and
samples can be selected while using an SPGD controller and
the incremental learning process as discussed above [24].

500 samples are used in the diffractive combining simula-
tion, with a system drift rate of 4 degree per sampling interval,
and the RMS dither amount ogjmer 0f 30 degree for the initial
exploration with selected samples. The RMS error between
the predicted phase and the known phase drops as we train the
NN as shown in Fig. 4a. We then take training data based on
the incremental learning process and plot the training curve
as shown in Fig. 4b, where new data is obtained from the
corrections against system drift and thus in a very limited
phase range. During incremental learning, new data updates
the trained NN model, thus producing a clear drop of the RMS
error.

The values of the RMS errors in Fig. 4 are not directly
relevant to the final combining efficiency and stability because
they come from the NN training process, which compares the
labelled data with the fitting data. Since our measured/labelled
phase neglects system drift while the real one includes system
drift, to really evaluate the prediction error of the NN model
during feedback we need to test the model with data with a
drift range as discussed in the following section.

VI. PERFORMANCE AND STABILITY ANALYSIS

We have simulated 3 types of NN that have been trained
in different applications; 3x3 diffractive combining, 9-beam
temporal stacking, and 9x9 diffractive combining. In each
case the NN differs, as well as different scanned parameters
including dither range and drift rate. For a given parameter-
set and a given case, the trained NN model can always be
reproduced by running the same simulation code.
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Data used for training is always generated from scratch
by running the simulation code based on the physics model
presented in Sec. VI-A for temporal stacking and in Sec. VI-B
for diffractive combining.

The outcomes of the training, testing and validation dif-
fer for different NN types, training methods and different
parameters used, although the convergence trends are all

similar as shown in Fig. 4. The drop of the RMS error
curves indicate success of training the NN model. Simulations
described below indicate that models with selected samples
and incremental learning can be successfully applied in a
general feedback loop.

As we focus more on performance when implementing the
trained NN in feedback control, we use the prediction error
to judge performance instead of the direct training curves
since the larger prediction error leads to poor stability in the
feedback control, as discussed in Sec. VI-C.

A. feedback in temporal stacking

The Gires-Tournois interferometer (GTI) based coherent
pulse stacking scheme stacks a series of phase-modulated
pulses into one, using a series of concatenated cavities [31].
Each cavity is comprised of one low-reflectivity input—output
mirror and other high-reflectivity mirrors to form a cavity with
a round-trip delay equal to the pulse interval (or a multiple
thereof), as shown in Fig. 5a. Characterizing each pulse by the
complex electric field amplitude, we write the i input pulse
as x; and the output pulse as y;. The jM G-T interferometer
cavity can be modeled as a linear, time-invariant (LTI) filter,
defined by:

(D

where ¢ indicates the pulse numbers (i = [1,2,...,9]) and j
indicate the cavity number (j = [1,2,3,4]). r is the mirror
e-field reflectivity, « is the amplitude loss per round-trip and
@cav 18 the optical round-trip phase [27]. The optical round-trip
phase determines whether the interference is constructive or
destructive. Simulation of cascaded 4 cavities with 9 pulses
is a 2 dimensional, fourth order LTI system. The intensity
I = |s(i,4)|? can be measured with a photodiode after each
cavity using leaky mirrors.

For the stacking simulations with 4 identical cascaded GTI
cavities, we are using parameters list in Ref. [32], with a

yi _ rae]¢cav.] . Yifl =rx; — ae]¢cav,] S X1
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Fig. 5: DDRM based feedback in temporal stacking

stacking sequence of 9 approximately equal-amplitude pulses.
The ideal stacked output intensity versus the input intensity
for our setup is shown in Fig. 5b.

The absolute pulse stacking efficiency is defined as: n =
%. For our control study, we didn’t optimize the ab-
solute combining efficiency by optimizing the optical param-
eters (e.g. mirror reflectivities), but just present the feedback
efficiency normalized to the maximum achievable from our

current models.

Perturbation and random drift is introduced in the simu-
lations which generate samples for NN training. The trained
NN recognizes errors and corrects the cavity phase based on
temporal intensity patterns. We can either use all the intensity
patterns from 4 cavities, or we can just look at the final
intensity pattern to determine the phase errors. The former
approach needs fewer samples to get the same accuracy since
it has more information.

500 samples are used in the NN training, and Fig. 5c
shows how the trained NN is applied to correct the intensity
pattern to the optimized one, where the maximum peak power
enhancement factor is close to 8. The system has a drift rate
of 80 mrad in this simulation, which leads to an instability
about 5%. And this agrees with the analysis in Ref. [33]. A
larger drift rate will cause larger instability in a way similar
to the diffractive combining system discussed in the following
section.

B. feedback in diffractive combining

We are using an 8-way combiner configuration as in
Ref. [12]. The physics process of 2D diffractive combining
can be represented as a discrete 2D convolution [12], [5], [8]:

s(i,§) = b(i, j) * *d(i, 7). 2)

where b(i,7) is the input beam function, d(i,j) is the
intrinsic DOE transmittance function, and s(i, j) is the cor-
responding complex far field of the diffracted beam and the
intensity I = |s(,5)|?, here (i,j) is the horizontal and
vertical coordinate of both the input beam array (i,7 =
[-3,-2,...0,...2,3]), and the far field diffracted beam array
from the incident direction, with zero-order beam located at
(0,0). In general, as 2D convolution suggests, for N x N inputs
and N x N shaped d(i, j), there will be (2N —1) x (2N —1)
outputs. For the 3 x 3 input beams as shown in Fig. 6a, the
output pattern is a 5 x 5 array. In the case of of 9x 9 diffractive
beam combining, the output pattern is a 17 x 17 array [26].

The simulated 8 input beams have equal amplitude, and the
ideal input beam phases match the DOE transfer function such
that: /b(i,7) = —/d(—i,—j), where / stands for the phase
function [8], [12]. Still, for the control studies we only present
the normalized combining efficiency, which is the ratio of
the central combined beam power to the maximum achievable
central power with the ideal input beam phase case.

We introduce phase perturbation and random phase drift in
the simulations, which cause initial low combining efficiency.
Then we use the trained NN to recognize errors and correct
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Fig. 6: DDRM based feedback in diffractive combining

the phase to bring the current state back to the target pattern,
thus the maximum efficiency. Feedback curves are shown in
Fig. 6b, Fig. 6¢ and Fig. 6d, with 100 random cases and an
average curve in each plot. 500 samples are used to train the
NNs. We apply different NN models trained with different
dither amounts and different drift rates. The larger drift rate
requires larger dither amount in the exploration in order to
provide high signal-to-noise ratio samples for NN training. It
also takes more feedback steps to converge and leads to larger
instability after locking/converged. We analyze the stability in
Sec. VI-C.

C. Efficiency and stability analysis

The combining efficiency 7, and the standard deviation of
n, i.e., stability after feedback, are strongly related to the
RMS phase error of each channel, o4. In feedback with NN
correction, the sources of phase error come from two sources.
One is the NN prediction phase error (RMS value opeq), and
the other is the random drift rate (RMS value ogs5), With a

net effect as:
_ /.2 2
O¢p = O drift + Upred 3)

Here, 04, Oprea and ogiify are uncorrelated vectors with the
same dimension. We statistically analyze the NN prediction
eITor Opred, and the total phase error o4, at different drift rates
oaiifi, in the NN-based feedback simulations of the diffractive
combiner (Sec. VI-B). The tested NN models’ dither amount
was fixed at 30 degrees while drift rate was varied.

Results are shown in Fig. 7a. The prediction error opreq
during feedback operation is found by testing the trained
NN models with samples within the correction region (RMS
value equal to the RMS drift rate). Each point in the curve
corresponds to a NN that is trained with a given drift rate.

Results are reproducible when re-running the same simulation
code. Based on the prediction error opeq (shown in blue), we
can derive o4 using Eq. 3 for a given known drift rate oy,
(shown in red).

It has been shown that 7 is related to the uncorrelated RMS
piston phase errors oy (in radians) from each channel, which
is approximately: n = 1 — aq% [34]. This approach works well
with small perturbations, but is less accurate with larger 4. In
that case we can statistically derive 7 versus o, as well as the
stability from Monte-Carlo simulations of the physical model
of our 8-way 3 x 3 diffractive combing system. For the Monte-
Carlo simulations, we corrupted the laser phase with Gaussian-
distributed noise of o4, and then performed 2D convolution
as in Eq. 2. We then derived statistics of combining efficiency
and stability from 20k samples. Monte-Carlo results for given
o4 are shown as dashed lines in Fig. 7b

We can also statistically analyze the combining efficiency
and the standard deviation of 7, i.e., stability after feedback,
from DDRM-based feedback runs like those shown in Fig 6b,
Fig 6¢ and Fig 6d. The dither amount was fixed at 30 degrees
while drift rate was varied, for 1000 cases starting from a
random initial state. Results are shown in Fig. 7b as red
dots and blue stars. As the drift rate (amount of random drift
between sampled frames) increases, the efficiency drops while
the instability increases. The two methods agree with each
other, suggesting that the simplified Monte-Carlo model can
be used to predict feedback control performance.

VII. OUTLOOK FOR SCALING

To enable high energy and average power fiber lasers, which
is the ultimate goal of this research, the approach we have
demonstrated in simulations must scale to large numbers of
beams. Here, we scale to 81 beams to test the concept. A
9x9 (81-beam) diffractive combination testbed was previously
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developed for tests of control algorithms [22]. We used the
same model to test the scalability of the DDRM scheme in
simulations.

We train the NN based on the DDRM method with selected
samples near optimal. 100k samples are used for NN training
and the RMS dither amount is 15 degrees. For NN based
feedback, we input the optimal state as the target and correct
from any random state. Drift rate is scanned both in the
training and test process with 100 random cases, average RMS
drift rate 5 degrees and 10 degrees respectively as shown
in Fig. 8. The zoomed inset shows the stability and average
normalized combining efficiency. For the case of RMS drift
rate 5 degrees, the average combining efficiency is 99.7% and
RMS stability is 0.08%. For the case of RMS drift rate 10
degree, the average combined efficiency is 99.4% and RMS
stability is 1.4%. We see that even at a 10 degree drift rate,
the trained NN still works and typically converges in less than
200 steps.

The NN structure for the 9 beam/pulse case (in both diffrac-
tive and temporal stacking) is quite simple, with only 3 layers.
Both MultiLayer Perceptron (MLP) and Convolutional Neural
Networks (CNN) types of neural network can implement
DDRM and feedback processes. Structurally, there isn’t a
significant difference between the two approaches; for 3 x 3
coherent combining, the input data (double intensity patterns)
dimension is 2 x 5 x 5 for CNN, and 1 x 50 for MLP
respectively. For 9 x 9 combining, we are using a 4 layer
MLP with 1 x 578, (i.e., 2 x 17 x 17) input data.

500 training samples are enough for the 3 x 3 diffractive
beam combining and 9-pulse temporal stacking. For the 81-
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Fig. 8: Scaling capability of ML based pattern recognition:
DDRM-based feedback in 9 x 9 diffractive combining with
different drift rate

beam diffractive case, training requires about 100k training
samples. The inference latency (i.e. the amount of computation
time required to turn a measured pattern into a phase error
signal) is similar for both cases. For our 8§-beam CBC in a
3 x 3 array with 5 x 5 interference pattern, we found the
inference time of our 4-layer MLP model is about 0.21 ms,
while a CNN model with two convolutional layers is about
0.33 ms on a typical CPU without any GPU acceleration. If the
sampling rate (or repetition rate) is increased, e.g. to 10kHz,
it is possible to decrease the inference latency by using a hard-
real-time edge computer such as an FPGA [35].

Feedback control will correct errors based on previous
observations. As system parameters drift away during the
latency of feedback, this leads to an intrinsic residual error.
Thus a small feedback delay will reduce the residual error.
Note that with our control scheme, phase errors are corrected
within one sample interval, so that the algorithm itself does
not contribute to loop latency. This is not the case with SPGD,
where the number of cycles needed to control N beams scales
approximately as 10x the number of beams. This is especially
important for pulsed lasers operating at kHz rates, because
the sample rate is less than or equal to the repetition rate
and this determines the control bandwidth. Our scheme can
scale efficiently because, as the number of beams increases, so
does the amount of information available from the interference
pattern. This enables fast error prediction irrespective of the
number of beams.

VIII. CONCLUSION

In summary, we present the deterministic differential remap-
ping method (DDRM) as an innovative solution to address the
key challenges of machine learning control in coherent beam
and pulse combination, which implements learning on unstable



systems with uncontrolled parameter drift. DDRM recognizes
pairs of interference patterns from CBC and implements
machine learning-based feedback control. Our scheme is a
general solution for feedback control in complex coherent
combining systems, recognizing patterns in space or time
as shown by feedback in three different types of combiner
which are robust against phase drift. This method is scalable
regarding the number of beams or pulses, and can support in-
cremental learning during operation. In future work, we intend
to experimentally demonstrate that fast computing devices can
reduce feedback latency and minimize drift-related errors in
the learning process.
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