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Lagrangian Dynamical Monte Carlo

Shiwei Lan∗, Vassilios Stathopoulos†, Babak Shahbaba∗, Mark Girolami†

November 22, 2012

Abstract

Hamiltonian Monte Carlo (HMC) improves the computational efficiency of the Metropo-
lis algorithm by reducing its random walk behavior. Riemannian Manifold HMC (RMHMC)
further improves HMC’s performance by exploiting the geometric properties of the parameter
space. However, the geometric integrator used for RMHMC involves implicit equations that
require costly numerical analysis (e.g., fixed-point iteration). In some cases, the computa-
tional overhead for solving implicit equations undermines RMHMC’s benefits. To avoid this
problem, we propose an explicit geometric integrator that replaces the momentum variable in
RMHMC by velocity. We show that the resulting transformation is equivalent to transform-
ing Riemannian Hamilton dynamics to Lagrangian dynamics. Experimental results show that
our method improves RMHMC’s overall computational efficiency. All computer programs
and data sets are available online (http://www.ics.uci.edu/~babaks/Site/Codes.html)
in order to allow replications of the results reported in this paper.

1 Introduction

Hamiltonian Monte Carlo (HMC) (Duane et al., 1987) reduces the random walk behavior of
Metropolis by proposing samples that are distant from the current state, but nevertheless have
a high probability of acceptance. These distant proposals are found by numerically simulating
Hamiltonian dynamics for some specified amount of fictitious time (Neal, 2010). Hamiltonian dy-
namics can be represented by a function, known as the Hamiltonian function, of model parameters
θ and fictitious momentum parameters p ∼ N(0,M) (with the same dimension as θ) as follows:

H(θ,p) = − log p(θ) +
1

2
pTM−1p (1)

where M is a symmetric, positive-definite mass matrix.
Hamilton’s equations, which involve differential equations of H, determine how θ and p change

over time. In practice, however, solving these equations exactly is too hard, so we need to ap-
proximate them by discretizing time, using some small step size ε. For this purpose, the leapfrog
method is commonly used.

∗Department of Statistics, University of California, Irvine, USA.
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Sampling Path of RMHMC
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Figure 1: The first 10 iterations in sampling from a banana shaped distribution with random
walk Metropolis (RWM), Hamiltonian Monte Carlo (HMC), and Riemannian Manifold HMC
(RMHMC). For all three methods, the trajectory length (i.e., step size times number of integration
steps) is set to 1. Solid red lines are the sampling path, and black circles are the accepted proposals.

As the dimension grows, the system becomes increasingly restricted by its smallest eigen-
direction, requiring smaller step sizes to maintain the stability of numerical discretization. Giro-
lami and Calderhead (2011) proposed a new method, called Riemannian Manifold HMC (RMHMC),
that exploits the geometric properties of the parameter space to improve the efficiency of stan-
dard HMC. Simulating from the resulting dynamic, however, is computationally intensive since it
involves solving two implicit equations, which require additional iterative numerical analysis (e.g.,
fixed-point iteration).

To increase RMHMC’s speed, we propose a new integrator that is completely explicit: we
propose to replace momentum with velocity in Riemannian Manifold Hamilton dynamics. As we
will see, this is equivalent to using Lagrangian dynamics as opposed to Hamiltonian dynamics. By
doing so, we eliminate one of the implicit steps in RMHMC. Next, we construct a time symmetric
integrator to remove the remaining implicit step in RHHMC. This leads to a sampling scheme,
called e-RMHMC, that involves explicit equations only.

In what follows, we start with a brief review of RMHMC and its geometric integrator. Section
3 introduces our proposed semi-explicit integrator based on defining Hamiltonian dynamics in
terms of velocity as opposed to momentum. Next, in Section 4, we eliminate the remaining
implicit equation and propose a fully explicit integrator. In Section 5, we use simulated and real
data to evaluate our methods’ performance. Finally, in Section 6, we discuss some possible future
research directions.
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2 Riemannian Manifold Hamiltonian Monte Carlo

As discussed above, although HMC explores the parameter space more efficiently than random
walk Metropolis does, it does not fully exploits the geometric properties of parameter space de-
fined by the density p(θ). Indeed, Girolami and Calderhead (2011) argue that dynamics over
Euclidean space may not be appropriate to guide the exploration of parameter space. To address
this issue, they propose a new method, called Riemannian Manifold HMC (RMHMC), that ex-
ploits the Riemannian geometry of the parameter space (Amari and Nagaoka, 2006) to improve
standard HMC’s efficiency by automatically adapting to the local structure. They do this by
using a position-specific mass matrix M = G(θ). More specifically, they set G(θ) to the Fisher
information matrix. As a result, p = G(θ)θ̇ ∼ N (0,G(θ)), and Hamiltonian is defined as follows:

H(θ,p) = − log p(θ) +
1

2
log det G(θ) +

1

2
pTG(θ)−1p = φ(θ) +

1

2
pTG(θ)−1p (2)

where φ(θ) := − log p(θ) + 1
2

log det G(θ). Based on this dynamic, Girolami and Calderhead
(2011) propose the following HMC on Riemmanian manifold:

θ̇ = ∇pH(θ,p) = G(θ)−1p

ṗ = −∇θH(θ,p) = −∇θφ(θ) + 1
2
ν(θ,p)

(3)

Using the shorthand notation ∂i = ∂/∂θi for partial derivative, the ith element of the vector
ν(θ,p) is

(ν(θ,p))i = −pT∂i(G(θ)−1)p = (G(θ)−1p)T∂iG(θ)G(θ)−1p

The above dynamic is non-separable (it contains products of θ and p), and the resulting map
(θ,p)→ (θ∗,p∗) based on the standard leapfrog method is neither time-reversible nor symplectic.
Therefore, the standard leapfrog algorithm cannot be used for the above dynamic (Girolami and
Calderhead, 2011). Instead, we can use the Stömer-Verlet (Verlet, 1967) method as follows:

p(n+1/2) = p(n) − ε

2

[
∇θφ(θ(n))− 1

2
ν(θ(n),p(n+1/2))

]
(4)

θ(n+1) = θ(n) +
ε

2

[
G−1(θ(n)) + G−1(θ(n+1))

]
p(n+1/2) (5)

p(n+1) = p(n+1/2) − ε

2

[
∇θφ(θ(n+1))− 1

2
ν(θ(n+1),p(n+1/2))

]
(6)

This is also known as generalized leapfrog (Leimkuhler and Reich, 2004). The above series of trans-
formations are (i) deterministic (ii) reversible and (iii) volume-preserving. Therefore, the effective
proposal distribution is a delta function δ((θ(1),p(1)), (θ(L),p(L)) and the acceptance probability
is as follows:

exp(−H(θ(L),p(L)))

exp(−H(θ(1),p(1)))
× δ((θ(L),p(L)), (θ(1),p(1)))

δ((θ(1),p(1)), (θ(L),p(L)))
= exp(H(θ(1),p(1))−H(θ(L),p(L))) (7)

Here, (θ(1),p(1)) is the current state, and (θ(L),p(L)) is the proposal after L leapfrog steps.
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As an illustrative example, Figure 1 shows the sampling paths of random walk Metropolis
(RWM), HMC, and RMHMC for an artificially created banana-shaped distribution (See Girolami
and Calderhead, 2011, discussion by Luke Bornn and Julien Cornebise). For this example, we fixed
the trajectory and chose the step sizes such that the acceptance probability for all three methods
remains around 0.7. RWMH moves slowly and spends most of iterations at the distribution’s
low-density tail, and HMC explores the parameter space in a tortuous way, while RMHMC moves
directly to the high-density region and explores the distribution more efficiently.

One major drawback of this geometric integrator, which is both time-reversible and volume-
preserving, is that it involves two implicit functions: Equations (4) and (5). These functions
require extra numerical analysis (e.g. fixed-point iteration), which results in higher computational
cost and simulation error. To address this problem, we propose an alternative approach that uses
velocity instead of momentum.

3 Moving from Momentum to Velocity

In the Hamiltonian dynamic (3), the product of G(θ)−1 and p is in fact velocity, v = G(θ)−1p.
This motivates us to define the dynamic in terms of v instead of p. The transformation p 7→ v
changes the Hamiltonian dynamics (3) to the following form (derivation in Appendix A):

θ̇ = v

v̇ = −η(θ,v)−G(θ)−1∇θφ(θ)
(8)

where η(θ,v) is a vector whose kth element is
∑

i,j Γkij(θ)vivj. Here, Γkij(θ) := 1
2

∑
l g

kl(∂iglj +

∂jgil−∂lgij) is Christoffel symbol whose (i, j)th element is G(θ) = (gij). Further, G(θ)−1 = (gij).
This transformation moves the Hamiltonian dynamic’s complexity from its first equation for

θ to its second equation. In this way, we resolve one implicit function in the generalized leapfrog
method and develop a semi-explicit integrator as follows:

v(n+1/2) = v(n) − ε

2
[(v(n+1/2))TΓ(θ(n))v(n+1/2) + G(θ(n))−1∇θφ(θ(n))] (9)

θ(n+1) = θ(n) + εv(n+1/2) (10)

v(n+1) = v(n+1/2) − ε

2
[(v(n+1/2))TΓ(θ(n+1))v(n+1/2) + G(θ(n+1))−1∇θφ(θ(n+1))] (11)

Note that updating v remains implicit (more details are available in Appendix B).
In general, the new dynamic (8) cannot be recognized as a Hamiltonian dynamic of (θ,v). Nev-

ertheless, it remains a valid proposal-generating mechanism, which preserves the original Hamilto-
nian H(θ,p = G(θ)v) (proof in Appendix A); thus, the acceptance probability is only determined
by a discretization error from the numerical integration, as before.

Because p ∼ N (0,G(θ)), the distribution of v = G(θ)−1p is N (0,G(θ)−1). Therefore, we
have

p(v) =
1

(
√

2π)D
√

det(G(θ)−1)
exp

{
−1

2
vTG(θ)v

}
∝ (det G(θ))1/2 exp

{
−1

2
vTG(θ)v

}

4



Algorithm 1 Semi-explicit Riemannian Manifold Lagrangian Monte Carlo (RMLMC)

Initialize θ(1) = current θ
Sample new velocity v(1) ∼ N (0,G−1(θ(1)))
Calculate current E(θ(1),v(1)) according to equation (23)
for n = 1 to L (leapfrog steps) do

% Update the velocity with fixed point iterations
v̂(0) = v(n)

for i = 1 to NumOfFixedPointSteps do
v̂(i) = v(n) − ε

2
G(θ(n))−1[(v̂(i−1))TΓ̃(θ(n))v̂(i−1) +∇θφ(θ(n))]

end for
v(n+1/2) = v̂(last i)

% Update the position only with simple one step
θ(n+1) = θ(n) + εv(n+1/2)

∆ log detn = log det(I− ε(v(n+1/2))TΓ(θ(n+1)))− log det(I + ε(v(n+1/2))TΓ(θ(n)))
Update the velocity exactly
v(n+1) = v(n+1/2) − ε

2
G(θ(n+1))−1[(v(n+1/2))TΓ̃(θ(n+1))v(n+1/2) +∇θφ(θ(n+1))]

end for
Calculate proposed E(θ(L+1),v(L+1)) according to equation (23)
logRatio = −ProposedH + CurrentH +

∑N
n=1 ∆ log detn

Accept or reject according to Metropolis ratio

We define the energy function E(θ,v) as the sum of the potential energy, U(θ) and K(θ,v), where
K(θ,v) = − log(p(v)).

Analogous to RMHMC, thebacceptance probability is calculated based on E(θ,v), which is
the negative log of the joint density of parameter θ and the new auxiliary variable v. Therefore,
we can apply the generalized leapfrog scheme to this new dynamic (8) and derive a semi-implicit
method. (See more details in Appendix B.) Although the resulting integrator is not symplectic, we
nonetheless have detailed balance with volume correction. Algorithm 1 shows the corresponding
steps for implementing this method.

In Appendix C, we show that the new dynamic (8) is essentially a Lagrangian dynamic. There-
fore, we refer to the derived algorithm (Algorithm 1) as Riemannian Manifold Lagrangian Monte
Carlo (RMLMC), which explores the parameter space along the path on a Riemannian mani-
fold that minimizes the total Lagrangian. We can use this new proposal-generating mechanism,
RMLMC, which is based on an Euler-Lagrange system (8) of (θ,v) instead of the original Hamil-
tonian system (3) defined in terms of (θ,p). The two methods use equivalent dynamics but differ
numerically in the following way: RMHMC augments parameter space with momentum, while
RMLMC augments parameter space with velocity. Later, we will show that switching to velocity
leads to substantial improvement in computational efficiency.
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Algorithm 2 Explicit Riemannian Manifold Lagrangian Monte Carlo (e-RMLMC)

Initialize θ(1) = current θ
Sample new velocity v(1) ∼ N (0,G(θ(1))−1)
Calculate current E(θ(1),v(1)) according to equation (23)
∆ log det = 0
for n = 1 to L do

∆ log det = ∆ log det− det(G(θ(n)) + ε/2Ω̃(θ(n),v(n)))
Update the velocity explicitly with a half step:
v(n+1/2) =[G(θ(n))+ ε

2
Ω̃(θ(n),v(n))]−1[G(θ(n))v(n)− ε

2
∇θφ(θ(n))]

∆ log det = ∆ log det + det(G(θ(n))− ε/2Ω̃(θ(n),v(n+1/2)))
Update the position with a full step:
θ(n+1) = θ(n) + εv(n+1

2
)

∆ log det = ∆ log det− det(G(θ(n+1)) + ε/2Ω̃(θ(n+1),v(n+1/2)))
Update the velocity explicitly with a half step:
v(n+1) =[G(θ(n+1))+ ε

2
Ω̃(θ(n+1),v(n+1/2))]−1[G(θ(n+1))v(n+1/2)− ε

2
∇θφ(θ(n+1))]

∆ log det = ∆ log det + det(G(θ(n+1))− ε/2Ω̃(θ(n+1),v(n+1)))
end for
Calculate proposed E(θ(L+1),v(L+1)) according to equation (23)
logRatio = −ProposedE + CurrentE + ∆ log det
Accept or reject the proposed state according to (15)

4 Explicit Riemannian Manifold Lagrangian Monte Carlo

We now propose a fully explicit integrator for Lagrangian dynamics (8) as follows:

v(n+1/2) = [I +
ε

2
Ω(θ(n),v(n))]−1[v(n) − ε

2
G(θ(n))−1∇θφ(θ(n))] (12)

θ(n+1) = θ(n) + εv(n+1/2) (13)

v(n+1) = [I +
ε

2
Ω(θ(n+1),v(n+ 1

2
))]−1[v(n+1/2) − ε

2
G(θ(n+1))−1∇θφ(θ(n+1))] (14)

where Ω(θ(n),v(n)) is a matrix whose (i, j)th element is
∑

k v
(n)
k Γikj(θ

(n)). This integrator is (i)
reversible and (ii) energy-preserving up to order O(ε), where ε is the stepsize. The resulting
map, however, is not volume-preserving and as such the effective proposal distribution will be the
product of a delta function and the determinant of the transformation,

exp(−E(θ(L),v(L)))

exp(−E(θ(1,v(1)))
× δ((θ(L),v(L)), (θ(1),v(1)))

δ((θ(1),v(1)), (θ(L),v(L)))
× det J

which simplifies to
exp(E(θ(1),v(1))− E(θ(L),v(L)))× det J (15)

with J the Jacobian matrix of (θ(1),v(1))→ (θ(L),v(L)). Detailed derivations and proofs are given
in Appendix D.
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We refer to this approach as explicit Riemannian Manifold Lagrangian Monte Carlo (e-RMLMC).
Algorithm 2 shows the corresponding steps for this method. In this algorithm, we use Ω̃(θ,v) to
denote G(θ)Ω(θ,v) whose (k, j)th element is equal to

∑
i v

iΓ̃kij(θ).
Our proposed e-RMLMC does not involve implicit functions for updating (θ,v) in RMHMC.

Because we remove multiple fixed-point iteration steps, we reduce the computation time by O(D2)
where D is the dimension of the parameters. Additionally, using this explicit updating, we resolve
the convergence issue faced by fixed-point iterations. The connection terms Γ̃(θ) in Ω̃ do not
add substantial computational cost since they are obtained from permuting three dimensions of
the array ∂G(θ), which is computed in RMHMC. However, besides G(θ)−1, which is required
for ∇θφ(θ), e-RMLMC has two extra matrix inversions to update v, whose complexity in general
is O(D3). Therefore, as dimension grows, the efficiency gained by removing multiple fixed-point
iterations may be overwhelmed by this additional overhead. This is evident from our experimental
results presented in Section 5. Faster matrix inversion algorithms could be used to alleviate this
issue.

5 Experimental Results

In this section, we use simulated and real data to evaluate our methods, RMLMC and e-RMLMC,
compared to RMHMC. Following Girolami and Calderhead (2011), we use a time-normalized
effective sample size (ESS) to compare these methods. For B posterior samples we calculate ESS
= B[1 + 2Σkγ(k)]−1 for each parameter and choose the minimum as the measure of sampling
efficiency, where Σkγ(k) is the sum of the K monotone sample autocorrelations estimated by the
initial monotone sequence estimator (Geyer, 1992). All computer programs and data sets discussed
in this paper are available online at http://www.ics.uci.edu/~babaks/Site/Codes.html.

5.1 Logistic Regression Models

We start by evaluating our methods based on five binary classification problems used in Girolami
and Calderhead (2011). These are Australian Credit data, German Credit data, Heart data, Pima
Indian data, and Ripley data. For each problem, we use a logistic regression model and run 20000
MCMC iterations. Results (after discarding the initial 5000 iterations) are summarized in Table
1, and show that in general our methods improve the sampling efficiency measured in terms of
ESS per second compared to RMHMC.

5.2 Simulated Logistic Regression

Next, we construct some synthetic datasets with variable numbers of observations and increasing
dimensionality for logistic regression. The simulated results are summarized in Table 2. In general,
our methods RMLMC and e-RMLMC improve RMHMC in minimal ESS per second, but as
expected, such an advantage gradually diminishes as the dimension increases.

7
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Data method AP s ESS min(ESS)/s
RMHMC 0.74 2.40E-02 (8561,9595,10262) 23.77

Australian RMLMC 0.75 1.90E-02 (8038,10488,11468) 28.24
D=14,N=690 e-RMLMC 0.75 1.55E-02 (9636,10443,11268) 41.34

RMHMC 0.77 5.63E-02 (15000,15000,15000) 17.76
German RMLMC 0.73 4.32E-02 (15000,15000,15000) 23.17
D=24,N=1000 e-RMLMC 0.70 3.59E-02 (13762,15000,15000) 25.57

RMHMC 0.77 1.65E-02 (7050,8369,8905) 28.57
Heart RMLMC 0.78 1.09E-02 (10847,11704,12405) 66.25
D=13,N=270 e-RMLMC 0.76 1.01E-02 (10347,10724,11773) 68.18

RMHMC 0.81 1.25E-02 (4325,4622,4980) 23.10
Pima RMLMC 0.82 7.27E-03 (4713,5448,5576) 43.20
D=7,N=532 e-RMLMC 0.82 7.04E-03 (4839,5193,5539) 45.85

RMHMC 0.78 8.39E-03 (15000,15000,15000) 119.20
Ripley RMLMC 0.76 5.07E-03 (13498,15000,15000) 177.43
D=2,N=250 e-RMLMC 0.79 4.77E-03 (12611,15000,15000) 176.37

Table 1: Comparing alternative methods using five binary classification problems discussed in
Girolami and Calderhead (2011). For each dataset, the number of predictors, D, and the number
of observations, N , are specified. For each method, we provide the acceptance probability (AP),
the CPU time (s) for each iteration, and the time-normalized ESS.

Data Method AP s ESS min(ESS)/s

N=200,D=10
RMHMC 0.84 1.85e+02 (4837, 4902, 4968) 26.20
RMLMC 0.86 4.44e+01 (5000, 5000, 5000) 112.60
e-RMLMC 0.83 7.42e+01 (3792, 4310, 4671) 51.11

N=400,D=20
RMHMC 0.82 9.56e+02 (4727, 4893, 5000) 4.95
RMLMC 0.80 1.28e+02 (4680, 4819, 4857) 36.44
e-RMLMC 0.81 2.59e+02 (2964, 3543, 3968) 11.46

N=800,D=40
RMHMC 0.82 3.15e+03 (4691, 4983, 5000) 1.49
RMLMC 0.82 6.88e+02 (4749, 4836, 4960) 6.91
e-RMLMC 0.81 1.09e+03 (2902, 3636, 4127) 2.65

N=1600,D=80
RMHMC 0.81 9.87e+03 (3712, 4515, 4950) 0.38
e-RMLMC 0.83 4.64e+03 (4002, 4672, 4919) 0.86
e-RMLMC 0.80 1.19e+04 (2565, 3415, 4081) 0.22

N=3200,D=160
RMLMC 0.79 1.63e+05 (3160, 3959, 4464) 0.02
RMLMC 0.83 1.44e+05 (3458, 4221, 4676) 0.02
e-RMLMC 0.80 1.20e+05 (2708, 3548, 4156) 0.02

Table 2: Time, ESS and time-normalized ESS for logistic regression with simulated datasets.
Results are calculated on a 5,000 sample chain with a 5,000 sample burn-in session.
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Figure 2: The first 10 iterations in sampling from the banana-shaped distribution with Riemannian
Manifold HMC (RMHMC), Riemannian Manifold Lagrange Monte Carlo (RMLMC) and explicit
RMLMC (e-RMLMC). For all three methods, the trajectory length (i.e., step size times number of
integration steps) is set to 1.45. Solid red lines show the sampling path, and each point represents
an accepted proposal.

5.3 Simulating a banana-shaped distribution

The banana-shaped distribution, which we used above for illustration, can be constructed as the
posterior distribution of θ = (θ1, θ2)|y based on the following model:

y|θ ∼ N(θ1 + θ22, σ
2
y)

θ ∼ N(0, σ2
θ)

The data {yi}100i=1 are generated with θ1 + θ22 = 1, σy = 2. We set σθ = 1.
We want to investigate how the three algorithms, RMHMC, RMLMC, e-RMLMC, explore

the parameter space. Fig.2 shows the first 10 iterations for each algorithm using fixed trajectory
length of 1.45. We can see that RMLMC and e-RMLMC explore the parameter space according
to its curvature and mix quickly, similar to RMHMC.

Table 3 compares the performances of these algorithms based on 5000 MCMC iterations (after
burning the initial 1000 iteration). For this example, RMLMC has the highest ESS/s. As discussed
above, the additional overhead of matrix inversion for e-RMLMC occasionally overwhelms its gain
in computational efficiency.

5.4 Finite Mixture of Gaussians

Finally we consider finite mixtures of univariate Gaussian components of the form

p(xi|θ) =
K∑
k=1

πkN (xi|µk, σ2
k) (16)
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Method AP s ESS min(ESS)/s
RMHMC 0.73 8.21e-03 (729,1117,1506) 17.76
RMLMC 0.79 5.36e-03 (857,1317,1777) 31.99

e-RMLMC 0.78 5.61e-03 (585,1085,1585) 20.85

Table 3: Comparing alternative methods using a banana-shaped distribution. For each method,
we provide the acceptance probability (AP), the CPU time (s) for each iteration, and the time-
normalized ESS.
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Figure 3: Densities used to generate synthetic datasets. From left to right the densities are in the
same order as in Table 4. The densities are taken from McLachlan and Peel (2000)

where θ is the vector of size D = 3K of all the parameters πk, µk and σ2
k and N (·|µ, σ2) is a

Gaussian density with mean µ and variance σ2. A common choice of prior takes the form

p(θ) = D(π1, . . . , πK |λ)
K∏
k=1

N (µk|m,β−1σ2
k)IG(σ2

k|b, c) (17)

where D(·|λ) is the symmetric Dirichlet distribution with parameter λ and IG(·|b, c) is the inverse
Gamma distribution with shape parameter b and scale parameter c.

Although the posterior distribution associated with this model is formally explicit, it is com-
putationally intractable, since it can be expressed as a sum of KN terms corresponding to all
possible allocations of observations xi to mixture components (Marin et al, 2005, chap. 9). We
want to use this model to test the efficiency of posterior sampling θ using the three methods.
A more extensive comparison of Riemannian Manifold MCMC and HMC, Gibbs sampling and
standard Metropolis-Hastings for finite Gaussian mixture models can be found at Stathopoulos
and Girolami (2011). Due to the non-analytic nature of the expected Fisher Information, I(θ),
we use the empirical Fisher information as metric tensor, defined in (McLachlan and Peel, 2000,
chap. 2):

G(θ) = STS − 1

N
ssT

where N ×D score matrix S has elements Si,d = ∂ log p(xi|θ)
∂θd

and s =
∑N

i=1 S
T
i,·.

Depending on allocations of π, we show several classical mixtures showing in the following
Table 4 and Figure 3. Their sampling efficiency is compared in Table 5. As before, our two
algorithms outperform RMHMC.
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Dataset Density function Num. of
name parameters

Kurtotic 2
3N (x|0, 1) + 1

3N
(
x|0,

(
1
10

)2)
6

Bimodal 1
2N

(
x| − 1,

(
2
3

)2)
+ 1

2N
(
x|1,

(
2
3

)2)
6

Skewed 3
4N (x|0, 1) + 1

4N
(
x|32 ,

(
1
3

)2)
6

Trimodal 9
20N

(
x| − 6

5 ,
(
3
5

)2)
+ 9

20N
(
x|65 ,

(
3
5

)2)
+ 1

10N
(
x|0,

(
1
4

)2)
9

Claw 1
2N (x|0, 1) +

∑4
i=0

1
10N

(
x| i2 − 1,

(
1
10

)2)
18

Table 4: Densities used for the generation of synthetic Mixture of Gaussian data sets.

Data Method AP s ESS min(ESS)/s

claw
RMHMC 0.80 2.54e+03 (1524, 3474, 4586) 0.60
RMLMC 0.86 1.88e+03 (2531, 4332, 5000) 1.35
e-RMLMC 0.82 1.46e+03 (2436, 3455, 4608) 1.67

trimodal
RMHMC 0.79 4.97e+02 (4701, 4928, 5000) 9.46
RMLMC 0.82 2.01e+02 (4978, 5000, 5000) 24.77
e-RMLMC 0.80 2.42e+02 (4899, 4982, 5000) 20.21

skewed
RMHMC 0.85 2.55e+02 (5000, 5000, 5000) 19.63
RMLMC 0.82 1.13e+02 (4698, 4940, 5000) 41.68
e-RMLMC 0.84 1.26e+02 (4935, 5000, 5000) 39.09

kurtotic
RMHMC 0.82 2.36e+02 (5000, 5000, 5000) 21.20
RMLMC 0.85 1.27e+02 (5000, 5000, 5000) 39.34
e-RMLMC 0.81 1.35e+02 (5000, 5000, 5000) 36.90

bimodal
RMHMC 0.86 2.69e+02 (5000, 5000, 5000) 18.56
RMLMC 0.81 1.03e+02 (4935, 4996, 5000) 48.00
e-RMLMC 0.85 1.08e+02 (5000, 5000, 5000) 46.43

Table 5: Time, ESS and time-normalized ESS for Gaussian mixture models. Results are calculated
on a 5,000 sample chain with a 5,000 sample burn-in session.

6 Conclusions and Discussion

Following the method of Girolami and Calderhead (2011) for more efficient exploration of pa-
rameter space, we have proposed new sampling schemes to reduce the computational cost associ-
ated with using a position-specific mass matrix. To this end, we have developed a semi-explicit
(RMLMC) integrator and a fully explicit (e-RMLMC) integrator for RMHMC and demonstrated
their advantage in improving computational efficiency over the generalized leapfrog (RMHMC)
method used by Girolami and Calderhead (2011). It is easy to show that for G(θ) = I, our
method degenerates to standard HMC.

Future directions could involve splitting Hamiltonian (Dullweber et al., 1987; Sexton and Wein-
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garten, 1992; Neal, 2010; Shahbaba et al., 2011) to develop explicit geometric integrators. For
example, one could split a non-separable Hamiltonian dynamics into several smaller dynamics
some of which can be analytically solved. A similar idea has been explored by (Chin, 2009), where
the Hamiltonian, instead of the dynamic, is split.

Another possible research direction could be to approximate the mass matrix (Christofell Sym-
bols). For many large-dimensional problems, the mass matrix could be appropriately approximated
by a highly sparse matrix. This could further improve our method’s computational efficiency.
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Appendix: Derivations and Proofs
In what follows, we show the detailed derivations of our methods. We adopt Einstein notation

(summation convention), so whenever the index appears twice in a mathematical expression,
we sum over it: e.g., aib

i :=
∑

i aib
i, Γkijv

ivj :=
∑

i,j Γkijv
ivj. A lower index is used for the

covariant tensor, whose components vary by the same transformation as the change of basise.g.,
gradientwhereas the upper index is reserved for the contravariant tensor, whose components vary
in the opposite way as the change of basis in order to compensate: e.g. velocity vector. Interested
readers should refer to Bishop and Goldberg (1980).

A Transformation of Hamiltonian Dynamics

To derive the dynamic (8) from the Hamiltonian dynamic (3), the first equation in (8) is directly

obtained from the assumed transformation: θ̇
k

= gklpl = vk. For the second equation in (8), we
have

ṗl =
d(glj(θ)vj)

dt
=
∂glj
∂θi

θ̇
i
vj + gljv̇

j = ∂igljv
ivj + gljv̇

j

Further, from Equation (3) we have

ṗl = −∂lφ(θ) +
1

2
vT∂lG(θ)v = −∂lφ+

1

2
gij,lv

ivj

= ∂igljv
ivj + gljv̇

j

which means

gljv̇
j = −(∂iglj −

1

2
∂lgij)v

ivj − ∂lφ

By multiplying G−1 = (gkl) on both sides, we have

v̇k = δkj v̇
j = −gkl(∂iglj −

1

2
∂lgij)v

ivj − gkl∂lφ (18)

Since i, j are symmetric in the first summand, switching them gives the following equations:

v̇k = −gkl(∂jgli −
1

2
∂lgji)v

ivj − gkl∂lφ (19)

which in turn gives the final form of Equation (8) after adding equations (18) and (19) and dividing
the results by two:

v̇k = −Γkij(θ)vivj − gkl(θ)∂lφ(θ)

Here, Γkij(θ) := 1
2
gkl(∂iglj + ∂jgil − ∂lgij) is Christoffel Symbol of second kind.
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Note that the new dynamic (8) still preserves the original Hamiltonian H(θ,p = G(θ)v). This
is of course intuitive, but it also can be proven as follows:

d

dt
H(θ,G(θ)v) = θ̇

T ∂

∂θ
H(θ,G(θ)v) + v̇T ∂

∂v
H(θ,G(θ)v)

= vT

[
∇θφ(θ) +

1

2
vT∂G(θ)v

]
+
[
−vTΓ(θ)v −G(θ)−1∇θφ(θ)

]T
G(θ)v

= vT∇θφ(θ)− (∇θφ(θ))T v +
1

2
vT
(
vT∂G(θ)v

)
− (vTΓ̃(θ)v)Tv

= 0 + 0 = 0

where vTΓ(θ)v is a vector whose kth element is Γkij(θ)vivj. The second 0 is due to the triple

form (vTΓ̃(θ)v)Tv = Γ̃ijkv
ivjvk = 1

2
∂kgijv

ivjvk, where Γ̃ is Christoffel Symbol of first kind with

elements Γ̃ijk(θ) := gklΓ
l
ij(θ) = 1

2
(∂igkj + ∂jgik − ∂kgij).

B Derivation of semi-explicit Riemannian Manifold La-

grangian Monte Carlo (RMLMC)

Consider the following generalized leapfrog integration scheme:

p(n+1/2) = p(n) − ε

2

∂H

∂θ
(θ(n),p(n+1/2))

θ(n+1) = θ(n) +
ε

2

[
∂H

∂p
(θ(n),p(n+1/2)) +

∂H

∂p
(θ(n+1),p(n+1/2))

]
p(n+1) = p(n+1/2) − ε

2

∂H

∂θ
(θ(n),p(n+1/2))

We composite implicit steps for velocity and explicit step for position within a leapfrog step to
integrate dynamic (8) and derive the following semi-explicit integrator:

v(n+1/2) = v(n) − ε

2
[(v(n+1/2))TΓ(θ(n))v(n+1/2) + G(θ(n))−1∇θφ(θ(n))] (20)

θ(n+1) = θ(n) + εv(n+1/2) (21)

v(n+1) = v(n+1/2) − ε

2
[(v(n+1/2))TΓ(θ(n+1))v(n+1/2) + G(θ(n+1))−1∇θφ(θ(n+1))] (22)

The time-reversibility of this integrator can be shown by switching (θ,v)(n+1) and (θ,v)(n) and
negating velocity. The resulting integrator, however, is no longer volume-preserving (see subsection
B.1). Nevertheless, based on proposition 1, we can still have detailed balance after determinant
adjustment. (See Liu, 2001, for more details.)

Proposition 1 (Detailed Balance Condition with determinant adjustment). Denote z = (θ,p),
z′ = T̂L(z) for some time reversible integrator T̂L to the Lagrangian dynamic. If the acceptance
probability is adjusted in the following way:

α̃(z, z′) = min

{
1,

exp(−H(z′))

exp(−H(z))
| det T̂L|

}
15



then the detailed balance condition still holds

α̃(z, z′)P(dz) = α̃(z′, z)P(dz′)

Proof.

α̃(z, z′)P(dz) = min

{
1,

exp(−H(z′))

exp(−H(z))

∣∣∣∣dz′dz
∣∣∣∣} exp(−H(z))dz

z=T̂−1
L (z′)
= min

{
exp(−H(z)), exp(−H(z′))

∣∣∣∣dz′dz
∣∣∣∣} ∣∣∣∣ dzdz′

∣∣∣∣ dz′
= min

{
1,

exp(−H(z))

exp(−H(z′))

∣∣∣∣ dzdz′
∣∣∣∣} exp(−H(z′))z′ = α̃(z′, z)P(dz′)

Therefore, the acceptance probability could be calculated based on H(θ,G(θ)v). However, it
also could be also calculated as follows based on the energy function E(θ,v) defined in section 3,

E(θ,v) = U(θ) +K(θ,v) = − log p(θ)− 1

2
log det G(θ) +

1

2
vTG(θ)v (23)

To show their equivalence, we note that

∣∣∣∣∂(θ′,p′)

∂(θ,p)

∣∣∣∣ =
det(G(θ′))

det(G(θ))

∣∣∣∣∂(θ′,v′)

∂(θ,v)

∣∣∣∣ and proved our claim

as follows:

α̃ = min

{
1,

exp(−H(θ′,p′))

exp(−H(θ,p))

∣∣∣∣∂(θ′,p′)

∂(θ,p)

∣∣∣∣} = min

{
1,

exp(−H(θ′,G(θ′)v′))

exp(−H(θ,G(θ)v))

∣∣∣∣∂(θ′,p′)

∂(θ,p)

∣∣∣∣}
= min

{
1,

exp{−(log p(θ′) + 1
2

log det G(θ′) + 1
2
v′TG(θ′)v′)}

exp{−(log p(θ) + 1
2

log det G(θ) + 1
2
vTG(θ)v)}

det(G(θ′))

det(G(θ))

∣∣∣∣∂(θ′,v′)

∂(θ,v)

∣∣∣∣
}

= min

{
1,

exp{−(log p(θ′)− 1
2

log det G(θ′) + 1
2
v′TG(θ′)v′)}

exp{−(log p(θ)− 1
2

log det G(θ) + 1
2
vTG(θ)v)}

∣∣∣∣∂(θ′,v′)

∂(θ,v)

∣∣∣∣
}

= min

{
1,

exp(−E(θ′,v′))

exp(−E(θ,v))

∣∣∣∣∂(θ′,v′)

∂(θ,v)

∣∣∣∣}
B.1 Volume Correction

To adjust volume, we must derive the Jacobian determinant, det J :=
∣∣∣∂(θ(L+1),v(L+1))

∂(θ(1),v(1))

∣∣∣ using wedge

products.

Definition 1 (Differential Forms, Wedge Product). Differential one-form α : TMD → R on
a differential manifold MD is a smooth mapping from tangent space TMD to R, which can be
expressed as linear combination of differentials of local coordinates: α = fidx

i =: f · dx.
For example, if f : RD → R is a smooth function, then its directional derivative along a vector

v ∈ RD, denoted by df(v) is given by

df(v) =
∂f

∂zi
vi
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then df(·) is a linear functional of v, called the differential of f at z and is an example of a
differential one-form. In particular, dzi(v) = vi, thus

df(v) =
∂f

∂zi
dzi(v), then df =

∂f

∂zi
dzi

Wedge Product of two one-form α, β is a 2-form α ∧ β anti-symmetric bilinear function on
tangent space which has the following properties (α, β, γ one-forms, A be a square matrix of same
dimension D):

• α ∧ α = 0

• α ∧ (β + γ) = α ∧ β + α ∧ γ (thus α ∧ β = −β ∧ α)

• α ∧ Aβ = ATα ∧ β
The following proposition enables us to calculate the Jacobian determinant denoted as det J.

Proposition 2. Let TL : (θ(1),v(1))→ (θ(L+1),v(L+1)) be evolution of a smooth flow, then

dθ(L+1) ∧ dv(L+1) =
∂(θ(L+1),v(L+1))

∂(θ(1),v(1))
dθ(1) ∧ dv(1)

Note that the Jacobian determinant det J can also be regarded as Radon-Nikodym derivative

of two probability measures: det J =
P(dθ(L+1), dv(L+1))

P(dθ(1), dv(1))
, where P(dθ, dv) = p(θ,v)dθdv. We

have

dv(n+1/2) = dv(n) − ε(v(n+1/2))TΓ(θ(n))dv(n+1/2) + (∗∗)dθ(n)

dθ(n+1) = dθ(n) + εdv(n+1/2)

dv(n+1) = dv(n+1/2) − ε(v(n+1/2))TΓ(θ(n+1))dv(n+1/2) + (∗∗)dθ(n+1)

where vTΓ(θ) is a matrix whose (k, j)th element is viΓkij(θ). Therefore,

dθ(n+1) ∧ dv(n+1) = [I− ε(v(n+1/2))TΓ(θ(n+1))]Tdθ(n+1) ∧ dv(n+1/2)

= [I− ε(v(n+1/2))TΓ(θ(n+1))]Tdθ(n) ∧ dv(n+1/2)

= [I− ε(v(n+1/2))TΓ(θ(n+1))]T[I + ε(v(n+1/2))TΓ(θ(n))]−Tdθ(n) ∧ dv(n)

For volume adjustment, we must use the following Jacobian determinant accumulated along leap
frog steps:

det JLMC :=

∣∣∣∣∣∂(θ(L+1),v(L+1))

∂(θ(1),v(1))

∣∣∣∣∣ =
L∏
n=1

det(I − ε(v(n+1/2))TΓ(θ(n+1)))

det(I + ε(v(n+1/2))TΓ(θ(n)))
(24)

As a result, the acceptance probability becomes

αLMC = min{1, exp(−E(θ(L+1),v(L+1)) + E(θ(1),v(1)))| det JLMC |}

Using this acceptance probability, we are able to derive a semi-explicit integrator for RMLMC as
shown in Algorithm 1. In this approach, the updates for θ are explicit, while updating v remains
implicit.
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C Connection to Lagrangian Dynamics

We now show that the above dynamic (8) is indeed Lagrangian dynamic. We define Lagrangian
as follows:

L =
1

2
vTG(θ)v − φ(θ)

Using variation calculus to minimize the Lagrangian, we obtain a Euler-Lagrange equation of the
second kind,

∂L

∂θ
=

d

dt

∂L

∂θ̇

which is
θ̈ = −θ̇TΓ(θ)v −G(θ)−1∇θφ(θ) (25)

This is equivalent to the new dynamic (8) by taking the time derivative on the first equation and
equating it with the time derivative on the second.

D Derivation of explicit Riemannian Manifold Lagrangian

Monte Carlo (e-RMLMC)

We now propose an additional modification of Algorithm 1 to resolve the remaining implicit
equation (20), while keeping time-reversibility to ensure the ergodicity of the induced Markov
chain. We do this by modifying the symmetric quadratic form in equations (20),

v(n+1/2) = v(n) − ε

2
[(v(n))TΓ(θ(n))v(n+1/2) + G(θ(n))−1∇θφ(θ(n))] (26)

θ(n+1) = θ(n) + εv(n+1/2) (27)

v(n+1) = v(n+1/2) − ε

2
[(v(n+1/2))TΓ(θ(n+1))v(n+1) + G(θ(n+1))−1∇θφ(θ(n+1))] (28)

The resulting integrator is completely explicit since both updates of velocity (26) and (28) can be
solved as follows:

v(n+1/2) = [I +
ε

2
(v(n))TΓ(θ(n))]−1[v(n) − ε

2
G(θ(n))−1∇θφ(θ(n))] (29)

v(n+1) = [I +
ε

2
(v(n+1/2))TΓ(θ(n+1))]−1[v(n+1/2) − ε

2
G(θ(n+1))−1∇θφ(θ(n+1))] (30)

D.1 Convergence of Numerical Solution

We now show that the discretization error en = ‖z(tn) − z(n)‖ = ‖(θ(tn),v(tn)) − (θ(n),v(n))‖
(i.e. the difference between the true solution and the numerical solution) accumulated over final
time interval [0, T ], is bounded and goes to zeros as the stepsize ε goes to zero. (See Leimkuhler
and Reich (2004) for a similar proof for the generalized leapfrog method.) Here, we assume
that F (θ,v) := vTΓ(θ)v + G(θ)−1∇θφ(θ) is smooth; hence, F and its derivatives are uniformly
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bounded as (θ,v) evolves within finite time duration T . We expand the true solution z(tn+1) at
tn:

z(tn+1) = z(tn) + ż(tn)ε+
1

2
z̈(tn)ε2 + o(ε)

=

[
θ(tn)
v(tn)

]
+

[
v(tn)

−F (θ(tn),v(tn))

]
ε+

1

2

[
−F (θ(tn),v(tn))

−∂F
∂θ

v(tn) + ∂F
∂v
F (θ(tn),v(tn))

]
ε2 + o(ε)

=

[
θ(tn)
v(tn)

]
+

[
v(tn)

−F (θ(tn),v(tn))

]
ε+O(ε2)

Next, we simplify the expression of the numerical solutions z(n+1) =

[
θ(n+1)

v(n+1)

]
for the fully explicit

integrator and compare it to the above true solutions. To this end, we rewrite equation (29) as
follows:

v(n+1/2) = [I +
ε

2
(v(n))TΓ(θ(n))]−1[v(n) − ε

2
G(θ(n))−1∇θφ(θ(n))]

= v(n) − [I +
ε

2
(v(n))TΓ(θ(n))]−1[(v(n))TΓ(θ(n))v(n) +

ε

2
G(θ(n))−1∇θφ(θ(n))]

= v(n) − [I +
ε

2
(v(n))TΓ(θ(n))]−1

ε

2
F (θ(n),v(n))

= v(n) − ε

2
F (θ(n),v(n)) +

ε2

4
[I +

ε

2
(v(n))TΓ(θ(n))]−1[(v(n))TΓ(θ(n))]F (θ(n),v(n))

= v(n) − ε

2
F (θ(n),v(n)) +O(ε2)

Similarly, from equation (30) we have

v(n+1) = v(n+1/2) − ε

2
F (θ(n+1),v(n+1/2)) +O(ε2)

Substituting v(n+1/2) in the above equation, we obtain v(n+1) as follows:

v(n+1) = v(n) − ε

2
F (θ(n),v(n))− ε

2
F (θ(n+1),v(n)) +O(ε2)

= v(n) − F (θ(n),v(n))ε+
ε

2
[F (θ(n),v(n))− F (θ(n) +O(ε),v(n)] +O(ε2)

= v(n) − F (θ(n),v(n))ε+O(ε2)

From (29), (27), and (30), we have the following numerical solution:

z(n+1) =

[
θ(n+1)

v(n+1)

]
=

[
θ(n)

v(n)

]
+

[
v(n)

−F (θ(n),v(n))

]
ε+O(ε2)

Therefore, the local error is

en+1 = ‖z(tn+1)− z(n+1)‖ =

∥∥∥∥[θ(tn)− θ(n)
v(tn)− v(n)

]
+

[
v(tn)− v(n)

−[F (θ(tn),v(tn))− F (θ(n),v(n))]

]
ε+O(ε2)

∥∥∥∥
≤ (1 +Mε)en +O(ε2)
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where M = c supt∈[0,T ] ‖∇F (θ(t),v(t))‖ for some constant c > 0. Accumulating the local errors
by iterating the above inequality for L = T/ε steps provides the following global error:

en+1 ≤ (1 +Mε)en +O(ε2) ≤ (1 +Mε)2en−1 + 2O(ε2) ≤ · · · ≤ (1 +Mε)ne1 + nO(ε2)

≤ (1 +Mε)Lε+ LO(ε2) ≤ (eMT + T )ε→ 0, as ε→ 0

D.2 Volume Correction

As before, using wedge product calculation on the system (29), (27), and (30), the Jacobian matrix
is

∂(θ(n+1),v(n+1))

∂(θ(n),v(n))
=[I +

ε

2
(v(n+1/2))TΓ(θ(n+1))]−T [I− ε

2
(v(n+1))TΓ(θ(n+1))]T·

[I +
ε

2
(v(n))TΓ(θ(n))]−T [I− ε

2
(v(n+1/2))TΓ(θ(n))]T

As these new equations show, our derived integrator is not symplectic so the acceptance probability
needs to be adjusted by the following Jacobian determinant, det J, in order to preserve the detailed
balance condition:

det Je−LMC :=

∣∣∣∣∣∂(θ(L+1),v(L+1))

∂(θ(1),v(1))

∣∣∣∣∣
=

L∏
n=1

det(I − ε/2(v(n+1))TΓ(θ(n+1))) det(I − ε/2(v(n+1/2))TΓ(θ(n)))

det(I + ε/2(v(n+1/2))TΓ(θ(n+1))) det(I + ε/2(v(n))TΓ(θ(n)))

=
L∏
n=1

det(G(θ(n+1))− ε/2(v(n+1))TΓ̃(θ(n+1))) det(G(θ(n))− ε/2(v(n+1/2))TΓ̃(θ(n)))

det(G(θ(n+1)) + ε/2(v(n+1/2))TΓ̃(θ(n+1))) det(G(θ(n)) + ε/2(v(n))TΓ̃(θ(n)))

(31)

As a result, the acceptance probability is

αe−LMC = min{1, exp(−E(θ(L+1),v(L+1)) + E(θ(1),v(1)))| det Je−LMC |}

We can now derive a completely explicit integrator for RMLMC defined in terms of (θ,v). We
refer to this integrator as e-RMLMC for which the corresponding steps are presented in Algorithm
2. In both algorithms 1 and 2, the position update is relatively simple while the computational
time is dominated by choosing the “right” direction (velocity) using the geometry of parameter
space. Finally, it is easy to show that for G(θ) = I, our method degenerates to standard HMC.
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