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Consult yourself, and if you find 
A powerful Impulse urge your Mind, 
Impartial judge within your Breast 
What Subject you can manage best; 
Whether your Genius most inclines 
To Satire, Praise, or hum'rous Lines; 
To Elegies in mournful Tone, 
Or Prologue sent from Hand unknown. 
Then rising with Aurora's Light, 
The MUse invok'd, sit down to write; 
Blot out, correct~ insert, refine, 
Enlarge, diminish, interline; 
Be mindful, when Invention fails, 
To scratch your Head, and bite your Nails. 

from On Poetry: A Rapsody 

by Jonathan Swift, 1'133 
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THE EFFECT OF A LONG RANGE INTERATOMIC POTENTIAL ON THE 

STABILITY OF CRYSTAL LATTICES 

Charles William Krause 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory and 
Department of Materials Science and Engineering, College of Engineering;· 

University of California, Berkeley, California 

ABSTRACT 

The mechanical and phase stability of metallic crystal lattices 

is studied with a long range interatomic potential which describes 

the bonding between atoms in the lattice. Particular attention.is 

accorded to phenomena related to the shear of close-packed planes 

across one another in close-packed polytypes. 

The long range potential, which oscillates with increasing 

interatomic separation, can be partially summed to obtain an interplanar 

interaction which is particularly useful for the study of shear 

phenomena. Use of the interatomic potential, referred to as the 

Friedel potential, and the interplanar interaction allow the calculation 

of the relative energies of competing lattice structures, of phonon 

dispersion relations, elastic constants, stacking fault energies and 

the determination of the effects of finite homogen~ous deformations 

of simple metallic crystals. The various phenomena. and structures 

are studied at constant volume and as a function of the valence of 

metallic alloy. 
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I. INTRODUCTION 

Although theories of metallic bonding presently have limited 

usefulness,_ some properties of metallic elements and alloys cannot 

be understood without an understanding of phenomena occurring in 

regions of atomic dimension. For example, the strong dependence of 

properties ·on trace impurities or the effects of interstitial atoms 

and vacancies on the properties of materials subjected to irradiation 

will probably not yield easily to empirical analysis. alone. Approaches 

to the determination of how atoms within a metal are. bonded together 

on a microscopic scale are needed to unravel these and other effects. 

1 One such approach is the pseudopotential theory of metallic bonding 

which w:i(ll be used in the study of the stability of metallic crystal 

lattices found below. While such a study may not allow the immediate 

attainment of desirable metallurgical properties from an alloy, it is 

through such studies that systematic control of properties can emerge. 

Thepseudopotential theory of metallic bonding itself provide~ 

a relatively simple method for computing the energies of a variety 

of structures into which atoms can arrange themselves in metals. The 

energies associated with different crystal structures, dislocations, 

stacking faults, ordering phenomena, etc., can all be calculated using 

pseudopotential theory. While the accuracy of the energies so obtained 

varies according to.the particular structure being investigated, the 

method is of general applicability. In this regard~ pseudopotential 

theory is to metals what molecular orbital theory is to organic 

chemistry--a branch of applied· quantum mechanics with a broad range of 
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applicability made possible by the use of approximations which have 

proved to be fairly good in practice. Molecular orbital theory is 

easier to use than pseudopotential theory; however, pseudopotential 

theory must account for energies an order of magnitude smaller than 

those usually required by the users of molecular orbital theory. 

One of the problems found in the application of pseudopotential 

theory is that in its more usual form, the theory is cast in the language 

of reciprocal space and not directly in terms of r~al space parameters. 

From the metallurgist's point of view, a real space theory is preferable 

I 

to a reciprocal space theory of bonding for two reasons. First, a 

real space formulation is more easily visualized than a reciprocal 

space version of a bonding theory. Secondly, any relaxation process, 

whereby the positions of the atoms (or more precisely, ions) are 

iterated. to find the low energy configurations of defected crystals, 

can be treated more directly in real space. These advantages are 

present in the real space formulation of the pseudopotential theory 

2 1. 
of metallic bonding as formulated by Cohen and Harrison. In fact, 

the application of second order perturbation theory to the interaction 

between the electron gas and the ionic pseudopotentials leads to the 

expression of £, the structure dependent energy per ion (at constant 

atomic volume), as the sum of a central interionic potential over pairs 

of ions in the metallic crystal·: 

£ = 
1 

2N V(r .. ) , 
1J 

(I.l) 

, 
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where V(r) is the interionic potential, rij is the distance separating 

th . th 
the i-- and j-- ions, and N is the number of ions in the crystal. The 

~ 
evaluation of Eq. (I.l) provides the basis ·for the conceptually simple 

calculations found below. 

A number of different interionic poten~ials could be used in 

Eq. (I.l). For example, if the electron gas were not present, and 

the ions were well separated, the appropriate form for the potential 

would be 

V(r) = (I. 2) 

where Z is the valence of the ions. With Eq. (I. 2) in Eq. (I. 1), 

the average electrostatic energy per ion of the array of positive ·. 

ions is obtained. When the electron gas is present, the interionic 

potential is weakened and behaves like 

V(r) (1.3) 

for large r, where kF is the Fermi wave-vector and V is a constant 
. 0 

which is independent of structure. The electrons neutralize in a sense, 
~ 

or screen, the electrostatic interaction, Eq. (1.2), and Eq. (1.3) 

is the form of the residual interaction. The Fe.rmi wave-vector is 

just 

= 



-6-

; 

long-ranged.function, and below, some of the consequences of the range 

of the Friedel potential will emerge. However, interatomic potentials 

other than the Friedel potential can give similar results, so that 

conclusive statements about the range of interaction will be difficult 

to make. The second question deals with phase transformations and 

specifically the connection between the two .or more structures involved 

in any phase transformation. In particular, it is desired to know 

if there are manifestations of a phase transformation in the microscopic 

parameters characterizing the phases, and, if so, do they give information 

about the manner in which the transformation proceeds. Since neither 

pressure nor temperature enter the analysis below, no transformations 

can be studied directly. However, much of what is done below is an 

attempt to understand the mechanisms of structural phase transformations. 

As mentioned above, one of the best features of pseudopotential 
i,_ 

theory is that it provides a relatively simple, versatile method for 

studying many phenomena. In order to maintain this simplicity and 

versatility while using the real space formulation of pseudopotential 

theory to study structural stability, a particular technique will be 

emphasized whereby partial sums of the Friedel potential over planes 

of atoms are performed to obtain the interaction between planes. A 

very simple interplanar interaction arises and allows the calculation 

of stacking fault energies, twin boundary energies, relative energies 
I 

of polytypes, elasti,c constants, phonon dispersion relations, etc. 

In fact, experimental work on lattice vibrations is sometimes interpreted 

with the aid. of interplanar force constants. 5 Use of what will be 

tY 
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termed the interplanar interaction was first made by Blandin, Friedel 

and Saada6 and gives rise to particularly simple .algebraic forms and 

very easy ways of visualizing the various aspects-of the study of 

structural stability below. 

A complete study of the stability of lattices of ions interacting 

according to the Friedel potential would be an arduous task; no such 

thing appears below. Instead, we have concentrated on the aspects 

of stability associated with simple polytypic stru.ctures, such as 

the face-centered cubic and hexagonal close-packed structures, and 

the various phenomena associated with the shear o£ the close-packed 

planes across one another. Other topics appear, but the main thrust 

is towards understanding close-packed polytypes and displacements 

perpendicular to the stacking direction in these polytypes. 

In the next chapter, some of the theoretical background material 

requisite for the subsequent use of the real space formulation of 

pseudopotential theory is developed. Chapter III concerns the evaluation 

of the sums that arise in later chapters. The method for the evaluation 

of Eq. (I.l) using the Friedel potential for three dimensional lattices 

is discussed along with a derivation of the interplanar interaction 

and an interlinear interaction. The latter is the result of another 

partial sum and is not used in any subsequent calculation, but is 

included to complete the development of the sums of the Friedel potential 

over crystal lattices.. The contents of Chapter IV are concerned with 

the use of the Friedel potential for the study of stability of lattices 

against phase transformation, i.e., the determination of t.he structure 
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with the minimum energy at T=OK from among a selected set of simple 

structures. 7 Some of this material has already been published separately. 

Chapter V includes the calculation of phonon dispersion relations and 

elastic.constants using the interplanar interaction. The treatment 

is probably too abbreviated to do justice to this broad topic. However, 

measurements of the.Debye-Waller factor, elastic constants, phonon 

dispersion curves, etc., all indicate that much is to be learned 

about phase transformations through the study of various modes of 

softening of crystal lattices. Phase transformations, of course, 

are of great practical importance, and whatever can be said ~bout 

the instabilities which give rise to phase transformations is of 

some use. Chapter VI concerns the further aspects of the study of 

lattice stability which are of importance, but which have not yet 

been investigated in great detail. First, the method of Blandin et a1. 6 

for the determination of stacking fault and twin energies is discussed. 

Then finite homogeneous deformations are treated, albeit somewhat 

briefly, since this subject is intimately related to the study 

of elastic constants, mechanical stability and stability against phase 

transformations. The concluding chapter compares the different 

criteria for stability which emerge in the preceding chapters and 

indicates to what extent the Friedel potential might accurately 

predict physical phenomena. Throughout, emphasis will be placed on 

the interpretation of various phenomena and their interrelationships 

rather than numerical results. 

' . 
'ov' 
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II. THEORETICAL BACKGROUND 

The pseudopotential theory of simple metals has yielded several 

1 8 models which promise to be useful in the prediction of structure. ' 

The simplest and most general of these follows fromHarrison's1 

2 development of Cohen's real space formulation of the pseudopotential 

theory. If a pseudopotential model of a simple metal is developed to 

second order in perturbation theory, that part of the cohesive energy 

which depends on the structure may be treated as if the atoms interacted 

in pairs according to a central, two-body potentiaJ_. This two-body 

potential has an asymptotic form which is independent of the precise 

pseudopotential assumed, and which exhibits the Friedel4 oscillations. 

Unde~ suitable assumptions, discussed below, one may make a rough 

estimate of the relative energies of candidate structures at 0 K by 

\ simply summing the energy of two-atom interactions according to the 
I 

asymptotic, or Friedel potential. This approach has been taken in 

1 d . f h f im 1 1. d 11 6 •9- 11 
severa stu 1es o t e structure o · s p e meta s an a oys 

I 

and i~ followed below, where we supplement prior work with new 

computations to explore the results of a simple structural model based 

on the two-body Friedel potential. 

wqile the approximations involved in a structural model based on 

the Friedel potential are drastic, the model has several attractive 

features. It leads to equations which are easy to use and which 

incorporate aspects of the more fundamental theory while avoiding 

the recalcitrant problem of choosing proper pseudopotentials. Moreover, 
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the model yields a prediction of alloy structure which is based on the 

12 electron-atom ratio, in the spirit of the Hume-Rothery and Engel-

Brewer13 correlations, and which is in general agreement with known 

structural tendencies in simple metals and alloys. 

The central equations of the structural model used here are 

derived as follows. Employing the real space formulation of the 

1 pseudopotential theory of a simple metal the cohesive energy per atom 

may be developed in the perturbation series: 

E = (II.l) 

whose successive terms involve perturbations of increasing order. The 

zeroth and first order terms in this expansion depend on the volum~ 

per atom(~), but are independent of structure. The second order term, 

E2 , is the first to show the influence of structure. It can be cast 

in the form 

1 
E2 = 2N L 

i,j 

I 

V(r .. ) 
1] 

(II. 2) 

where N is the number of atoms, r .. is the distance between the ith 
1] 

d . th d h . h . . d. h an J-- atom cores, an t e pr1me on t e summat1on 1n 1cates t at 

terms having i=j are to be omitted~ The function V(r .. ) appearing 
1] 

in the summation acts as a two-body potential in a restricted sense: 

it governs the change of energy in a relative displacement of atoms i 

and j which leaves the atomic volume, and hence E
0 

and E
1

, constant. 

' ' ""· 
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If we fix the atomic volume and neglect higher order terms in the 

perturbation.expansion,1 the relative energy of a given-structure is 

measured by E2 ; that structure which minimizes E
2 

.will be preferred at 

0 K • 

Computation of the structural energy, E
2

, requires a specific 

expression for the effective interatomic potential, V(r). This 

1 8 potential is sensitive to the details of the pseudopotential used. ' 

However, irrespective of the pseudopotential, V(r) h~s the asymptotic 

form1 

V(r) = (II.3) 

when (kFr) is large, where kF is the Fermi wave number. In general, 

V depends on the parameters of the pseudopotential in a rather 
0 

complicated way, but for the case of a local pseudopotential, one 

which is strictly a multiplicative operator, the form is simple: 

v = 
0 

2 2 
9'1TZ w2k 

F (II.4) 

where w2k is the value of the screened pseudopotential at k=2kF. It 
F 

is usually the screened pseudopotentials that are tabulated; Tabl~ I 

lists some typical values of V • 
0 

We may hence define a dimensionless two-body. potential· 

v(r) = V(r) 
v 

0 

(II.S) 
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which becomes the Friedel potential 

v(r) 

. when kFr is large. If we now uniformly approximate V(r) by its 

asymptotic form, the structural energy, E
2

, may ba rewritten in a 

dimensionless form which is independent of the pseudopotential: 

E2 
e: =- = v 

0 

1 ~· 
2N LJ 

i,j 

(II. 6) 

(II. 7) 

In fact, the dimensionless energy, e:=e:(Z), is a function of structure 

and electron.,..atom ratio (Z) only; since the separation distances (r .. ) 
1] 

1/3 in a given structure scale as Q , where Q is atomic volume, and . . 

since the Fermi wave number, kF, is kF=(31T2Z/Q) 113, the set of values 

of the quantity (kFr .. ) in a given structure, and hence the dimension-
1J 

less energy of the structure, is determined by Z. 

Equation (II.7) was drawn from the pseudopotential theory of simple 

metals. It may be generalized to estimate the relative energies of the 
\ 

structures of uniform random solid solutions of simple metals through 

8 use of the virtual crystal model: the alloy is represented as a 

one-component simple metal made up of pseudoatoms whose properties 

average those of the atoms actually present. With this approximation 

the dimensionless structural energy of the solid solution is determined 

by its mean electron-atom ratio (Z) through Eq. (II.7). The preferred 

' structure of the solid solution at 0 K may then be estimated by 

• . / .: 

,. ' 
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minimizing £ over the set of candidate structures •. The result is 

uniquely determined by z. For ordered structures, the sum, Eq. (II.2) 

cannot be so simply separated. 

The structural model developed above depends on three specific 

assumptions, which we discuss in turn. 

(1) ~he effective interatomic potential obtained from the second 

order pseudopotential theory is replaced by its asymptotic form, the 

Friedel potential. 
1 . .· 

While it has been found that the effective 

interatomic potential actually converges toward the Friedel potential 

rather quickly, important contributions to the structural energy due 

to near-neighbor interactions may be misestimated. The model is most 

reasonable when applied to close-packed structures, having ideal aXial 

ratios since these differ from one another only in the third (or higher) 

coordination shells. The model may not yield good values for the 

relative energies of structures such as fcc and bee, which differ in 

the first coordination shell. As we shall show, however, it does provide 

an empirically reasonable estimate of the range of Z values over which 

the bee structure is preferred to the close-packed structures. 

(2) The variation in equilibrium atomic volume between candidate 

structures is ignored. Since small volume changes are observed in 

solid state transformations, and since these changes (at least at 0 K) 

must minimize the total energy of the structure, their neglect will 

necessarily result in an overestimate of the energy advantage enjoyed 

by the preferred structure. On the other hand, since the atomic voiume 

is left unknown in the calculation of structural energy, this approximation 

' 1. 
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cannot cause an erroneous identification of the preferred structure. 

(3) Alloy solid solutions are treated as if they were composed 

of identical pseudoatoms having average properties. While the 

cipproximations involved in this virtual crystal model are known8 

their quantitative consequences are not. The factors neglected include 

the tendency to short-range order, the contribution to cohesion from 

charge transfer between different species, the decrement to cohesion 

due to local lattice strain caused by size difference between species, 

and possible error from the second order theory if the valences of 

the species differ. Of course, these factors are relevant only insofar 

as they influence the relative energies of candidate structures. 

The probable error should become more important as size or valence 

differences become greater. 

As noted above, the approach to crystal structure employed here 

has been used by a number of previous workers. Shaw9 applied a method 

due to Epstein14 to show how Eq. (II.7) may be conveniently set up for 

direct numerical s9lution for an arbitrary lattice and computed 

structural energies for the face-centered cubic (fcc), hexagonal 

~lose-packed (hcp) and body-centered cubic (bee) structures as functions 

of valence. In related work, Blandin, Fried~! and Saada6 showed that 

when a structure is close-packed, Eq. (II. 7) may be recast in the form 

of a potential approximating the interaction between close-packed 

planes. Blandin, Friedel and Saada determined the energies of stacking 

faults in the fcc and hcp structures and found the ranges of valence 

over which these structures should be stable with respect to faulting. 

'' ! 

, 
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10 .. · 
Recently, Hodges suggested that the interplanar interaction might 

be used to simplify Eq. (11.7) for an arbitrary close~packed structure. 

He employed this formulation in a semiquantitative discussion of the 

stability of the close-packed polytypic structures occasionally 

. 11 
observed in alloy systems. Havinga, van Vucht and Buschow have 

also discussed phase stability using interplanar interactions of a 

similar form. Cousins15 has discussed elastic constants using Shaw's 

method for the evaluation of Eq. (II.7). These results are summarized 

and supplemented in the following sections. 
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III. LATTICE SUMS 

While the expressions for the structure-dependent energy of a 

metallic crystal which were presented in Chapter II provide the basis 

for the determination of many properties of simple metals, the 

evaluation of the sums involved can become rather difficult. First, 

the sums, especially in the real space formulation, e.g., Eq. (II. 7), 

do not converge as rapidly as might be desired and care must be taken 

to ensure proper accuracy during their evaluation. Secondly, the 

determination of the configuration of all of the ions in the crystal 

is required for the evaluation of the sum in Eq. (II.7), and when 

complicated defects such as dislocations are present, the problem can 

become immense. In particular, if it is desired to relax the 

configuration of ions to obtain a minimum energy configuration, then 

the positions of the ions must ,be changed in some iterative procedure, 

and the evaluation of the sums must be repeated until the minimum 

energy configuration is found. Methods for evaluation of sums such as 

Eq. (II.7) which are fast and accurate are desired. The purpose of 

this chapter is to evaluate sums and partial sums of Eq. (II.7) in 

order to obtain expressions that will provide such methods for both 

perfect and defected lattices. 

The present chapter is divided into three sections. In the first 

section, the interaction of an ion at a lattice site with the rest of 

the ions in the metal will be determined by summing the Friedel potential 

over a regular three dimensional lattice of ions. The method and 

, 

. ! 
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9 formulae are taken directly from Shaw, except for corrections of 

misprints in his equations and slight modifications of the definitions 

of dimensionless parameters. These sums will be used later to discuss 

phase stability. In the second section, the partial sum for an ion 

interacting with a regular planar lattice is considered. The technique 

6 is originally due to Blandin, Friedel and Saada and allows a useful 

decomposition of the sum in Eq. (II.2). The third section will concern 

itself with the interaction of an ion with a linear array of ions. 

Again, a useful decomposition of Eq. (II.2) occurs. The technique 

is suggested by the work of Blandin et al. and was_ first developed 
. . 16 

,by Rabier and Grilhe. As might be surmised, the interlinear 

interaction proves to be most useful in the study of linear defects, 

i.e., dislocations. The advantage of using the interplanar and 

interlinear interactions is that once they have been derived, the 

evaluation of the sum for the total energy consists of sums of the 

interactions between pairs of planes or lines of atoms. These sums 

are relatively easy to evaluate and their physical significance is 

easy to visualize. 

... 
A. Exact Summation Method 

If the ions of a metal are in crystallographically equivalent 

positions, as they are in fcc, hcp and bee lattices, the expression 

for e: given by Eq. (II. 7) can be simplified. For N sufficiently large 

so that the atoms near the surface of the crystal make a negligible 
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contribution, one of the sums in Eq. (11.7) can be performed to obtain 

1 L:' cos 2~ri 
E: = 

2 i (2~r .) 3 
. 1 

where r. is the distance between the ith ion and a reference ion. 
,1 

(II1.1) 

9 ~ 14 Shaw developed the summation method of Epste1n for the exact 

summation of Eq. (111.1) for lattices with or without bases. Epstein's 

method is a general technique for summing quantities like exp(ikr)/rn 

over collections of lattice points and provides the bases for Madelung 

and Ewald-Fuchs summations. The method involves a transformation of 

the sum into two rapidly converging sums. The sum over lattice points 

in real space remains, but an exponential damping factor, which 

converges to zero rapidly as r. increases, appears in each term. 
1 

The residue of the original sum is Fourier transformed into a sum in 

reciprocal space; each term in this sum includes a damping factor also. 

Anadjustable parameter allows the rate of convergence of the two sums 

to be adjusted until both converge with equal rapidity, allowing a 

minimum number of terms to be included in the sums. 

Upon transformation, Eq. (111.1) becomes 

.... 

r . 
~. 

1: 



' 
£ =; L 

i 

cos(kr.) 
l. 

(kri)3 

~ 

= 

-. 

L '· 2 ~ ls(q)j 
2n k3 

q 

k ' k . 
[(1 + -) E (a.)+ (1- -) E (13)] 

q 1 . q 1 

c~ 
f" 

41T [ 2 -k
2
/4w] 1 L' cos(kri) [ 1/2 

+ ~ E1 (k /4w)- 2e + 2 3 erfc(w ri) + 2 
Qk i (kri) 

( 

2 1/2 . 2] 
w:i) . e -wri 

"-._ 

-~ 

- __ 2_ 

3k3 

(III.2) 

e) 1/2 

I ..... 
\0 
I 
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k 

a. = 

00 

E1 (x) = ~ dt {exp(-t)/t} , 

2 erfc(x) = 1 - erf(x) = 1 - --In 

i labels the lattice points, w is the convergence parameter, n is the 

atomic volume, and 

S(q) = -N1 .~ exp - i~·;. (111.3) 
i 1 

is the structure factor for the lattice in question. The inclusion 

of the structure factor in Eq. (111.2) by Shaw allows .the sum to be 

performed for Bravais lattices which have a basis, e.g., the hexagonal 

close-packed lattice. Also desired is an expression for the sum of 

sin2kFr/(2kFr) 3 over the lattice: 

1~' 
+- L...J 

2 i 

sin2kFri 

3 
(2kFri) 

sinkri 

3 (kr.) 
1 

= 

2 2 
exp-wri + ~ 

Qk3 
1/2 erfc(k/2w ) 

with the same notation as in Eq. (1II.2). 

(1II.4) 

"· 
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As noted in Chapter II, Eq. (III.2) yields a dimensionless energy 

which depends only on the valence, Z. It is desired that this fact 

be reflected in the performance of the sum. By casting the parameters 

appearing in Eqs. (111.2) and (111.4) in dimensionless form, this can 

be accomplished. Another advantage of doing this is the ease with 

which the sums can be computed in their new form. By letting W-r 3 
0 

and defining 

R (;~) q. 
2rr 

R = q = r 
0 

Q (;~) k k 2rr 
Q = = r (III.5) 0 

2 w 
w = wr w = 2 0 r 

0 

D. 
ri 

= r D. = r. 
l. r l. 0 l. 

0 

equations (111.2) and (111.4) become 

1/2 , (WD 2)1/2 2 
[erfc(w . Di) + 2 ~ exp-WDi ] 

+ 4rr [E
1

((2rrQ) 2/4W) - 2exp-(2rrQ) 2/4W] - 2 

(2rrQ) 3 3(2rrQ) 3 (
wrr3)1/2 (III.6) 
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and 

1 L' sin kr. 
l. 

2 ,·<kr. ) 3 
r. 

l. l. 

L, 
D. 

l. 

sin 27TQD. 
l. 

(27TQD.) 3 
l. 

2 7T2 
exp-WD. + -----=-

1. (27TQ)3 
erfc(7TQ/w112) - ---'-w __ 

2(27TQ)
2 

(III. 7) 

Equations (III. 6) and '(III. 7) will be used later to discuss the 

stability of simple structures as a function of Z as well as to 

determine the stability of these structures against simple deformations 

away from the structures. 

B. The Interplanar Interaction 

The formulae presented in the previous section for sums of the 

I 

Friedel potential over a three-dimensional lattice of ions are 

ponderous, and simplification of the sums would be desireable. This 

simplification can often be accomplished by the use of the partial 

sums derived in this section and the next. In this section., the 

interaction of an ion with a regular planar lattice of ions is obtained 

by summing the Friedel potential over the planar lattice. If the ion 

in question belongs to a plane which is parallel to and has the same 

symmetry and translation vectors as the original plane, then it is a 

trivial task to sum to obtain the interaction of the two planes, i.e., 



·!' 
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an interplanar interaction. The technique is originally due to 

. 6 
Blandin, Friedel and Saada who used the interplanar interaction to 

discuss faulting in simple metals with the asymptotic form of the 

interplanar. ~nteraction, which will also be deriv~d below. 

Two generalizations of the results of Blandin et al. will emerge 

below. The interplanar interaction will be cast in,a form in which 

the c/a ratio enters as an explicit variable. This development allows 

the interplanar interaction to be used for rhombohedral modifications 

of cubic lattices and for hcp lattices with non...:ideal axial ratios 

(i.e., hcp lattices with c/a * 1.633). The second.,generalization is 

in some sense trivial and is simply the generalization of the inter-

planar interaction to lattices which contain more tb,an one atom for each 

site of the hexagonal planar lattice. Laves phases and tetrahedrally 

bonded valence compounds·are among the structures which have this 

geometry. The introduction of two or more elemental species will not 

allow the structure to be determined by Z alone, as is the case for 

solid solutions and elements. However, a useful form results from 

the relatively simple transformations that yield the generalization 

of the interplanar interaction. 

To obtain the interplanar interaction, consider an ion at a 

-+ 
distance z from a plane of ions, and let b designate the displacemertt 

from the projection of the ion to one of the ions lying in the plane 

(Fig. 1). 
-+ 

Let p. designate the positions of the ions in the plane 
. 1 

-+ -+ -+ 
with respect to the ion at z+b. Thus z is perpendicular to the plane 

-+ -+ 
of ions, while b and pi lie in the plane of ions. 

-+ 
By summing over pi, 
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the interaction of the ion with the plane of ions is obtained. This 

quantity is designated cp(z): 

<j>(z) 

where 

=:Ev<l;+b+p.l) 
i l. 

v(r) = 
cos 2kFr 

3 
(2kFr) 

is the Friedel potential and kF is the Fermi wave vector. 

The quantity cp(z) can be expressed in a form in which the sum 

over i in Eq. (III.8) is replaced by a sum over reciprocal lattice 

vectors of a planar lattice. This new form is obtained by the 

introduction of the structure factor of the planar lattice of ions 

(III. 8) 

and has the merit that it converges more rapidly than the real space 

sum. Letting the Friedel potential be the Fourier transform of w(k) 

(See Appendix A for a derivation of w(k)), we have 

zn 
v(r) = 

(27T) 3 

where n is the atomic volume. 

(III. 9) 

-+ 
Noting that k can be decomposed into 

A -+ -+ 
components parallel and perpendicular to z, denoted ~I and k1 , Eq. (III.9) 

can be rewritten as 

<j>(z) = (III.lO) 

,.; 

! 
. I 
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Now the structure factor for a planar lattice is just 

1 
N L 

i 
(III .11) 

where N is the number of ions in the plane, A is the area of a unit 

-+ 
cell of the planar lattice and g1 denotes the reciprocal lattice 

vectors of the planar lattice (See Appendix C). Use of (III.ll) in 

(III .10) yields -

(III.l2) 

Setting the quantity in parentheses equal to ~(g1 ,z) and noting that 

-+ -+ 
if g1 is a reciprocal lattice vector, then -g1 is also a reciprocal 

lattice vector, Eq. (III.l2) becomes 

cp(z) = (III.l3) 

In Appendix B, an expression for ~(g1 ,z) is obtained for large by using 

the properties of the singularities in the integrand of the integral 

in Eq. (III.l2). For. 2kF > g1 , 

= 
1Tk 

0 

2Ak 3 
F 

sin 2k z 
0 (III.l4) 
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where 2k
0 

- V4kF 2-g1 
2 

as defined in Appendix B. For 2kF < g1 , 

~(g1 ,z) is a function which decays exponentially and makes little 

contribution to Eq. (III.l3); terms with 2kF < g1 will be neglected 

below. 

The expressions above are valid for parallel planes of any type. 

However, the interplanar interaction finds its best use when the planes 

under consideration are hexagonal close-packed; we will now specialize 

to this case. The formulae for the direct space and reciprocal space 

lattice vectors for hexagonal close-packed planes can be found in 

Appendix C. We let a be the nearest neighbor distance in the plane 

so that 

13 2 
A=-- a 

2 

It is convenient to define 

y = 

and (III.lS) 

(d/a) (III.l6) 

(d/a)ideal 

where (d/a)ideal = /2/3 is the ideal axial ratio for true close-packed 

structures. Also of use is the definition of the value of the valence, 

Zc, at which the first non-zero reciprocal lattice vector equals 2kF: 

or 

z = 1.14y 
c 

= 
4TI 

13a 
(III.l7) 

... i 
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~here Eqs. (III.15) and (III.l6) hav,e been used. The next largest 

reciprocal lattice vector is equal to 2kF when 

z = 127 z = 5. 92y c 
(III.l8) 

Attention will be restricted to cases where Z < 5.92y for the present. 

We have some more definitions: 

with. 

a' = 2 (41T2) 1/3 zl/3Y2/3 = 5.67 zl/3Y2/3 
13 . 

and 

[ 

z 2/3] 1/2 
2k z = 2k nd = 2k 1 - c I nd = ne 

o o F 
2

2 3 

with 

With these definitions, 

l/J(O,nd) = -
• 205 e ' sin n8' 

(21T)325/\4/3n2 

l/J(g1 , nd) =- •. 

(III.l9) 

(III. 20) 



-28-

Next, consider the change in energy required to shift an ion from 

a position directly above another ion in the lattice by an amount 

+ 1 + + + + 
b = 3 (a2 - a1), where a1 , and a2 are the direct lattice vectors of 

the hexagonal lattice: 

~<P (z) """' + + + I+ + = £...iv(lz+b+p.l)-v(z+p.l) 
i 1 1 

= 
+ + 

(exp- ig1 ·b -1) lj!(g1 ,z) (III. 21) 

1.84 6sin ne 
= 

The generalization of the interplanar interaction follows the 

formulation of Section III.B closely. Let the ions of the basis be 

+ 
at positions designated by a j with respect to some origin (See Fig. 2). 

+ 
The displacement vector a j can be decomposed into components which 

are perpendicular (~j~) and parallel (Sj) to the hexagonal, planar 

lattices: 

= ~.; + l 
J J 

+ 

(III. 22) 

By letting p. designate the positions of other unit cells with respect 
1 

to the origin, as before, the interaction between the jth ion of the 

original unit cell and the j@. ion of some ot:her unit cell may be 

written as 

v .. ,(r) = v .. , 
JJ OJJ 

(III. 23) 
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where 

1-; + "b +Pi 
-+ -~.I r = + cr.' 

J J 

kF = (3~z)l/3 

Note that 

z = ~ z. (111.24) 
j J 

is the sum of all conduction electrons associated with the unit cell 

and 

-+ A 

a • 
2 

(dz) (III.25) 

is the volume of the unit cell (See Appendix C). 
-+ 

The vectors b and 

z have the same significance as in Section 111.B. 

For the total interaction of a unit cell and a plane composed of 

similar unit cells at distance z, Eq. (111.23) must be summed over i, 

j and j': 

<I>(z) = L: 
i j j' 

1
-+ -+ -+ -+ -+ 

v .. , ( z + b + pi + cr . , - crj I ) 
JJ J 

(111.26) 

As with the simple interplanar interaction, it is useful to find 

the energy required to shift the unit cell under consideration from 

an equivalent to an inequivalent position with respect to the plane 

under consideration: 

Mv(z) = 'E v .. ,<l-;+b+pi +~., -~J.I> -vjJ.,<I-;+. Pi+~., -~.1> 
ijj' JJ . J J J 

(III. 27) 
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The sum over i in the above equation is transformed as before to obtain 

li<P(z) 

where 

k 
K •• ' JJ 

and 

=E 
jj' 

v .. ' OJJ 

k 
K .•• ' 

JJ ~ 
k 

n = 

= 

1.16(Z2/3- zck2/3)1/2 

. , (Zn) 3 ZS/3n2 

(~ + ~., - ~.)/d, 
J J . 

1.14y, 5.92y, •••. 

sin ne 

Equation (III.2~) is the asymptotic form of the interplanar 

(III.28) 

interaction of Blandin, Friedel and Saada in the form in which it will 

be used. The interaction falls off 11.ke 'z - 2 compared to the r - 3 

form of the Friedel potential itself. It is interesting to compare 

this behavior with the Coulomb field of a charged particle and plane. 

Upon integration of the r-2 field of particles over a plane, a constant 

field is obtained, i.e. the dependence of the field on distance loses· 

a factor of r-l for each of the two dimensions involved in the integration. 

In contrast, the Friedel potential, a factor of r-l/ 2 is lost for each dimension 

involved in the integration. Of course, the reason for this behavior 

is the appearance of the cosine in the Friedel potential. 

Blandin et a1. 6 have also found the asymptotic form for Z<Z . 
c 

Around Z , the asymptotic forms yield poor approximations to exact sums 
c 

of the Friedel potential, as will be seen below. Further, it applies 

.. , 

... , : 
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only for z<z = 1.14 (for ideal c/ a ratio materials) . For these 
c 

reasons, this form will not be discussed here. 

c. The Interlinear Interaction 

In the last section, the energy of interaction of an ion with a 

planar array of ions was found. This interaction was cast in a 

relatively simple asymptotic form which is valid for large separations 

between the ion and the planar array. In this section, a similar 

type of interaction, between an ion and a linear array of ions, will 

be derived using a technique analogous to that found in the previous 

section. If a structure contains two parallel lines of ions, then 

a simple summation of the ion-line interaction in turn yields an 

interlinear interaction. The interlinear interaction is particularly 

useful in situations where there is translational symmetry in one 

direction only and where the structure factors are difficult to 

calculate, i.e., for dislocations. In fact, the interlinear interaction 

i i 11 d . d d d b Rab" d G ·1h 16 d. · was or g na y er1ve an use y 1er an r1 e to 1scuss a 

screw dislocation in a bee lithium crystal. 

Referring to Fig. 3, we assume that the ion at the origin of the 

coordinate system interacts according to the Friedel potential, Eq. (II.4)~ 

with each ion that forms a row a distance p away from the origin. The 

ions in the row are positioned at 

~ A A 
r = px + (x + md)z 
m 

(III. 29) 
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where m labels the ions in the row, and d is the spacing between ions 

along the row. The interaction energy of the row and the ion is given 

by ~ ' 

00 

1/J(p,z) = L: (III.30) 
m=-oo 

where w(k) is the inverse Fourier transform of the Friedel potential 

as given in Appendix A. The use of cylindrical coordinates leads to 

simplification of Eq. (!1!.18). Letting 

with 

A 

r 
A 

e 

z 

so that 

+ + 
k . r m 

Eq. (1!1.18) becomes 

ljJ(p,z) = 2Q 

(21T)3 

= 

= 

= 

= 

+ " A 

k = k1r + kll z 

.A A 

cos8x + sin8y 
A A 

-sin8x + cos8y 

A 

z 

pk1 cose + ~I (z + md) 

i 21T 
d8 

0 

(III.31) 

(III.32) 

(III. 33) 

.i ; 
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The structure factor for a linear array of ions is given by 

00 

~ :E exp-i~l md = 
m=-oo 

27T 

Nd 

+ A 

where· ~I = 2rrmz/d denotes the reciprocal lattice vectors of the 

line of ions. With Eq. (III.22) in Eq. (III.21), we obtain 

exp-i~1 z 

Using a definition of J , a Bessel's function, 
0 

J (x) 
0 

1 =-
7T 

i1T d8 .exp ixcos8 , 

one obtains 

lj;(p,z) = 

where 

(III.34) 

(III.35) 

(III.36) 

(III.37) 
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Further simplification occurs if p is large, since use ~an be made 

of the asymptotic form of J (x), 
0 

J (x) = _fT' 
o l:rrx-

'IT cos(x - -) 4 (III.38) 

As with the interplartar interaction, the asymptotic form of Eq. (III.37) 

is determined by the singularities in w(k). One obtains 

h7T sin(2kFp + :: ) 
F(p,o) = 

(2k )112d 5/2 
F p 

(III.39) 

and 

/2TI (2kl)3/2 
. 3'IT 

F(p,gll) 
sin(2k1p + 4) 

= 5/2 
(4kF 

2
d) p 

. (III. 40) 

2 2)1/2 where 2k1 = (2kF .. - gil Again, only terms with ~I< 2kF will 

contribute to Eq. (III.37). In the case of the interlinear interaction, 

this will generally mean that only the first two terms will contribute. 
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IV. STABILITY AGAINST PHASE TRANSFORMATION 

One criterion for the stability of a crystal lattice is that it 

have the lowest free ·energy of all possible crystal lattices. The 

determination of the crystal lattice or structure with the minimum 

free energy~ either empirically or theoretically, is the usual content 

of studies of phase stability. In this chapter, the Friedel potential 

will be used to test ~ few of the large number of possible crystal 

lattices to find the minimum energy lattice, i.e., the minimum free 

energy at.T=O K. 

In the first section, the exact summation is performed for the fcc, 

hcp, bee, de (diamond cubic), and sc (simple cubic) structures to find 

the minimum energy structures. The axial ratio of the hcp structure 

is assumed ideal. The energies of the phases with respect to the fcc 

phase, Ehcp-Efcc' Ebcc-Efcc' etc., are then found by simple subtraction 

and are plotted as functions of Z. 

As mentioned above, the application of the Friedel potential is 

probably most appropriate to the study of the relative energies of 

the close-packed polytypes structures with ideal axial ratios. The 

polytypes are easily and accurately handled through use of the inter-

planar interaction of Blandin, Friedel and Saada. In the second section, 

the method for the use of the interplanar interaction·is developed and 

the relevant-sums are performed. This method gives directly the energy 

of a polytype relative to the energy of the fcc structure, E-Ef • cc 

Using the sums, the relative energies for. a number of polytypes can 

be plotted as functions of Z. 



The relative energies may be used to determine which structure 

is the most stable of those considered. Plots of the regions of Z 

for which the different structures are preferred are presented. 

Up to this point, the relative stability of different structures 

has been considered to be determined by one variable, the electron-atom 

ratio Z. The actual structures exhibited by the simple metals indicate 

that Z is not the only determinant of structure. In an attempt to 

circumvent this defect of the model, two modifications of the Friedel 

potential are considered in the next two sections. 

The first modification is the introduction of a new parameter into 

the Friedel potential. This parameter is a phase factor, which will 

subsequently be referred to as the Friedel shift, of 26 in the argument 

of the cosine of the Friedel potential. The resulting potential is 

of the form 

v' (r) 
cos(2kFr + 26) 

3 
(2kFr) 

(IV.l) 

When Eq. (IV.l) is used in Eq. (III.l), the dimensionless structure 

dependent energy depends on both the electron-atom ratio Z and the 

Friedel shift. The stability of the simple crystal structures has. 

been determined as of function of Z and 26 by modifying both the exact 

summation method and the method developed in the second section for 

summing the interplanar interaction. 

.; 
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The secondmodification considered in the final section pertains 

only to the application of the interplanar interaction to the stability 

of close-packed polytypes. Instead of simply using the interplanar 

interaction in Eq. (III.21), ~¢(2d) is adjusted to reflect conditions 

that might hold when the dhcp, Sm, and A polytypes occur. The regions 

of Z for which the complex polytypes might appear .are determined under 

these conditions. 

A. Exact Summation of the Friedel Potential 

The formulae for the exact summation of the Friedel potential were 

developed in Chapter III. Discussed here are some considerations about 

the evaluation of the formulae. 

The convergence parameter, w, may be chosen arbitrarily in Eqs. (III.2) 

and (III.4). If w=n/s2 is chosen, where sis the nearest neighbor 

distance, the sums converge with equal rapidity. 17 In our computations 

fifty or sixty lattice vectors were used for the sums on. the right-

hand side of Eqs. (III.2) and (III.4). Then w was adjusted so that 

the last t~rms evaluated for the sums were about equal. It was found 

that w differed from n/s2 by ~ small amount and the last terms in the 

two sums contributed less than 10-4 to the expression being evaluated . 

An accuracy of 10-4 is thus claimed for these sums. The difference 

between n/s2 and the final values chosen for w is evidently due to the 

truncation of the sums; the value w = n/s
2 

is applicable only to a 

complete summation. 
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In Fig. 4, the quantities £f , £h , and £f , as determined cc cp cc 

from exact summation, are plotted as functions of Z. In Fig. 5 are 

plotted the relative energies £h -£f , and £b -£f . These cp cc cc cc 

dimensionless energies have a -3 magnitude of 5Xl0 or less for the 

range of Z considered. This range is taken to be from 1.00 to 4.00, 

the range of valence which includes the simple metals to which 

pseudopotential theory should apply. 1 •9 The results, shown in Figs. 4 

and 5 can be used to determine which of the structures has the lowest 

energy as a function of Z. In Fig. 6 are shown plots of £f , £ cc sc' 

and £de structures. 

B. Summation of the Interplanar Interaction 

The computation of the relative energies of the different close-

packed polytypic structures can be done without the exact evaluation 

of Eq. (III.2). The method for doing this calculation uses an 

approximate interplanar interaction between two parallel, hexagonal 

close-packed planes developed in Section III.B. ln particular, 

close-packed polytypic structures can be described as the stacking of 

hexagonal, close-packed planes of three types, A, B, or C. When these 

planes are considered pairwise, they are in either equivalent (e.g., 

A-A) or inequivalent (e.g., A-B) positions. For example, the stacking 

sequence of the fcc structure is ABCABC; the first and fourth planes 

in the stacking sequence are in equivalent positions, while the first 

and second planes and the first and third planes are in inequivelent 

positions. The interplanar interaction of Blandin, Friedel and Saada 

.,.. ! 

... 
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is a rearrangement interaction which gives the change irt energy when 

two parallel, hexagonal close-packed planes are shifted from equivalent 

to inequivalent positions. The expression for ~~(z) given in Eq. (III.21) 

is just this energy and will be denoted ~~BFS(nd) in this chapter (Z=nd). 

10 BFS Following a suggestion by Hodges, the~~ (nd) of Section III.B 

can be used to calculate the structure-dependent energy and relative 

stability of any close-packed structure. Let c be the fraction of 
n 

nth nearest neighbor planes in equivalent positions for some structure. 

For example, c1 equals zero for any structure, since nearest neighbor 

planes are always in inequivalent positions. The structure-dependent 

energy per atom of some structure with respect to the fcc structure 

is just 

E-E fcc 

00 

= I: 
n=l 

~c ~~(nd) n 

where fcc 
~c = c - c and c is the coefficient of the phase in n n n' n 

question. Table II shows stacking characteristics and stacking 

sequences for the polytypic structures considered in this paper. 

When Eq. (III.21) is used in Eq. (IV.2) for Z > Z , one can .. c 

(IV .2) 

obtain a simplification by noting that 6.c is periodic in n. If (nd) 
n 

is a common repeat distance for the structure in question and the fcc 

structure, we can rewrite Eq. (IV.2) as 
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2: t ~cjn '+k M>{(jn' + k)d) 
n'=O k=l 

t t1 ~ck M>( (jn' + k)d) 
n'=O 

t ~ck t M>((jn' + k)d) 
k=l n'=O 

For example, it is found that the hcp structure has an energy of 

E -E hcp fcc 

00 

~. M>C (6n+3)d) - M>((6n+2)d) + M>( (6n+4)d) 
n=O 

(IV. 3) 

(IV.4) 

with respect to the fcc structure. The terms ~ ~¢((jn'+k)d) in 
n =0 

Eq. (IV.3) can be easily evaluated when Eq. (III.21) is used. lt is 

shown in Appendix D that 

1 =-
j 

where 

a
2

(6) 

and 

00 

~· ~¢BFS((jn+k)d) 
n=O 

~t 
n=O 

sin(jn+k)6 

(jn+k) 2 

1 
. 27TkR. B (6 + 21rR. ) + 27TkR. (6 + 27TR. ) s1.n . 2 . cos . a 2 . 

0 J J J J 

00 i8/2 I: sin n6 . 6 
2 -6 R.n 2lsin 2l + 2 ¢d¢ 

n=l n tan¢ 

00 2 2 
B2 (6) L: cos n6 ~- 7T6 + ~ = = 2 4 2 6 n=l n 

(IV.S) 

"' 
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The function a
2 

was obtained numerically to six digit accuracy using 

polynomial expansions with six terms. This accuracy is needed to 

assure significance in the evaluation of Eq. (IV.S) when used in 

Eq. (IV .3). 

Use of Eq. (IV.S) in Eq. (IV.3) allows a simple calculation 

of £-£f • The method does not require the calculation of reciprocal cc 

lattice vectors as in the exact summation method and is easily visualized. 

The results for £ -£ using the interplanar interaction are shbwn hcp fcc 

in Fig. 7 as a function of the valence. 

Results for three polytype structures are also displayed in Fig. 7. 

Two of these, the double hexagonal (dhcp) and samarium (Sm) structures, 

are occastionally observed experimentally. In terms of Pauling's h-k 

notation (Table II) these structures have one half and two thirds 

hexagonal character, respectively~ The final structure, designated 

the A structure, has one third hexagonal character and is included 

for completeness. These complex polytypes might be considered as 

compromise structures that occur when the fcc and hcp structures have 

nearly the same energies. Table II summarizes the stacking characteristics 

of these complex polytypes • 

The odd behavior of the interplanar interaction pear Z = 1.14 
I 

shows up clearly in Fig. 7. Using the results from the exact summation, 

the values of £h -£f from the two methods can be compared and are cp cc 

plotted in Fig. 8. The exact summation yields £h -£f * 0 at Z = 1.14. cp cc 
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This result implies that there should be non-zero terms in Eq. (IV.2), 

i.e., the interplanar interaction is not always zero at Z=l.l4. 

Evidently, the approximate interplanar interaction breaks down near 

this value of Z. It is of interest to note the good agreement between 

the results of the two methods at other values of the valence. 

c. Inclusion of a Phase Factor in the Friedel Potential 

The Friedel oscillations were originally derived as oscillations 

in the charge density surround~ng an ion in an electron gas. 18 A 

Friedel shift appears in the result for the charge density, as in 

Eq. (IV.l). However, as usually derived from pseudopotential theory 

1 
carried to second order in perturbation theory, neither the charge 

density oscillations nor the Friedel potential contain a Friedel shift• 

Only in higher orders of perturbation theory does the Friedel shift 

occur. Friede1, 19 Seeger, 20 Heine and Weaire, 8 and Harrison21 have 

also discussed the significance of the Friedel shift. Although it is 

not yet clear what role the Friedel shift plays in interionic potentials, 

the present formulation alloys the Friedel shift to be incorporated into 

the determination of structure in a simple way, and this is done below. 

To.sum the potential, Eq. (IV.l), over the lattice as in Eq. (II.7), 

we note that Eq. (IV.l) can be decomposed into the form 

v(r) = cos 26 - sin (IV.6) 
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Now just as Eq. (II.7) could be summed using Shaw's development of 

Epstein's method, the term sin(2kFr)/(2kFr) 3 can be summed using a 

Eq. (III. 7) • 

The term sin(2kFr)/(2kFr) 3 can also be cast into the form of an 

interplanar interaction, just as was done by Blandin et al. for the 

3 term cos(2kFr)/(2kFr) . Instead of a singularity of the type (k-2kF)ln 

jk-2kFI, a form like lk-2kFI appears. The final result is to simply 

add a Friedel shift to the interplanar interaction: 

tl¢(nd) 10.44 
VO(l - (Z/Zc)2/3)1/2 

(27r)3Z4/3 
sin(ne + 26) 

2 
n 

(IV. 7) 

Expressions (IV.l) and (IV.7) can now be used in Eqs. (II.7) and (IV.2) 

to determine the stable structure just as before, except that this 

.structure will be a function of both Z and 26. This information can 

then be used to determine which structure, of those considered, is most 

stable as a function of the two variables. Figures 5 and 6 show the 

structures found to be preferred when a Friedel shift is included in 

the Friedel potential. Figure 5 is the result of the exact summation 

technique. Only the fcc, hcp and bee structures were considered 

in this determination. Figure 5 shows which of the structures, 

fcc, hcp, dhcp, Sm, or A, are preferred as a function of Z and 2o 

as determined by Eqs. (IV.l) and (IV.7). 
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D. Alternate Criteria for the Occurrence of 
Complex Close-Packed Polytypes 

In this section, the model presented above is modified in a second 

way to obtain values of Z for which complex polytypes might be found. 

In particular, the interplanar interaction, with adjustment of ~¢(2d), 

is used to obtain the regions of Z where the polytypes dhcp, Sm, and 

A might occur. What is recognized is that, since the interplanar 

interaction of Blandin, Friedel and Saada may be in error for small 

separations, ~¢BFS (2d) may not necessarily be a good approximation to 

the actual interplanar interaction for second nearest neighbor ~lanes. 

~¢(2d) is hence adjusted to meet other requirements. 

The dhcp, Sm and A structures (Table II) may be considered to be 

compromise structures occurring when the fcc and hcp structures have 

nearly the same energy. This condition can be simulated by either 

10 setting ~¢(2d) = 0, as was done by Hodges, or by requiring that 

£f = £h and adjusting ~¢(2d) accordingly. These two criteria for cc cp 

the appearance of the complex polytypes are investigated below. 

The condition that Hodges 10 
used for the appearance of complex 

close-packed polytypes is of the form 

~¢(2d) = 0 

~¢(nd) ~¢BFS (nd) n;;;:. 3 (IV.8) 

... 

.. 
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This condition assumes that the interplanar interaction shows no 

preference for equivalent or inequivalent planes at the second nearest 

neighbor plane position. If equivalent planes are preferred at the 

second nearest neighbor position (~¢(2d) > 0), the hcp structure is 

favored by ~¢(2d). and if inequivalent planes are preferred (~$(2d) < 0), 

the fcc structure is favored. Equation (IV.8) expresses the condition 

that neither type of plane is favored, so that complex polytypes, 

which have both types of planes at the second nearest neighbor plane 

position, may appear. 

The values of ~¢(nd) from Eq. (IV.8) are to be ins.erted in Eq. (IV.2) 

to determine the preferred structure and, in particular, to determine 

if a complex polytype is preferred. Hodges did not evaluate the complete 

sums, Eq. (IV.2) and therefore could not make definite conclusions 

about the relative energy of the samarium structure; he did not consider 

the A structure. The complete sums have been done., and it is found that 

the energies of the dhcp and Sm structures are usually very close to 

one another, so that care must be taken in evaluating the sums. 

The value of ~¢(2d) can be adjusted in another way. Rather than 

setting ~¢(2d) = 0, one can set £ = £ in Eq. (IV.2) by adjusting hcp fcc 

~¢(2d). The other terms, ~¢(nd), are then taken from Eq. (III.21). 

This procedure has the advantage that the condition for the appearance 

of complex polytypes is simply stated as a condition on the relative 

energies of the fcc and hcp structures. However, the term ~¢(2d) 

must still be singled out for special treatment. We take 
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tl¢(2d) tl¢
0

(2d) 

tlcj>(nd) for n ~ 3 

where tl¢
0

(2d) is adjusted in Eq. (IV.2) so that Eh - Ef . This cp cc 

condition with Eq. (IV.2) can be recast in the form 

£-£ 
. fcc 

A (EBFS -
uc2 hcp 

c-BFS) + ( BFS 
"-fcc ·. £ 

(IV.9) 

(IV .10) 

where the polytype with the minimum value of £ is preferred. Since 

Ac hcp = - 1 ·£ i d u 2 , hcp = Efcc' as prom se • 

Equation (IV.lO) can be interpreted in the following way. We 

expect the compromise polytype struc~ures, dhcp, Sm and A to appear 

when £h cp 
~ E 

fcc· One can then find what value tl¢(2d) assumes in this 

case. For some values of Z, polytypes will intrude when this value of 

tl¢(2d) is used. For other values of Z, the other interactions, 

tlcj>BFS(nd) with ri>3, stabilize both the fcc and hcp structures with 

respect to the polytypes. 

~· i 

". 
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V. LATTICE VIBRATIONS 

Any infinitesimal deformation of a crystal lattice can be regarded 

as a linear combination of the extended normal mode deformations, 

which, when excited, are referred to as phonons. If all of the normal 

mode or phonon frequencies of oscillation are found to be real, then 

the lattice is stable against any infinitesimal deformation. Otherwise, 

any normal mode with an imaginary frequency can grow in amplitude with 

time, and the lattice will eventually relax to another configuration. 

Evidently, the condition that phonon frequencies be real provides 

another criterion for the structural stability of a lattice. 

There are two other aspects of structural stability that are 

addressed by the study of phonons. First, lattice vibrations contribute 

to the free energy of a lattice through both the energy and entropy 

associated with vibrational modes excited at finite temperature. While 

this aspect of the problem will not be considered further here, these 

effects must be included in any study of the dependence of stability 

on temperature. Secondly, stability criteria have been expressed in 

terms of the elastic constants of a metallic crystal by Born. 22 The 

elastic constants are determined by the long wavelength behavior of 

the phonons. The criteria involve the stability of the lattice against 

homogeneous deformations and will be discussed in Chapter VII. 

The calculation of phonon dispersion relations is particularly 

easy to accomplish with the interplanar interaction. As in other cases, 

the reason the calculation proceeds so easily is that the formulation 
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'. 

is.essentially one dimensional in character and can be applied only to 

phonons propagating along symmetry directions in the lattice. Since 

results obtained with the asymptotic interplanar interaction only 

approximate those obtained with the Friedel potential, some modifications 

to the dispersion curves can be expected when the Friedel potential 

is used. In fact, since near neighbor interactions enter calculations 

of phonon dispersion relations, and it is in this region where the 

interplanar interaction fails to approximate the Friedel potential, 

the phonon dispersion relations calculated below are likely to be the 

least accurate of the calculations performed here. In other words, 

agreement with results from the Friedel potential, full pseudopotential 

calculations or experiment is not likely to be achieved below. The 

value of using the interplanar interaction is in its interpretive value. 

Koenig23 first considered the possibility of using an interplanar 

interaction derived from the Friedel potential to interpret the 

· interplanar force constants derived from experimental work. Unfortunately, 

his development was incomplete; some of. the loose ends will be tracked 

down in what follows. 

A. Phonon Dispersion 

In order to proceed with the calculation of phonon dispersion 

relations along symmetry directions of metallic crystal lattices, 

two new approximations must be made. First, use is made of the 

Born-Oppenheimer approximation, whereby the positiops of the ions are 

assumed to be the determinants of the energy of the crystal lattice. 

' .. 

.. 
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This approximation is a very good one and rests on the fact that the 

electrons in a solid relax in response to a perturbation of the positions 

of the ions of the lattice much faster than the perturbation can be 

applied. The second approximation that is used is the harmonic 

approximation, in which it is assumed that restoring forces vary linearly 

with displacement. For arbitrarily large displacements, this 

approximation is bad, but for infinitesimally small displacements 

about an equilibrium configuration, the approximation is rigorously 

true. It is the latter case that will be considered below. 

For vibrations propagating along certain symmetry directions of 

a crystal, the normal modes are polarized into one purely longitudinal 

and two purely transverse components. 3 For a given wavelength and 

polarization, a mode may be considered to consist of whole planes of 

ions vibrating either parallel or perpendicular to the propagation 

direction. 
. . 3 5 

With the introduction of interplanar stiffness constants, ' 

the problem of determining dispersion relations becomes equivalent to 

a one dimensional vibration problem. The dispersion relation becomes 

w2 
= l ~ C (1 - cosqpd) 

M ~ p 
(V.l) 

where w is the angular frequency associated with the. phonon of wave 

vector q, M is the mass of the ion, d is the interplanar spacing, 

and C is the stiffness constant between a plane serving as an origin 
p 

and a parallel plane a distance pd from the origin. Equation (V.l) 

is particularly useful since the values of C can be directly determined 
p 

from the interplanar interaction discussed in Chapter III. Below, 
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only transverse phonons propagating perpendicular to the close-packed 

planes of fcc and hcp lattices will be considered. While this limitation 

will give a somewhat narrow view of the topic, the qualitative form 

of dispersion relations arising from the interplanar interaction can 

be displayed with this type of mode. Also, these modes are related 

to the stability of polytypes against phase transformation as discussed 

in the previous chapter and the fault energies calculated in the next. 

All of these phenomena involve a shear across close-packed planes. 

The expressions for the values of C in Eq. (V.l) must be found 
p 

first. For a translation 8 = o6 of a plane a distance pd from a 

plane serving as an origin, Eq. (111.13) gives a change in energy per 

ion of 

cS<j> (z) 
-+ -+ -t -+ -+ 

(cos(g1 · (b+o))-cos(g1 •b))ljJ(g1 ,z) (V.2) 

for translations transverse to the stacking direction, and 

(V. 3) 

for translations parallel to a stacking direction. As introduced in 

-+ 
Section 1V.B, the vector b is determined by whether or not the two 

planes are in equivalent positions with respect to each other. For 

small values of cS, Eq. (V.3) may be expanded in a Taylor series about 

o=o: 

a 1 a 2 
o<f>(pd+o) = o<f>(pd) + -a 8- o<f>(pd) a+ 2 - 2 o<f>(pd) a + ••• , 

acS 

and similarly for Eq. (V .2). 

. ' 
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Now the first term of the above series vanishes identically. When 

summed over all planes, the second term must also vanish identically, 

otherwise the plane under question will distort in such a way as to 

lower the energy of the lattice; for transverse distortions, :o o¢(z) 

does vanish. If the structure is hcp or fcc, it is also easy to see that 

a sum over all planes will yield zero by symmetry. It is probable 

that this result holds more generally. The third term yields the 

interplanar force constant: 

c p 
= o¢(pd) 

Applying Eq. (V.5) to the expressions for o¢(z), we obtain 

for transverse deformations. 

depend on the direction 6. 

c 
p = 

It turns out that Eq. (V.6) does not 

Equation (V.6) simplifies to 

+ 1 + + 
b =- (a - a

1
) 

3 2 

+ 2 -161T 
2 

a 
1/J(gi ,pd) b = 0 

(V.5) 

(V.6) 

(V • 7) 

+ 
where, in the first case, C is independent of the direction of b as 

p 
+ th long as b carries the p-- plane from an equivalent to an inequivalent 

position. Now 1/J(g1 ,pd) is given by Eq. (III.l4): 
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(V.S) 

where Z is the valence, 8 = 5.67(z213-zc
2

/ 3)
1

/
2 , y = (d/a:)/(d/a)ideal' 

and Z = 1.14y. 
c 

Insertion of Eqs. (V.7) and (V.S) into Eq. (V.l) yields 

Noting that 

(
-2 t sin3~8 (1 - cos3pqd) 

p=l (3p) . 

00 

+ ~ sin(Jp-~)S (1 - cos(3p-l)qd) 
p=l (3p-l) 

+ t sin(3p-~)S (1 - cos(3p-2)qd)) 
p=l (3p-2) 

00 

+~ 
p=l 

sin 3p8 

(3p)2 
(1 - cos 3pqd) 

sin p8 
2 

p 
(1 - cos pqd)) 

1 sinacosB = 2 (sin(a+B) + sin(a-8)), 

(V. 9) 

(V.lO) 
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one finds that 

(V.ll) 

where 8' = 38 and q' = 3q. This is the form for the dispersion 

relation for transverse phonons propagating in a ( 111> direction 

in a face-centered cubic crystal. 

Similarly, we obtain 

2 2 ( arr22) ( -. 2058 ) w =-
(2rr)3Z5/3Y4/3 M a 

(- 2 t sin 2~8 (1 - cos2pqd) 
p=l (2p)2 

00 

(1-cos (2p-1) qd~ +2: sin(2~-1)8 
2 p=l (2p-l) 

= ~ (:zz) ( -.2058 ) (V.l2) 
(2rr)3Z5/3Y4/3 

(-
00 

3E sin 2~8 (1 - cos 2pqd) 
p=l (2p)2 

+ t sin ~8 
(1 - cos pqd)) 2 p=l p 



-54-

for transverse modes propagating parallel to a ( 001) direction in a 

hcp iattice. With the identity Eq. (V.lO), we have 

(V.l3) 

where 8'=28 and q'=2q. 

For longitudinal deformations, Eq. (V.S) yields 

(V.l4) 

and analysis similar to that found in Eqs. (V.9) to (V.l4) can be 

applied to obtain the dispersion relations for the longitudinal 

vibrational modes. 

Use of Eqs. (V.ll) and (V.l3) has been made to plot the dispersion 

relations for the fcc and hcp structures in Figs. 11 and 12 , 

" respectively. The maximum value of q in a close-packed direction 

which is inside the first (extended) Brillouin zone is just rr/d 

where d is the interplanar spacing. The interplanar interaction 

was expressed in terms of dimensionless energy units in Eq. (V.2). 

To obtain the proper units for w, the factor V must be reinserted 
0 

to obtain 



-55-

2 mass (length/time) 
2 mass·length 

1 
2 time 

.The quantity w will be plotted in dimensionless units, i.e., 

= f(z) 

where f(z) depends on Z above, and the quantity w' can be defined 

as 

w' = w 

In Figs. 13 and 14 are plotted the dispersion relations for (OOl)T 

phonons in magnesium and ( 111) T phonons in aluminum, respectively. 24 , 25 . 

The values of V for the calculated curves were taken from Appapillai 
0 

and Williams26 (See Table I). For the optical branch in magnesium 

and large q range in aluminum, marked discrepancies in the general 

behavior of experimental and calculated curves occur. The behavior 

of dispersion curves in these regions of q is related to the short 

range bonding in a crystal; the discrepancies indicate that short 

range bonding is probably poorly modelled by the F~iedel potential, 

a not unexpected result. In fact, most fcc dispersion curves show 

< 111) T behavior which is dominated by c1 ( cf. Eq. V .1) , the cont:dbu-

tion to the dispersion curves from the first nearest neighbor plane. 
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B. Elastic Constants 

In the long wavelength limit, the vibrational modes of a solid 

only indirectly reflect the discrete crystal lattice of ions which 

compose the metallic alloy. The behavior of low frequency, long 

wavelength sound waves can be understood by approximating the crystal 

as an elastic continuum, i.e., with no discrete character. The 

parameters characterizing this behavior are macrcscopic quantities--

the density and elastic constants of the alloy. For example, the 

dispersion relations for phonons propagating parallel to a cube edge 

of a crystal with cubic symmetry become 

2 ell 2 (V.l5) w = -q 
p 

and 

2 c44 2 
w = q 

p 

for longitudinal and transverse waves, respectively. The quantities 

c11 and c44 are elastic constants, and p is the density of the solid. 

By expanding the dispersion relations in the previous sec~ion about 

q=O, one easily obtains a similar form and the elastic constants can 

then be obtained from the derivatives of a
2

(9) 

2 w ~ constant • 
1 [ (--
2 

) + (V.l7) 
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For the two dispersion relations plotted in Figs. 13 and 14, two elastic 

constants are obtained: 

for magnesium and 

= 1. )XlQll J!y_ 
2 em 

for aluminum. These values show reasonable agreement with the 

11 2 11 2 experimental values of 1.64Xl0 dy/cm and 2.34Xl0 dy/cm , 

respectively, although this agreement depends on the pseudopotential 

form factor used to calculate V • What is of interest is that 
0 

experimental values can be approximated by using the Friedel potential, 

which is just the long range part of any interatomic potential arising 

in pseudopotential theory. 
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VI. FURTHER ASPECTS OF STABILITY 

In ·this chapter, two other facets of the study of stability are 

introduced: the stability against the formation of stacking faults 

and twins, and the stability of lattices against finite homogeneous 

deformations. 

A. Stacking Faults and Twins 

The defect structure of a metallic alloy is one of the principal 

determinants of mechanical properties. The properties of dislocations, 

obstacles to dislocation glide, grain boundaries, etc., all influence 

how the metal behaves under stress. Unfortunately, the problem of 

sorting out the influences of these defects on mechanical properties 

is and will remain an immense theoretical and experimental task, 

although progress is being made by a number of careful workers. One 

type of defect, the coherent planar fault, has received much attention 

over the last decade. Planar faults, be they stacking faults or twins, 

are characterized by a disturbance of the regular stacking of planes 

in a metallic crystal and have received both experimental and theoretical 

attention for two reasons. First, fault energies are not too difficult 

to either measure or calculate. 27 The agreement between theoretical 

and experimental estimates of stacking fault energies is fairly good, 

although there is probably a factor of two difference between these 

two estimates or between these estimates and the true values of stacking 

fault energies of actual metals. Secondly, the stacking fault energy 
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appears to be an important parameter in the characterization of the 

plastic deformation of close-packed materials, and hence has possible 

practical significance in the study of the mechanical properties of 

metals. 

The stability of close-packed metallic crystals against the 

formation of stacking faults and twins, rather than the mechanical 

properties of the alloys, will be discussed below. In terms of our 

categorization of deformations in the Introduction, a stacking fault 

is a localized, inhomogeneous distortion of a perfect crystal lattice.· 

In close-packed metals, twins and stacking faults lie parallel to 

close-packed planes, i.e., {111} planes in fcc structures and {001} 

planes in hcp structures. This orientation makes the calculation of 

fault energies amenable to the use of the interplanar interaction 

derived in Chapter III. In fact, Blandin 6 et al. originally 

formulated the interplanar interaction to treat these types of fault. 

Several types of notation exist for the description of planar 

faults. The convention that will be used here is the same used to 

describe polytypes in Chapter IV. Thus, the letter k will describe a 

plane with an environment of cubic symmetry, i.e., with neighboring 

planes in inequivalent positions and an h will designate a plane in 

a hexagonal environment of two neighboring planes in equivalent 

positions. For the fcc and hcp lattices, there are three common types 
I 

of planar fault: the intrinsic and extrinsic stacking faults and the 

twin fault. In the fcc lattice, two hexagonal type layers are found 

in the stacking of a crystal containing either an intrinsic or an 
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extrinsic fault, as can be seen from Table IV. Likewise, a twin gives 

rise to only one hexagonal type layer. In an hcp material the intrinsic, 

extrinsic and twin faults give rise to two layers, three layers, and ' -.. 
one layer with cubic symmetry, respectively. Other types of faults 

28 can be visualized; in fact, E. A. Harrison has treated a number of 

different types of planar faults in aluminum. Also, different types 

of faults will arise when polytypes other than the fcc and hcp structures 

are considered. Attention will be restricted to the faults already 

delineated. 

27 A simple model for the energies of the different types of fault 

can be constructed using an interaction between second nearest neighbor 

planes only. If ~ is the difference in energy between planes in 

equivalent and in inequivalent positions, then the energies of intrinsic, 
( 

extrinsic and twin faults are 2~, 2~, and ~in the fcc structure and 

-2~, -3~ and -/::,. in the hcp structure. Similarly, the difference in 

energy between the hcp and fcc structures is just ~ per plane of material. 

This model neglects forces of range further than twice the interplanar 

spacing and will be refined below to include some of the long range 

effects. 

In their treatment of stacking faults, Blandin et a1. 6 developed 

the formulae needed to deal with the long-range interplanar interaction 

developed in Chapter III. With the M>(nd) defined above, the fault 

energies are given by: 
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face-centered cubic: fl£ = 

intrinsic: ~ [3n fl¢(3nd) - (3n-l) fl¢((3n-l)d)] 
n=l 

extrinsic: ~ [(3n+lM¢(3nd)- 3nf1¢((3n+l)d)- 2fl¢((3n-l)d)] 
n=l 

twin: ~ n[2fl¢(3nd) - fl¢((3n-l)d) - fl¢((3n+l)d)] 
n=l 

hexagonal close-packed: 

intrins-ic: 

extrinsic: 

twin: 

fiE = ~ n[2fl¢(2nd) - fl¢((2n+l)d)] 
r=l 

~ [(2n+l)fl¢(2nd) - 2nfl¢((2n+l)d)] 
n=l 

~ [nf1¢(2nd)] 
n=l 

Since the interplanar interaction has been expressed in dimensionless 

units, a factor of V /(/:3a2/2) must be inserted to yield proper 
0 

dimensions-erg/cm2 • The generalization of the interplanar interaction 

to include arbitrary c/a ratios also allows the various fault energies 

to be calculated as a function of c/a. This has been done for Z=2 and 

in Fig. 15, the results for the hcp lattice at Z=2 can be found. 
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The sums over combinations of ~¢(nd) above can be evaluated in 

terms of functions like a 2(8) and 82 (8) defined in Chapter IV; 

Blandin et al. 6 give the details of the computation. These 

formulae reduce to the simple model results given above, 

if values of 6¢(nd) with n greater than two are neglected. 

B. Finite Homogeneous Deformations 

With either the exact summation method of the Friedel potential 

or the interplanar interaction, the highly symmetrical crystal structures 

considered in Chapter IV can be subjected to finite homogeneous 

deformations. All that need be done is vary the crystal structure to 

simulate the deformation. 

The relationship between finite deformations and other aspects 

of stability has not been explored fully; the purpose of this section is 

to point out that finite deformations can be investigated with the 

present formalism and that they are intimately related to the other 

aspects of the study of the stability of structures. 

In Fig. 17 are plotted the results of a calculation of the 

dimensionless energy, £, as a function of the c/a ratio of a body-

centered tetragonal (bet) lattice as calculated from Eq. (III.6). 

At c/a = L414, the bet structure is equivalent to the fcc structure 

as indicated in Fig. 16. The curvature of the curves for £ in Fig. 17 

is proportional to the elastic constant (c11-c12)/2 and, in fact, 

use of these calculations could be made to obtain the results of 

Cousins29 for the elastic constants (c11-c12)/2 and c44 • 

~ ; 
' ! 
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Another aspect of theoretical studies of lattice stability is 

illustrated in Fig. 17. The Born stability criteria are that 

and 

for cubic crystals. These conditions apply only to the curvature of 

the energy as a function of some deformation parameter. For a 

theoretical model of a metal, there is no guarantee that no contribution 

to the energy which is linear with the deformation enter, unless 

additional constraints are put on the lattice. Such linear terms 

can obviously cause minima in energy to be found for structures other 

than the bee and fcc structures. What is of interest is that in 

Fig. 17, where there is a positive value of (c11-c12)/2 for the bee 

and fcc structures, there also occur local minima of the energy for 

these structures. 
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VII. THE STABILITY OF CRYSTAL LATTICES 

In the preceding chapters, a number of quantities have been 

calculated with the Friedel potential. It is easily argued that the 

Friedel potential leaves much to be desired as an interatomic potential. 

At both short and long ranges, the bonding is probably not well 

represented by the Friedel potential. On the other hand, it can also 

be argued that the value of the Friedel potential is due, in some 

sense, to its uniqueness. The strength of what has been calculated 

above lies not so much in its agreement with experimentally determined 

quantities as in that a particular facet of pseudopotential theory 

has been investigated in some detail. The results obtained above 

are summarized and interpreted below. 

A. Interpretation of Structural Energies 

In Chapter IV, a number of computations of structural energies 

of crystal lattices were performed using the Friedel potential. Below, 

these energies will be discussed in terms of the form of the Friedel 

,potential at various values of the valence. Following this discussion, 

the results of Chapter IV are considered in relation to ·the assumptions 

used to obtain the Friedel potential and in relation to actual phases 

found in simple metal systems. 

It has been noted that the Friedel potential, Eq. (II.6)~ is 

independent of volume. Using the completely dimensionless form found 

in Section III.A, the Friedel potential has been plotted in Fig. 18 
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for Z = 1 to 4. Also shown in the figure are positions of the first 

nearest neighbors of an ion for several different crystal structures. 

The Friedel potential itself is oscillatory in nature with an envelope 

that decreases with distance like l/r3 • For fixed Z, the potential 

exhibits a repulsive region as r increases, then a local minimum in 

which the nearest neighbor ion of some ion might be expected to 

prefer to be positioned, and then a maximum. There is actually another 

minimum of the Friedel potential at smaller values of r, but it is 

spurious in the sense that it will not appear in an interionic potential 

derived from the full theory. Instead, this region of r, which 

corresponds to a large overlap of the cores of the ions, should be 

characterized by an increasingly large repulsive interaction. As Z 

increases the oscillations contract and appear at smaller values of r. 

The near neighbor interactions might be expected to dominate the 

behavior of the energies of the various crystal structures available 

to the metallic alloy. This behavior is reflected to some extent in 

Figs. 4 and 6, where the results of summing Eq. (II.6) for various 

crystal crystal structures is displayed as a function of Z. In Fig. 4, 

the results for bee, fcc, and hcp lattices are plotted. All of the 

curves show a sharply decreasing and positive energy, then a minimum, 

and then a slow rise. This behavior is easily understood in terms 

of Fig. 18 in which, as Z is increased, the first nearest neighbor 

vectors "slide down" the repulsive region into the minimum and up 

the adjoining maximum. Figure 6 displays similar results for the fcc, 

simple cubic and diamond cubic structures. These curves cannot display 
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realistic behavior for low values of Z because the first nearest 

neighbors are affected by the first, spurious minimum of the Friedel 

potential for valences near one, as mentioned above. In fact it is 

probably this repulsion that favors the more close-packed structures 

that are actually observed. The open sc and de structures, when 

compared to the close-packed structures at constant volume, have a 

small number of near neighbors and these near neighbors appear at 

relatively small values of r, as can be seen in Fig. 18. At low Z, 

a small value of the near neighbor distance will lead to large repulsive 

interactions and the preferrence of some other structure. 

At larger values of Z, where the nearest neighbor vectors of the 

close-packed structures are approaching the adjoining maximum of the 

Friedel potential, the nearest neighbor distances of the open structures 

are near the minimum of the Friedel potential. Consequently the open 

structures are favored. It is interesting to note that at Z=4, the 

simple cubic structure is favored over the diamond cubic structure. 

Using the effect discussed just above, Heine and Weaire8 suggested 

that the diamond cubic structure might be found to be stable at Z=4. 

Although the open structures are found to be more stable than.the 

close-packed structures at Z=4, the simple cubic structure is preferred 

over diamond cubic, as determined by the Friedel potential. It is 

also of interest to note how closely the bee curve follows the fcc and 

hcp curves in Fig. 4. Compared to the sc and de structures, the bee 

structure has a very clear close-packed behavior. 

.. 
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The computations discussed above have allowed several determinations 

of structure. The results are summarized in Fig. 19 along with results 
. 6 

obtained by Blandin, Friedel and Saada. The most stable structure 

of those considered is plotted as a function of Z. These data are also 

presented in Table III. In this section we compare these results with 

the actual structures found among the elements and in alloy systems. 

. 6 
The first plot in Fig. 19 represents the results of Blandin, et al. 

Using the real space formulation of pseudopotential theory, they 

discussed the stability regions for the fcc and hcp structures. 

Specifically, they determined the regions of Z for which the fcc and hcp 

structures are stable against the formation of stacking faults, using 

the unmodified interplanar interaction. 

The results which follow from the formulae oJ Sections IV.A and 

IV.B are shown in the second and third plots of Fig. 19. These results 

complement those of Blandin, Friedel and Saada, as can be seen by 

comparing the first and second plots of Fig. 19. Over the range 

2.lo<Z<2.20 the fcc phase is stable against faulting for the model 

considered here, but is metastable with respect to the hcp phase. 

Similarly, the hcp phase is stable against faulting from Z=2.20 to 2.29, 

but is metastable with respect to the fcc structure. On the other 

hand, over the range 1. 27<z<l. 30 the model predicts that hcp is stable 

relative to the fcc structure, but unstable to faulting, while for 

1.3o<Z<l.36 the fcc structure is preferred to hcp, though both are 

unstable with respect to formation of a fault. Since the close-packed 
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polytypes may be derived from the simple fcc or hcp structure through 

periodic faulting, polytype intrusion is likely near Z=1.30, as discussed 

below. At Z=1.66 and 3.53 the fcc-hcp phase boundaries coincide with 

the limits of stability with respect to faulting. 

The results obtained from the exact summation of the Friedel 

potential are given in the third plot of Fig. 19, which includes the 

predicted range of the body centered cubic structure. 

The results shown in the first three plots of Fig. 19 are 

complementary, and express structural tendencies which are at least 

roughly reflected in the periodic table for Z in the range 1 to 3. 

The model prefers the hcp structure when Z=l, as do the simplest 

monovalent metals, lithium and sodium, in their low temperature forms. 

At Z=2 the model shows a very slight preference for the bee structure 
/ 

over an hcp structure with ideal axial ratio; the possibility of a 

non-ideal axial ratio was not considered. The hcp structure is clearly 

preferred to fcc. Empirically, the divalent metals beryllium, zinc, 

and cadmium are hcp; all except magnesium have axial ratios which are 

far from ideal. At Z=3 the model prefers the fcc structure. Among 

the trivalent elements, aluminum is fcc and indium is nearly fcc. 

Gallium has a distorted structure which was not considered. 

The application of the results summarized in Fig. 18 appears to 

be successful in alloy systems for at least one value of Z. At Z=2.20, 

there is a boundary between the fcc and hcp stability regions. 

Corresponding to this value of Z, there are several systems with large 

solid solubilities that also assume a phase boundary at or near this 

i 



-69-

value of z. The fcc phase of aluminum is stable with up to 66.5 a/o 

additions of zinc, and similarly the fcc phase of indium is stable 

with additions of up to 77 a/o magnesium. 30 Also, results from 

splat-cooling experiments31 indicate that fcc or fcc-like phases 

are observed down to Z=2.20 in a number of systems. These experimental 

results for elements and alloys are in agreement with the determination 

of the relative stability of the fcc and hcp structures with the 

Friedel potential, especially in the region of Z=2 to 3. 

The region of Z for which the bee structure is preferred is 

1.48~<2.03. This range includes the electron-atom ratios of the beta 
I 9 

brasses, the bee-like Hume-Rothery alloys. 

Besides the fcc, hcp and bee structures, several polytypic structures 

were considered in Chapter IV. In particular, results from the use of 

the unmodified interplanar interaction to determine the stability of 

the fcc, hcp, dhcp, Sm and A structures agains the formation of the 

other structures are shown in the second plot of Fig. 19. There is· 

a polytype intrusion near Z=l.30. 32 33 In fact, there is strong evidence ' 

that at least the dhcp phase is found in this region of valence. At 

Z=2.20 the Friedel potential yields a transition between the fcc and 

hcp structures with no polytype intrusion. In fact, complex polytyp~s 

do not seem to intrude at or near this value of Z in alloy systems. 

The considerations above relate to a model in which the valence 

is the only determinant of structure. Since simple metals from a 

particular group of the periodic chart, i.e., with a particular value 

of Z, display different structures, this type of determination is 
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bound to fail. The flexibility necessary to allow several structures 

to be stable at a particular value of Z is obtained by the introduction 

of a Friedel shift of 2o into the Friedel potential, as can be seen 

from Figs. 9 and 10. 

To draw clear conclusions form the modified model we would require 

a method for selecting an appropriate Friedel shift for a given material. 

. 21 34 The one available quantitative suggest1on, ' that the phase factor 

be computed from the phase shifts on scattering from the pseudopotential, 

has been criticized on theoretical.grounds by Heine and Weaire. 35 We 

computed phase factors from the phase shifts on scattering from several 

20 suggested model potentials and found, in agreement with Seeger, 

that the resulting values of 2o are so large that they destroy the 

reasonable agreement between the simple structural model and empirical 

trends in structure. Reasonable agreement can only be maintained if 

one accepts the conclusion of Heine and Weaire35 that 2o is small. 

Leaving aside the computation of the phase factor, the accuracy 

of the model may be improved if 2o is allowed to assume values of 

magnitude n/4 or less. Reference to Fig. 9 shows that at Z=3 this 

range of 2o permits the fcc and hcp structures, which are empirically 

observed, but does not permit the bee structure, which is not observed. 

At Z=2 all three structures, hcp, bee, and fcc, occur over a small 

range of 26; all are, in fact, found in the divalent metals. At Z=l 

the hcp and bee structures occur with moderate phase factor; these are 

the structures found in the monovalent alkali metals. Reference to 
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Fig. 10 shows that polytypic phases may be stabilized by a small phase 

factor when 1.25<Z<l.60 and when 3.00<Z<3.60. These are the ranges 

of electron-atom ratio over which the close-packed polytypes are 

11 commonly found. 

The second modification to the Friedel potential that we consider 

is actually a class of modifications to the interplanar interaction. 

The value of L!.¢(2d) is adjusted to find ranges of Z where the complex 

polytypes, dhcp, Sm and A, might occur in the case that L!.¢(2d) is not 

given correctly by the expression of Blandin, Friedel and Saada, L!.¢BFS(2d). 

More distant interactions are still assumed to be given by Eq. (111.21). 

The last two plots in Fig. 19 show the regions where the complex 

polytypes might occur according to the modifications discussed in 

Section IV.D. In both of these plots, polytype intrusions occur at 

2=1.30, as was the case for the results from the unmodified interplanar 

interaction. It is interesting to note that the A,structure appears 

in the last plot only and there the A structure is stable only in 

relatively small regions of z. Experimentally, the A structure is 

rarely found. 

The last plot in Fig. 19, which shows where polytypes might occur 

if e:f =e:h , gives results close to those listed by Havinga, et a1.
11 

cc cp 

who used a criterion even more general than the criteria described above 

to discuss polytypes. These authors did not use complete summations, 

Eq. (IV.2), in their determiantion of polytype stability, but inserted 

a factor which damped the interplanar interaction at large distances. 



-72-

In contrast, the technique used in this paper treats the long range 

part of the Friedel potential explicitly. However, we note that there 

are experimentally observed polytypes listed by Havinga, et al. which 

fall outside the stability zones found in their paper and in Fig. 19. 

B. Criteria for Stability 

The determination of the crystal lattice with the lowest structural 

energy, as discussed in the previous section, is only one of a number 

of ways of viewing the stability of lattices. The calculations of 

previous chapters allow several other approaches. Moreover, since 

results from the Friedel potential depend on the valence associated with 

the metallic alloy, and only the valence, the different criteria for 

stability that emerge can be studied for the whole family of potentials 

generated-by allowing the valence to vary. In this section, the 

magnitude of the physical quantities involved will not be of so much 

concern as the determination of whether or not the quantities satisfy 

the various stability criteria. 

The interpretation of the phenomena predicted by a microscopic 

model for metallic bonding in terms of the details of the interatomic 

potential used in the model, if an interatomic potential is indeed used, 

is necessary for a complete understanding of the model. On the other 

hand, this task is complicated since any ion is interacting with all 

other ions in the solid which is being modelled, and these ions are 

situated in all different directions and at all different distances 

. ' 
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from the original ion. The interplanar interaction and its application 

to various shear-like phenomena was developed to allow a simplification 

of this interpretive problem. Although shear deformations cannot be 

used to characterize many processes in metals, a shear is the simplest 

volume conserving deformation, so while the restriction to shear 

deformations below is fairly severe, this direction is probably the 

place to start an interpretation of the consequences of the model in 

terms of the interatomic potential used above. 

Stability against phase transformation and against stacking fault 

formation have already been discussed in the previous section. If the 

axial ratio is ass~med to be ideal, then only interactions between 

second nearest neighbor planes enter into the consideration of stability 

using these two criteria. As noted in the previous section, the 

determination of stability against phase transformation by finding the 

lattice with the minimum structural energy ensures that only one 

structure will meet the criterion; this was not the case for the 

formation of stacking faults. Using this latter criterion and the 

two criteria discussed below, more than one structure can be stable 

at some values of Z. These criteria are for mechanical stability, 

and in terms of the discussion of phase and mechani~al stability in 

the introduction, only metastability can be treated with mechanical 

stability criteria. 

Two other mechanical stability criteria for stability emerge 

from Chapter IV. First the requirement that all phonon frequencies 

be real must be satisfied. A special case of this criterion is that 
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(c11 - c
12 

+ c
44

)/3 > 0 for fcc lattices and c66 > 0 for hcp lattices. 

These relations are implied by the Born stability criteria22 and 

comprise the second new means by which the stability of a lattice 

can be tested. In Fig. 20 are plotted stability zones for fcc and 

hcp lattices using all four criteria. Clearly, the above criteria 

on the elastic constants are not sufficient to ensure w > 0 for all 

values of the phonon wave vector, since there are regions of Z in 

the last plot of Fig. 20 which show stability while the corresponding 

transverse phonon modes indicate instability. 

At small values of Z, we can also see that neither the fcc or 

hcp structures are metastable. Evidently some other structure 

is more stable than those indicated in second plot of Fig. 20. This 

fact has already been verified for Z equal to 1.3. 

Still assuming ideal axial ratios, there appears a significant 

distinction between the stability criteria based on stability against 

phase transformation and stability against stacking fault formation 

on the one hand, and the criteria based on elastic constants and phonon 

frequencies on the other. For the shear across a <111) plane in an fcc 

crystal, only interactions between second nearest neighbor planes enter 

in the first case, while in the second case, near neighbor plane 

interactions enter. Whether this phenomenon occurs for other types of 

deformation has not been investigated, but it has significance for the 

study of polytype stability. 
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It might be expected that, as a structure becomes unstable against 

the formation of a phase which is the polytype of the original phase, 

the corresponding elastic shear modulus and transverse phonon branch 

might show some anomaly. Such polytypic transformations have been 

observed in magnesium and the rare earth elements. As it appears from 

the above considerations, such anomalies will be small or non-existent 

simply because polytype stability is determined by a different 

combination of interactions than the combination of interactions which 

determine the phonon dispersion relative in the ( 11.1> direction. 

C. Conclusion 

The model of a metal adapted above has yielded some insight into 

the relationships between different aspects of lattice stability. 

Below, we return to some question raised in the introduction and then 

indicate the direction further work might take. 

Two questions have underlaid the present work: 1) What is the 

range of bonding in metals, i.e., how rapidly do the strengths of 

bonding functions decrease in metallic alloys, and 2) are phase 

transformations manifested in the behavior of the macroscopic parameters 

characterizing the phases, and does such· a manifestation yield information 

about how the transformation proceeds? 

The first question is an old one and remains controversial. 

As discussed above, the odd dependence (or independence) of contributions 

to elastic constants on interplanar separation is an example of some 

of the paradoxes which arise in attempting to find an answer. To some 
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extent, the question is not very important in that many quantities--

phonon spectra, elastic constants, etc.--can be obtained from interatomic 

potentials vastly different from the type used above. It is in second 

order effects that the range of bonding may become important. It is 

in the temperature and pressure dependence of elastic constants, 

stacking fault energies and more subtle effects that the range of bonding 

may enter as an important quantity. 

The answer to the remaining question regarding phase transformations 

is of great practical importance. Although the questions have not been 

addressed directly in the development above, they can be discussed 

qualitatively using some general thermodynamic ideas. Phase transformations 

can be categorized in many ways, but one of the most useful is use of the 

d . i. . b . d . 36 f i 1st nct1on etween reconstruct1ve an non-reconstruct1ve trans ormat ons. 

In the former, the unit cell of the two phases (or structures) differ 

radically, i.e., relatively large displacements of atoms are required 

by the transformation. In the latter case, small displacements are 

usually encountered. It has been found that optical and elastic 

constants do indeed show anomalous behavior near transition temperatures 

when displacements are reasonably small. This area of research has 

received much attention recently. 

However, it is the former area which is perhaps of more importance 

to metallurgists--included are many allotropic phase transformations. 

It is perhaps a pessimistic stance, but it seems unlikely that simply 

because the free energies of two modifications of a metallic alloy are 

nearly equal, other parameters will show any anomalous behavior. The 
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reason for this lies in the idea that thermodynamically, the region of 

phase space sampled by one phase is too far removed from the phase 

space sampled by the other phase for the first phase to manifest 

behavior connected to the incipience of the second phase. In some 

sense, the equality of the free energies may be considered as accidental 

so that the phase transformation cannot be viewed as the "freezing 

in" of a phonon or the results of some other mechanism. That such 

transformations can be analyzed in terms of so-called soft modes seems 

unlikely. 

We have omitted any consideration of temperature or pressure 

effects in the preceding development. Some temperature effects can 

be included directly in the interionic potential. These include 

1) the effect of thermal excitation of the electrons37 which reduces 

the sharpness of the electron energy distribution function which in 

turn yields the Friedel oscillations, 2) the vibrations of the ions 

which does not allow a unique assignment of interionic distances, and 

3) mean free path effects. All of these mechanism tend to weaken the 

Friedel potential,' or any other interionic potential, as the temperature 

is increased. 

Two problems arise if temperature effects are included directly 

in an interatomic potential. First of all, some temperature effects 

will be omitted in this approach because only part of the Gibbs free 

energy is being calculated to start with. The term - TS irt the Gibbs 

free energy is obviously of importance to the stability of alloys at 

finite temperature, and the entropic effects must be considered in 
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addition to what has been done above or in most applications of 

pseudopotential theory, for that matter. Secondly, the contribution 

of excited phonons to the free energy is difficult to separate from 

electronic effects. Nonetheless, some temperature effects have 

already been incorporated in interatomic potentials derived from 

38 pseudopotential theory. 

Crystal lattices under finite stress have not been considered 

at all above. This field, which includes anharmonic effects, theoretical 

strengths of crystals, and the effect of finite distortions~ is of 

great importance. 
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APPENDIX A 

Derivation of the Inverse Fourier 
Transform of the Friedel Potential 

Care must be taken in the evaluation of the Fourier transforms 

related to the partial summations of Chapter III. The convention 

that will be used for f(x) and the Fourier transform of f(x), g(y), is 

f(x) ~oo dy exp ixy g(y) · 

(A.l) 

g(y) 1 ~oo dx exp-ixy f(x) • =-
2'IT 

Most of the transforms that are needed can be found in Lighthill39 

and are expressed there following a slightly different convention: 

f(x) = ~
00 

dy exp(2'ITixy)g'(y) 

(A.2) 

g'(y) = ~oo dx exp-(2'ITixy)f(x) 

where g'(y) designates the Fourier transform of f(x). The two Fourier 

transforms are related by 

g(y) = 
1 

2'IT 
g'(y/2'IT). (A.3) 
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It is desired to find w(k), the inverse Fourier transform of the 

Friedel potential, i.e., the function whose Fourier transform is the 

Friedel potential: 

w(k) = ++ 
exp ik•r (A~4) 

where the insertion of the factor of (l/2n) ensures consistency with 

Eq. (III.3). If use is made of spherical coordinates with the z axis 

+ 
parallel to k, the angular integrals may be performed immediately: 

w(k) 

Tf 

2Tf (oo cos 2kFr 
Jo dr r2 (exp ikr-exp-ikr) = 

1 
dr 2 J:

oo 
o r 

.{ exp i(k+2kF)r + exp i(k-2kF)r } 

-exp i(-k+2kF)r - exp i(-k-2kF)r 

(A.5) 

Now the appropriate Fourier transform of l/x2 can be found in Lighthil1: 39 

_!_ ioo dx _!_ exp-ikx - _!_ 
2Tf 2 - 2Tf 

0 X 

( 

00 

dx 1
2 exp-ikx H (x) 

l-oo X 

.(A. 6) 

ik = 2Tf 
Tfi <2: sgn(k) + lnlk/2Trl + C) 

where H(x) is the Heaviside function, sgn(k) = lkl/k, and C is an 

arbitrary constant. 2 C arises from the indeterminancy of 1/x at x=O; 

as defined as a generalized function, l/x2 contains an arbitrary 

admixture of delta functions. The value of C in fact will depend 
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upon the units used for k and will be dropped here because the Fourier 

transforms of w(k) developed elsewhere simply ren~er C into a delta 

function at the origin again. In other words w(k) will never be used 

directly, and the same applies to the factor of (l/2'IT) that appears 
• i 

in the'logarthmic term of Eq. (A.6). Application of Eq. (A.6) to 

Eq. (A.S) yields 

w(k) = (A. 7) 

It will be noted that as k+oo, w+ oo logarithmically. Also worth noting 

is that if Eq. (III.2) is carried to the limit k+ oo, a singularity 

identical to Eq. (A.7) appears upon expansion of the exponential 

integrals in the reciprocal space sum. This is .expected. 

i 

~· ' 

.. ; 
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APPENDIX B. 

The Asymptotic Form of p(g1~ 

The function ~(g1 ,z) is given by the integral 

(B.l) 

where 

w(k) = 
2'1T 

(B.2) 

As per Lighthin, 39 only the singular part of Eq. (B.2) will contribute 

to the asymptotic form of ~(g1 ,z). 
6' .2 2 Since ~ kll + g1 ~ 0, only the 

term (k-2kF)lnjk-2kFI will contribute and only if 2kF > g1 . Here, 

2kF will be restricted to lie between the first and second non-zero 

reciprocal lattice vectors. In this case, the singularity occurs at 

k
11 

determined by 

..)~12 + gl 
2 - 2k 0 = F 

or at 

~I = ± -v4k 2 2 = ± 2k F - gl 
0 

where k is defined in order to simplify the equations below~ Now 
0 

the nature of the singularity of w(k) at ± 2k must be found. For 
0 

1~1 - 2k
0
1 small, it is easily shown that 

(B. 3) 

(B.4) 
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Substitution into w(k) yields a singularity of the form 

2rr 

2Tr k k 
0 

(~1 -2k0 ) lnl (~1 -2k0 ) 0 

(2r2)(2kF) 4 kF kF 

2rr k 
0 

(~1 -2k0 ) lnl~1 -2k0 l 
(2n) (2kF)

4 ~ 

near ~I = +2k
0

, where the non-singular part which behaves like 

lnjk
0

/kFI ,has been dropped. Similarly, at ~I = -2k
0

, there is a 

singularity of the form 

k 
-2Tf 0 

(2r2)(2kF) 4 kF 

Substitution of the singularities (B.S) and (B.6) into (B.l) 

yields an asymptotic form of 

Tf k 
0 = - -----'--

2A k 3 
F 

sin 2k z 
0 

(B.S) 

(B.6) 

(B. 7) 

. ·, 
' 
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APPENDIX C 

Lattice Vectors 

Direct and reciprocal lattice vectors for three dimensional lattices 

1 40 can be found in a number of places ' or can be determined directly. 

The characteristic lattice vectors for a planar hexagonal lattice 

enter so frequently in the text that they will be determined below. 

+ 
Vectors will be designated with an arrow, e.g., b, and unit vectors 

A 

will be shown with a caret, e.g., b. 

Using the conventions of Barrett and Massalski41 and the usual 

dimensionless unit vectors for a Cartesian coordinate system, the 

unit vectors for the hexagonal planar lattice are just 

A A 

al = X 

A 

~ A X A 

a2 = + y <c~l) 
z 2 

The translation vectors for the planar hexagonal lat~ice are given 

by 

= 

and (C.2) 

= 

3 The condition to be satisfied by the reciprocal lattice vectors, 

+ + 
designated g11 and g12 , are that 
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= 21T = 0 

(C.3) 

0 = 21T 

This set of equations lead to 
A 

81T a 41T 13 A 1 A "' + _1_) (al = (-X+- y) 
3a 2 & 2 2 

A 
(C.4) 

81T 
a 41T , 1 + A A 

a2) = y 
3a '2 l3a 

with 

= 

With these reciprocal lattice vectors, the rest of the reciprocal lattice 

can be generated. 

The points of the reciprocal lattice generated by the vectors 

from Eq. (C.4) will be labelled according to their distance from the 

origin of the lattice. The quantity gf will designate the origin, 

-+1 
g1 will designate the first near neighbor lattice positions and so 

forth. The first four such sets of reciprocal lattice vectors are 

given in terms of ;
1 

and ;
2 

as follows: 

• i 

lit,,: 



-+o 
0 gl: 

-+1 
gl: 

-+2 
gl : 

-+3 
gl: 

.. 

8rr (1 .!.) 
3a '2 

8rr 1 
3a (-1,-2) 

8rr 1 1 
3a (2, - -) 

2 

8rr 3 3 
3a (2•2) 

8rr 3 
3a (- 2,0) 

8rr 3 
3a (0,- 2) 

8rr (2,1) 3a 

~: (-2,-1) 

8rr (1 -1) 
3a ' 
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8rr 1 
3a (2,1) 

8rr 1 
3a (-2,-1) 

8rr 1 1 
3a (- 2•2) 

8rr 3 
3a (0,2) 

8rr 3 3 
3a (- 2• - -) 

2 

8rr 3 
3a (2,0) 

8rr (1,2) 
3a 

8rr (-1,-2) 
3a 

8rr (-1,1) 
3a 
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APPENDIX D 

Summation Formulae 

· It is required that a method of evaluating sums such as 

00 ·oo 

L llcj>(6m-3) ex: L 
m=l m=l 

sin(6m-3)8 
2 

(6m-3) 

be obtained. To do this, we fix j and k and show that 

00 

F{j,k,8) - L exp i[{jn-k)8] f{jn-k) 
n=l 

()(). 

1 
=-

j 
exp 2'1Tik.t 

j 
E exp i[n(e+i7'1T) ]f(n) 

J n=l 

00 

where f(n) is any function of the :J_.e. E f(n) must converge 
n=l 

absolutely natural numbers such that F{j,k,8) exists. Notice that 

the expression in braces above is in general easier to evaluate than 

F(j,k,8) itself, and it may often be given in an analytic form. 

We have 

00 

F{j,k,8) = L exp i[(jn-k)8] f{jn-k) 

1 
=-

j 

n=l 

00 j-1 

1: 1: 
n=l i=O 

00 j-1 

[ ( k) e + j ni2'1T _ k.t.2'1T + ki.2'1T ] f (J. n-k) exp i jn-
j J J 

1 ~ ~ i2'1T iki2'1T = --:- LJ LJ exp i [ {jn-k) (8 + -.-)] exp f (jn-k) 
J n=l .t=O J j 

.. ' 

.. ; 
I 

.. , 
1 
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Now we replace jn-k by n' and sum over n' from 1 to 00 • This does not 

change F(j,k,8) since all terms of the new sum vanish except those 

for which n'=jn-k for some positive integral value of n. If this can 

be established, the above assertion holds true, i.e., 

1 ~ j-1 
F(j ,k,8) = -:- £....i L 

J n'=l £=0 
exp i (n' (8 + 2~£)) exp 2'1Tik.Q, f (n') 

. J j 

For given nl 
' 

j and k, suppose there is no n such that n 1 =jn-k. 

We show 
j-1 

+ 2~£) ik£2'1T Fl = L: exp in 1 (8 exp = 0 
£=0 J j 

There must be some p such that n 1 + p = jn-k for some n, with o<p<j: 

j--1 
i(jn-k-p) (8 + 2~£) ik£2'1T Fl = L: exp exp 

£=0 J j 

j-1 
. (2'1Tjn£ _ 2'1T_k£ _ 2TI.p£ + k£_2'1T = exp i(jn-k-p)8 L: exp l. • ) 

JI,=O J J J J 

j-1 2'1TipJI, 
= exp i(jn-k-p)8 L: exp -

£=0 
j 

and, indeed, the above sum is zero. ·An example of the way this result 

simplifies an expression is given below. 
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00 00 

E sin(jn-k)8 
= Im E exp i [ {jn-k) 8] 

n=1 {jn-k) 2 
n=1 {jn-k) 

2 

j-1 00 

i(n(8 + 21T.R./j)] Im 1 E ik.R.21T. E exp 
= exp j j 2 

.R.=O n=l n 

1 
j-1 

21Tik.R. 
(82(8 + .R.~1T) + ia

2
(8 + 2

;.R. )) Im 
j ~ exp 

j 
.R.=O 

. ~ 

1. 
j-1 

sin 21T.k.R. + 21T.R.) + 21Tk.R. (8 + 21T.R. ) = E 82(8 j cos j a 2 j . j 
.R.=O J 

The functions a
2 

and 8
2 

are simple forms given by Blandin, et al. 

Also used is 

00 L cos{jn-k)8 

n=l {jn-k) 2 
1 j-l 21Tk.R. (8 + 21T.R.) 

J
. L ·cos -J. 82 .R.=O j 

. 2rrk.R. (8 + 21T.R.) 
s1.n -j- a 2 j 
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Table I. Free electron and pseudo~otential parameters taken from 
Appapillai and Williams. 6 Values of V0 were calculated 
using Eq. (II.4) of the text. Except for the last column, 
atomic units are used throughout the table. 

... 

Element z kF EF w2k v V (eV) 
F 0 0 

Li 1 .5890 .1735 .04604 .345 9.40 

Na l .4882 .1192 .00467 .00517 .141 

K 1 .3947 .0779 .00142 .00073 .0199 

Rb 1 .3693 .0682 -.00187 .00144 .0394 

Cs 1 .3412 .0582 -.00145 .00102 .0278 

Be 2 1.0287 • 5291 .18280 7.14 194 . 

Mg 2 . 7242 .2622 .02456 .260 7.08 

Ca 2 .5865 .1720 .00960 .0606 1.65 

Sr 2 .5380 .1447 .01959 .300 8.16 

Ba 2 .5188 .1346 -.00012 .00001 .00032 

Zn 2 .8342 .3479 .02626 .224 6.10 

Cd 2 .7432 .2762 .01844 .139 3.79 

Hg 2 .7213 .2601 .00310 .00417 .114 

Al 3 .9276 .4302 .04197 1.04 28.3 

Ga 3 .8776 .3851 .03053 .616 16.8 

In 3 • 7972 .3178 .03165 .802 21.8 

Tl 3 .7738 .2994 .03881 1.28 34.8 

Si 4 .9590 .4598 .03283 1.06 28.8 ... ! 

Ge 4 .9206 .4236 .02928 .915 24.9 

4 .8674 .3762 .02941 1.04 
i 

Sn 28.3 . I 

.., ! 

Sn(G) 4 .8007 .3206 .01507 .320 8.72 

Pb 4 .8350 .3486 .03140 1.28 34.8 
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!able II. Stacking Characteristics of Polytypes 

Structure 

fcc 

hcp 

dhcp 

Sm 

A 

Stacking 

ABCABC 

ABABAB 

ABACABAC 

ABABCBCAC 

ABCBAC 

Symmetry 

kkkk 

hhhh 

hkhk 

hhkhhk 

kkhkkh 

3R 

2H 

4H 

9R 

6H 
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Table III. The regions of Z for which structures are stable against 

the formation of the other structures considered. 

Exact Summation: 
fcc, hcp and bee 

z Structure 

1.00-1.28 hcp 

1.28-1.48 fcc 

1. 48-2.03 bee 

2.03-2.21 hcp 

2.21-3.53 fcc 

3.53-4.00 hcp 

l'l¢{2d) = 0: 
fcc, hcp, dhcp, Sm and A 

z Structure 
-----------------------------
1.00-1.21 fcc 

1. 21-1.26 Sm 

1. 26-1.35 dhcp 

1. 35-1.37 hcp 

1. 37-1.66 fcc 

1.66-1.84 hcp 

1.84-1.87 dhcp 

1.87-2.08 Sm 

2.08-2.56 fcc 

2.56-2.68 dhcp 

2.68-2.95 hcp 

2.95-3.53 Sm 

3.53-3.67 hcp 

3.67-4.00 fcc 

Interplanar Interaction: 
fcc, hcp, dhcp, Sm and A 

Z· Structure 

1.00-1.24 hcp 

1.24-1.26 Sm 

1.26-1.34 dhcp 

1.34-1.66 fcc 

1.66-2.20 hcp 

2.20-3.53 fcc 

3.53-4.00 hcp 

fcc, 
Efcc = Ehcp: 

dhcp, Sm and A hcp, 

z Structure 
-----------------------------
1.00-1.17 fcc-hcp 

1.17-1.20 Sm 

1. 20-1.23 A 

1.23-1.25 Sm 

1. 25-1.36 dhcp 

1.36-1.53 fcc-hcp 

1. 53-1.66 Sm 

1.66-1.95 dhcp 

1.95-2.11 Sm 

2.11-2.52 fcc-hcp 

2.52-2.92 dhcp 

2.92-2.96 A 

2.96-3.53 Sm 

3.53-4.00 fcc-hcp 

1 
~ ' 

i. 
I 

~ 1 
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Table IV. Stacking Sequences Induced by Planar Fa:ults. 

Face-centered cubic structure: 

Intrinsic fault 

Extrinsic fault 

Twin 

ABCBCABC 
kkhhkkkk 

ABCBABCABC 
kkhkhkkkkk 

ABCBACBA 
kkhkkkkk 

Hexagonal close-packed structure: 

Intrinsic fault 

Extrinsic fault 

Twin 

BABCACA 
hhkkhhh 

BABCABAB 
hhkkkhhh 

BABCBCB 
hhkhhhh 
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FIGURE CAPTIONS 

Fig. 1. Illustration of notation used in the derivation of the 

interplanar interaction. 

Fig. 2. Illustration of notation used in the generalized interplanar 

interaction. 

Fig. 3. Illustration of notation used in the derivation of the 

Fig. 4. 

Fig. 5. 

Fig. 6. 

interlinear interaction. 

Dimensionless energies Ef , Eh and Eb obtained from cc cp cc 

summation of the Friedel potential. 

Results for the dimensionless relative energies, £ -£ 
hcp fcc 

and Eb -Ef , as determined by exact summation of the reduced 
cc cc 

Friedel potential as a function of Z. 

Dimensionless energies Ef , £ and Edc obtained from cc sc 

summation of the Friedel potential. 

Fig. 7. Results for the dimensionless energies of the polytypic 

Fig. 8. 

structure hcp, dhcp, Sm and A relative to the fcc structure 

as determined from the BFS interplanar interaction as a 

function of Z. See Table II for the description of the 

packing of these structures. The region Z < 1.14 has been 

omitted for clarity. 

Comparison of the dimensionless energy difference Eh -Ef cp cc 

as determined with the exact summation and the interplanat 

interaction as of function of Z. The results from the BFS · 

interplanar interaction are a good approximation to those 

from the exact summation, except near Z = 1.14. 



.. 

Fig. 9. 
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Results from the determination of the most stable structure 

among fcc, hcp and bee from the exact summation of the 

Friedel potential as a function of Z and a phase factor, 28. 

Legend for identification of structures as in Fig. 19. 

Fig. 10. Results from the determination of the most stable structure 

from among fcc, hcp, dhcp, Sm and A using the interplanar 

interaction as a function of Z and 28. Legend for identifica­

tion of polytypic structures as in Fig. 18. 

Fig. 11. Phonon dispersion relations (< 111) T) as calculated with the 

interplanar stiffness constants for the fcc structure for·. 

various values of the valence. 

Fig. 12. Phonon dispersion relations (< 001> T) in the extended zone 

scheme as calculated with the interplanar stiffness constants 

for the hcp structure for various values of the valence. 

Fig. 13. Phonon dispersion curves for Mg ~ 001) T): points are 

experimental data; curve i$ the calculated result. 

Fig. 14. Phonon dispersion curves for Al (< 111) T): dashed line 

indicates experimental points; solid curve is the calculated 

result • 

·Fig. 15. Dimensionless stacking fault energy of hcp structure, at Z=2 

as calculated in Section VI.A. 

Fig. 16. The relationship between bet and fcc unit cells. 

Fig. 17. Dimensionless energy as a function of c/a for bet structure 

at selected values of the valence. Note change of scale 

between to parts of the figure. 
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Fig. 18. The Friedel potential for Z=l, 2,3 and 4. 

·Fig. 19. Values of z for which various structures are stable: 

A) stability against faulting of fcc and hcp after Blandin, 

Friedel, and Saada, B) relative stability of polytypes from 

interplanar interaction, C) relative stability of fcc, hcp 

and bee from exact summation, D and E) polytype stability 

using the modified interplanar interactions given in Eqs. (IV.8) 

and (IV.9), respectively. 

Fig. 20. Values of Z for which various stability criteria ate satisfied 

for the fcc and hcp structures, as evaluated with the inter-

planar interaction: A) stability against faulting after 

Blandin, Friedel and Saada, B) relative phase stability; 

C) real phonon frequencies, and D) positive elastic constants. 

Fig. 21. Direct and reciprocal lattice vectors. for hexagonal close-

packed plane. 
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