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Consult yourself, and if you find
A powerful Impulse urge your Mind,
Impartial judge within your Breast
What Subject you can manage best;
Whether your Genius most inclines
To Satire, Praise, or hum'rous Lines;
To Elegies in mournful Tone,
Or Prologue sent from Hand unknown.

Then rising with Aurora's Light,

The Muse invok'd, sit dowm to write;
Blot out, correct; insert, refine,
Enlarge, diminish, interline;

. Be mindful, when Invention fails,

To serateh your Head, and bite your Natils.

from On Poetry: A Rapsody

by Jonathan Swift, 1733



-iii-

THE EFFECT OF A LONG RANGE INTERATOMIC POTENTIAL
- , : ~ STABILITY OF CRYSTAL LATTICES -

"Table of Contents

CABSTRACT v v v v o o o 4 o o o o o o o o 0w W

A. Stécking Faults and Twins . . . . .
B. Finite Homogeneous Defqrmations ..
viI THE‘STABILITY.OF CRYSTAL LATTICES;', ..
‘A. Interpretation of Structural Energies
B.-‘Cfiteria for Stability . . . . . . .

.C. - Conclusion . e e e e e e e e

) . ..
I. INTRODUCTION . . . « + o « & . . . Ce e e
II. THEORETICAL BACKGROUND . . .« « + « & o « o .
III. LATTICE SUMS e e e e e et .
A. The Exact Summation Method . . . . . . .
B. Ihe Interplanar Interaction . . . . . . .
C;‘ The Ipterlinear Interaction . . . . . ..
IV. STABILITY AGAINST fHASE TRANSFORMATION . . . .
A. Exact Summation of the Friedel Potential..
B. Summation of the Interplanar Iﬁteractioh .
c. LInclusion of a Phase Factor in the Friedel
D. Alterﬁate Criteria for the Occurrence of
Close-packed Polytypic Structures . . . .
V. LATTICE VIBRATIONS . . & . « v « « o « « o o .
A. Phonon Dispersion . . . . ... c e e e e e
é , . B. ‘Elaétic ans;ants . ; T
~ VI. Furtﬁer Aspects of .Stability . N A

ON THE -

Potential

'Complex

16

17

22

31
35
37
38

42

44

47

48

56

58

58

162

64

64

72



—ivy-

ACKNOWLEDGEMENTS . . . . . « & v ¢ « o o o o o &

APPENDICES « « « « + ¢ o o o o sin v o o o o o o v v u u s

A.

Derivation of the Inverse Fourier
Friedel Potential . . . . . . . .

The Asymptotic Form of ¢(gl,z) .
Lattice Vectors . ¢« ¢« « « « « « &

Summation Formulae . . . . . .

REFERENCES . . . . . ¢« ¢ v ¢ ¢ ¢ ¢« ¢ = o &

TABLES .

FIGURE CAPTIONS .+ « v v o o v v o o v o .

FIGURES

Transform

. . o * e
* e . .
- e o e
. . .

. . .
. e . . .
. e o <
¢ e -

* . .

of the

79

80

80

83

85
88
91

94

© 98

101



—J-

.
THE EFFECT OF A LONG RANGE INTERATOMIC POTENTIAL ON THE
STABILITY OF CRYSTAL LATTICES

Charles William Krause
Inorganic Materials Research Division, Lawrence Berkeley Laboratory and

Department of Materials Science and Engineering, College of Engineering;’
. University of California, Berkeley, California

ABSTRACT

The mechanical and phase stability of metallic crystél lattices
is stﬁdied with a long range interafomic potential which describes
the_bondiqg between‘atoms in the lattice. Particular attention is
aécdrdéd to phenomena related to the shear of cldsé—paéked planes
across one another in close-packed polytypes.

Thé.iong range poteﬁtial, whigh»oséillates Qith,increasing

interatomic separation, can be partially summed to obtaih an interplanar

-interaction which is particularly useful for the study of shear

phenomena. Use of the interatomic potential, referred to as the
Friedel potential, and the interplanér interaction allow the calculation

of the relative energies of competing lattice structures, of phonon

dispersion relations, elastic constants, stacking fault energies and

. the determination of the effects of finite homogénaoﬁs defdrmations

" of simple metallic crystals. The varioué phenomena and structures

are studied at constant volume and as a function of the valence of

metallic alloy.



I. INTRODUCTION

~ Although theories of metallic bonding presently have limited

usefulness, some properties of metallic elements and alloys cannot

‘be understood without an understanding of phenomena occurring in

. regions of atomic dimension. For example, the strong dependence.df'

properties-On trace impurities or the effects of interstitial atoms

and vacancies on the properties of materials Subjected to irradiation
will probably not yield easily to empirical analysis,alonesv Apprcaches_
to the determination of how atcms within a»metal'are:bonded togetheri
on a microscopic scale are needed to unravel these and other effects.
One such approach is the pseudopotential theory1 of metallic bonding
which wﬂll be used in the study of the stabilitv of metallic crystal

lattices found below. While such a study may not allow the 1mmediate

attainment of des1rable metallurgical properties from an alloy, it is

-through such studies that systematic control of properties can emerge.

Thefpseudopotential theory of metallic'bonding,itself,provides
a relatively simple method for computing the energies of a variety

of structures into which atoms can arrange themselves in metals. The

C energies associated with different crystal structures, dislocations,

stacking faults, ordering phenomena, etc., can all be calculated using
pseudopotential theory. While the accuracy of the energies SO obtained'

varies according to.the particular structure being investlgated,'the

uethod is of general applicability.‘ In this regard, pseudopotential
- theory is to metals what molecular orbital theory is to organic

-chemistry--a branch of applied'quantum mechanics with a broad range of



applicability made possible by the use of approximations which have
proved to be faifly good in practice. Molecular orbital theory is
easier to use than pseudopotential theory; howevef, pseudopotential

theory must account for energies an order of magnitude smaller than

o

those usually required by the users of molecﬁlar orbital theory.

One of the problems found in the appiication Qf_psegdopotential
theory is that in its more usual form, the theory is cast in the language
of reciprbcal-space and not directly in terms of real space parametérs.
From the metallurgist's point of view, a real space theory is préferable
to a reciprocal épace theory of bonding for twb reasons. First? a
real space'formulation is more easily visualized thanva reciﬁfocal
space version of a bonding theory. Secondly, any relaxation process,.
whereby the positions of the atoms (or more precisely, ions)‘are |
iterated to find thé low energy configurations of defectgd crystals,
can be treated more direétly in_feal space. These'advahtages are
present in the real space formulation of the pseudopotential theory
of metallic bonding as formulated by Cohen2 and Harrison.l. In fact,
the application of second order perturbation. theory to the interaction
between the electron gas and the ionic pseudopotentials leads ;o the ~
-exﬁression of €, the structure dependent energy perviqn-(at constant
atomic volume),‘as the sum of a central interionic pptenfial oﬁer paifs

of ions in the metallic crystal:

= 1 _
T E V(rij) s S (1.1)
i#j : .



where V(;)'is the iﬁteriohic potential, rij is the disténce separatihg_
the iEB-and'jEE-ions, and N is thé number of,ions.in thé crystal. The
'evaluation-of Eq. (I;l) provides the basig‘for thevconceptually simpié
qalculétions.fodhd.below.: | | | |
- A number of different interionic poteﬂtial§ éould be used in
Eq. (1.1). For example, if the electrqn:gas were not preéént, éﬁd 

the ions were well separated, the appropriate form for thevpotentialf

would be -

vy = B coo ,- (1;2)

where Z is the valence of the ions. With Eq. (I.2) in Eq. (Ifl);
the average electrostatic energy per ion of-the'array,of positive -
ions is obtained. When the electron gas is present, the interionic _
potential is weakened and behaves like

cos ZkFr

V(r) =V

—F (1.3)
° (2kFr)3 o

~ for large r, where kF is the Fermi wave-vector and v, is a constant

which is independent of structure. The electrons neutralize in a sense, .
. - — : : o

&

v or scfeen; the electrostatic interactioﬁ, Eq. (I.2), and Eq. (I.3)
is the form of the residual interaction. The Fermi wave-vector is .
just

kF = Zﬂ/AF



long-ranged function, and below, some of‘the consequences éfvthe range

of the Friedél potential will emerge; However, interatomic potentiais

other than the Friedel potential can give similai results; S0 tﬁat' .

conciusive_statements about the range,of interaction will be difficult

to make. The second question deals with phése transformatidns and

specifically the connection between thé.tWo.or m@fe'structureé iﬁvolved

in any phése transformation. In particular, it is desired‘to know

if there are manifestations of a phase transférmation in the micrbsgopic

parameters characterizing_the phases, and, if so, do they'give'information

aboﬁt the manner in which the transformation pfoceeds. Since neither

'pressure nor temperaturé enter the analysié below, nb ;ransformatiéﬁs_

can be stﬁdied directly. Howevef, much 6f what‘isAdbne béiowxis aﬁ

~attempt to understand the'mechanisms of structural phase transfofmatibns..
As mentioned above, one of the beét features of pseudopétentiél

theory is that it provides a rélatively simgle, versatile méthbd for

studying many phenoména. In order to maintain this simplicity and

versatility whilé ﬁsing the real space formulation of pseudopotential

theory to study structural stability, a particular technique will be

emphasized Wh;reby partial suﬁs of the Friedel potential over plénés

" of atbms are performed to obtain the iﬁteraction bétWeen planes. A a ‘yé

very simple interplanér interaction arises and allows the calculation

of stacking fault energies, twin b;undary ene;giesﬂ relative energies

of polytypes, elastic constants, phonon dispersion relations, etc.

In fact, experimental work on lattice vibrations is sometimes interpreted

with the aid of interplanar force cohstants.5 Use of what will be



termed the interplanar interaction was first made by Blandin,’Friedel
and Saada6 aﬁd gives rise to particularly simplé_algebraic forms and
very'easy ways qf visualizing the various aspects‘pfvthe study of
structural stability below.

A complete study of the stability of lattices of ions intefacting
according.to the Friedel potential woula be an arduous task; no such

thing appearé'below} Instead, we have concentrated on the aspects

of stability associated with simple polytypic structures, such as

the face-centered cubic and hexagonal close-packed structures, and
the various phenomena associated with the shear of the close-packed
planes across one another. Other topics appear,.but'the main thrust

is towards undefstanding close—packéd polytypes and displacements | i

perpendicular to the:stacking direction in these»polytypes.

In the next chapter, some of the theoretical background material

requisite for the subsequent use of the real space formulation of

pseudopotential theory is developed; Chapter III concerns the eﬁaluation
bf the sums that arise in later chapters. The method for the evalgation
of Eq. (I;l) using the Friedel potential for three dimensional laftiéés
is-discussed along with a derivation of the interplanaf interaction |
and an interlinear interaction. The létter is the résﬁlt Of;ahother
partiai sum and is not used in any subsequent calc#lation, but is -
included to coﬁplete the development'of the sums of the Friedel pqtenﬁiél
over crystal lattices. The éontenté'of Chapter v afe.éoncerned with
ghe use of the Friedel potential for the study oflétébility of latticeé‘

against phase transformation, i.e., the determination of the structure



with the minimumvenérgy at T=0K frém among a selected set of simple
structures. Somé of this material has already been published separately.7
Chapter V includes the calculation ofvphonon dispersion relations and
elastic constants using the interplanar interaction. The treatment

is probably too abbreviated to do justice to this broad topic. However,
¢eaSurements of - the Debye-Waller factor, elastic éonstants, phonon .
dispersion curves, etc., all indicate that much is to be learned

about phase transformations through the study of various modes of
"softening of crystal lattices. Phase transformations, of course,

are of great practical importance, and whatever can be said about

' the instabilities wﬁich give rise to phase transfofmations is of

some use. - Chapter VI concerns the further aspects.éf the study of
lattice stability which are.of importance, but which have not yet

been investigated in great detail. rFirst; the method of Blandin et él.6
for the determination of'stacking fauit and twin energies is discussed.
Then finite homogeneous deformations are treated, albeit somewhat
briefly, since this subject is intimately related to the s;udy

of elastic constants, mechanical Stabilitynand stability against phéSe
transformations. The concluding chapfer compares ﬁhe different
‘criteria for s#ability which emerge in the ﬁrecedingichapters and
indicatesvtovwhat extent the Friedel poteﬁtial might accurétely

predict physical phenomena. Throughout, emphasis will Bé placéd on

the interpretation of various phenomena and their interrelationships

rather than numerical results.

(\
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II. THEORETICAL BACKGROUND

The pseudopotential theory of éimple metals has yielded several

models which promise to be useful in the prediqtiqn of structure.1’8

The simplest and.mdst general of these follows ffom Harrison'sl

develépﬁent'of Cohen’é2 real space formulation of the pséudopotential
theory. If a pseudopotential model of aISimple mgtal is deveioped to
second order in perturbation theory, that part of the cohesive enefgy

which depends on the structure may be treated as if the atoms interacted

in pairs according to a central, two-body potential. This two—body"

‘potential has an asymptotic form which is iﬁdepéndent of the precise

pseudopotehtial assumed, and which exhibits the Friedel4 oscillatiomns.

Under suitable assumptions, discussed below, one may make a rough

estimate of the relative energies of candidate strﬁctures at 0 K by

.simp1§ summing the energy of two-atom ihteréctioﬁs.according to'the

asymptotic,vbr'Friedel potential. This approach‘has been taken in
6,9-11

several studies of the structure 6fvsimple metals and alloys
1 : '

and is followed below, where we supplement prior work with new

computations to explore the results of a simple structural modél'baséd

on the two-body Friedel poteﬁtial.

While the approximations involved in a structural model based on

the Friedel potential are drastic, the model has several attractive

features. It leads to equations which are easy to use and which
incorporate aspects of the more fundamental theory while avoiding

the recalcitrant prOblem of choosing proper pseudopotentials. Moreover,
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the model yields a prediction of alloy structure which is based on the
electron-atom fatio, in the spirit of the Hume-Rothery12 and Engel-
Brew_er]-'3 correlations, and which is invgeneral agreeﬁent with known
'stfuctural téndéncies in simple metals and alloys.

The central equatibns of the structural modei_used_here'are
derived as follows. Employing tﬁe real 5pace‘formulation of fhe
péeudépotential theory of a simple metal1 the cohesive energy per atom
may be developed in the perturbation series:

E = Eo + E1 + E2 + ... (I1.1)
whose successive terms involve perturbations of increasing order. 'The
zefoth and first order terms_iﬁ this expansioﬁ depend on the volumé&
per atom (f2), but are independent of'structure.' The second order»term,
lE2, is the first to show the influence of structure. It can be cast

in the form

-1 o '
E‘ = :E: V(rij) . | . (II.Z)

, . .th
where N is the number of atoms, rij is the distance between the i—

and jsh'atom cores, and the prime On'thevsuﬁmation indicétes that
térms having i%j are to be omitted. The function,V(rij) appearing

in the summation acts as a tﬁé—body potential in a festficted sense:
it governs the change of enefgy in a relative displacement of atoms i -

and j which leaves the atomic volume, and hence Eo and Ei’ constant.

o

o
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.If we fix the atomic volume and neglect higher order terms in the

»perturbation.expansion,l the relative energy of a given structure is

measured by E2; that structure which minimizes Ez,will be preferred at
0 K.
Computation of the structural enefgy, EZ; requirés.a‘specific

expression for the effective interatomic potential, V(r). This

potential is sensitive to the details of the pseudopotential used.l’8 ,

However, irrespective of the pseudopotential, V(r) has the asymptotic

1
form™
: cos 2kFr : g
V(r) =V, —3 (11.3)

when (kFr)-is‘large, where kF is the Fermi wave number. In general,
'Vo'depends'on the parameters of the pseudopotential in a rather
complicated way, but for the case of a local pséudopotential, one

which is strictly a multiplicative operator, the form is simple:

9W22w 2

. ZkF B R
vV = ___E_.... : - (11.4)
° F ' , S .

where whk.'is the value of the screened pseudopbténtial at k=2kF.;-It

is usually the screened pseudopotentials that are ;abulated; Table I

lists some typical values of Vo’

We may hence define a dimensionless two-body;potential'

A

Y@y = (I1.5)
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which becomes the_Friedel potential

cos ZkFr _ B
v(r) = ———F— v (11.6) -
' (2kFr) ' . iy

~when kFr is large. If we now uniformly approximate V(r) by its

asymptotic form,'the structural energy, E,, may be rewritten in a

2

dimensionless form which is independent of the pseudopotential:

= 21 E 3
€ Vo o Lo COS(ZkFrij)/(ZkFrij)

i,]

(11.7)

In fact, the dimensionless energy, ¢€=c(Z), is a function df structure

and electron-atom ratio (Z) only; since the separation distances (rij)

1/3

» where {0 ievafomic volume, and -
1/3

in a given structure scale as {2
since the Fermi wave number, kF, is kF=(3HZZ/Q) R the set of values

of the'quantity (kFrij) in a gi&en structure, and hence the dimension—.
less energy of the structure, is determined by Z.

‘rEqﬁation (II,7) was drawn from the pseudopotential theory of simﬁle
metals. It may be geﬁeralized tovestimage the relative energies of the
structures of uniform randem 301id'solutions of simple metals thrOugh
~ use of the virtual crystal model:8 the ailoy is repfesented as a
vone-component simple metal made up of pseudoatome whose properties
everage those of the atoms ectually present. With this appfoximatien
the‘dimensionless structuraljenergyvof the solid solution is determined -

by its mean electron-atom ratio (Z) through Eq. (Ii.7). ~The preferred

structure of the solid solution at 0 K may then be estimated by

-
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minimizing € ovef’the set of candidate structores{i,The resulﬁiio
uniqoely deterﬁined by Z. For ordered strucfﬁies,_ﬁho oum; Eq. (11.2) -
cannot'be so éimply separatéd. |

The structural modelldeVeloped above depends on three specifio -
ossumptioné, which we discuss in turn.

1) Ihg effectng'interatomic poteotial obtained‘from the second
order'pseudoooféntialltheory is replaced by its asymptofic form, the -
Friedel potential. While it has been found! that the effective
interatomic potential actually conoerges toward the Friedel poteoﬁial
rather duickiy,'important contributions to the structural energy due
to‘near-neighbor interactions may be misegpimateo: bThe model is moStv
reasonablé’when applied to close-packed structures having ideai‘akiaii”
ratios since these differ'from one another only io’tﬁe third (or ﬁigher)
coordination shells; The model may not yield good vélues for the .
relative energies of‘structures‘such as fcc and boc, which differ in
.the first coordination sholl.: As we shall show, however, it‘doésipfooidé
an empiricélly reasonable estimate of the ;ange>o§‘2 values over wﬁioh
‘the boc stfocture is pfeferred to the closo-packed-structures; |

(2) The variation in equilibrium atomic voluoe between oandidéte
sfruooores is'ignored. Since émall volumé changes are oosoroed in i
solid state tronsformations,vand since theseychanges (ag loast é;nd’K)v.
- . must minimize the total energy_of the structuie,.theif neglect will»f:iz

' necessarily'résolt in an overestimate of the energy édvantage enjoyed
by the_preferred stfucture. On the other hand, since the atomic VOiuﬁe V

is left unknown in the calculation of structural energy, this approximation
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Acannot'caqse an erroneous ideﬁtification of the preferredrspruéture;

(3)  Alloy solid soluﬁions are ;reated as if they were composed
of identical ﬁéeudoatoms having average properties. Wﬁile the |
épproximations'involved in this virtual crystal model are known8
their quantitative consequences are nof. ‘The factbfs neglected include
the tendency to short-range order, the cphtribution to éohesion from
charge traﬁsfer between differeﬁt spgcies,vthe decrement to cohesion
due to local lattice strain caused by size differeﬂce between species,
and possible error from the second ofder theory if ;he‘valences of '
the'species differ. Qf course, these factors are relevant only insofar
as they inflqence the relative energies’of candidate structures.

The -probable error should become mofe importanf as size or vélence
differences become_greater.

As noted above, the approach to crystal structure employed.hefé
has been used by a number of previous workers. Shaw9 applied a method
due to‘Epstein14 to show how Eq. (II.7) ﬁéyabe coﬁveniently set up for
direct numerical solution fbr an arbitrary lattice and computed
structural energies for the face-centered cubicitfcc); hexagonal
close-packed (hcp) and body-centered cubic (bce) structures_és functions
of valence. In felated work, Blaﬁdin, Friédél and Saéda§ showed.§hat.
when a structure is clbse-paéked, Eq. (II.7)_may be recast in the fo:m
of a potential approximating the ipteraction between close-packed )
planes. Blandin, Friedel and Saada determined the energies of stacking
faults in the fcc and hep structures and found thé ranges of valence

over which these structures should be stable with respect to faulting.

7



-15-~

Recently,_Hddges;o suggested that the interplanar interaction might
be used to simplify Eq. (II.7) for an arbitrary close=packed structure.
He emplqyed this formulation‘in a semiquantitative discussion of the

stability of the close—packed polytypic structures occasionally

observed in alloy systems. Havinga, van Vucht and Buschowll have .

also discussed phase stability using interplanar interactions of a
similar form. COusins15 has discussed elastic constants using Shaw's
method for the evaluation of Eq. (II.7). These results are summarized

and supplemented in the following sections.
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III. LATTICE SUMS

While tﬂe-expréssioﬁs for the’structure—depéndent.energy of a
metallic crystal which were presented in Chapter’II provide the basis
for theudetermination of many proberties;of simple-metals,-the
evaluation of the sums involvedvcan beqome rathefrdifficuit._ First,
the sums, especially in the real space formulation, e.g., Eq. (11.7),
do not converge as rapidly as might be desired and éare must be taken
to ensure proper accuracy during their evaluation. Secondly,-the
.determinétion.of the configﬁration of all of the ions in the érystalﬂv
is required for the evaluation of the sum in.Eq. (11.7), and when
complicated defects such as dislocaﬁions are present, ;he'problem can
.become immense. Inbparticular, if it is desired to relax the
configuration of ions to obtain a minimum energy configuration; then
the positioné of the ions must be éhanged in some'iterative pfocedure,
and the evaluation of the sums must be reﬁeated until the minimum
energy configuration is found. Methods for evaluation of sums such as
Eq. (I1.7) which are fast and accurate are desired. The purpose of
this chapter is to evaluate sums and partial sumé of Eq..(II.7) in
order to obtain expressions that will provide such methods for both
perfect and defected lattices.

o The present chapter is divided into three sections. In the first
section, the interaction of aﬁ.ion at a laftice sitevwith the rest of
the ions'in the metal will be determined by summing the Friedel‘potential

over a regular three dimensional 1attice‘of ions. The method and
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formulae are taken directly from Shaw,_9 éxcept'for cdrrections of
misprints in his equations and slight modificatioﬁs‘of the defipitionS“
of dimensionless parameteré. These sums will be ﬁse& later to discﬁss
phase staBility. In the'secqnd séction, the parpial sum for an ion |
interactihé with'é regﬁlar planér léttice is conSidered; The tecﬁniqﬁe

is originally due to Blandin, Friedel and Saada6-and allows a useful

- decomposition of the sum in Eq. (II1.2). The third section will &oncérn

itself with the interactionvof an ion with a linear array of ionms.
Again, a useful decomposition of Eq.'(II.Z) OCCurs.: The technique
is suggested by the work of Blandin et al. and was,firstvdeVeloped

16 As mightbbe surmised, the interlinear

. interaction proves to be most useful in the study of linear defects;

i.e., dislocations. The advantage of using the interplana; and
intérliﬁear‘interaétiOns is that once_they have beén derivea,-the .
evaluaticn_df the sum for the total energy_consists of sums of the
interactidns between pairs of‘planes or lines of atom§.1 These sums
are reiatively easy to evaluate and theii phjsical;Significance is:”

easy to visualize.

-

A. Exact Summation Method

If the ions of a metal are in cfystallographiéally equivaleﬁtb

E positions, as they are in fcc, hcp and bec lattices, the expression

for € giveﬁ.by Eq. (II.7) can be simplified. ForvN-sufficiently large

so that the atoms near the surface of the crystal make a negligiblé
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contribufion, one of the sums in Eq. (II.7) can be performed to obtain

' cos 2k _r,
e = % ————k—F——;— (IT1.1)
i -(ZRFri)

where'ri is the distance between the iEE ion and a reference ion.

Shaw9 dgveloped the summatibn method of Epstginl4 for the exact
summation of Eq. (IIi.l) for lattices with or without bases. Epstein's
method is a general technique for éumming'quantities_like exp(ikr_)/rn
over colleqtions of lattice points énd provides the bases for Madeiung
and Ewald-Fuchs summatioﬁs. The method'invdlves_a transformation of
the sum into two rapidl& converging sums. The sum over lattice points
in real space remains, but an exponéntial damping,factof,vwhich
converges to zero rapidly as r, increases, appears in each term.

The residué of the original sum is Fourier transformed into a sum in
reciprocal_space; each term in this sum includes a.damping factor also.

. An adjustable parameter allows the rate of convergence of_the two sums
to bé adjﬁsted.until both>convergé withvequal rapidity, allowing a
minimum number of terms to be included in the sums.

Upon transformation, Eq. (III.1l) becomes

o~



1 Z ! cos(kr,) o “IS@1E o ke o K | o )
e=3 ————(kr 3= = 329 3 [‘(l + E) El(Q) + (1 __E,) EI(B)'] . ‘ o

i i) _ q

- . - 2.1/2 29
, _ .2 ' cos(kr,) wr LT -wr 3
+ 4—"3 [El(k2/4w) - 2e k ‘/4(0] +% E —-——;— [erfc(wl/zri) + 2 (Ti) e i] - -—2—3' (wT)
Qk ~/ (kr,) L 3k

_6‘[_
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where
k = ZkF s
o = (ktq)2/bw |
B = (k-)%/4w ,
El(x) = &m dt {exp(—t)/t} s |
erfe(x) = 1 - erf(x) =1 —jﬁé éx dt exp(—tz) .
T

i labels the lattice points, w is the convergence parameter, { is the

atomic volume, and

_ l_ -> +" v
S(q) = N.:;: exp - igq-r, , (II1.3)
is the structure factor for the lattice in question. The inclusion

of the structure factor in Eq. (III.2) by Shaw allows the sum to be
performed for Bravais lattices which have a basis, e.g., the hexagonal
close-packed lattice. Also desired is an expression for the sum of

sinZkFr/(ZkFr)3 over the lattice:

' PR
31n2kFri

3
i (ZkFri)

2 . 2
%T_IE: |S(g)| [(wa)l/Z erfc(0‘1/2)"'(008)1/2 erfe(B
q k™q , v

1/2) @172 (o8

) 51nkr 2 1/2

-% exp-—wri2 + JLE- erfc(k/Zw
i (kr ) Qk 2k

e (IT1.4)

with the same notation as in Eq. (III.2).
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As noted in Chapter II, Eq. (III.2) yields a.diménsibnless energy

which depends only on the valénce, Z. It is desired that this fact

be reflected in the performange of the sum. By caéting the parametefs

appeafing in Eqs. (III.2) and (III.4) in dimenéionless form, this can

and defining

' Yo : ’ 27
R = \3r/) ¢ =
')
. v
N ) - 2n
Q -<2'rr)k k r
. . O
W = wr 2 w = _Ef
r
o
r,.
D, = i r. =rD
i T i oi
o

equations (III.2) and (III.4) become

'
2 cos kri T

'(kri)3 o3 X

N |t

ri‘
L — cos 21TQDiY 1/2 . WDiz 1/2
+ 5 — 3 [erfe(w™: Di) + 2 - exp-WD
Di (ZnQDi)
+ = (£ (@nQ)%/a) - 2exp-(2n) 2 /4W) - —2—
3(2mQ)

(2mQ)

W
™

- be accomplished. Another advantage of doing this is the-ease with

which the sums can be computed in their new form. By letting Q=ro3

- (III.5)

s@|? [a+DE @ + A-DE @)

1/2
)‘ - (III.6)



C =22~

and
1y osn by 22§ |S(R)|2 .
2 e 3
T, (kri) B ,R, (2m) Q R
[al/z erfe allz i B1/2 erfe B1/2 _’%—1/2 o 4 ﬂ—1/2 e-B]
¢ sin 2mQD, 2
+ %— ; exp—WDi2 + ——E——§ erfc(ﬂQ/Wllz) - L 7 ©
D,  (2mQD,) : (2mQ) 2(2mQ)

(111.7)

Equations (III.6) and (III.7) will be used later to discuss the
stability of simple structures as a function of Z as well as to
determine the stability of these strﬁctures against simple deformations

away from the structures.

B. The Interplanar Interaction

The formulae presented in the previous section for sums of the
Friedel potential over a three—dimensional latticeiof ions are
ponderous, and simplification of the sums would be désireable. This
éimplification can often be accomplished by the uée of;the partial
sﬁms derived in this éection and the next. In this section, the -
interaction of an ion with a régular planar latfiée of ions is obtéined
by summing the Friedel potential over the planar lattice. If the ion
in question belongs to a plane which is parallél.tp and has the same
symmetry and translation vectors as the originai plane, then it.is a

trivial task to sum to obtain the interaction of the two planes, i.e.,

h".
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an interplanaf interaction. The technique is originall& due to
Blandin, Friedel and Saada6 who used the'interplaﬁar interaétion to
discuss faulting in simple‘metals with the aSymptotic form of the
interplanar interactionm, which will also be defived‘beloﬁ. |
:Twohgeneralizations of the results of Blandin et al. will emerge
below. - The interplanar interaction'will.be cast inia'form in which'v
the c/a ratio eﬁtérs as an gxpligit variable.v This developﬁent allows
the interplanar intéraction]to be.uséd for rhoﬁbohedral modificati;ns.
of cubic iattices and for hcp latticgs with non-ideal axial ratios
(i.e., hcp lattices with c¢/a ¥# 1.633). The secondggeneraiizatioh is.

in some sense trivial and is simply the genefalization of the inter-

planar interaction to lattices which contain more than one atom for each

site of the hexagonal planar_léttice. Laves phases and tetrahedrally

bonded valence compounds are among the structures which have this

'geometry. "The introduction of two Or more elemental;spécies will not

allow the structure to be determined by Z alone, as is the case for

 solid solutions and elements. However, a useful form results from

the relatively simple transformations that yield the generalization

‘'of the interplanar interaction.

To obtain the interplanar interaction, consider an ion at a

distance z from a plane of ions, and let b designate the displacement

"from the projeétibn of the ion to one of the ionS-lying iﬁ the plane

' o - . :
(Fig. 1). Let pi designate the positions of the ions in the plane
with respect to the ion at z+b. Thus z is perpendicular to the plane

of ions, while b and Si.lie.in the plane of ions. ,By“sumﬁing over 31,"
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the interaction of the ion with the plane of ions is obtained. This

quantity is designated ¢(z):

b(z) = 21: v(|Z+?§+Si|') ‘ - (Irr.g)
where
' cos ZkFr
v(r) = ) 3
(ZkFr)

is the Friedel potential and kF is the Fermi.wave vector.

 The quantity ¢(z) can be expressed in a form in which the sum
over i in Eq. (III.S) is replaced by a sum over reciprocal iattice |
vectors of é planar lattice. This new form is obtained By the
introduction of the structure factor of the planér lattice of ibns
and has the merit that it converges more rapidly than the real space
sum. Letting the Friedei potential be tﬁé Fourier transform of w(k)

(See‘Appendix A for a derivation of w(k)), we have

v(r) -2 J.d3k w(k)exp - ik-T ' (111.9)
. 3 . _
(2m)
where § is the atomic volume. Noting fhat E can be decompoéed into
components parallel and perpendicular to ;, denoted gl and k s Eﬁ. (11149)

can be rewritten as

20 3 T ,
5 20 &k w) exp-iigz exp-iky - B, +5) (111.10)

¢(z) =
' (2m) i



-25~

Now the structure factor for a:planar lattice is‘just
_]___ > > (21r) -»> '
= :g:_exp-ikl- B, = :E: 8k, - ) | (III.11)

where N 1s the number of ions in the plane, A is the area of a unit
cell of the planar lattice and gl denotes the reciprocal lattice
vectors of the planar lattice (See Appendix C). Use of (I1I.11) in

(I11.10) yields -

- - . C
CN ez 2 (22 otz vl Brg 2)) -
d(z) = zg: -exp-1ig) b (.2“A f_oo dk", exp ik"z w | +g; ) . V(III_.12>)
- d . ' '

Setting the quantity in parentheses equal to w(gl,z) and noting that

_if‘_g*‘L is a reciprocal lattice vector, then _gl is also a reciprocal .

lattice vector, Eq. (III.12) becomes

' ' o C '
6z) = D cos gD (g .2) - S i)
) : _ o _ .
In Appendix B, an expression for w(gl,z) is obtained for large by u31ng
.the propertles of the 31ngu1ar1t1es 1n the integrand of the integral '
in Eq. (II1.12). For’ 2k > gl ,

Tk sin 2k z

o

w(g_l_ ’E) = =" 2 2 ) | A _(III."lZ’_)
2Ak (Zsz) ' S




\hsz_glz " as defined in Appendix B. For ZkF < g >

where Zko
w(gl,z) is a function which decays'exponentiaily and makes little -
contribution to Eq. ‘III.13); terms with ZkF < gl_will be neglected
below. |

The éxpressions above are valid for parallel planes df-any type. »
However, the interplanar interaction.finds its besf use when the planes
under consideration are hexagonal close-packed; we will now specialize
to this case. The formulae for the direct space and reciérocal space
lattice vectoré for hexagonal close—éacked planes can be found in
Appendix C. We let a be.the nearest neighbor distance in the plane

so that .

a and Q=

Zg— a%a . (111.15)

It is convenient to define

——71§L§l—— (111.16)
(d/a

ideal . i

where (d/a)ideal = ¢¥2/3 is the ideal axial ratio for true close-packed

structures. Also of use is the definition of the value of the valence,

Zc’ at which the first noﬁ—zéro reciprocal lattice vector equals'ZkF: ) .
3’z _\1/3 i
2kF_ = 2 a = — . - (I11.17)
. V3a
or

zC = 1.14y _ :
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where Eqs. (III.15) and (III.16) have been used. The next largest

reciprocal lattice vector is equal to 2kF when
z = V27 z, = 5.92v o © (III.18)

Attention will be restricted to‘ééses.where Z <v5.92Y for the present.

We have some more definitions:

no'

Zsz = 2and =

with . »
. 2\ 1/3

o' = 2 (li) 213,213 _ 5 67 f1/3,203

/3 .
and
7 2/341/2 o
= = _ _€ -

2koz 2kond 2kF [} 22/3 ] nd nd

with

6 2 (4_"—) @2/3 _ 5 213)1/2 2/3
/3 c .

= 5.67 (22/3 _ zc2/3)1/2 Y2/3 .
With these definitioms,
' ' v . S
¥(0,nd) = - 2038 sinnd (.19
: @m 27" 7y " Tn
w(gl’ nd) = - .205 9 sin nb ' (II1.20)

(2ﬂ)3Z5/3Y4/3n2
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Next, consider the change in energy required to shift an ion from

a position directly above another ion in the lattice'by an amount
-g_]_-> -> h -> d-+
=3 (a2 - gl), where a,, and a

the hexagonal lattice:

2

A¢(z) = }E: v(|Z + g + Sil) - v(|; + Sil)
, - _
= Y (exp - ig b - 1) v(g,2) (III.21)
gl )

1.84 6sin nb
(2ﬂ)3‘ZS/3Y4/3n2

-

The generélization of the interplanar iﬁteraction follows the
formulation of Section III.B closely. Let the ions of the basis be
at positions designated by g j with respect to some origin (See Fig. 2)._
The displacement vector 3 j can be decomposed into comﬁonents which
are perpendicular (Qj%) and parallel (§3) to the hexagonal, plénar

lattices:

G, = z.z+8, (111.22)

N , o .
By letting pi designate the positions of other unit cells with respect
to the origin, as before, the interaction between the th ion of the
original unit cell and thej‘gr—l ion of some other unit cell may be

written as

/

(I11.23)

are the direct lattice vectors of e
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where
=|z+b+p, + +‘|
r=|z Py + 051 -0y
. - .3ﬂ22 1/3
F 5
Note that
z =3, z; (TII.24)

and

, © (d2) - - 11.25)

‘is‘the volume of the unit cell (See Appendix C). The vectors g‘and
z havé the.same significance as in Séction III.B."

For the total interaction of a unit cell and a ﬁlane compose& of -
similar uhit-cells at distance z, Eq. (III.23) must be summed ovér i,
j and j'ﬁv |

8 (z) =.ViZ.' vjj,(l'z'+§+31+3j. fgj|) (111.26)
3.3 _ .
- As with the simple interplanar-inteféction, it is useful.to find
the energy required to sﬁift the unit ¢e11 under cqnsideration froﬁ.
{, an edﬁivalent to an inequivalent posi;ioﬁ with.respect fb.the plane '
under consideration: |

. > > > > > > > > N
Ad(2) = V..,(|lz + b + +0,, -0, -V, +p, +0,, -0,
@) iJZJ: R R A A A e N A R TR TR
(111.27)
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The_sum over i in the above equation is-tfansformed as before to obtain

_ Z | Z . 1.16(22/3 _ ch2/3)1_/2 -
AD(z) = 2, V .., Keaor - sin nb (111.28)
where
koY k> . " +k, 2 .
ijl = Zk exp 1gl (b +§j| - gj) - exp igl (ij "_éJ) ’
g)
= z+C., -~t)/da,
.n (Z CJI CJ)/ .
and _
z = 1.4y, 5.92Y, .e..

ck

Equation (III.21) is the asymptotic form of the interplanar

' interactibn of'Blandiﬁ, Ffiedel and Saadavin the form in which it will
be used. The interactiop falls off like 2_2 compared to the r_3

form of the Friedel potential itself. If is interesting tb compare

this behavior with the Coulomb fiéld of a charged particle and plane.

Upon integration of the r_2 field of péfticles over a plane, a constant
field is oBtained, i.e. the dependence of the field on distance loseé'

a factor of r_l for each of the two diﬁensions'involved in the.intégratiqn. :

-1/2 is lost for each dimension

In coﬁtrast, the Friedel potential, a factor of r
inyolved in the integration. Of course, the reason for this behavior
is the appeafanée of tﬁe éosine in the Friedel potential.v

Blandin et al.6 ﬁéve also found the asymptotic form for Z<2c.

Around Zc, the asymptotic forms yield poorbapproximations to exact sums

of the Friedel potential, as will be seen below. Further, it applies
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only for-Z<'Zc = 1.14 (for ideal c/a ratio materials). For these

reasons, this form will not be discussed here.

C. The Interlinear Interaction

In the last section, the energy of interaction of an ion with a
planar array of ions:was'fOund. "This interaction.was cast in a
relatively simple asymptotic form which is valid for large separationsv
between the ion and the planar'array. In this section; a similar
type of interaction, between an ion and a linear array of ions, will
" be derived using’a technique analogous to that found in the previous
section. If a structure contains two parallel lines of ions; theh
" .a simple summation of the ion-line interaction in turn yields an
'interlinear'interaction. The interlinear interactien is particularly-
useful in situations where there is translational symmetry in one -
direction only and where the structure factors are d1ff1cu1t to
calculate, i.e., for dislocations. In fact, the 1nter11near 1nteract10n
i: Qas originally derived and used by Rabier and Grilhe1§ to discuss a

{ screw dislocation in a becc lithium crystal. | |

Referrlng to Flg 3, we assume that the ion at the origin of the
coordlnate system interacts according te the Friedel potent1a1 Eq. (II 4),
' with each ion that forms a row a distance p away from the origin._.The'

“ions in the row are positioned at -

Y

r = px + (x + md)z o . (ITL.29)
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where m labels the ions in the row, and d is the spacing between ions
along the row. The interaction energy of the row and the ion is given
by

®© . cos ZkFrm
v(p,z) = —3 (1I11.30)
m=fm (ZkFrm) .
where w(k) is the inverse Fourier transform of the Friedel potential
" as given in Appendix A. The use of cylindrical coordinates leads to FZ

simplification of Eq. (III.18). Letting

> ~ ~ 1
k = ‘klr + le | _ . ~(I1I1.31)
with
T = cosx + sine;_
0 = —sin6§ + éosey
so that §
'1: . bk 8 + (z + md) : (III 32) |
rm = Pk, cos HI Z+m | II. ;

Eq. (III1.18) becomes

: - e » 0O oo- . 27 ) - - | . . . Ll
20 - ‘.
¥(p,z) = f dk f d f do
i (21T)3 1;00 o 1 —0 k1 o : ‘ : S

.

(111.33)

. / 2 i
k1w (.k" + kl ) gxp-i(klp cosf + k"(z + md))
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The structure factor for a linear array of ions is given by

[o2]
1 { = 2 T T
N Z exp-1k" md Nd Z 5(k" g") (III.34).
where’ a| = 2wm§/d denotes the reciprocal lattice vectors of the

line of ions. With Eq. (III.22) in Eq. (III.21), we obtain

20 |
Y(p,2z) = ' exp-ig, z
(2m’a %,,: A

o ( > > ) 2m o : o
. dkl k1 w kl- + g A de gxp—iklpcose- (III.3S)

- Using a definition of Jo, a Bessel's function,
1. T . | . .
_Jo(x) == / d6 exp ixcos6 , “(I1I1.36)

one obtains

V(p.2) = 5= D exp-igyz F(p.g) - (111.37)
md g | -

where
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Further simplification occurs if p is large, since use can be made

of the asymptotic form of Jo(x),

- <o 2 T
Jo(x) = p— cos(x . 4)

(I11.38)

Asywith the interplanar interactioh, the asymptotic form of Eq. (III.37)

is determined by the singularities in w(k). One obtains .

. ‘/'2—7—1_' sin(Zka + ‘35’"‘ )
F(p,0) = 177 572
(2kF) d )
and .
Yo (2k1)3/2 sin(2k;p + %?5
F(p,g") = 2 5/2
(4kF d) P
o 2 2.1/2 . co1 .
where 2kl_— (2kF T g ) . Again, only terms with %I<:2kF will

(ITI.39)

(I11.40)

contribute to Eq. (II1.37). 1In the case of the interlinear interaction,

this will generally mean that only the first two terms will contribute.
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IV. STABILITY AGAINST PHASE TRANSFORMATION

One ériterion for the staBility of a crystal lattice is that it
have the lowest freetenergy of all possible érystal lattices. The
detefmination of the crystal lattice or structure with the minimum
free energy either empirically or theoretically, is.the usual content’
of studies of phase stability. In this chapter, the‘Friedel potential
will be used to test a few of the'large number of possible cryStalv
lattices to find the minimum enérgy léttice, i.e., the minimum free.
energy at T=0 K.

In the first section, the exact summation is performed for the fcc,

-hep, bece, dc (diamond cubic), and sc (simple cubic) structures to find

the minimum energy structures. The axial ratio of the hcp structure
is assumed ideal. The enérgies‘of the phases with respect to the fcc

phase, » etc., are then found by.simplé subtraction

€hcp_efcc’ Ebcc_efcc
and are plottéd-aS'functiohs_of Z.

As mentioned above, the application of the_Friédel pdténtial is
probably.most appropriate to the study of the relative.energies ofl
the élosefpacke& polytypes structures with ideal axial ratios. The‘
polytypes are easily and accurately handled through use of thg ihterf _
planar interaction of.Blandin, Friedel and Saada. In the secénd éection,
the @ethod for the use of the interplanar interaction is developgd and |
the rele#ant‘Sums are performed. This method giQes directly the energy

of a polytype relative to the energy of the fcc Structure,'e—e

fce

Using the_sums, the'relative energies'for.a number of polytypes can

.be'plotted as functiohs of Z.
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The relative energies may be used to determine which structure
is the most stable of those considered. Plots of the regions of Z
for which the different structures are preferred are presented.
. N :

Up to this point, the relative stability of different structures

" has been considered to be determined by one variable, the electron-atom

ratio Z. The actual structures exhibited by the simple metals indicate’

that Z is not the only determinant of structure. In an.attempt to
circumvent this defect of the model, fwovmodifications of the Friedel
potential are considered in.the next two sections.

The first modification is the intrqduction‘of a new parameter into
 tﬁe Friedel potential. Ihis parameter is a phase factor,.which will
subsequently_be referred to as thé Friedel shift, of 2§ in the afgument
of the cosine of the Friedel potential. The resulting potential-ié

of the form

cos(ZkFr + 26)

v'(r) = - . (IV.l)

(21<Fr)3

When Eq.’(IV.l) is usg& in Eq. (III.1), the dimensionless structure
dependent energy depends on bofh the eiectron—atom ratio‘Z and the
Friedel shift. The stability of the simpie crjstgl stfuctgrés»has:
been determined as éf'function of Z and 2§ by modiffiﬁé both the exact
summation method and the method developed in the second seétioh for

summing the interplanar interaction.
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The seoonduwdifioation considered in the final $ectionbpertainsv
oniy to the application of toe interplanaf interaction to the étability
of close-packed polytyoes. Instead of simply usihg_the interplanar
interaction in Eq. (I1I.21), Ad(2d) is adjusted to refléct conditions
that might'hold when the dhcp, Sm, and A'polytypes occur. The regions_ :
of Z for which the complex polytypes'might appear are determined under

these conditiomns.

A. FExact Summation of the Friedel Potential

The formulae for the exact summation of the Friedel potentialfﬁere
developed in Chapter III. Discussed here are some conoidera;ions about .
tﬁe evaluation of the formulae. |

The convergence parameter, W, may be choseh'afbitrarily-in Eqs. (III.2)
and (III.A)f If w=1T/s2 is chosen, where s is the_oearest néighbor

distance, the sums converge with equal.rapidity.l7

In our computations
fifty or sixty lattice vectors were used for the sums on the right-
hand side of Egqs. (III.2) and (III.4). Then w was adjusted so that

the last ferms evaluated for the sums were about equal. It was found

that w differed from TT/s2 by a small amount and the last terms in:thé

two sums contributed less than 10_4 to the expression being evaluated.

An accufacy of.lO_4 is thus claimed for these sdﬁs._‘The difference
between Tr/s2 and the final values chosen for w is»éVidently due to the

trunoation of the sums; the value w = 1T/s2 is applicable only to a

~complete summation.
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€ , and €

In Flgi 4, the quantities efcc’ hep

fec? as determined

from exiact summation, are plotted as functions of'Z, In Fig. 5 are

hcp_efcc - . These

and €
i “fec

plotted the relative energies € bee

dimensionless energies have a magnitude of 5><10_3 or less for the
range of Z considered. This range is taken to be from 1.00 to 4.00,

the range of valence which includes the simple metals to which

1,9

pseudopotential theory should apply. The results, shown in Figs. 4

and 5 can be used to determine which of the structures has the lowest

€. -

energy as a function of Z.  In Fig. 6 are shown plots of Efcc’ €ec

and € structures.
dc . _

B. Summation of the Interplanar Interaction

>The computation of the relative energies of the different closé?
packed poiytyfic structures can be done without the éxact evaluatién_
of Eq. (III.Z).‘ The method for doing this.calculation'uses an
aﬁprdximate interplahar'interaction between two pérallel, hexagoﬁal
close—paéked planes‘developed in Section III.B. ' In particular,
close~packed polytypic structures can be described as thevstacking of
hexagonal, élose—packed plénes of three'tYpes, A; B,.or C. When these

planes are considered pairwise, they are in either equivalent (e.g.,

A-A) or inequivalent (e.g., A-B) positions. For example, the stacking-

sequence of the fcc structure is ABCABC; the first and fourth planes
in the stacking sequence are in equivalent positions, while the first
-and second planes and the first and third planes are in inequivelent

positions.' The interplanar interaction of Biandin, Eriedel and Saada
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is a reérréngement interaction which gives the change in energy when

two parallel, hexagonal close-packed planes are shifted from equivalent

to inequivalent positions. The expression for A$p(z) given in Eq. (III.21)

is just this energy and will be denoted A¢BFS(nd) in this chépter (Z=nd);
Following a suggestion by Hodges,10 the A¢BFS(nd) of Section III.B

can be used to calculate thé_structure—dependent energy andvrelative

sfability of any élose—packed structuré.  Let cﬁ be the fraction of

nﬁh-nearest neighbor ﬁlanes in equivalent positions for some structure.

For example, ;l equals zero for any structure, since nearest neighbor -

planes are always in inequivalent positions. The structure-dependent

energy per atom of some structure with respect to the fcc structure

is just
(o]
e-€con = Z_) Ac_ A¢(nd) (IV.2)
n=1
where Acn = c fee - c.» and c, is the coefficient of the phase in

question. Table II shows stacking characteristics and stacking
sequences for the polytypic structures considered in this paper.

When Eq. (III.21) is used in Eq. (IV.2) for Z > Zc’ oné can
obtain a simplification by noting.that Acn is periodic in n. If (ﬁd)
is a common repeat distance for the structure iﬁ question and the fcé

structure, we can rewrite Eq. (IV.Z) as
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)

( Bjnra DGR +100)

o

€€féc " 2
- n'=0
= i ; Ac, A9((3m' + K)d) | (Iv.3)
n'=0 k= | S
21_: de, 2 A0(Gn’ + K)d)
k=1 & n'=0 . 7

For example, it ‘is found that the hcpvvstructure has an energy of

Ehcp—efcc - 2;%.A¢((6n+3)d> - Ap((6n+2)d) + Ad((6n+4)d) (IV.4)

with respect to the féc structure.. The terms 2 AP ((jn'+k)d) in
. E n =0 )
Eq. (IV.3) can be easily evaluated when Eq. (III.21) is used. 1t is

shown in Apperidix D that

Z_ A¢BFS((jn+k)d) « Z : sin(jn+12c)9
n=0 n=0  (jn+k)

1 21mkR 2mi 21kl 218
= = i - 0+=—) + — o, (0 +— : IV.5
T sin 3 62( 3 ). cos =3 2( 3 ) ( )
where
0 (0 = 9 S8 _ g gn 2lsin I 42  ¢dd
2 ya 2 2
n=1 n o tan¢
and
= cos nf ' 62 o Trz
FOEDIE s s

n=1 n
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The function az was obtained numerically to six digit accuracy using
.polynomial expansions with six terms. This accuracy is needed to
assure significance in the evaluation of Eq. (IV.5) when uséd in
Eq. (1Iv.3).

Use of Eq. (IV.5) in Eq. (IV.3) allows a simplé calculation
of e—efcc. Thé method does not require the calculation of reciprocal

lattice vectors as in the exact summation method and is easily visualized.

The results for using the interplanar interaction are shéwn

€hcp_efcc
in Fig. 7 as a function of the valence.

Results for three polytype structures are also displayed in Fig. 7.
Two of these, the double hexagohal'(dhcp) and samarium (Sm) structures,
are occastionally observed experimentall&. In terms of Pauling's h-k
~ notation (Table II) these structures have one hglf and two thirds
hexagonal character, respectively. The final structure, designated
the A structure, has one third hexagonal character and is included
for completeness. These complex polytypes might be considered as
~ compromise structures that occur when the fcc and hcp structures have
nearly the same energies. Table II summarizes the stacking characteristics
:of these complex polytypes.

The odd behavior of the interplanar interactioﬁ Peaf Z=1.14
'  sh0ws up clearly in Fig. 7. Using the results from tﬁe'exact Summation,
the values of €, -¢ from the two methods can be égmpared and aréb

hep fcec

o . 3 1 ’ - # = . .
plottedbln Fig. 8. The exact summation ylelds ?hcp afcc 0 at Z 1 14
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\

This result implies that there should be non-zero terms in Eq. (IV.2),
i.e., the interplanar interaction is not always zero at.Z=1.l4.
Evidently, the.épproximate interplanér interaction breaks down near
this value of Z. It is of'interést to note the good agreement between

the results of the two methods at other values of the valence.

C. Inclusion of a Phase Factor in the Friedel Potential

The Friedel oscillations were originally derived as oscillations
in the charge density surrounding an ion in an electron gas.18 A
Friedel shift appears in the result for the charge density, as in

- Eq. (IV.1). However, as usually derived from pseudopotential theory

. . . 1 .
carried to second order in perturbation theory, neither the charge

density oscillations nor the Friedel potential contain a Friedel shift.

Only in higher orders of perturbation theory does the Friedel shift
occur. Friedel,19 Seeger,20 Heine and Weaire,8 and Harrison21 have

also discussed the significance of the Friedel shift. Although it is

not yet clear what role the Friedel shift plays in interionic potentials,

the present formulation alloys the Friedel shift to be incorporated into

the determination of structure in a simple way, and this is done below.
To.sum the potential, Eq. (IV.1l), over the lattice as in Eq. (IL.7),
we note that Eq. (IV.1l) can be decomposed into the form

cos 2k_r sin 2k_r

v(r) = cos 26 —— 3 - sin 286 — VF3 .
(2kFr) (2kFr)

(Iv.6)
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Now just as Eq. (II.7) could be summed using Shgw's development of
Epstein's methbd, the term sin(ZkFr)/(ZkFr)3 can be summed using a
Eq. (III.7).

The term sin(ZkFr)/(ZkFr)3 can also be cast into the form of an |
interplanar interaction, just as was done by Blandin et al. for the |
term cos(ZkFr)/(ZkFr)B. Instead of a singularity of the type (k—ZkF)in
[k—ZkFI, a form like Ik—2kF| appears. The final resul; is to simply

add a Friedel shift to the interplanar interaction:

2/3)1/2 _
‘ sin(nb + 28)
324/3 2

v.(1 -~ (z/z)
0 ¢ (1IV.7)

Ap(nd) = 10.44
: n

(2m)

"Expressions (IV.1) and (IV.7) can now be used in Egs. (II.7) and (IV.2)
-to determine thé stable structure just as before, exéept that this .
;SCructure will be é function of both Z and 2. This information can
bﬁhen be‘used to determine which structure, of those considered, is ﬁost
 étab1e as a function of the two variables._.FigureS 5 and 6 show the

~ structures found to be preferred when a Friedel shift is included in

the Friedel potential. Figure 5 is the result of the exact summation"

technique. Only the fcc, hcp and bcc structures were considered

" in this determination. Figure 5 shows which of the structures,

fece, hep, dhep, Sm, or A, are preferred as a function of Z and 2§

és determined by Eqs. (IV.1l) and (IV.7).v
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‘D. Alternate Criteria for the Occurrence- of
Complex Close-Packed Polytypes

In this section, tﬁe model presenfed above is modified in a second
way fo obtain values of Z for which complex polyﬁ?pes'might be found.
In particular, the intefplaﬁar interaction, with adjustment of A¢(2d),
: is used to obtain the region; of Z where the polytypes dhcp, Sﬁ, and
A migﬁt occur. What is recognized is that, since the interplgnar
interaction of Blapdin,rFrieQel and Saada may be in error forvsmall »
separations, A¢BFS (2d) may not neceésarily be a gobd approximation to
the actual interplanar interaction for secon& nearest neighbor planes.
A@(Zd) is hence adjustéd to meet other requirements.

The dhcp, Sm and A structures (Table II) may be considered to be
compromise.structures occurring when the fcc and hep structures héQe
nearly the same energy. This condition can be simulated by either
setting A¢(2d) = 0, as was done by Hodges,10 or by requiring that

efcc = Ehcp and adjusting A$(2d) accordingly. These two criteria for

~

the appearance of the complex polytypes are investigated below.
The condition that Hodges10 used for the appearance of complex

close-packed polytypes is of the form

Ap(2d) = 0

"
>
5
o
"y
w
~~
o
(=W
N’
o
\%
w

Ad (nd) (1IV.8)
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This condition assumes that the interplanar interaction shows no
preference for equivalent or inequivalent planes at the second nearest
neighbor plane position. If equivalent planes arevpreferred at the
.second nearest neighbor position (A¢(2d) > 0), the hcp'structure is
favored by A¢(2d), and if ihequivalent planes are preferred (A9p(2d) < 0),
the fcc structure is favored. Equation (IV.8) expresses tﬁe condition
.that neither type of plane is favored, sorthat complex polytypes,

which have both types of planes at the second nearest,ngighbor plane »
position, may appear.

The values of Ap(nd) from Eq. (IV.8> are to be inserted in Eq. (IV.2)

to determine the preferred structure and, in particular, td determine

if a compiex polytype ié preferred. Hodges did not evaluate. the complete
‘sums, Eq. (IV.2) and thefefore could not make definite conciusions V
about the relative energy of the samarium structure; he did not consider
' the A stfucturé. The complete sums have been done,ﬂand'it is found ?hat
. the energies of the dhcp and Sm structures are usually very close to
.:éne another, so that care must be taken in evaluating the sums.
The value of A$p(2d) can be adjusted in. another way. Rather than

" setting A$(2d) = 0, one can set € € in Eq. (IV.2) by adjusting

hep T ®fece

" A$p(2d). The other terms, Ad(nd), are then taken from Eq. (III.21).
This procedure hés the advantage that the condition for the appearaﬁce
of éomplex polytypes is simply stated as a cqndition'on the relative

energies of the fcc and hep structures. However, the term A¢(2d)

‘must still be singled out for special treatment. We take
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Ap(2d) = Ap°(2d)

R ' (1v.9)

Ap(nd) = A¢BFS(nd) for n > 3 -
| JUC P .‘ L .
where A~ (2d) is adJusted En Eq. (IVfZ} so that ehcp Efcc' Th;s
condition with'Eq. (IV.2) can be recast in the form

L BFS __BFS, BFS:_ BFS, -
g_efcc - ACZ(Ehcp __Ei:'cc')’+~'-'(€ efcc) s (1v.10)

where the polytype with the minimum value of € is_preferréd. Since .

Ac hcp

) , as promised.

- l"E:hcp = ffee

Equation (IV.10) can be interpreted in the following Vay. We
expect the compromise polytype structures;-dhcp, Sm and A to appear

when € = e

hcp fece®

case. For some values of Z, polytypes will intrude when this value of
A9 (2d) is used. For other values of Z, the other interactions,
A¢BFS(nd) with d>3; stabilize both the fcc and’hcp structures with

respect to the polytypes.

. One can then find what value A¢(2d) assumes in this
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V. LATTICE VIBRATIONS

Any infinitesimal deformation of a crystal lattice can be regarded
as a linear combination of the extended normal_mode_deformatioﬁs,
which, when excited, are referred to as phonons.‘ If all of the normal
mode or phonon frequencies of oscillation are found to be real, then
the lattice is stable against any infinitesimal deformation. Otherwise,
any normal mode with an iﬁaginary frequency can grow in amplitude with .
time, and the laftice wili eventually relax to énother configuration.:
Evideﬁtly, the condition that phonon frequencies be real provides
another criteriop for the_structural stability of a lattice.

There are two other éspects of structural stability that are
Aaddressed by the study of phonons. First, lattice vibrationsvcontribute
to the free energy of a lattice through both the energy and éntropy
associated with vibrational modes excited at finite temperature. While
this aspect of the problem will not bevconsidered further here, these
'effects must be included in any>study of the dependence of stability.
“on temperature. Secondly, stability criteria have been expressed in
_térms of the elastic constanfs of a metallic crystal by Born._22 The
‘el#s;ic constants are determined by the long wavelength behavior ofl_i,
v3the phonons. The criteria involve the stability of the lattice againét
:homogeneous deformations and will be discussed in Chapter VII.

The calculation of phonon dispersion relations is particularly
easy to accomplish with the interplanar interaction. As in other cases, .

the reason the calculation proceeds so easily is that the formulation
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iéféSéentiélly one dimensiqnal in character and can be applied only to
phbnbhs propagating along symmetry directions in the lattice. Since
results obtained with the asymptoticvinterplanar intg;action only
approximate those obtained with the Friedel potential,.some modifications
to the dispersion curves can be expected when the Friedel potential

is used. In fact, since near neighbor interactions enter calculations
of phonon dispersion relations, and it is iﬁ this reéion_where the
intérplanar ipteraétion'fails to approximate the Friedel potential,

the phonon diépersion relations calculated below are likely to be the:
least accuréte of fhe.calculations performed here. 1In other words, -
agreément with results from the Friedel potential, full pseudopoténtial“
caléulations or experiment is not likély to be aéhieved below. The

_ value of using the intgrplanar interaction is in its interpretive yalue.
Koenig23 first cOnsidefed thé possibility of usiﬁg-éﬁ_interplanar

interaction derived from the Friedel potential to interpret the

-interplanar force constants derived from experimental work. Unfortunately,

his development was incomplete; some of. the loose ends will be tracked

down'in what follows.

A. Phonon Dispersion

In ordef to proceed with the calculation of phonon dispersion ,
relatioﬁs along symmetry directions of métallic crystal lattices,
two new approximations must be made. First, use is'made of thé
Born-Oppenheimer épproximation, whereby the positibps of the ions-are

assumed to be the determinants of the energy of the crystal lattice.
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This approximation is a very good one and rests on the fact thaf the
electrons in a solid relax in response to a perturbation of the positions
of the ions of the lattice much faster than thé perturbation can be
applied. The second approximation that is used is the harmonic
approximation, in which it 'is assumed that restoring forces vary linearly
with displéceﬁent. "For arbitrarily large displaceméﬁts, this
approximation is bad, but for infinitesimally small displacements
about an equilibrium configuration, the approximation is rigorously -
true. It is the latter case that will be considered below.
For vibrations propagating along certain syﬁmetry directions qf 
a crystal, the normél modes are polarized into one'purelyvlongitudinal
band two purely transverse components.3 For a gi?en‘wavelength and‘
polarization, a mode may be considere& to consiét of whole planes §f
.ions vibrating either parallel or‘perpendicular to the propagation o
 direction. ‘With the introduction of‘interplanar stiffneSS‘constanfs;3’5'
 3the problem of determining_dispersion rglations beéomes equivalentvtéi-
a one dimensional vibration problem. The dispersion.relation beco@éé
wz =1 % C_(1 - cosqpd) | (V‘..l). ’
M P , o
?ﬁwhere w is the angular»frequency assoclated with the phonon of wavév
vector q, M is the mass of the ion, d is the interplanar spacing,
'.and Cp is the stiffness constant between a plane serving as an 6rigiﬁ
. vand a parallel plane a distance pd from the origin. Equation (V.1)
is particuiarly useful since the values of Cp can be directly determined

from the interplanar interaction discussed in Chapter III. Below,
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only transverse phonons propagating perpéndicular to thé close-packed

S

planes of fcc and hep lattices will be considered. While this limitation

will give a'somewhat narrbw view of the topic,‘the qualitative form

of dispgrsion relations arisingvfrom the interplénar interaction- can
be displayed with this type of mode. Also, these ﬁodes are related

to the‘stability of polytypes égainst phase transformation as discussed
in the previous.chapter and the fault energies calculated in the néxt.'
All of these phenomena involve a shear across close-packed planes.

The expressions for the valugs of Cp in Eq. (V.l) mus; bé found
first. For a translation $ = 88 of a plane a distance pd from a
plané serving as an origin, Eq.'(III.13)’gives a change in energy per
ion of

86(z) =D (cos(g - (B+8))-cos (g, -B))V (g, »2) (v.2)
g ; T |

for translations transverse to the stacking direction, and

8¢(2) =D cos(g *b) (b(g ,2+8) - (g, »2)) O W.3)
' 8 .

for translations parallel to a stacking.direction.'_As introduced iﬁ -
Section IV.B,‘thé vector b is determined by whether or not the two
planes are in equivalent positions with respecf to each other. For
small values of §, Eq. (V.3) may be expanded in a'TaylorVSeries aﬁout

8=0:

8¢ (pd+8) = 8¢ (pd) + g% So(pd) S8 + %-iii So(pd) 82 + ...,
38 '

and similarly for Eq. (V.2).
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Now the'first.term of the above series vanishes identically. When
summed over all planes, the second term must also vanish identically,
otherwise the plane under question will distort in such a way as‘to
lower the energy of the lattice; for transverse distortionms, g% 8¢ (z)
does vanish. If the structure is hcp or fcc, it is also easy to see that '
a’ sum over éll planes will yield zero by symmetry. It is probable
-that this result holds more generally. The third tefm yields the

interplanar force constant:

52 5
C_. = —5 6&¢(pd) (v.5)
P 962

Applying Eq. (V.5) to the expressions for &¢(z), we obtain

_ > 2 2 > > .
c, = -‘g[, @, *8)7 cosg, b w(g ,pd) | (V.6)
_L .

~for transverse deformations. It turns out that Eq. (V.6) does not
 depend on the direction 8, Equation (V.6) simplifies to
(8% e o) .12 -1,
. V(g »P =3 (3, - 2a;)
c = ' : C - w.7

2
-16
121' 1% (gl ,pd)
a

o'y
f
o

. A N .
.where, in the first case, C_ is independent of the direction of b as
“long as g carries the pEE-plane from an equivalent to an inequivaient

position. Now w(gl,pd) is given by Eq. (III.1l4):
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-.205 6 sin po

2

Y(g, ,pd) =
1 (2n )325/3 4/3 2
where Z is the valence, 6 = 5. 67(Z / 2/3)1/2 (d/a)/(d/a)ldeal’
and Z_ = 1.14y. -
Insertion of Eds.‘(V.7) and (V.8) into Eq. (V.1) yields
2 | \ .
w2 =2 (Sn)(—zose )
M a2 2m Z5/3 4/3
<-2 D, B0 cos3paa)
p=1 (3p)° ‘
EiEﬁQB:ll_ (1 - cos(3p~1)qd) .
p=1 (3p—1)
+ sin(3 -3)6 (r - cos(3p—2)qd)> (v.9)
p=1 (3p-2)
_2 (8n2) ( - .2056 ) -
M a2 (2“)325/3Y4/3' |
<— 3, 2238 1 - cos 3paa)
p=1 (3p)
+ Z sin pb (1 - cos pqd)> .
p=1 p '
Noting that'
sinacosf = = (sin(a+8) + sin(a-B)), (V.10)

(v.8)
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one finds that

/8 ) ( . 2056 ) . R
( 2 ) \ oy 32573473 |

1 1
(0,(8) - 5, (8 + ad) - 5 (6 - qd)

—%a(e)+la(W+qd)+ aw'—wm)
where 6' = 30 and q' = 3q. This is the form for the dispersion
relation for transverse phonons propagating in a (111) direction -
in a face-centered cubic crystal.

Similarly, we obtain

(81T2) ( -.2056 )
2 (2132513, 473

( TSR0 () oupan
p=1 (2p)

>l (2p-1)?
_2 (81r2) ( -.2056 ) . (v.12)
u 7)) \Gn3stpn ) o
<— 3 E s_in_Z%_Q (1 - cos 2pqd)
p=1  (2p)

i %’@f (1 - cos pqd)>
=L p
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for transverse modes propagating parallei'to a (601) direction in a

hep lattice. With the identity Eq. (V.10), we have

: 2 : o S
2 _2 (SW ) ( .2056 )
w . (v.13)
M a2 (2ﬂ)325/3Y4/3 ‘ _

(0, () - 3 o, (6+ad) - 7 o, (8~qd)
-2 0,8 + 2 a 0"+’ + 2 (0'-q'd))

where 0'=26 and q'=2q.
For iongitudinal déformafions, Eq. (V.5) yields
C =E cosg, "b (i ( )) | (V.14)
p T4y T (7 V@) .
and analysis similar to that fognd in Eqs. (V.9) to (V.1l4) can be.
applied to obtain the dispersion relations for the longitudinal
vibrational modes. |
Use of Eqs. (V.11l) and (V.13) has been méde to plot the dispersion
relations for the fecc and hcep sfructures in Figs. 11 and 12 ,
respectively. The meimum value of q in a close-packed diréction_
thch is inside the first (extended) Brillouin zone is just 7/d
where d ié the interplanar épacing. The.interplanar interaction -
was e#pressed in terms of dimensionless energy units in Eq. (V.2).
To obtain the proper units for w, fhe factor Vo must be reinserted

to obtain
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2 o . mass (length/time)2 - 1

w~
N Ma® mass-length2 time

The quantity w will be plotted in dimensionless units, i.e.,

2 2
Maw- _ £(z)

v
o

where f(z) depends on Z above, and the quantity w' can be defined
as
w' = _.___w__
2,1/2
A

In Figs. 13 and 14 are plotted the dispersion relatioms fof (QOl)T
phonons in magnesium and (111) T phonons in aluminum, resﬁectively.ZA’zsv
The values of Vo for the‘calculated curves wefe taken from Appapillai
and Williams26 (See Table I). For the optical branch in:magnesium |
and large q range in aluminum, marked discrepanciés in‘the.general
behavior of experimental ahd calculated curves occur; The behavior
of dispersion curves in these regions of q is related to the short
fange bonding in a crystal; the discrepaﬁcies indicate that shorf
_range bonding is probably poorly quélled by the Friedel potential,
a not unexpected result. In fact, most fce dispersion curves show

(111) T behavior which is dominated by Cl (cf. Eq. V.1), the contribu-.

tion to the dispersion curves from the first nearest neighbor plane.
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B. Elastic Constants

In the long wavelength limit, the vibrational modeé of a solid
only indirectly reflect the discrete crystal lattice of ions which

compose the metallic alloy; The behavior of low frequency, long

wavelength sound waves can be understood'by approximating the crystal:

as an elastic continuum, i.e., with no discrete character. The

parameters characterizing this behavior are macrcscopic quantities—— '

the density and elastic constants of the alloy. For_example; the
dispersion relations for phonons pfopagating parallel to a cube edge

of a crystal with cubic symmetry become

c .
w2 = —qu ’ (V.15)
P
and
W2 - Crs o2
,p

"for longitudinal and transverse waves, respectively. The quantities

Cll and 044 are elastic constants, and p is the density of the solid.

By expanding'the dispersion relations in the previduS»secqion about
q=0, one easily obtains a similar form and the elastic constants can

then be obtained from the derivatives of a2(6)

a%a (8"

a0 )

w2 = constant ° [(—--;—_ q2) (#2) + (% qZ)(

dé - 46’

—2o—1  .an
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For the two dispersion relations plotted in Figs. 13 and 14, two elastic

constants are obtained:

_ 11 d
Cgg = 1.3x10 —1%

cm

for magnesium and

y/3 = 1.4x10M1 55%

(C117C19™C44
vcm

for aluminum. These values show reasonable agreement with the

1 dy/cm® and 2.36x10' dy/em?,

expérimentql values of 1.64X10l
respectively, although this agreement depends on the-pseudopotential‘
form faqtor used to calculate Vo' What is of interest is that
experimental values can be approximated by using the Friedel potential,

which is just the long range part of any interatomic potential afising‘

in pseudopotential theory.
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VI. FURTHER ASPECTS OF STABILITY

Inkfhis chapter, two other facets of the study of stability are
introduééd: the stability against the formation of stacking fauits
and twins, and the stability of lattices against finite homogeneous

deformations.

A. Stacking Faults and Twins

The defect structure of a me;allic alloy is oné of the principal
determinants of_mechanical properties. The properties of dislocationé,
oBstacles to dislocation glide, grain boundaries,'eﬁc.; all influence
how the metal behaves under stress. Unfortunately, the problem of
sorting out the influences of these defects on mechanical properties
is and will remain an immense theoretical and experimental task,
although progress is being made by a ﬁumber of.careful workers. Qne
type of defect, the coherent planar fault, has received much atSention
over the last decade. Planar faults, be they stacking faults or twins,
are charaCterizéd by a disturbance of the regulaf stécking of planés"
in a metallic crystal and have received both experimental and theoretical
atténtion for two reasons. First, faﬁlt energies are not too difficult
to either measure or.calculate.27 The agreement between tHeoretical
and experimental estimates of stacking fault energies is fairly good,
although there is probably a factor of two difference between thesé

two estimates or between these estimates and the true values of stacking

fault enérgies of actual metals. Secondly, the stacking fault energy
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appears to ﬁe an important parameter in the charaqtgrization of the
plastic deformation of close-packed materials, and hence has possible
pracficél significance in the study of the mechanical properties of
metals.

The stability of close-packed metallic cryétals against the
formation of stacking faults and twins, rather than the mechanical
properties of the alloys, will be discussed below;. In ferms of our
categoriéation of deformations in the Introduction, a stacking fault':
is a localized, inhomogeneous distortion of a perfect crystal lattice.-
In close-packed metals, twins and stacking faults lie parallel to
' close-packed planes, i.e., {111} planes in fec structures and {001}
planes in hcp structures. This orientation makes the calculation of
fault energies amenable to the use of the interplaﬁar interaction
derived in Chapter IT11I. In fact, Blandin et al.v.6 originally
formulated thg interplanar interaction to treat these types of féult.'

Several types Of‘notation exist for the description of planar
faults. The convention that will be used here is the same used to
£l deécfibe polytypes in Chapter IV. Thus, the letter k will describé 3 
plane wifﬁiah environment of cubic symmetry, i.e},.with neighboriné, |
ﬁlénes in inequivalent positions and aﬁvh will desigﬁéte a plane in_. 
a hexagonél environment of two neighboring planes iﬁ equivalent ‘
positions. For the fcc and hcp lattices, there are three cémmon-typeé-
of planar fault: the intrinsic and extrinsic stacking faults and the
twin fault. In the fcc iattice, two hexagonal type layers are.found

"in the stacking of a crystal containing either an-ihtrinsic or an
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extrinsic fault, as can be seen from Teble Iv. ‘Likewise, a twin gives
rise to only one hexagonal type layer. In an hcp material the'inﬁrinsic,
extrinsic and twin faults give rise to two layers, three'layers, and

one layer with cubic symmetry, respectively. Other types of faults

can be visualized; in fact, E. A.vHarrison28 haS'tfeaﬁed a numbef of
different types-ef‘planar»faults in aiuminum. Also, different types

of faults Will’arise when polytypes other than the fcc and hcp'structures
afe considered.. Attention will be restricted to the faults already
delineated.

A simple modei27 for the energies of the different typee of fault
can be constructed using an interection between second nearest neiéhbor
Pplanes onl&. If A is the difference in energy betﬁeen planes in
equivalent and in inequivalent positions, . then the energies of intrinsic,
extrinsic and twin faults are 2A, 2A, and A.in the fc¢ structure and
-2A, ~3A and —A in the hcp strucfﬁre. Similarly, the difference in
energy betweenvthe hcp and fcc structures is just A per plane of material.
This model neglects forces of renge,further.than twice the inferplanar,
spacing and will be refined below to include seme of the long raﬁge
effects.

In tﬁeir treatment of stacking faults, Blendin et al.6 developed
the formulee needed to deal with the long-range interplanar interaction
develdped in Chapter III.F With the A¢(nd) defined above, the fault

energies are given by:
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face-centered cubic: Ae =

intrinsic: :E: [3n Ap(3nd) - (3n-1) A9((3n-1)4d)]
n=1

o]

Cextrimsic: 9 [(3n+l)A0(3nd) - 3nA¢((3n+l)d) - 206((3n-1)d)]
n=1
twin: Z ‘n[206(3nd) - A¢((3n-1)d) - Ap((3n+1)d)]
n=1 ' 7

hexagonal close-packed:

intrinsic: A = P n[2A¢(2nd) - AG((2n+1)d)]
r=1 - :
extrinsic: D [(20+1)A6(20d) - 2000 ((20+1)d)] "
n=1 .
twin: 0, [nA¢(2nd)]
51

Since the interplanar interaction has been expressed in dimensionlesé
units, a.factor of.Vo/(VEAZ/Z) must be inserted to yield proper
'dimenSions-erg/cmz. The generalization of the interplanar interaCtioﬁ
to include arbitrary c/a ratios also allows the vérious fault enérgiés'
‘to ﬁe calculated as a function of c/a. This has been done‘for Z=2 and

in Fig. 15, the results for the’hcp'lattice at Z=2 can be found.
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The sums over combinations of A¢(nd) abqve can be evaluated in
terms of functions like az(e) and 82(6) defined in Chapter 1V;
Blandin et al.6 give the details of the computation. These
formulae reduce to the simple model results given ébove,

if values of A¢(nd) with n greater than two are neglected.

B. Finite Homogeneous Deformations

With either the exact summation method of the Friedel pofentiai
or the interplanar intéraction,»the highly symmetrical crystal strqétufes
. considered in-Chapter IV can be subjected to finité homogeneous |
deformations. All that need be done is vary thé crystalvstructufe to
simulate the deformation. | |

The relationship between finite deformations and other aspeéts
of stability has not been explored fully; the purpése of this section is
to poiﬁt out that finite deformations can be’inyestigated with the.
present formalism and that they are intimately rélated to the otherl
aspects of the study of the stability of structures.

Iﬁ fig. 17 are plotted the results of a calculation of the
dimensionless energy, €, as a function of the‘c/a ratiq of a body-
vcentered tetragonal (bct) lattice as calculated from Eq. (III.é).

. At c¢/a = 1.414, the bct structure is equivalent to the fcc structure
as indicated in Fig. 16. The curvature of the cufves for € in Fig. 17
is proportional to the elastic constant (Cll-Clz)/Z and, in fact,

use of these calculations could be made to obtain the results of

, 29 .
Cousins for the elastic constants (Cll C12)/2 and 044.
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Another aspect of theoretical studies of lattice stability is

illustrated in Fig. 17. The Born stability criteria are that

>0 and C44 >0

€117C12
for cubic crystals. These conditions apply only to the curvature of
the energy as a function of some deformation parameter. For a
theoretical model of a metal, there is no guarantee that no contribution
to the energy which is linear with the deformation enter, unless
additional éonstraints are put on the lattice. Such linear terms
can obviously cause minima in energy to be found for structures other
than the bcc and fcc structures. Whatvis of interest is that in
Fig. 17, where there is a positivé.value of (Cll—CIZ)[Z for the bece
and fcc structures, there also occur local minima of the energy for

these structures.
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VII. THE STABILITY OF CRYSTAL LATTICES

In the'preceding chapters, a number of quantities have been
calculated with the Friedel potential. It is easily argued that the
Friedel potential leaveé mﬁch to be desired as an interatomic potential.
At both short and long ranges, the bénding is probably not well
represented by the Frieael poteﬁfial. On the other hand, it can_also

1

be argued that the value.of the Friedel potential is>due, in somé o

_ sense; to its uniqueness. The strength 6f wﬁat has -been calculated
above lies not so much in its agreement with experimentally determined
quantities as in that a particular facet of pseudopotential theory

has been investigated in some detail. The results obtained above

. are summarized and interpreted below.

- A. Interpretation of Structural Energies

In Chapter IV, a number of computations of structural energies
of crys;al lattices were performed using the Friedel potential. Below,
these energies will be diécussed‘in ferms of the form of the Friedel
.potential at various values of the valence. Following this discussion,
the results of Chapter IV are considered in’relation to the assumptions
used to ob;ain the Friedel potentiél and in relation to actgal phéses
found in siﬁple metal systems.

It has been notgd that the Friedel potential, Eq. (Ii.6); is
independent of volume. Using the completely dimensionless form found

in Section III.A, the Friedel potential has been plotted in Fig. 18
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for Z =1 to 4. Also shown in the figure are positions of the first
nearest neighbors of an ion for several different'erystal structures.
‘The Friedel potential %tself is oscillatory in nature with an envelope
that deereases with distaﬁce like 1/r3. For fixed Z, the potential
~exhibits a repulsive region as r increases, then a local minimum in_
which the nearest neighbor ion of some ion might be expected to
prefer to be positioned, and then a maximum. There is actually another
minimum of the Friedel potential at smaller values of r, but it is
spurious in the sense that it will not appear in an interionic potential
derived from the full theory. Instead, this region of r, whieh ‘
corresponds to a large overlap of the cores of the ions, should be
characterized by an increasingly large repulsive interaction. As Z
increases the oscillations contract and appear at smaller values of r.
The near neighbor interactions might be expected to dominate the
behavior of the energies of the various crystal stfﬁctures availdble
to the metallic alloy. This behavior is reflected to some extent in
Figs. 4 and 6, where the results of summing_Eq. (I1.6) for various
crystal crystal structures is displayed ae a function of Z. In Fig;.4,.
the results for bec, fcec, and hcp.lattices are plotted. All of the‘ |
curves‘show_a sharply decreasing and positive enefgy, then a miniﬁum,f.
and then a slow rise. This behavior is easiiy un&erstood in terms ::
of Fig. 18 in which, as Z is increased, the first nearest neighbor
vectors "slide.down" the repulsive region into the minimum and up
‘the adjoining maximum.' Figure 6 displays similar results for the fcc,

simple cubic and diamond cubic structures. These curves cannot display
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'realistic behavior for low values of Z because the first nearest
neighbors are affegted by the first,vspurious mihimﬁm of the Friedel
potential for vélences near one, as mentioned above. In fact it is
probably this repulsion that favors the more close-p;cked structures
that are actually observed. The open sc and dc structures, when
compared to the close—packgd Strﬁcturés.at constant volume, have a

small number of near neighbors and these near neighbors appear at
relatively small values of r, as can be seen in Figf 18. At low 2,

a small value of the near neighbor distance will lead to large repuisive
intefactions and the preferrencé of some otﬁer structure.

At larger values of Z, whére the hearest neighbqr vectors of the
close-packed structures are app;oaching the adjd;ning maximum of the
Friedel potential, the nearest neighbor distances df the open structures
are near tﬁe minimum of the Friedel potential. Consequently the open
structures aré favored. It is interesting to note that at Z=4, the
simple cubic structure is favored over the diamond cﬁbic structuré.
Using the effect discussed just above, Heine and Weaire8 suggested
that the diamond cubic structure might be found to be stable at Z=4.
Although the open structures are found to be mdre stﬁble than4thé
close-packed structures at Z=4, the simple cubic structure is preferred
over diamond cubic, as determined by the Friedel potential. It is
also of intereét.to note how closely the bec curve follows the fcc and

hep curves in Fig. 4. Compared to the sc and dc structures, the bcc

structure has a very clear close-packed behavior.
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The computations discussed above have allowed several determinations
of structure. The results are summarized in Fig. 19 along with results
obtained by Blandin, Friedel and Saada.6 Tﬂé most stable structure
of those considered.is plotted as a function of Z. These data are also
| presented in Table III. Ip this section we compare these results with
the éctual étructures found among the elements and in alloy systems.

The first plot in Fig. 19 represents the results of Blandin, et‘al.6
Using the real space formulation of pseudopotential theory, they
B discuséed the.stability regions for the fcc'aﬁd hcp structures.

 Specifically, they determined the regions of Z for which the fcc and'hc§'
structures.arevstable against the formation of stacking féults, using
the unmodified interplanar interaction.

The results which follow from the formulae of Sections IV.A and
IV.B are shown in the second and third plots of Fig. 19. These results
coﬁplement those of Blandin, Friedel and Saada, as can be'Séen by |
comparing the first and second plofs.of Fig. 19. 0ve; the range
-1.2.10<Z<2.20 the fcc phase is stable against faulting for the model
considered here, but is metastable with respect to the hcp phase. .

Similarly, the hcﬁvphase is stable against faulting from Z=2.20 to 2.29,.
~but is metastable with respect to the fcc stfﬁcturé.- On the o;her
. hand, over the range 1.27<2§1.30 the model predicts‘that hcpvis stable
_relative'to the fcc structure, but unstable to féulting; while for |

-1.30<Z<1.36 the fcc structure is preferred to hcp, though both are

unstable with respect to formation of a fault. Since the close-packed
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polytypes may be derived from the simple fcc or hcp structure thfough ‘
periodic faulting, polytype infrusion is 1ike1y'né;r>z=1;30, as discussed
. below. At Z=1.66 and 3.53 the fcc-hcp phase Soundaries coincide with
the limits of stability with respect to faulting.
The results obtained from the exacf summation of.thé Friedel
potential are given in the third élot of Fig. 19,‘which includés the
.predicted rénge of the body centered cubic structure. 
The results shown in the first three plots of.Fig.—l9 are

complemgnfary, and express structural tendencies which.are at least
roughly reflected in the periodic table for Z in the range 1 to 3.

The model prefers the hep structure when Z=1, as do the simplest
monqvélent metals, lithium and sodiﬁm, in their low temperature forms. -
At ZéZ the model shows a very slight preference for the bec scfucfﬁre .
ovef an hc; étructﬁre with ideal axial ratio; the poésibility,of a
non-ideal axial ratio was not considered. The hcp structure is clearly
preferred to fcc. Empirically, the divalent metals beryllium, zing,'
and cadmium are hgp; all except magnesium have axial ratios which ére
far from ideal. At Z=3 the model prefers the fcc structure. Among

. the trivaient elements, aluminum is fcc and indium is nearly fcc.

"~ Gallium has a distérted structure whichbwas_ﬁbt.considered;

Thé apélication of the results summarized in Fig. ‘18 appears to
be successful in alloy sysﬁems for at least one value of Z. At Z=2.20,
theré is a boundary bgtwéen the fcc and hcp stability regions.
Corresponding to this value of Z, there are several systems with large

solid solubilities that also assume a phase boundary'ét or near this
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value of Z. The fcc phase of aluminum is stable with up to 66;5 alo
additions of zinc, and simiiariy the fcc phase of indium is stable

with additions of up to 77 a/o magnesium.30 Also,.rééults from
splat-cooling experimenﬁs31 indicate that fcc or fcc-like phases

are observed down to Z=2.20 in a number of systemé. These experimental
" results for elemerits and alloys are in agreement with the determination
_of the relative stability of the fcc and hcp structures with the
Friedel potential, especially in the region of Z=2 to 3.

The»fegion of Z for whicﬁ the bcc structure is'preferred is
-1.48<2<2.03. This range includes the electron-atom ratios of the.beta
: brass;s, the bcc-like Hume-Rothery alloys.9
Besides the fcc, hep and bec structures, several pélytypic struétu:es
- were considered in Chapter IV. In particular, results from the use of
the unmodified interplanar interaction to determine the stability'of
the fcc, hcp; dhcép, Sm and A structures agains the formation of the
other structures are shown in the second plot of fié. 19. There is ,

a polytype intrusion near Z=1.30. In fact, there is strong evidence32’33
" that at least the dhcp phase is found in this‘region of valence. vAt
2=2.20 the Friedel potential yields a transition between the fcc éﬁd

- hep structures witﬁ-no polytypé intrusion. 1In fact, complex polytfpgs
.do not seem to intrude at or near this value of Z.in alloy systems..

The considerations above relate to a mode; iﬂ which the valence
-f is the only determinant of structure. Since simple metals from a

' particular group of the periodic chart, i.e., with a particular value

of Z, display different structures, this type of determination is
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bound to fail. The flexibility necessafy to allow several structures
to be stable at a particular value of Z is obtained by the introduction
of a Friedel shift of 26 intb the Friedel potential, as can be seen
ffom Figs. 9 and 10.

| To draw clear concluéions form the modified ﬁodel we would reqﬁire
a method for selecting én appropriate Friedgl shift for é given material.

21,34

The one available quantitative suggestion, that the phase factor

be computed from the phase shifts on scattering from the pseudopotential,

has been criticized on,;héoreticéllgrounds by Heine and Weairé.35 We
computed phase'factors from the phése shifts‘on scattering from several
suggeéted model potentials and found, in agreement with Seeger,20

that the resulting values of 28 are so large that tﬁey destroy the
reasonable égreemént between the simpie structurai model and empiriéal
trends in structure. Reasonable agreement can only be maintained if

one accepts the conclusion of Heine and Weaire35

that 26 is smail.
Leaving aside the combutation of the phase factor, the accuracy

of the model may be improved if 2§ is allowed to assume valués of

magnitude ﬂ/4_or less. Reference to Fig. 9 sh?ws_that at Z=3 this

~ range of 268 pefmits the fecc and hcp structures, which are empirically

observed, but does not permit fhe bce structure, whiich is not observed.”

‘At Z=2 all three structures, hcp, bcg,'and fcc, occur over a small -

raﬁge of 28; all are, in fact, found in the divalent metals. At Zél_

the hcp and becc structures occur with moderate phase factor; these are

the structures found in the monovalent alkali metals. Reference to
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Fig. 10 shows that polytypic.phaées may be stabilized by a small phase
factor when 1.25<Z<1.6b and when 3.00<z<3.60. These are the ranges |
of electron-atom ratio over which the close-packed polytypes are
commonly found.11
The second modification to the Friedel potential that ﬁe éonsider
is actually a class of modifications to the interplanar interaction.
The value of A$(2d) is édjusted to find ranges of Z where the éoﬁplex :
poiytypes, dhcp, Sm and A, might occur in the casé that A¢(2d) is nét
given correctly by the expreséion of Blandin, Friedel and Saada, A¢BFS(2d).
More distant interactions are still assumed to be given by>Eq. (III.215..
The last two ﬁlots in Fig. 19 show the regions where the complex
polytypes might occur according to the modifications discussed in.
Section IV.D. 1In both of:these plots, polytype intrusioné 6ccur'at '
Z=1.30, as was the case for the results from the unmodified interﬁlanar
interaction. It is ihteresting to noté that the A!structute_appéars
in the iaét plét only and there the A structure is stable only in 
relatively small régions of Z. Experimentally, the A structure is

rarely found.

The last plot in Fig. 19, which shows where polytypes might occur
if efcc—ehcp’ gives results close to those listed by Havinga, etkalf
who used a criterion even more general than the criteria described‘ébdve
to discuss polytypes. These authors did not use complete summations,
Eq. (IV.2), in their determiantion of polytype stability, but inserted

a factor which damped the interplanar interaction at large distances.
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In contrast, the techhique used in this paper treats the long range
part of the Friedel potential explicitly. Howevér, we note that there
are experimentally observed polytypes 1iéted by Havinga, et al. which

fall outside the stability zones found in their paper and in Fig. 19.

B. Criteria for Stability

fhe détermination'of the crystal lattice with the lowest structurél
energy, as discussed in the previous section, is only one of a numbér”
of ways of viewing the stability of lattices. The calculations of
previous chapters allow séveral other approaches. Moreover, sinée
results from the Friedel potential depend on the valence associated with

the metallic alloy, and only the valence, the different criteria for

stability that emerge can be studied for the whole family of potentials v

generated by allowing the valence to véry._ In this section,.the
magnitude of the physiéal quantities involved will ﬁot bé ofISO much
concern as the determination of whether or not the quantities satisfy
the various stability criteria.

The interpfetation of the phenomena predicted by‘a microscopic
model for metallic‘bonding in terms of the details.of the-interatomic
potential used in the model, if an interatomic paténtial is indeed ﬁééd,
is necessary for a complete understanding of the model. On the other
hand, this task is complicated since any ion is interacting with all
other ions in the solid which is being modelled, and these ions are

situated in all different directions and at all different distances
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from the original ion. The interplanar interaction and its application
to various shear-like phenomena was developed to‘allow a simplification
of this interpretive problem. Although shear deformations cannot be
used to characterize many processes in metals, a sheér is the siﬁplesf
volume conéerving deformation, so ﬁhilé the restriction té shear
deformations below is fairly sevefe, this direction is probably the
place to start an interpretation of the consequences of.the model‘in'
terms of the interatomic potential used above.

Stability against phase transformation and agﬁiﬁst stacking fault
formation have already been discussed in the previéus section. If the
axial ratio is assumed to be ideal, then only interactions betweeﬁ.
second nearest neighbor planes enter.into the consideration of stability
using these two criteria. As noted in the previous section, the |
determination of stability against phase transformation by finding the
lattice with the minimum structural energy ensures that only one
structure will meet the criterion; this was not the case for the:_
formation of stacking faults. Using this latter criterion and the
two criteria discussed below, more than one structure can be stable;
at éome vaiues of Z. These criteria are for_ﬁechanical stability;
and in terms of the discussion of phase an& mechénicéi stability in
the ihtroduction, only metastability can be treated with mechanicéi
stability cfiteria.

Two other mechanical staBility criteria for stability emerge '~
from Chapter IV. First the requireﬁent that all phonon frequencies.

be real must be satisfied. A special case of this criterion is that
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Cip ¥+ C44)/3 > 0 for fcc lattices and C_, > 0 for hcp lattices.

66

(€1 -

These relations are implied by the Born stability criteria22 and
comprise the second new means by which the stability of a lattice
can be tested. Ip Fig. 20 are plotted stability zones for fcc and
hcp lattices using all four criteria. Clearly, the above criteriab
on the elastic constants are not sufficient:to ensure.w.> 0 for all
values of the phonon wave vector, since there are regions of Z in
the last plot of Fig. 20 which show stability while.the corresponding
transverse phonon modes indicate instability.

At small values of Z, we can also see that neither the fcc or
- hcp structures are metastable. Evidently some other structure '
is 'more stable than_those indicated in second plot of Fig. 20. This .~
fact has élready been verified for Z equal t6 1.3.>

Still assuming ideal axial ratios, there appears a significant
distinction between the stability criteria based on stability against
phase transformation and stability agaiﬁst stacking fault formation
on the one hand, and the critéria based on elastic constants and bhdnon
frequencies on the other. For the shear across a (111> plane in an fce -
crystal, only interactions between second nearest neighbor planes enter
in the first case, while in the second case, near néighbor plane |
interactions enter. Whethér this phenomenon occurs for other types of
deformation has not been investigated, but it has significance fof the.v

study of polytype stability.
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It might be expected that, as a structure becomes unstable against
the formation of a phase which is the polytype of the origigal phase,
the corresponding elastic shear modglus and tranSversé phonon.bfanch
might show some anomaly. Such polytypic transformations have been
observed in magnesium and the rare earth elements. As‘it appears . from
the aboﬁé considerations, such anomalies will be émall or non-existent
simply because polytype stability is determined by a different
combination of interactions than the combination of interactions-whiéh

determine the phonon dispersion relative in the (111) direction.
C. Conclusion

The model of a metal adapted above has yielded some insight into
the relationships between different aspects of lattice stability. |
Below, we return to some question raised in the intfoduction and then
indicate the direction further work might také.'

Two questions have underlaid the present work:' 1) What is the .
range of bonding in metals, i.e., how rapidly do the'strengths of
bonding’funétions decrease in metallic alloys, and 2) are phase
- transformations manifested in the behavior of the mactoscopicvparameﬁgrs
characterizing the phases, and doesvsuch‘a manifestation yield informatiqn
about how the transformation proceeds?

The first question is an old one and remainé controversial.

As discussed above, the odd dependence (or independence) of contriﬁutions
.to elastic constants on interplanar separation is an example of.some

of the paradoxes which arise in attempting to find an answer. To some
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extent, the question isvnot very important in that maﬂy quantities#—
phoﬁon spectfa, eléstic constants,_etc.—-caﬁ’bé obtained from interatomic
potentials vastly different ffom the typé used above. It is invsecond
order effects that the range of bondiﬁg may become'imﬁortaht. It is
in the temperature aﬁd pressure'dependence of‘eléstic constants,
stacking fault energies and more subtle effects‘tﬁaf the range of bonding
may enter'és an important quantity.

The answef to  the :eméining quesﬁion regarding phaée transforﬁationé
is of greaf practical importance. Althoﬁgh the questions have nof been

addressed directly in the development above, they'caﬁ be discussed

qualitatively using some general thermodynamic ideas. Phase‘transformations

can be categorized in many ways, but one of the most useful is use of the
distinction between reconstructive and non—reconstructive36 transformations.
In the forme;, the unit cell.of the two phases (or structures) differ
radically, i.e., relatively large displacements of atoms are required
by the transformation. In the latter éase, small displacements are
usually encounfered. It has been found that optical énd elaétic_
' constants do indeed show anomalous behavior near trénsition temperatures
when displacements are reasonably small. This area of fesearch has
received much attention recently.

However, it is the former area which is perhaps of more importance
to metallurgists—-included are many allotropic phése transformations.
It is perhaps a pessimistic stance, but it seems unlikely that simply
because the free energies of two modifications of a metallic alloy are

nearly equal, other'parameters will show any anomalous behavior. The
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reason for phis lies in the idea that thermodynamically, the region of
phase space sampled by one phase is too far removédvfrom the phase

space sampled by the other phase for the first ﬁhase to manifest
behavior conneéted to the incipience Qf the second phase. In some
sense, the equality of the free energies may be considered as accidental
so that the phase transformation cannot be viewed as the "freezing

in" of a phonon or the resuits of some other mechanism. That such.'
transformations can be analyzéd in terms of so-called soft modes_seems
unlikely. - | |

We have omitted any consideration of temperature or pressurev
effects in the preceding development. Some temperéture effecfs can
Be included directly in the interionic potential. These_include '

1) the effect of thermal excitation of the electrons37 which reduces

the sharpness of the electron energy distribution function which in

turn yields the Friedel oscillatibns, 2) the vibrations of the ions
which doéé not allow a ﬁnique assignment of interionic distances, and -
3) mean free péth effects. All of these mechanism tend to weaken thev
Friedel potential, or aﬁy other interionic potential, as thg temperature
is increased.

Two problems arise if tempefature effects are included direc;iy :
in an interatomic potential. First of all, some temperature effécts‘
will be omifted in this approach because only part of the Gibbé free
" energy is being calculated to start with. The term — TS in the Gibbs
free energy is obviously of importance to the stability of élloys ét

finite temperature, and the entropic effects must be considered in
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addition to what has been done above or in most applications éf
: pseudopotential‘theory, for that matter. Secondly, thé cdntributipn
of excited phonons fo the free energy is difficult to separate from
electronic effects. Nonetheless, some temperature.effects have
alréady'been incorpbrated in interatomic potentials deriVed from
pseudqpotential theor&.38

Crystal 1atticeé under finite stress have ndt been considered
at all above. This field,_whicﬁ'inéludes anharmonic effects, theoretical
strengths of crystals, and the effect of finite distortions, ié of

great importance.
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" APPENDIX A

Derivation of the Inverse Fourier
Transform of the Friedel Potential

Care must be taken in the evaluation of the Fourier transforms
related to the partial summations of Chapter III. The convention

that will be used for f(x) and the Fourief'transform of f(x), g(y), is

£ (x) / dy exp ixy g(y) -

OO
(A.1)
1 ® |
g(y) = o f dx exp-ixy f(x)
-0
Most of the transforms that are needed can be found in Lighthill39
and are expressed there following a slightly different convention:
. .
£(x) = f dy exp(2mixy)g'(y)
-0
" (A.2)
- ,
g' () = f dx exp-(2mixy) f (x)
; o .

where g'(y) designates the Fourier transform of f(x). The two Fourier

transforms are related by

8 = 3 &' G/2m. @
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It is desired to find w(k), the inverse Fourier transform of the
Friedel potential, i.e., the function whose Fourier transform is the

Friedel potential:

cos2k_r - | '
w(k) = Elﬁ fd3r exp 112; ——~—-—E§- ‘ (A'.4)
(2kFr) .

where the insertion of the factor of (1/2Q) ensures comnsistency with
Eq. (III.3). If use is made of spherical coordinates with the z axis

parallel to K, the angular integrals may be performed immediately:

' o o cos 2kFr v
w(k) = 3 f dr 3 (exp ikr-exp-ikr) =
ZQ(ZkF) ki o T ' :
(A.5)
T [w el exp 1(k+2k )T + exp 1(k-2k.)r }
ZQ(ZkF)3ki o] r -exp i(—k+2kF)r - exp i(—k—ZkF)r

Now the appropriate Fourier transform of 1/x2 can be fouﬁd in Lighthill;39

0 ’ o )
L dx L exp-ikx = —2%; f dx —];2- exp-ikx H(x)

2w o X2 . x S
(A.6)
ik . wi : g i :
= = (= +
5 (- sen(k) + Infk/2m| ©)
where H(x) is the Heaviside function, sgn(k) = Ik[/k, and C is an~

arbitrary constant. C arises from the indeterminanéy of 1/x2 at k=0;'
as defined as a generalized function, 1/x2 contains an arbitrafy

admixture of delta functions. The value of C in fact will depend



-82—

upon'the units used for k aﬁd wiil be drépped.hére Secﬁuée tﬁe_Fourier

transforﬁs of:W(k) devéloped elsewhere simpiy‘repﬁer-c into a delta

function at the origin again. Inspther words w(k) will never be used:

directiy, and the same applies to the factor of (1/2ﬂ)“that appears‘

in thé\logarthmic term of Eq; (A;é). Application of ﬁq. (A;6) to

Eq. (A.5) yields "

Zn.

ZQk(ZkF)

wik) = 3 [(k+2kF)lnlk+2kF|.+ (k—sz)ln{k-szl] ' (a.7)

It will be noted that askﬁ*ﬂ,ﬁ*ﬂn logarithmically. Also worth noting -

- is that if Eq. (III.2) is carried to the limit k> =, a singularity -
identical to Eq. (A.7) appears upon éxpansibn of the exponential

integrals in the reciprocal space sum. This is expected.
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APPENDIX B.

The Asymptotic Form of ¢(gllg)

The function V(g ,z) is given by the integral

Vg 2) = Hn / dly exp-tigz w2 + g %) @D

" where

w(k) = ——--2-“——3 [(k+2kF)1n|k+2kF|+(k-sz‘)1n|k—'2kF|] . (B.2)
(2 k(2ky) : _ ,

 i.As per Lighthill,39 only the singular part of Eq. (B.2) will cﬁntribute
to the asymptotic form of ¢(gl,z).‘ Since vknz + gl2 >‘0, only tﬁe

| term (k—ZkF)lnlk—ZkFl will contribute and only if ZkF > g - Here,

2kF will be restricted to lie between the first and second non—zefé

t reciprocal 1atticé vectors. In this case, the éingularity occurs at

- k" determined by |

kg _-21§F=o‘- o | '(B.3)"'

- or at

_ 2
g =% Vakg - g

11
32

2k
o

" where ko is defined in order to simplify the equations below. Now 
‘jthe nature of the singularity of w(k) at * 2k6'must_be_found. For

"IHI - 2k0| small, it is easily showm that

2,02 _ ok ( —2.k)}(—°—‘ S 5.4)
oty -2y T2 i
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Substitution into w(k) yields a singularity of the form

2m A 2 2 " 2, 2
( | +g, - 2kF)lnI | +g " - 2kF|

20 ( g 245 2) (2k)°

k ' k

21 o) : o} -
= ————— — (k,~2k ) In|(k, -2k ) — | = . , (B.5)
et A 'S | |
ZTT‘ kO - I I
~ = — (k;-2k ) In|k -2k |
@ uy® K Ky 2kg) nlky m2k,
near HI = +2k°, where the_hon—singular part which Behaves like
lnIkO/kF[ has been dropped. Similarly, at.k]I = —2ko, there is a

singularity of the form

" _
=27 _o
7 (k, + 2k ) 1nlk" + 2k | (B.6)

(28) (Zkp)

Substitution of the singularities (B.5) and (B.6) into (B.1)

yields an asymptotic form of

' .o ko sin 2koz
w(gl »Z) =.- 3 i 2
2A kF : (Zsz)

(B.7)
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APPENDIX C

Lattice Vectors

Direct and reciprocal‘lattice vectors fo: three dimensipnal'laftices
can be found in a number of placesl’40 or can be determined directly.
The characteristic lattice vectors for a planar hexagonal lattice
enter so frequently in the text that they will be determined below.
Vectors will be designated with an arrow, e.g., g, énd unit vectors

will be shown with a caret, e.g., ﬁ,

Using the conventions of Barrett and Massalski41 and the usual
dimensionless unit vectors for a Cartesian coordinate system, the

unit vectors for the hexagonal planar lattice are just

w >
]
»

N M
S
<>

(c.1)

The translation vectors for the planar hexagonal lattice é:e given B

: by

+ _ A

3y = a3 .
and (C.2)

- _ A

32 = aaz

The condition3 to be satisfied by the feciprocal lattice vectors,

ﬁesignated Eil and Eié, are that
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> > > >
81°21 2m 818, = 0
(C.3)
> > > > .
g p’a T 0 8 p3y =2
This set of equations lead to
. : a -
> 8m .~ 2 4 VI N
g1 = 35 @ +5) =—= (5 x+35Y)
. 3a 1 2 v‘/3—a‘ 2 2
~ S (C.4)
> gr , 1  ~ 4~
&, T 3, (3-ta) =-——y
2 3a 2 2 /38
with
8, = 15,1 = &
11 12 J/3a

With these reciprocal lattice vectors, the rest of the'reciproééljiattice
can be generated.

The points of the reciprocal lattice generated by the vectoré
from Eq. (C.4) will be labelled according to their distance froﬁ'the
origin of the lattice. The qpantity gf will desiénate the origin,
gﬁ will designate the first near neighbor lattice’positions and so
forth. The first four such sets of feciprocal lattice vectors are

given in terms of a; and Qé as follows:




+2

=3

8w
3a

8w
3a

8m
3a

8
3a

8
3a

8t
3a

8T

3a

8m
3a

8w
3a

(2,1)

(—29—1)

(19’1)
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8w
"3a

8m
3a

8w
3a

81
3a

8m
3a

8m
3a

8w
3a

8n
3a

8w
3a



-88-

APPENDIX D

Summation Formulae

- It is required that a method of evaluating sums such as

3 Mp(eme3) « 37 Sin(em-3)0
m=1 : m=1 (6111—3)2

be obtained. To do this, we fix j and k and show that

F(3,k,8) = Y exp i[(jn-k)8] £(jn-k)
n=1 ‘ :

i-1 . o
1 ?Z: exp 2ikt 2: exp i[n(e+-22“) 1£ (n)

I ¢=0 J n=1
. o
where f(n) is any function of the 1i.e. 2: f(n) must converge
n=1

absolutely natural numbers such that F(j,k,0) exists. Notice that
the expression in braces above is in general easier to evaluate than

F(j,k,0) itself, and it may often be given in an analytic form.

We have
F(j,k,0) = 2 exp i[(jn-k)8] £(jn-k)
n=1
o J-1 | . .

=-¥ 2: 2: exp i[(jn-k)O + ink2m _ k%?ﬂ ko 1£(in-k)

J n=1 2=0 : J ] 3

1 =) j—l
"3 L T ew 110G 0+ jexp B2 ¢

n=1 2=0 h|
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Now we replaée jn-k by n' and sum over n' from 1 to ®. This does not
change F(j,k,08) since all terms of the new sum vanish except those
for which n'=jn-k for some positive integral value of n. If this can

be established, the above assertion holds true, i.e., .

o -1
F(j,k,0) = i Z exp i(n'(6+-2JLQ'-)) exp —— ZWIM f(n')
o1 26 .

~For given n', j and k, suppose there is no n such that n'=jn-k.

We show
C -1 .
F' =>Z exp in'(6+-2—;.r&) expil-c—:'g—gj1 =0

2=0

There must be. some p such that n'+p = jn-k for some n, with 0<p<j:

B
F' = Z exp i(jn-k-p) (6+m) ik%Zﬂ
=0 J

j~-1

= exp i(jn-k-p)o Z exp 1 (ZTrJnR, ZTr-k,Q _ ZTT.pZ + kIL.Z‘!T )
=0 J J ] J
ji-1 ’ .

= exp i(jn-k-p)0O Z exp - 2—";—“2&
2=0

and, indeed, the above sum is zero. ' An example of the way this r'é.sult

simplifies an expression is given below.
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i sin(jn-k)8  _ ZOE exp i[(jn-k)6]
n=1 (jn-k)2 n=1 . (jn—k)2
‘ ji-1 ] bt - .

= Im ; _ exp ik,Q:Z'IT Z exp 1[n(62+v21r2/3)]

3 d=0 e | . n

1 3 i 21 omg L
=Im = exp —; (B,(6 + =) + ia,(6 + —))

I = 1 2 3 2 3

1 3 2wkl 2mL 2mkL 278

=3 %:0 sin === B, (8 +T)+ cosTaz(e +—j—)_

» The functions ozz' and 82 are simple forms given by Blandin, et al. .

Also used is

f cos (jn-k)6 1 3 ome , e+2m) L 2mka . (B+2mR)
: 2 3 cos = 82 3 - sin = a, 3 .
n=1 (jm—k) 2=0 :
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ntial parameters taken from

Table I. Free §1ecFron anq p§eudoggte |
-Appapillai and Williams. Values of V, were calculated
. using Eq. (II.4) of the text. Except for the last column, ;
atomic units are used throughout the table. ;
Element A kF EF .'WZkF Vo- Vp(eV) ) :é
Li 1 .5890 .1735 04604 .345 9.40
Na 1 .4882 .1192 .00467 .00517 141 | E
K 1 .3947  .0779 .00142 .00073. .0199 \
Rb 1 .3693 .0682 -.00187 .00144  .039% I
Cs 1 .3412 .0582 -.00145 .00102 .0278 - o
Be. 2 1.0287 .5291 .18280 7.14 194. o
Mg 2 .7242 .2622 02456 .260 7.08
Ca 2 .5865  .1720°  .00960 .0606  1.65 ]
Sr 2 .5380 1447 - .01959 .300 8.16
Ba 2 .5188 .1346 -.00012 .00001 .00032
Zn 2 .8342 .3479 .02626 .224 6.10
cd 2 .7432 .2762 .01844 .139 3.79
Hg 2 .7213 .2601 .00310 .00417 114
Al 3 .9276  .4302 .04197 1.04 28.3
Ga 3 .8776 .3851 .03053 .616 16.8
In 3 .7972 .3178 .03165 .802 21.8 _
Tl 3 L7738 .2994 .03881 1.28 34.8 _ B
si 4 .9590 .4598 .03283  1.06 28.8 | .
Ge 4 .9206 .4236 .02928 .915 24.9 |
sn 4 .8674 .3762 .02941  1.04 28.3 N
sn(G) 4 .8007 .3206 .01507 ©.320 8.72
Pb 4 .8350 .3486 .03140 1.28

34.8
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Table II. Stacking Characteristics of Polytypes

Structure Stacking - Symmg;ry
fee ABCABC kKkkk 3R
hep ABABAB hhhh . "2H
dhcp ABACABAC hkhk 4H
Sm ABABCBCAC hhkhhk: 9R

A ABCBAC kkhkkh

6H
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Table III. The regions of Z for which structures are stable'against

the formation of the other structures considered.

Exact Summation:
fce, hep and bece

Interplanar Interaction:
fce, hep, dhep, Sm and A

Z ~ Structure
1.00-1.28 ‘hep
1.28—1.48- fece
1.48-2.03 bee
2.03-2.21 hep
2.21-3.53 fee
3.53-4.00 hep

Z ' Structure

1.00-1.24 .- hep
1.24-1.26 | Sm'
1.26-1.34 ~dhep
1.34-1.66 fec
1.66-2.20 hep
2.20-3.53 ) fce

3.53-4.00 - hep

Ap(2d) = 0:

fcc, hep, dhep, Sm and A

€fcc = €hept -
fce, hep, dhep, Sm and A

Z Structure
1.00-1.21 fce
-1.,21-1.26 Sm
1.26-1.35" dhcp
1.35-1.37 hep
1.37-1.66 ~ fee
1.66-1.84 ~ hep
1.84-1.87 dhep
1.87-2.08 Sm
2.08-2.56 fce
2.56-2.68 dhep
2.68-2.95 hep -
2.95-3.53 Sm
3.53-3.67 hep
3.67-4.00 fece

Z Structure
1.00-1.17 fcc-hep
1.17-1.20  Sm-
1.20-1.23 A
1.23-1.25 Sm
1.25-1.36 | . dhcp
1.36-1.53 ~ fcc-hep
1.53-1.66 Sm
1.66-1.95 dhcp
1.95-2.11 Sm
2.11-2.52 fce-hep
2.52-2.92 - dhcp
2.92-2.96 A
2.96-3.53 Sm

3.53-4.00 fce-hep
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Table IV. Stacking Sequences Induced by Planar Faults.

Face-centered cubic structure:

Intrinsic fault ABCBCABC

kkhhkkkk
Extrinsic fault ABCBABCABC
: kkhkhkkkkk
Twin _ ABCBACBA
kkhkkkkk

Hexagonal close-packed structure:

Intrinsic fault BABCACA
‘ : hhkkhhh
Extrinsic fault ‘ BABCABAB
hhkkkhhh

Twin . BABCBCB

hhkhhhh




Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4;

Fig. 5.

Fig. 6..

Fig. 7.

Fig. 8.
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FIGURE CAPTIONS

Illustration of notation uéed'in the derivation of the
interplanar interaction.

.Iliustration of notation used in the generélized interplanar
interaction.

Illustration of notation ﬁsed in the derivation of the
interlinear interéction.

and € obtained from

Dimensionless energies € €
& fce’ Thep bece

summation of the Friedel potential.

Results for the dimensionless relative energies, € -£
, , hep fce

and € -£ , as determined by exact summation of the reduced

bce “fec

Friedel potential as a function of Z.

’ €sc and € obtained from

Dimensionless energies € de

fcc
summation of the Friedel potential.
Results for the dimensionless energies of the polytypic
structure hcp, dhcp, Sm and A relative to the-fcc structure
as. determined from the BFS interplanar interaction as a
function of Z. See Table 1I for the description of the
packing of. these structures. The region Z < 1.14 has beeﬁ
omitted for clarity.
Comparison of the dimensionless energy difference € -£

N hep fcc
as determined with the exact summation and the interplanar
interaction as of function of Z. The results from the BFS -

interplanar interaction are a good approximation to those

from the exact summation, except near Z = 1.14.
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Fig. 9. Results from the determination of the most‘étable structure
among fcc, hcp and bee from the exact summation of the
friedel potential as a function of Z and a phase factor, 26.
Legend for identification of structures as in Fig..19. |

i Fig. 10. Results from the determination of the most stable structure

from among fcc, hcp, dhcp, Sm and A using.thé interplanar.

inte;action as a function of Z and 28. Légen& for identifica-
tioh.of polytypic structures as in Fig. 18. |

"‘Fig. 11. Phonon dispersion relations ((111)>T) as caléulatedeith'the
vinterplanar stiffness constants for thé fcc structure for-.
various values of the valence.

Fig. 12. Phonon dispersion relations (¢ 001) T) in-the.extended zone

- scheme as calculated with the interplanar stiffness constants
for the hcé structure for various valﬁes of the valence.

Fig. 13. Phonon dispersion curves for Mg ((001) T): points are
experimental data; curve is the calculated result.

Fig. 14. Phonon dispersion curves for Al ((111) T): dashed line
iﬁdicates experimental points; solid curve is the calculated
result.

‘Eig. 15. Dimensionless stackiﬁg fault energy of hcp structﬁfe; at 2=2.'
as calculated in Section VI.A.

 Fig. 16. The relationship between bct and fcc unit cells.

“Fig. 17. Dimensionless energy as a function of c/a for bet stfucture
at selected values of the valence. Note changé of scale

Between to parts of the figure.



-Fig. 18.

‘Fig. 19.

Fig. 20.

Fig. 21.
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The Friedel pétential fér Z;l, 2,3 and 4.

Values of Z for which various.strucﬁures:aré stable:

A) stability against_faulting of fcc and hcp after Blandin,
Friedel, and Saada, B) relAtive stability‘of.polytypes_from.
interplanar interéction,_c) relative'stability.of fce, hcp

and bce from exact summation, D and E) polytype stability

using the modified interplanar interactions given in Eqé, (1V.8)

~and (IV.9), respectively.

Values of Z for which various stability criteria are satisfied

for the fcc and hep structures, as evaluated with the inter-

planar interaction: A) stability against faulting after

Blandin, Friedel and Saada, B):relativé phase stability;

C) real phonon frequencies, and D) positive elastic constants.

Direct and reciprocal,lattice vectors. for hexagonal close-

" packed plane.
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Fig. 1.
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“Fig. 9.
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Fig. 10.
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Fig. 12.
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Fig. 16.
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