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Lévy flights.

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Physics

by

Igor Goncharenko

Committee in charge:

Assistant Professor Linda S. Hirst, Chairman
Assistant Professor Ajay Gopinathan
Professor Michael E. Colvin
Professor Raymond Chiao
Assistant Professor Jay E. Sharping

2010



Copyright

Igor Goncharneko, 2010

All rights reserved.



The dissertation of Igor Goncharenko is approved, and it is

acceptable in quality and form for publication on

microfilm:

Chairman

University of California, Merced

2010

iii



To my wife Inna

iv



Contents

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction 1
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3 Vicious Lévy flights 42

v



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 RG flow equations and fixed points . . . . . . . . . . . . . . . . . . . 43

3.3 Survival probability exponent computation . . . . . . . . . . . . . . . 47

3.4 Comparison with numerical results and discussion . . . . . . . . . . . 50

4 Conclusions 54

5 Appendix 58

5.1 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Appendix D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vi



Acknowledgements

I am grateful to my advisor Ajay Gopinathan for having suggested the topic

of this thesis and for his constant scientific guidelines and encouragement.

Also I thank my wife Inna, to whom this thesis is dedicated, for her care and

love.

vii



Vita

26 October 1983 Born, Sverdlovsk, USSR

2005 B.S. in Physics,

Moscow State Pedagogical University, Moscow, Russia

2007 M.S. in Physics,

Peoples’ Friendship University of Russia, Moscow, Russia

2010 Ph.D. in Physics,

University of California, Merced

viii



Publications

1. I. Goncharenko and A. Gopinathan, ”Optimal Yield Rates in Enzymatic Re-

actions with Undesirable Intermediate States”, proceedings of World Congress

on Engineering and Computer Science, p.24 (2008)

2. I. Goncharenko and A. Gopinathan, ”Optimal Kinetics for Chaperonin Assisted

Protein Folding”, IAENG Transactions on Engineering Technologies Volume

II - p.13 (2008)

3. I. Goncharenko, M. Colvin and A. Gopinathan, ”Optimal Nanocarrier Design

for Cancer Cell Targeting”, to be submitted to Science

4. I. Goncharenko, ”Exact spectral dimension of the random surface”, arXiv:

0908.3543, submitted to J Stat Mech

5. I. Goncharenko and A. Gopinathan, ”Vicious walks with long-range interac-

tions”, Phys Rev E 82, 011126 (2010), arXiv: 1003.5970

6. I. Goncharenko and A. Gopinathan, ”Vicious Lévy flights”, arXiv: 1007.2008,
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Abstract of the Dissertation

Critical behavior of interacting Brownian motions and

Lévy flights.

by

Igor Goncharenko

Doctor of Philosophy in Physics

University of California, Merced, 2010

Assistant Professor Linda S. Hirst, Chairman

This dissertation studies the late-time critical behavior of interacting many-

particle systems. Two examples of such systems considered here are Brownian vicious

walks with long-range interactions and vicious Lévy flights.

In the first example we consider distinct groups of independent diffusive par-

ticles interacting by means of a long ranged potential that decays in d dimensions

with distance r as r−d−s such that the process is terminated upon the intersection of

any two trajectories of particles in the spatio-temporal plane. The main characteris-

tics of this system are the survival and reunion probabilities defined, respectively, as

the probability that no trajectories intersect up to time t and the probability that all

trajectories meet each other exactly at time t. We employ methods of renormalized

x



field theory to show that these quantities decay as t−α and t(N−1)d/2−2α, respectively,

where N is total number of particles. We calculate, for the first time, the exponent α

for all values of parameters s and d to first order in the double expansion in ε = 2−d

and δ = 2 − d − s. We show that there are several regions in the s − d plane cor-

responding to different scalings for survival and reunion probabilities. Furthermore,

we calculate the leading logarithmic corrections, for the first time.

In the second example we study the statistics of encounters of Lévy flights by

introducing the concept of vicious Lévy flights - distinct groups of walkers perform-

ing independent Lévy flights with the process terminating upon the first encounter

between walkers of different groups. We show that the probability that the process

survives up to time t decays as t−α at late times. We compute α up to the second

order in ε-expansion, where ε = σ − d, σ is the Lévy exponent and d is the spa-

tial dimension. For d = σ, we find the exponent of the logarithmic decay exactly.

Theoretical values of the exponents are confirmed by numerical simulations.
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Chapter 1

Introduction

Understanding the behavior of non-equilibrium, interacting, diffusive, many-

particle systems is a long standing problem in physics. The main motivation for

studying such systems is that they exhibit critical behavior. More precisely, below

the upper-critical dimension (when fluctuations become relevant or the correlation

length becomes diverges) a large time scale emerges, which characterizes the time

evolution of typical quantities defined through correlation functions (such as inter-

section probabilities). This phenomenon is called critical slowing down. It leads to

universal behavior and dynamic scaling laws of time dependent quantities (macro-

scopic variables). A few examples of systems, where this phenomenon takes place, are

reaction-diffusion problems [1] and kinetic Ising models [2, 3]. To study how physi-

cal observables behave under scale transformations we will use renormalization group

(RG) methods [4]. RG is probably the most useful tool to do a systematic computa-

tion of the critical exponents that classify different universality classes. RG was first

used in order to explain critical behavior of systems in thermal equilibrium. However,

systems that are maintained out-of-equilibrium by some driven force also exhibit crit-

ical behavior, which can be analyzed by dynamic RG techniques [5]. In the initial

formulation, these systems are represented in terms of stochastic partial differential

equations (Langevin equations). It is well-known that there exists a well-established

1
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mapping of stochastic partial differential equations to a field-theoretic representation

[6]. This method relies on the introduction of second quantized creation-annihilation

operators and then taking the appropriate continuum limit to yield a statistical path

integral formulation. Starting with the field-theoretic formulation of the problem,

the standard RG machinery can be implemented to compute universal quantities.

The main topic of this thesis is application of RG methods to study the

statistics of encounters of

• Brownian motions with long-range interaction potential between particles,

• Lévy flights.

The thesis is organized as follows. The following section (1.1) provides a brief

review of the properties of Brownian motions and Lévy flights. Since the concept

of a Lévy flight is not as widely prevalent as Brownian motion, we give examples of

real world systems that perform Lévy flights in Section 1.2. Section 1.3 describes

the mapping of stochastic processes such as Brownian motion and Lévy flights onto

field theories. The concept of vicious walks is introduced in Section 1.4 and a brief

survey of physical applications is also presented. Examples of systems where vicious

walks with long-range interactions and vicious Lévy flights - the two main topics of

this thesis - naturally arise are considered in Section 1.5. Section 1.6 describes the

foundation of the RG technique in the context of the vicious walk model. In chapter

2 we describe in detail, our solution to the vicious walks problem in the presence of

long-range interactions between the walkers. In chapter 3 we describe how we solve

the problem of vicious Lévy flights, where we allow the walkers to perform long-

range jumps. Finally, in chapter 4, we give our conclusions and list open problems

for future studies.
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1.1 Random walks and Lévy flights

The main idea of classical physics is that, given initial conditions, trajecto-

ries of particles can be derived from the equation of motion unambiguously. The

fundamental principle of quantum physics rejects this idea and forces us to speak

about a probability distribution instead of a particle’s trajectory. Descriptions in

terms of probability distributions are also necessary in classical stochastic systems

which are subjected to randomness in the form of noise. The most simple, but still

non-trivial, example of such a process is the random walk. A random walk1 is a

sequence of independent identically distributed Bernoulli random variables ξi, i.e.

P (ξi = +1) = p and P (ξi = −1) = q, where p + q = 1. Physically this represents a

particle performing a random walk in one dimension with probability p to go to the

right and probability q to go to the left. If S0 is the initial position of the random

walk then the position Sk after k steps will be at Sk = S0 + ξ1 + . . .+ ξk. A sequence

(S0, S1, . . . , Sk) is a path of the random walk. The statistical weight of the path

connecting S0 = 0 and Sk = x on the one-dimensional regular lattice is

Pk(0, x) = p(k+x)/2q(k−x)/2Ck
(k+x)/2, (1.1)

where Ck
l = k!/[l!(l−k))!]. In continuous space and time the corresponding quantity

will be denoted as P (0, 0; x, t) or as a matrix element 〈0|P (0, t)|x〉. In this case the

step length l is drawn from some probability distribution function p(l). If the process

is Markovian, space isotropic and translation-invariant and also p(l) decays at least

exponentially at long distances (locality) then one can derive the asymptotics of the

1The walk usually represents a sequence of jumps on the sites of a lattice. If one considers a

similar process in continuous space then it is usually called Brownian motion.



4

conditional probability

P (0, 0; x, t) ∼ 1

(2πDt)d/2
exp(−x2/2Dt). (1.2)

An important point to make is that the mean square displacement of a random

walk grows linearly in time 〈x2(t)〉 = Dt. This kind of diffusion is called normal or

Gaussian diffusion. If one relaxes the locality condition, i.e. instead of demanding

exponential decay allow at least a power law decay, then we obtain a more gen-

eral process - a Lévy flight. The characteristic function of the Lévy flight (Fourier

transform of the conditional probability of the spatial distribution) is

P̃ (k, t) = exp(Dkσt), (1.3)

where the constant σ is called the Lévy exponent. For σ = 2, we recover the Fourier

image of the Gaussian distribution implying that we have normal diffusion. Direct

inversion of (1.3) for values of σ > 2 will not give a positive probability distribution,

but this is the consequence of the fact that the k2 term becomes dominant over the

kσ term. Thus for σ > 2 one obtains a Gaussian distribution as well. Only values of

0 < σ < 2 produce anomalous diffusion behavior. The mean square displacement of

a Lévy flight grows faster than linear 〈x2(t)〉 = Dt2/σ, since the ratio 2/σ is greater

than one. Such dynamics is called superdiffusive.

1.2 Examples of Lévy flights

Diffusion or Brownian motion is ubiquitous in physics with well-known ex-

amples including heat, sound and light transport. Lévy flights on the contrary are

less common. In an effort to make the reader more familiar with this process, we

present three separate examples of real world processes governed by Lévy flights.

These are human travel (sociology), DNA-binding proteins diffusion (biology), and
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Figure 1.1: The probability distribution P (r) of traveling a distance r (σ = 0.59)
[7].

light wave propagation in novel optical material (physics).

We first consider the case of human travel. It has been shown that statistically

reliable quantitative assessment of human movements can be tracked by observing

the spread of half a million one dollar bank note bills across the country [7]. Analysis

of the spread of dollar bills showed that the distribution of traveling distances decays

as a power law P (r) ∼ r−1−σ, indicating Lévy flight behavior. Thus travel patterns

can be described by a combination of frequent short distance travels interspersed

with a few long distance ventures. Figure 1.1 shows the short-time (traveling time

less than 14 days) trajectories of one dollar bills originating from different places.

The linear function in the log-log scale indicates a power law behavior and a Lévy

exponent is evaluated from the slope of this line.

The diffusion of DNA-binding proteins such as transcription factors is another

example of Lévy flight behavior [8]. It is known that after initial non-specific binding

to the DNA, the protein starts to search for the target binding site by performing a

random walk on the one dimensional DNA strand. In addition, by taking advantage

of DNA looping, some proteins may accelerate their search by making inter-segmental
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Figure 1.2: On coiled DNA the enzyme can be captured by a segment it has not
yet visited, leading to an intersegmental jump [8].

jumps (see Figure 1.2). This process can be treated as a simple diffusion on a

regular one dimensional lattice supplied with random long-range links. The emergent

structure then produces a small-world network. If the distribution of the random

links is distance dependent and decays as a power law r−1−σ, where r is Euclidean

distance on the regular lattice, then the resulting motion is equivalent to a Lévy

flight. DNA looping is governed by polymer statistics which indeed predicts a power

law distribution of loop sizes and hence jump lengths.

Our third example is light transport in optical materials with impurities [9].

Here the density of titanium dioxide scatterers was modulated by suspending micro-

spheres of different diameters d chosen from a distribution d−2−σ in liquid Sodium

Silicate (SiO2 : NaOH). It was found that in such materials the transmission of

light has Lévy Flight statistics with a Lévy exponent σ. This was shown experimen-

tally by measuring the intensity of the light that scatters through slabs of different

thicknesses. Figure 1.3 shows the transmission as a function of sample’s thickness.

Moreover if the diameters of the suspended microspheres are all identical, then one

recovers normal (Gaussian) transmission decay.
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Figure 1.3: Transmission (intensity distribution) decays as a power law with a Lévy
exponent σ = 0.95 [9].

Thus Lévy flights arise in a variety of different contexts and are an important

subset of random walks in general.

1.3 Field theories of random walks and Lévy flights

Here we give a brief introduction on how stochastic processes can be mapped

to field theories. From section 1.1, it is manifest that one can associate the matrix

element of a random walk with the path integral

〈0|P (0, t)|x〉 =
∫

Dx exp(
∫ t

0
ẋ2(τ)/2Ddτ). (1.4)

since the left and right hand sides of the equation (1.4) coincide with equation (1.1).

Therefore a random walk can be treated as a free quantum particle. If one adds an

interaction term V (x) to the kinetic energy term in the exponent in (1.4) then the

problem of finding this integral is equivalent to studying the scattering of a particle
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under the external potential V (x). The scattering amplitude can be found using

the Born approximation. Although quantum mechanics can be treated as a zero-

dimensional quantum field theory, we do not know how, using (1.4), one can derive a

consistent field-theoretic path integral. Nevertheless, it is possible to construct such

path integrals using other methods [10, 11].

We can start describing the state of the system with occupation numbers

|ni(x)〉, where x denotes a site on the discrete regular lattice and ni is the number

of particles of type i at that site. The dynamics of a random walk can be rewritten

in terms of quantum mechanical creation and annihilation operators by making a

correspondence between the lattice site occupation numbers |ni(x)〉 and quantum

harmonic oscillator eigenstates. Creation and annihilation operators are introduced

for each lattice site, and are defined to obey the bosonic commutation relations

[ai(x), a†
j(x

′)] = δijδ(x − x′), [ai(x), aj(x
′)] = [a†

i (x), a†
j(x

′)] = 0. (1.5)

Defining the vacuum |0〉 by the equations ai(x)|0〉 = 0 for all i and x, we construct

the basis of the Fock space F = ⊗xFx as

|ni(x)〉 =
∏

x

p
∏

i=1

a
†ni(x)
i (x)|0〉, (1.6)

where index x runs over all sites of a regular lattice and i counts different types of

boson-like particles. The state of the system is a vector in ⊗xFx

|Ψ(t)〉 =
∑

{ni(x)}
P ({ni(x)}, t)|ni(x)〉, (1.7)

where P ({ni(x)}, t), associated with the amplitude 〈ni(x)|Ψ(t)〉, is interpreted as the

probability for the system being in state |ni(x)〉. For simple diffusion the Hamiltonian
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can be written as

H =
p

∑

i=1

∑

(x,x′)

(a†
i (x) − a†

i (x
′))(ai(x) − ai(x

′)), (1.8)

where (x, x′) means the summation over all neighboring pairs and index i enumer-

ates different types of random walks. Thus, the state |Ψ(t)〉 is the solution of the

Shrödinger equation

− ∂

∂t
|Ψ(t)〉 = H|Ψ(t)〉, |Ψ(t)〉 = exp(−Ht)|Ψ(0)〉. (1.9)

Expectation value of any observable 〈G(t)〉 can be computed with the formula:

〈G(t)〉 = 〈0|G|Ψ(t)〉. (1.10)

We now derive the path integral form of (1.10). We introduce coherent states,

representing a displaced vacuum state of the Fock space, such that

|φi〉 = exp(−|φi|2/2 + φia
†
i )|0〉. (1.11)

The resolution of the identity can be written as an integral

1 =
∫ d2φi

π
|φi〉〈φi| (1.12)

for each i. Dividing the time interval into small intervals and utilizing (1.12) one can

infer that the expectation value in (1.10) can be equivalently rewritten as

G(t) = lim
∆t→0

∫

∏

i

∏

τ

d2φi(τ)〈0|G|φi(t)〉×

×〈φi(t)| exp(H∆t)|φi(t − ∆t)〉 . . . 〈φi(∆t)| exp(H∆t)|φi(0)〉〈φi(0)|Ψ(0)〉. (1.13)
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We note that since ∆t is infinitesimally small, we get

〈φi(τ)| exp(H∆t)|φi(τ − ∆t)〉 = 〈φi(τ)|φi(τ − ∆t)〉 exp(H∆t), (1.14)

where H = H(φ†(τ), φ(τ − ∆t)) and the propagator can be rewritten using the

definition of the coherent states

〈φi(τ)|φi(τ −∆t)〉 = exp(φ†
i (τ)(φi(τ)−φi(τ −∆t))) exp(|φi(τ)|2/2−|φi(τ −∆t)|2/2)

(1.15)

It is clear that the first exponent contains the time derivative in the limit ∆t → 0,

so one can write

φ†(τ)(φ(τ) − φ(τ − ∆t)) ∼ φ†∂tφ∆t. (1.16)

Since we are multiplying 〈φ(τ)|φ(τ − ∆t)〉 for all τ , the squared terms from the

second exponent will all cancel with each other. Thus we have proved that

〈G(t)〉 =
∫

(
∏

i

Dφ†
iDφi)G(φ†, φ) exp(φ†∂tφ + H(φ†, φ)) (1.17)

where the measure is defined as Dφ†
iDφi =

∏

τ d2φi(τ) and the evolution operator

H(φ†, φ) is obtained from (1.8). In the continuum limit the Hamiltonian is given by

the formula

H(φ†, φ) =
∑

i

Diφ
†
i∇2φi, (1.18)

where Di plays the role of diffusion constant for particles of type i. Generalization

to the case of Lévy flights is done by adding a fractional derivative term into the free

Hamiltonian [12, 13]

H(φ†, φ) =
∑

i

(

Diφ
†
i∇2φi + D̃iφ

†
i∇σφi

)

. (1.19)
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1.4 Vicious Walks

Vicious walks (VW) represent a system of independent random walks such

that any pair of walks occupying the same site at the same time annihilate each

other and the process is terminated. The main motivation to consider such a system

is that space-time trajectories of one dimensional vicious walks can be treated as

fluctuating domain walls separating different phases of two-dimensional systems. It

was first noted by M. E. Fisher [14]. Several questions can be addressed in the context

of this model. What is the probability that all walkers survive for time t? What is

the probability of a reunion of all walkers at some point x after time t? What is the

probability of a reunion of all walkers anywhere after time t? The principal results

are that the probability S(t) that walkers survive for time t decays asymptotically

as S(t) ∼ t−α. If one knows the decay exponent α of the survival probability then

the reunion and reunion anywhere exponents can be found by the formulas

αR =
Nd

2
+ 2α, αRa =

(N − 1)d

2
+ 2α, (1.20)

respectively, where N is the total number of walks and d is dimensionality of the

space. Fisher found α exactly for N equivalent vicious walks in one dimension with

the result:

α = N(N − 1)/4. (1.21)

This exponent is called the Fisher exponent. We give one particular example of how

it can be used in studying the two-dimensional Ising model. We will show that the

decay of correlations for the zero field Ising model below the critical temperature Tc

is determined by the decay exponent of the reunion probability of two vicious walks,

αR, in one dimension. The exact calculations show that the two-point correlation
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function below Tc obeys the anomalous decay law

〈s(0, 0)s(x, y)〉 = C(x, y) ∼ r−2, (1.22)

where r is the Euclidean distance from (0, 0) to (x, y). Low-temperature expansions

for Ising models are constructed by turning over spins from the one state to another

state. One thus discovers that contributions to the two-point correlation function,

C(x, y), arise only from configurations in which both sites (0, 0) and (x, y) are linked

by a chain of neighboring overturned spins so that they make an cluster (island)

of opposite spins. The energy of such a configuration in zero field is determined

solely by the total length of the perimeter of such a cluster. On the other hand,

the perimeter of the cluster of spins can be associated with the statistical weight

of the reunion of two vicious walks. Combining (1.20) with (1.21) one has that

αR = 2/2 + 2 · 2/4 = 2, which is in agreement with (1.22). Therefore the two-point

correlation function of two-dimensional Ising model is in one-to-one correspondence

with reunion probability of two vicious walks in one dimension.

Exact solutions such as (1.21) can not be obtained for more complicated cases

of several groups of walks where members of each group are only vicious to members

of other groups. RG is a method that can be useful for deriving analytical results for

such systems. In order to derive the field theory of vicious walks, one uses the fact

that the intersections are prohibited. This means that one can add local interactions

of the form λijφ
†
i (x, t)φi(x, t)φ†

j(x, t)φj(x, t) for i 6= j between members of different

groups and impose the condition λij → ∞. The Hamiltonian will then be [15]:

H(φ†, φ) =
∑

i

Diφ
†
i∇2φi +

∑

i<j

λijφ
†
iφiφ

†
jφj. (1.23)
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Figure 1.4: a) and b) are two top-view snapshots of the membrane showing the
result of the aggregation of 16 proteins into clusters. c) Pair potentials g(r) between
two proteins as a function of separation r for different type proteins [17]. They mimic
a Liénard-Wiechert potential ∼ (b/r)12 + (b/r)6.

1.5 Encounters of interacting walks and Lévy flights:

applications

In the previous section we illustrated how vicious walks arise in a variety

of physical contexts. The statistics of encounters between freely diffusing walkers

was the fundamental quantity of interest. However in many systems one might be

interested in encounters between walkers that have long range interactions with each

other or encounters between walkers that perform long range hops. It is particularly

important to understand these statistics when the encounters can affect the outcome
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of the process in question. In this section, we present several real world examples of

processes, where the study of encounters between either interacting walkers or Lévy

flights are critically important to understanding the process.

We start with examples for vicious walks with long-range interactions. We

first consider the diffusion of membrane-protein inclusions [16, 17]. Protein aggre-

gation on the cell (lipid bilayer) membrane determines many biological functions

including intracellular transport and signaling [18]. A protein that is bound to the

cell surface, can exhibit Brownian-like dynamics along the membrane. Typical pro-

teins explore an area of approximately 20 µm2 every second [19]. They can meet

with other proteins and create new mobile domains or rafts (see Figure 1.4, a and b).

When an isolated protein binds to the cell membrane, then the membrane remodels

itself creating a curvature or a deformation. When two or more such proteins are

relatively close (far enough for protein-protein interaction to be negligible but close

enough that induced membrane deformations can overlap with each other) it creates

a long-range interaction potential between proteins (see Figure 1.4, c). An impor-

tant quantity describing the dynamics of this system is the average time it takes

for any two proteins to find each other. It is manifest that it should depend on the

interaction potential between the proteins. Thus the system of diffusive membrane

inclusions can be modeled as a system of vicious walks with long-range interaction

and the statistics of encounters between proteins, which is important for signaling

and endocytosis, is determined by the survival probability of vicious walks.

Next, we consider exciton-exciton annihilation in carbon nanotubes [20].

Quasi one dimensional carbon nanotubes (see Figure 1.5, a) are promising candi-

dates to replace conventional metal wires in electronic circuits [21]. The unique

electronic properties of these structures allow an increase in the maximum current

density by several orders of magnitude providing a huge increase in computational
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Figure 1.5: a) Schematic illustrations of the structures of different SWNTs. b) The
time evolution of two populations of the excitonic states. The data are normalized
at the maximum populations [20].

power of computers that are made with such electronic circuits. Physically, semicon-

ducting characteristics of the nanotube are determined by the dynamics of excitons.

Excitons are formed of one electron and one hole coupled together. In particular,

observation of ultrafast relaxation of excitons in single walled carbon nanotubes

(SWNT) (see Figure 1.5, b) showed that the diffusion-limited migration of excitons

and exciton-exciton long-range interactions leave an imprint on the resulting time

decay of the density of excitons. This dynamics is determined by the time that two

excitations need to find each other in the system. Thus the annihilation process is

conceptually similar to dynamics of a system of vicious walks with long-range inter-

actions. The main quantity of interest, the survival probability that no two walks

have found each other up to time t, is related to the annihilation rate of excitons.

It decays as a power-law with time, which is the consequence of the fact that the

process is diffusion limited. The decay exponent is sensitive to the dimensionality of

the system and the interaction potential between excitons. This exponent describes

the nature of the relaxation channels in several specific semiconducting nanotubes.
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Figure 1.6: The probability distribution P (r) versus size of the step r for shark
and tuna (σ = 1.4) [22].

Thus vicious walks provide an important step towards a theoretical understanding

of fast excitation kinetics in SWNT.

We now switch to describing systems where encounters of Lévy flights are

critical. Consider marine animals searching for prey [22]. On large distance scales,

marine animals are blind food foragers. However, contrary to the simple diffusive

behavior one might expect, their search patterns are amazingly well described by

Lévy flights. Figure 1.6 shows the log-log plot of frequency (probability distribution)

P (r) versus the length of vertical (depth) one-dimensional movements r for shark

and tuna respectively. It is clear that log P (r) is linear in log r implying a Lévy type

power-law decay P (r) ∼ r−1−σ. Lévy exponents are extracted from the slopes of

the lines of each graph. It is clear that for different hunting strategies there will be

different average times to catch the prey. The success of the search strategy can be

quantitatively described by the the probability of a first lethal encounter between

members of different populations, say shark and tuna. Since the shark and tuna are

“vicious” to each other, we are clearly interested in the survival probability of vicious

walks performing Lévy flights.

Similar considerations can be made for spider monkeys [23]. There is ev-
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Figure 1.7: The probability distribution P (r) versus size of the step r for spider
monkey (σ = 0.18) [23].

idence that the daily movements of spider monkeys foraging for food (fruit trees)

in the rain forest resemble two dimensional Lévy flights. Analyzing the short time

(5min) movements of 20 spider monkeys it was shown that the probability P (r)

of taking a step of length r decays as P (r) ∼ r−2−σ, where the Lévy exponent is

σ = 0.18 (see Figure 1.7). Male spider monkeys are not independent of each other.

At the boundaries of their territory, males engage in very aggressive encounters with

neighboring males. Thus one may treat the system of foraging spider monkeys as

vicious Lévy flights. The survival probability of this system then translates into the

probability that no fights have broken out upto a certain time.

The examples we have listed here constitute only a small sampling of the

large variety of systems that can be modeled as either vicious walks with long range

interactions or vicious Lévy flights. They do however demonstrate the breadth of

disciplines to which our results may be applied.
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1.6 Foundation of Renormalization Group

In this section, we present a self-contained description of the theory leading

upto RG calculations in the context of vicious walk field theories. It is enough to

consider the simplest situation of two Gaussian vicious walks to demonstrate the

method. The action is

S =
∫

ddx
∫

dt
(

φ†
1∂tφ1 + D1φ

†
1∇2φ1 + φ†

2∂tφ2 + D2φ
†
2∇2φ2 + λφ†

1φ1φ
†
2φ2

)

. (1.24)

It depends on 4 functionally independent fields. Our goal is to evaluate path integrals

like (1.17). The simplest example of such an integral is the partition function

Z =
∫

Dφ†Dφ exp
(

S[φ†, φ]
)

, (1.25)

which can be found using the steepest descent method. Therefore at the one-loop

order an effective action [24, 25] can be written as

Γ1(φ
†, φ) =

1

2
tr ln

δ2S

δ{φ, φ†}xδ{φ,φ†}y

(1.26)

where δ{φ, φ†}x denotes either δφi(x) or δφ†
i (x). Thus an effective action is a 4×4

matrix of hermitian operators. One example of taking these functional derivatives is

1

2

δ2S

δφ†
1(t, x)δφ1(t′, y)

= G(t − t′, x − y) + λφ†
2(t, x)φ2(t, x)δ(t − t′)δ(x − y), (1.27)

where G(t, x) represents a second order differential operator of the theory or the

propagator G(x, t) = 〈φ†(t, x)φ(0, 0)〉. Its explicit form can be found using the time

and space Fourier transform:

∫

ddx
∫

dtφ†(t, x)(∂t + D∇2)φ(t, x) =
∫

dkdωφ†(−ω,−k)(ω + Dk2)φ(ω, k) (1.28)
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Thus the Fourier transform of the propagator reads G(ω, k) = (ω + Dk2)−1. Diago-

nalizing the fields in the action one derives the following expression

Γ1(φ
†, φ) − Γ1(0, 0) =

1

2
tr ln(1 + K), (1.29)

where K is the result of taking functionals derivatives (see (1.27)). Expanding the

logarithm we obtain 1-loop contributions to correlation functions of the theory. The

n-th order term corresponds to the 2n-point function.

The explicit calculation leads to the result:

Γ1(φ
†, φ) − Γ1(0, 0) = G1(0, 0)

∫

dtddxφ†
1(x)φ1(x) + G2(0, 0)

∫

dtddxφ†
2(x)φ2(x)

∫

dtdt′ddxddyφ†
1(x)φ1(x)G1(t − t′, x − y)G2(t

′ − t, y − x)φ†
2(y)φ2(y) (1.30)

where Gi(ω, k) = ω + Dik
2. This expression allows us to explicitly write down the

one-loop corrections to the 4-point correlation function for zero external momenta:

I1 =
∫ ddkdω′

(ω′ + D1k2)(ω − ω′ + D2k2)
=

∫ ddk

ω + (D1 + D2)k2
(1.31)

When the dimension of space, d, is less then the upper-critical dimension dc such

integrals dverge. The goal of RG is to renormalize coupling constants such that these

unphysical singularities ∼ ε−1 disappear in the computation of the other correlation

functions.



Chapter 2

Vicious walks with long-range

interactions

2.1 Introduction

Systems consisting of diffusing particles or random walks interacting by

means of a long-range potential are non-equilibrium systems, which describe dif-

ferent phenomena in physics, chemistry and biology. From a physical perspective

they are used to study metastable supercooled liquids [26, 27], melting in type-II

high-temperature superconductors [28], electron transport in quasi-one-dimensional

conductors [29] and carbon nanotubes [30]. From a chemical viewpoint the interest

in these systems lies in the fact that some diffusion-controlled reactions processes rely

on the diffusion of long-range interacting particles which react after they are closer

than an effective capture distance. Some examples include radiolysis in liquids [31],

electronic energy transfer reactions [32] and a large variety of chemical reactions in

amorphous media [33]. From a biological viewpoint, the investigation of these sys-

tems is helpful in understanding the dynamics of interacting populations in terms of

predator-prey models [34, 35, 36] and membrane inclusions with curvature-mediated

interactions [16, 17].

Vicious walks (VW) are a class of non-intersecting random walks, where the

20
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process is terminated upon the first encounter between walkers [14]. The fundamental

physical quantity describing VW is the survival probability which is defined as the

probability that no pair of particles has collided up to time t. Diffusing particles

or walks that are not allowed to meet each other but otherwise remain free, we

call pure VW. The behavior of pure VW is generally well-known. The survival

probability for such a system has been computed in the framework of renormalization

group theory in arbitrary spatial dimensions up to two-loop order [15, 37, 38]. These

approximations have been confirmed by exact results available in one dimension from

the solution of the boundary problem of the Fokker-Plank equation [34, 36], using

matrix model formalism [46] and Bethe ansatz technique [39]. On the other hand

the effect of long range interactions has been extensively investigated in many-body

problems. It has been shown that the existence of long-range disorder leads to a

rich phase diagram with interesting crossover effects [40, 41, 42]. If the potential

is Coulomb-like (∼ r−1−σ) then systems in one dimension behave similar to a one-

dimensional version of a Wigner crystal [43] for σ < 0 and similar to a Luttinger liquid

for σ ≥ 0 [44]. If the potential is logarithmic then in the long-time limit the dynamics

of particles are described by non-intersecting paths [45, 46]. The generalization

of VW that includes the effect of long range interactions has not attracted much

attention in the literature. Up to our knowledge there was one attempt to study

long-range VW [47]. Here the authors considered the case of a long-range potential

decaying as gr−σ−d, where g is a coupling constant. It was shown by applying the

Wilson momentum shell renormalization group that only one of the critical exponents

characterize long-range VW. For a specific value of σ (σ = 2−d) they show that the

exponent γ, which determines the decay of the asymptotic survival probability with
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time, is given by the expression:

γ =
p(p − 1)

4
u1, (2.1)

where p the number of VW in the system, u1 = (ε/2+ [(ε/2)2 + g]1/2) and ε = 2− d.

There are limitations to the above approach. First, it is restricted to a single form

of the potential (∼ r−2) and systems such as membrane inclusions and chemical

reactions have different power-law potentials. Second, it considers identical walkers

but one would like to have results if the diffusion constant of all walkers are different.

Finally it is not convenient to compute higher-loop corrections using the Wilson

formalism.

In this chapter we reconsider the problem of long-range VW using methods

of Callan-Symanzyk renormalized field theory in conjunction with an expansion in

ε = 2−d and δ = 2−d−σ. We note that it is more convenient to compute logarithmic

and higher loop corrections by using this method. We derive the asymptotics of the

survival and reunion probability for all values of the parameters (σ, d) for the first

time.

In this chapter we will show that there are several regions in σ − d plane in

which we have different behavior of the critical exponent. Our results are summarized

in Table 2.1. We note that results on the line σ+d = 2 have been obtained before [47].

Regions I and IV correspond to Gaussian or mean-field behavior (see Figure 2.3). In

region II we found that the system reproduces pure VW. Logarithmic corrections in

region III and at the short-range upper critical dimension d = 2 have been obtained

as series expansion in δ = 2 − σ − d.

The remainder of this chapter is organized as follows: Section 2.2 reviews

the field theoretic formulation of long range VW and describes Feynman rules and

dimensionalities of various quantities. In section 2.3 we derive the value of all fixed
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Table 2.1: One-loop survival probability of p sets of particles with nj particles in
each set large-time asymptotic at different regions of the σ − d plane. We refer to
Figure 2.3 for specific value of σ and d in each region.

Region Survival probability

I t−(d−2)/2 + t−(d+σ−2)/2

II t−
1
2

∑

ij
ninjε

III t−
u1
2

∑

ij
ninj(1+δ/2 ln t)

IV t−(d−2)/2

V, d = 2 t−
√

g0
2

∑

ij
ninj(1+δ/2 ln t)

VI, σ = 2 − d t−
u1
2

∑

ij
ninj

points and study their stability. Section 2.4 presents results for the critical exponents

and logarithmic corrections of various dynamical observables. In Appendix A we give

the details of the computation of some integrals that appear in Section 2.3.

2.2 Modelling VW with long-range interations

As the starting point of the description of our model we consider p sets of

diffusing particles or random walks with ni particles in each set i = 1 . . . p, with a

pairwise intraset interaction which includes a local or short-range part and a non-

local or long-range tail. The local part determines the vicious nature of particles: if

two walks belonging to the different sets are brought close to each other, both are

annihilated. Particles belonging to the same set are supposed to be independent. At

t = 0 all particles start in the vicinity of the origin. We are interested in the survival

and reunion probabilities of walks at time t > 0.
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A continuum description of a system of N Brownian particles Xi with two-

body interactions is simplified by the coarse-graining procedure in which a large

number of microscopic degrees of freedom are averaged out. Their influence is simply

modelled as a Gaussian noise-term in the Langevin equations. A convenient starting

point for the description of the stochastic dynamics is the path-integral formalism.

Then the system under consideration is modeled by the classical action

S =

+∞
∫

0

dt





N
∑

i=1

Ẋ2
i /(2Di) +

∑

i<j

V (Xi − Xj)



 (2.2)

where t is (imaginary-)time, Xi(t) is the d-dimensional vector denoting the position

of ith particle at time t. Di is an ith particle diffusion coefficient. The path-integral

representation of the probability density function for the particle displacements from

their original positions is given by the functional Z =
∫ DX exp[−S]. The survival

probability is defined as the expectation value

P (t) = 〈
∏

i,j

[1 − δ(Xi(t) − Xj(t))]〉 (2.3)

with respect to the functional Z. It is computed in the framework of usual perturba-

tion theory and will be a sum of integrals over internal degrees of freedom. It is more

convenient to perform these integrations in Fourier space. To do this we would need

the Fourier transform of the interaction potential V (r). We note that it is comprised

of a short-range part of the form V0(r) = λδ(r) and a long-range part which decays

with the distance r as a power law, Vl(r) = gr−d−σ. The Fourier transform of the

latter is divergent if σ ≥ 0. We introduce the cut-off parameter a to regularize the

singularity Vl(r) = g(r2+a2)−(d+σ)/2. Fourier transformation of this function is given

by the expression

Vl(q) = g
πd/22σ

Γ(d+σ
2

)
(q/a)σ/2Kσ/2(aq), (2.4)
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where Kσ is the modified Bessel-function with index σ. Small a expansion of (2.4)

at leading order yields

Vl(q) ∼ gqσ, if σ 6= 0 (2.5)

Vl(q) ∼ g log(aq), if σ = 0 (2.6)

where we used the property K−σ(x) = Kσ(x) of the Bessel function. The

non-universal coefficient coming from the Taylor expansion can be absorbed by the

appropriate renormalization of the constant g. Special cases when σ is even gives

logarithmic behavior. Effectively it does not change our results. So we focus on the

typical term qσ.

The second quantized version of the action (2.2) can be constructed using

standard methods [10, 11]. The generalization of the action to the long-range inter-

acting case is also known [48, 49]. The result is

S(φi, φ
†
i ) =

∫

dtddx{
∑

i

[φ†
i∂tφi + Di∇φ†

i∇φi]}+

+
∫

dtddxddy
∑

i<j

φ†
i (t, x)φi(t, x)Vij(x − y)φ†

j(t, y)φj(t, y) . (2.7)

The first term describes the evolution of free random walks with diffusion

constants Di. The potential is

Vij(x − y) = λijδ(x − y) + gijV (x − y), (2.8)

and we refer to λij, gij as short-range and long-range coupling constants respectively.
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A dynamic response functional associated with the action (2.7) is

Z =
∫

DφDφ†e−S(φi,φ
†
i
) (2.9)

where φi (x, t) is the complex scalar field. After the quantization we may treat

φ†
i (x, t) as the creation operator which creates a particle of sort i at point x at time

t. Having the dynamic response functional, correlation functions can be computed

as functional averages (path integrals) of monomials of φ and φ† with the weight

exp
{

−S(φ, φ†)
}

.

Figure 2.1: Feynman rules for the theory (2.7). Notice that both λ and g vertices
appear with different i and j indices and that g has momentum dependence.

Figure 2.2: One-loop Feynman diagrams contributing to λRij.

As a first step towards the renormalization group analysis of this model, we

discuss the dimensions of various quantities in (2.7) expressed in terms of momentum:

[t] = p−2 [φ] = pd [λ] = p2−d [g] = p2−d−σ. (2.10)

The naive dimension of the coupling constant g allows us to identify the upper critical
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dimension dc(σ) = 2 − d − σ. For σ > 0, the short-range term naively dominates

the long-range term and we expect to have the behavior of the system similar to the

case of pure VW. We will reserve the symbol ε (ε = 2−d) to denote deviations from

the short-range critical dimension dc = 2, and δ (δ = 2 − d − σ) for the deviations

from the long-range critical dimension dc(σ). If σ = 0 then the critical dimension of

the long-range part coincides with the short-range part and we have the non-trivial

correction to the asymptotic behavior due to long-range interactions. This boundary

separates mean-field or Gaussian behavior from long-range behavior. For σ < 0 the

long-range term dominates the short-range term and we expect to have non-trivial

corrections to the behavior of the system.

Now we consider diagrammatic representation elements of model (2.7). In

zero-loop approximation the vertex 4-point function takes a simpler form after Laplace-

Fourier transformation:

Γ
(2,2)
ij (s, p) = Vij(p1 + p2)δ(

∑

k

pk). (2.11)

The same transformation applied to the bare propagator yields:

Γ
(1,1)
j (s, p) = (s + Dip

2)−1 (2.12)

We note that there are no vertices in (2.7) that produce diagrams which dress the

propagator, implying there is no field renormalization. As a consequence the bare

propagator (2.12) is the full propagator for the theory. Feynman rules are summa-

rized in Figure 2.1. There are two vertices in the theory: one is a short-range λ-vertex

and another is a long-range momentum dependent g-vertex. Each external line of

the vertex corresponds to a functionally independent field. The propagator is formed

by contracting appropriate lines from different vertices. We recall the propagator is

the correlation function of φi and φ†
i fields only.
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Physical observables are computed with the help of correlation functions.

The probability that p sets of particles with ni particles in each set start at the prox-

imity of the origin and finish at xi,αi
(i index enumerates different sets and αi index

enumerates particles in set i) without intersecting each other can be obtained by

generalizing eqn (2.3). In the field theoretical formulation, this probability becomes

the following correlation function:

G(t) =
∫ p

∏

i=1

ni
∏

αi=1

ddxi,αi
〈φi(t, xi,αi

)(φ†
i (0, 0))ni〉, (2.13)

In the Feynman representation it is the vertex with 2N (N =
∑

j nj) external lines.

In the first order of the perturbation theory one needs to contract these lines with

corresponding lines of the vertices in Figure 2.1. Since there are many independent

fields in the correlation function (2.13) this operation can be done in many ways. It

yields a combinatorial factor, ninj, in front of each diagram, which is the number of

ways of constructing a loop from the ni lines of type i and nj lines of type j on the

one hand and one line of type i and one line of type j on the other hand. From the

next section we will see that the survival probability scales as G(t) ∼ t−γ, where γ

is the critical exponent. If all walks are free, γ = 0. In the presence of interactions

we expect γ to be a universal quantity that does not depend on the intensity of

the short-range interaction λij. It is convenient to introduce the so called truncated

correlation function which is obtained from (2.13) by factoring out external lines:

Γ(t) = G(t)/(Γ(1,1))2N (2.14)

Another physical observable, the reunion probability, is defined as the prob-

ability that p sets of particles with ni particles in each set start at the proximity of

the origin and without colliding into each other finish at the proximity of some point
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at time t:

R(t) =
∫

ddx
p

∏

i=1

〈φi(t, x)ni(φ†
i (0, 0))ni〉, (2.15)

In the Feynman representation it is depicted as the watermelon diagram with 2N

stripes. We note that if the theory is free this expression is the product of free

propagators and at the large-time limit the return probability scales as RO(t) ∼

t−(N−1)d/2. If interactions are taken into account it becomes R(t) ∼ t−(N−1)d/2−2γ ,

where γ is survival probability exponent. The reason that it enters with the factor 2 is

the following. If we cut a watermelon diagram of the reunion probability correlation

function in the middle then it produces two vertex diagrams with 2N external lines

of the survival probability correlation function. As a result the reunion probability is

the product of two survival probabilities. It remains true in all orders of perturbation

theory. For a rigorous proof we refer to [38].

2.3 The Renormalization of observables

While computing correlation functions like (2.13) perturbatively one faces

divergent integrals when d = dc. The convenient scheme developed for dealing with

these divergences follows Callan-Symanzik renormalization-group analysis [25, 24].

Within this scheme we start with the bare correlation function G(t; λ, g), where

λ = {λij}, and g = {gij} denote the set of bare short-range and long-range coupling

constants. In the renormalized theory it becomes GR(t; λR, gR, µ). From dimensional

analysis it follows that

GR(t; λR, gR, µ) = GR(tµ; λR, gR), (2.16)
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Figure 2.3: The critical behavior of vicious walks with long-range interactions in
the different regions of the (σ, d) plane. Region I and IV correspond to the mean
field short-range behavior, in region II will be critical short-range behavior, region
III is the long-range behavior. The lines d = 2 and σ + d = 2 represent regions V
and VI respectively.

where µ is the renormalization scale. The scale invariance leads to the expression

GR(t; λR, gR, µ) = Z(λR, gR, µ)G(t; λ, g). (2.17)

Here functions Z are chosen in such a way that GR(t, λR, gR, l) remains finite when

the cut-off is removed at each order in a series expansion of λR, gR, ε and δ. From

the fact that G(t, λ, g) does not depend on the renormalization scale µ we get the
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Callan-Symanzik equation

(

µ
∂

∂µ
+ βg

∂

∂g
+ βu

∂

∂u
− γ

)

GR = 0, (2.18)

where the β-functions are defined by

βλ(λR, gR) = µ
∂

∂µ
λR βg(λR, gR) = µ

∂

∂µ
gR (2.19)

and the function γ by

γ(λR, gR) = µ
∂

∂µ
ln Z. (2.20)

The renormalization group functions are understood as the expansion in double series

of coupling constants λ and g and deviations from the critical dimension ε and δ. We

take δ = O(ε). The coefficient Z(λR, gR, µ) is fixed by the normalization conditions.

It is more convenient to impose these conditions on the Laplace transform of the

truncated correlation function (2.14). One sets the following condition then

ΓR(µ) = 1, (2.21)

when s = µ. We note that the same multiplicative renormalization factor Z yields

Γ finite. From this fact one can infer that

Γ(µ; λ, g) = Z(µ; λ, g)−1. (2.22)

If we express unrenormalized couplings in terms of renormalized ones (2.22) we will

obtain the equation for finding Z explicitly.

The equation (2.18) can be solved by the method of characteristics. Within

this method we let couplings depend on the scale which is parametrized by µ(x) = xµ.

Here x is introduced as a parametrization variable of the RG flow and is not to be

confused with position. Henceforth x will refer to this parametrization variable. We
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introduce running couplings λ̄(x) and ḡ(x). They satisfy the equations

x
d

dx
ḡ(x) = βg(λ̄(x), ḡ(x)) x

d

dx
λ̄(x) = βλ(λ̄(x), ḡ(x)). (2.23)

The renormalized value should be defined by the initial conditions λ̄(1) = λR and

ḡ(1) = gR. the solution of the equation is then

GR(t) = e

µt
∫

1

γ(λ̄(x),ḡ(x))dx/x

GR(µ−1; λ̄(µt), ḡ(µt), µ) (2.24)

Next we calculate the first-order contribution to the renormalized vertices.

The λ-vertex is renormalized by the set of diagrams that are shown in Figure 2.2.

We notice that there are no diagrams producing the momentum dependent g-vertex

in the theory (2.7). This statement is the corollary of the fact that only independent

fields of power one enter into the expression of the vertex and there are no higher

powers of fields. Also we keep in mind that the renormalized couplings are defined

by the value of the vertex function taken at zero external momenta. It produces the

following expression:

λRij = λij −
1

2
(λ2

ijI1 + 2λijgijI2 + g2
ijI3) (2.25)

gRij = gij (2.26)

where Ik = Ik(σ; Di, Dj) are one-loop integrals corresponding to the diagrams a, b, c

in the Figure 2.2 respectively. Using the Feynman rules we can explicitly write them

down:

Ik =
∫ ddq

(2π)d

q(k−1)σ

2s + (Di + Dj)q2
, k = 1, 2, 3. (2.27)

We will use dimensional regularization procedure to compute these integrals. The

details of the computation are summarized in Appendix A. We note that integrals
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will diverge logarithmically at different values of the spatial dimension d. For this

reason it leads to different critical behavior in different regions of the σ − d plane

(see Figure 2.3). These regions correspond to four possibilities for ε = 2 − d and

δ = 2− d− σ to be positive or negative. Only if δ = O(ε) or, in other words, if both

ε and δ are infinitesimally small but the ratio ε/δ is finite we expect non-zero fixed

points of the renormalization group flow. Similar approximation have been used

before [40] but for different models with long-range disorder. It allows us to follow

the standard procedure of deriving the β-functions which consists of two steps.

First, we express unrenormalized couplings in terms of the renormalized. For

the short-range coupling constant λ it can be done by solving the quadratic equation

in (2.25). Expanding the square root and keeping terms up to the second order we

infer that

λij = λRij +
1

2
(λ2

Rij

ad

ε
+ 2λRijgRij

bd

δ
+ g2

Rij

cd

2δ − ε
) (2.28)

gij = gRij (2.29)

where ad, bd and cdcoefficients have been found explicitly in Appendix A. Now we

introduce dimensionless renormalized couplings

ḡRij = ad(2s)
−δ/2 λ̄Rij = bd(2s)

−ε/2. (2.30)

An important observation is that cdad = b2
d which can be verified by explicit sub-

stitution (see Appendix A). Multiplying the first and second equation in (2.28) by

the factors ad and bd respectively, and using redefinitions (2.30) we can condense all

pre-factors in the right hand side of the equations into the dimensionless constants.

Second, we differentiate equations (2.28) with respect to the scaling param-

eter µ. Using definitions (2.19) and the fact that bare couplings do not depend on
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the scale, we derive

βλ,ij = −ελ̄Rij + (λ̄Rij + ḡRij)
2 (2.31)

βg,ij = −δḡRij (2.32)

where the right hand side is understood as the leading contribution to the β-functions

from the double expansions in λ, g and ε, δ. From (2.31) we see that it is convenient

to introduce new coupling constants uRij = λ̄Rij + ḡRij. After this step the renor-

malization group equations read

βu,ij = −εuRij + u2
Rij − gRij (2.33)

βg,ij = −δgRij (2.34)

We note that in the last equations g coupling constant has been redefined

σḡRij → gRij.

Fixed points are zeros of the β-functions. If δ 6= 0 then the last equation in

(2.33) is zero only when g∗ = 0. Then the first equation has two solutions u = 0

and u = ε. If δ = 0 then g plays the role of a parameter and the fixed points are

determined by the roots of the quadratic equation

0 = −εu + u2 − g (2.35)

which are real if g ≥ −(ε/2)2 and we find

u1,2 = ε/2 ±
√

(ε/2)2 + g. (2.36)

All fixed points are listed in the Table 2.2. The stability of these fixed points is
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determined by the matrix of partial derivatives

β∗ = −











∂βu/∂u ∂βu/∂g

∂βg/∂u ∂βg/∂g











u=u∗,g=g∗

(2.37)

Eigenvalues are listed in the Table 2.2. The Gaussian fixed point is stable in all

directions for ε < 0 and δ < 0 which corresponds to region I in Figure 2.3. In

this region we find both short-range(pure VW) and long-range mean-field behavior

depending on the sign of σ.

On the contrary, for ε > 0 and δ > 0 we find that the Gaussian fixed point

is unstable(irrelevant) in all directions and the short-range (pure VW) fixed point is

stable(relevant) only in u-direction. It means that long-range interactions will play a

leading role. This region corresponds to region III in Figure 2.3. Next for ε > 0 and

δ < 0 we find that the short-range (pure VW) fixed point is stable in all directions. It

means that the system is insensitive to the long-range tail. This region corresponds

to region II in Figure 2.3. Finally for ε < 0 and δ > 0 we find that the short-range

(pure VW) fixed point is unstable in all directions and the system will be described

by mean-field at long time.

2.4 Calculation of critical exponents and discus-

sion

Here we describe our method of computing critical exponents. It is based on

the formula (2.22) from the previous section. First, we obtain the leading divergent

part of the correlation function. The renormalized correlation function depends on

the scale µ but it appears in all formulas in combination with time: µt. Second, since

we have found the bare coupling constant as a function of renormalized (dressed)

couplings we express correlation function in terms of dressed couplings. Finally
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Table 2.2: Fixed points for flow equations (2.33) and the corresponding eigenvalues
(λ1, λ2) of the stability matrix (2.37). We note that u1 and u2 are defined by equation
(2.36). LR stands for long-range.

Fixed point (u∗, g∗) (λ1, λ2)

Gaussian (0, 0) (ε, δ)

Pure VW (ε, 0) (−ε, δ)

LR stable (u1, 0) (−
√

ε2 − 4g, 0)

LR unstable (u2, 0) (
√

ε2 − 4g, 0)

using the normalization condition (2.21) and the definition (2.20) we differentiate Z

with respect to µ∂/∂µ to obtain the exponent γ. The poles should cancel after this

operation.

In section 2 it was explained that the truncated correlation function in the

one-loop approximation is given by the formula

Γ(t; λ, g) = 1 −
∑

i,j

ninj (λijI1 + gijI2) . (2.38)

Here integrals are the same as in (2.27).

We start our analysis with the region I. Notice that truncated correlation

function Γ(t) and survival probability G(t) have similar large time behavior. We use

large momentum cut-off to compute integrals I1 and I2 as in formula (5.9) in Ap-

pendix A. The renormalization of coupling constants is trivial in this case. Therefore

the leading contribution to the survival probability is given by

G(t) ∼ t(2−d)/2 + g0t
(2−d−σ)/2, (2.39)

where g0 is non-universal coefficient and we will not need its exact value. We notice
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that if σ > 0 the second term will decay faster than the first term and in the long-time

limit it will produce the same behavior as mean-field pure VW. On the other hand if

σ < 0 the first term will decay faster and long-range interactions will play a leading

role. Many authors observed similar behavior in various systems with long-range

defects [40, 41, 42]. Intuitively if potential falls fast with distance than the system

effectively represent system with short-range potential where particle interact when

they are close to each other.

Region IV exhibits similar behavior. Now the integral I2 is computed with

the help of the dimensional regularization (5.3) and the integral I1 remains the same.

From the fact (2.16) one can infer that the survival probability scales as

G(t) ∼ t(2−d)/2. (2.40)

Short-range behavior dominates because the running coupling constant will flow

towards the Gaussian fixed point at long time limit which is the only stable fixed

in this region. This result is exact regardless the number of loops one takes into

account.

In Region II the computation is as follows.

ln Z =
∑

ninj

(

λij
ad

ε
+ gijt

(2−d−σ)/2
)

, (2.41)

so plugging the result from (5.4) to (2.41) we obtain at the fixed point (λ∗ = ε, g = 0)

γ = −1

2

∑

ninjε (2.42)

And we reproduce the pure VW behavior. This result is the reflection of the fact that

the renormalization-group trajectories run away to stable pure VW fixed point. It

is with agreement with the results obtained by Katori in [46] for d = 1, and the log-

arithmic intraset particle interactions. The irrelevance of the long-range interaction
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in lower dimensions is a typical phenomenon observed in a various out of equilibrium

interacting particle systems.

We now consider regions III, V and VI. Integrals in (2.38) are computed via

dimensional regularization. Taking the inverse of (2.38) and then logarithm one can

obtain at the leading order:

ln Z =
∑

ninj

(

λij
ad

ε
+ gij

bd

δ

)

(2.43)

where ad and bd are defined in Appendix A in (5.4) and (5.5). We note that after

taking the derivative the poles in (2.43) will cancel in the limit of δ = O(ε). Also

one recalls the expansion (2.28) and the redefinitions in (2.30). Using (2.20) we show

that the expression for the function γ which determines critical exponent takes the

form

γ = −1

2

∑

ij

ninjuR (2.44)

Evaluated at the stable fixed point (u1 = ε/2 +
√

(ε/2)2 + g it gives the following

result:

γ = −1

2

∑

ij

ninju1, (2.45)

and the survival probability scales as G(t) ∼ tγ.

We will now find the logarithmic corrections to this scaling law. The running

coupling constant can be found from the flow equation (2.33): ḡ(x) = e−δxg. In the

case δ, ε = 0 (the intersection of regions V and VI) the flow equation for ū(x) is

x
dū(x)

dx
= −ū2(x) + g (2.46)
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and the solution is

ū(x) =
√

g tanh(
√

g ln x + φ0) ∼
√

g tanh(
√

g ln x), (2.47)

where φ0 is the initial condition and we do not need its exact form. After plugging

this expression into the (2.24) we infer

µt
∫

1

γ(ū, ḡ)
dx

x
∼ ln(cosh(

√
g ln µt)) (2.48)

Thus the survival probability is

G(t) ∼ cosh(
√

g ln t)−
1
2

∑

ninj (2.49)

In the limit of large time cosh(
√

g ln t) ∼ t
√

g implying gamma = −1
2

∑

ij ninj
√

g

which is consistent with equation (2.45). For negative coupling constant g < 0 the

solution in (2.47) becomes

ū(x) ∼ −
√

|g| tan(
√

|g| ln x) (2.50)

The integral (2.48) is divergent if t > exp(π/2
√

|g|) which leads to the result that

the survival probability is zero beyond this time. For smaller times one has G(t) ∼

cos(
√

|g| log t)−
1
2

∑

ninj . Thus, upto one-loop order approximation, It implies that if

walks are attracted to each other then all of them will annihilate at some finite time.

This might be a signature of faster than power law decay and we expect to have

corrections to this behavior at higher loop approximation.

Next we consider the case when ε = 0 and δ 6= 0 but δ remains small i.e.

region V. The flow equation for the ū(x) is

x
dū(x)

dx
= −ū2(x) + gx−δ (2.51)
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and the solution can be found by the method of perturbation. Up to the first order

ū(x) =
√

g tanh(
√

g ln x) + δ
√

g ln(x) tanh(
√

g ln x) (2.52)

After plugging this expression into eqn (2.24) we infer

µt
∫

1

γ(ū, ḡ)
dx

x
∼ −1

2

∑

ninj

(

ln(t
√

g) +
1

2
δ
√

g ln2(t)
)

(2.53)

Therefore we have the correction to the survival probability in the form

G ∼ t−
1
2

∑

ninj
√

g(1+δ/2(ln t)) (2.54)

Now we extend our analysis to the case when ε > 0, corresponding to regions

III and VI. The evolution of the coupling constant is

x
d

dx
ū(x) = εū − ū2 + gxδ (2.55)

We choose the ansatz in the form ū(x) = u0(x) + δv(x). For δ = 0 (i.e. region VI)

the equation for u0(x) reads

x
d

dx
u0(x) = εu0 − u2

0 + g (2.56)

and we reproduce the result (2.45). We now extend to the case where ε, δ > 0 (region

III). Here we will need the exact solution to (2.56) to find the corrections:

u0(x) =
Cxu1−u2u1 + u2

1 + Cxu1−u2
, (2.57)

where C = (uR − u2)/(u1 − uR). The logarithmic correction follows from the form

of the perturbation. The equation for v(x) is

x
d

dx
v(x) = εv − 2u0v − g ln x (2.58)

The solution can be found explicitly as a combination of hypergeometric functions. In
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the most interesting case, ε = 1 (d = 1) the hypergeometric functions are degenerate

and become linear functions. Corrections to the integral then read

µt
∫

1

γdx/x ∼ 1

2
δu1 ln2(t) + ln(t)(t)u1−u2) (2.59)

In the limit of large time only the first term contributes to the exponent and the

survival probability scales as

G ∼ t−
1
2

∑

ninju1(1+δ/2 ln t) (2.60)



Chapter 3

Vicious Lévy flights

3.1 Introduction

Diffusive processes with long range jumps play an important role in many

physical, chemical and biological phenomena. A Lévy flight is an example of such

a process where the probability distribution of the length of an individual step, r,

is governed by the power-law r−d−σ, where d is the dimension of the space and σ is

the Lévy exponent. Smaller values of σ therefore produce longer range jumps while

for σ ≥ 2, the mean jump length is finite and simple diffusive behavior is recovered.

Lévy flights have been used to describe a wide range of processes including epidemic

spreading, transcription factor proteins binding to DNA, kinetic Ising models with

long-range interactions, foraging animals and light propagation in disordered optical

materials [51, 52, 53, 54, 8, 55, 56, 57, 58]. While individual Lévy flights have been

studied in great detail, the same is not true if we consider several distinct groups

of Lévy flights. One could, for example, be interested in the statistics of encounters

between members of different groups. This question is relevant for processes where

the outcome depends on the occurrence of such encounters. Examples include sharks

and other marine animals searching for prey [22], chemical reactions in turbulent

environments [51], electron-hole recombination in disordered media [59] and even

male spider-monkeys encountering their mates or other aggressive males in the forest

42
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[23].

In this chapter we compute the survival probability, i.e. the probability that

no two members of different groups of Lévy flights have met up to time t. For the

case of simple diffusion with exactly one particle in each group, this corresponds to

the classic problem of Gaussian vicious walks [14], i.e. walks that are prohibited from

being on the same site at the same time, but remain independent otherwise. Here we

generalize this concept to groups of Lévy flights under the same constraints. We term

them vicious Lévy flights (VLF). We consider p sets of particles with ni particles in

each set, i = 1 . . . p, that are driven by Lévy noise on the d dimensional regular lattice.

A pairwise interset short-range (delta-function) interaction is introduced to guarantee

that trajectories which continue beyond an intersection are discarded, i.e. have

zero statistical weight. This terminates the process at the first encounter between

members of different groups. Particles belonging to the same set do not interact. We

note that Lévy flights are allowed to jump over each other, unlike ordinary random

walks which can only jump to neighboring sites and can not intersect with the vicious

constraint. In d = 1 this means that the ordering is preserved for vicious walks but

not for VLF. For simplicity we assume that Lévy exponents for all flights are the

same. Generalization to the case of different Lévy exponents will be done elsewhere.

At time t = 0 all particles start in the vicinity of the origin. We are interested in the

survival probability of this system at late times.

3.2 RG flow equations and fixed points

We start with a field theoretic formulation of the problem. Methods to

formulate field theories for such stochastic systems are well established [10, 11].

Specifically for Gaussian vicious walks, such a formulation exists [15] and the form of

the action is known. We can adapt the action to our case by replacing the Laplacian
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∇2 with the operator ∇σ that generates long-range jumps. This gives

S(φi, φ
†
i ) =

∫

dtddx
p

∑

i=1

[φ†
i∂tφi + φ†

i∇σφi]+

+
∑

1≤i<j≤p

λijφ
†
i (t, x)φi(t, x)φ†

j(t, x)φj(t, x), (3.1)

where φi(x, t) are p complex order parameters corresponding to p different sets of

equivalent Lévy flights and λij are coupling constants corresponding to interset in-

teractions. The non-intersection property of VLF arises from the choice λij → ∞

but we will show that to leading order the survival probability does not depend on

the particular value of these coupling constants. This action is also similar to the

action for the reaction-diffusion problem with long-range interactions [60, 61]. Power

counting shows that the upper critical dimension for the above field theory is dc = σ

for σ < 2 and dc = 2 for σ ≥ 2. VLF exhibit different phases (see inset Figure 3.1)

depending on the values of d and σ. In the mean field phase for d > dc (Region I),

the survival probability of VLF is non-zero at infinite time because the walks become

non-recurrent and particles can avoid each other for all time. For σ ≥ 2 (Region

II) VLF reproduce Gaussian vicious walks. For d < σ < 2 (Region III) we expect

fluctuations to play an important role. In this phase, we will obtain the critical

behavior of the survival probability using ε-expansion (ε = σ− d) around mean field

theory in two-loop approximation.

We now turn to the renormalization group analysis. The propagator given

by (3.1) is

Γ
(1,1)
j (s, k) = (s + kσ)−1. (3.2)

The particular form of the vertex in (3.1) leads to the fact that there are no diagrams

which dress the propagator. This implies that the bare propagator is the exact
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Figure 3.1: a. ln(S) vs ln(t) for two identical VLF in d = 1. σ values from top tp
bottom are 1.1, 1.3, 1.5, 1.7, 2.5 respectively. Symbols represent simulation data and
solid lines correspond to best fit lines to the late time data. Inset: Domains of VLF
exponents in the σ − d plane.

propagator for the theory. The proper vertex is defined by factoring out external legs

from the ordinary 4-point Green’s function of (3.1) G
(2,2)
ij (sl, kl; λ). Here λ = {λij} is

the collection of coupling constants and (sl, kl) for l = 1 . . . 4 are the energy (Laplace

image of time) and momenta respectively [62]. This yields

Γ
(2,2)
ij (sl, kl; λ) =

G
(2,2)
ij (sl, kl; λ)

∏4
m=1 Γ(1,1)(sm, km)

. (3.3)

The renormalized coupling, λRij, is the value of the proper vertex at (sl = µ, kl = 0),

for all l, where µ is a renormalization group flow scaling parameter. It is possible to
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sum all diagrams in the series with the result

λRij = λij(1 + λijI1)
−1, (3.4)

where

I1 = (2π)−d
∫

ddq(2µ + 2qσ)−1. (3.5)

The value of the integral I1 is given by I1 = Aµ−ε/σε−1, where

A =
εΓ(d/σ)Γ(ε/σ)

2dπd/2σΓ(d/2)
=

2−σπ−σ/2

Γ(σ/2)
+ O(ε), (3.6)

is the geometric factor at the leading order in ε = σ−d. By introducing the redefined

coupling constant

gRij = λRijµ
−ε/σ, (3.7)

we obtain the following renormalization group flow equations (see Appendix B for

details):

µ
∂gRij

∂µ
= (−ε + AgRij)gRij/σ. (3.8)

The fixed point of this flow is

g∗ = εA−1. (3.9)

We note that this value of the fixed point is exact to all orders since all diagrams

were taking into account in (3.4). The stability of the fixed point follows from the

fact that

−∂βij/∂gRij|gRij=ε/A = −ε/σ < 0 (3.10)

in the VLF region, where βij = µ∂gRij/∂µ is renormalization group beta function.
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Figure 3.2: a. 1-loop diagram corresponding to the integral I1 b., c. 2-loop intgrals
corresponding to I2

1 and I2 respectively.

3.3 Survival probability exponent computation

We now consider the survival probability which is defined as the correlation

function [15]

S(t; λ) =
∫ p

∏

i=1

ni
∏

αi=1

ddxi,αi
〈φi(t, xi,αi

)(φ†
i (0, 0))ni〉, (3.11)

with the measure
∫ Dφ†Dφ exp[−S]. The Feynman diagram of (3.11) at zero order is

a vertex with 2N external legs. Similar to the case of the (2, 2)-vertex it is convenient

to work with the truncated correlation function

Γ(sl, kl; λ) = S(sl, kl; λ)/
2N
∏

m=1

Γ(1,1)(sm, km). (3.12)

The finite renormalized truncated correlation function ΓR(sl, kl; λR, µ), where λR =

{λRij} is a collection of renormalized coupling constants, is related to the bare trun-

cated correlation function by

ΓR(sl, kl; λR, µ) = Z(λ, µ)Γ(sl, kl; λ), (3.13)

where Z(λ, µ) is the scaling function. From this one obtains the renormalization

group equation for ΓR(sl, kl; λR, µ) using the chain rule

(µ
∂

∂µ
+ βij

∂

∂gRij

+ γ)ΓR(sl, kl; λR, µ) = 0, (3.14)



48

where γ = µ∂ ln Z/∂µ. At the fixed point (3.14) reduces to (∂/∂ ln(µ)+γ∗)ΓR(s, µ) =

0 whose solution is

ΓR ∼ exp(
∫ µ

0
γ∗d(ln(µ′))), (3.15)

where γ∗ = µ∂ ln Z/∂µ|gRij=g∗ . Since γ∗ is constant at the fixed point we have

ΓR ∼ µ−γ∗ . The fact that the dimensions of field and the action are [φ†] = [φ] = kd/2

and [S] = ∞ implies that [S] = 1. Thus it follows that the survival probability can

only be a function of the dimensionless product µt. From this one infers that the

asymptotic behavior of the survival probability is S(t) ∼ t−γ∗ which gives α = γ∗.

In order to find Z one uses a normalization condition on ΓR that fixes the value of

Z. This can be chosen as ΓR(sl, kl; λR, µ) = 1 when sl = µ and kl = 0 for all l. This

implies that

Z = Γ(µ, 0; λ)−1. (3.16)

Γ(µ, 0; λ) can be expressed as a series, up to two-loop order, of the integrals corre-

sponding to the diagrams shown in Figure 3.2 with appropriate combinatorial factors

originating from the number of distinct ways in which propagators can be assigned

to the same diagram. I1 was evaluated before. The integral corresponding to the

diagram 2c is

I2 =
∫ ddkddq

(2µ + 2kσ)(3µ + qσ + kσ + |k + q|σ)
(3.17)

This can be evaluated using Mellin-Barnes representation [63] which replaces the

sum in the denominator of |k + q|σ and qσ by the product of these terms raised to

some power. The result for I2 up to the leading order reads

I2 =
2−2σπ−σ

Γ(σ/2)2
µ−2ε/σ

(

1

2ε2
+

2(− ln(3/4)/4 + C)

σε

)

, (3.18)
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where

C = [ψ(0)(σ/2) + ln(4π)]/2 (3.19)

and ψ(0)(x) is standard digamma function. The details of the calculations are sum-

marized in Appendix C. Knowing I1, I2 and the appropriate combinatorial factors

allows us to evaluate Γ(µ, 0; λ) and therefore Z(µ, λ) as a series. Differentiating ln Z

with respect to µ and substituting λ with λR (inverting (3.4)) and then taking the

value at the fixed point gives us the survival probability exponent α = γ∗, with the

final result (see Appendix D):

α =
∑

1≤i<j≤p

ninjε/σ + ln(3/4)Qε2/σ2, (3.20)

where

Q = 6
∑

1≤i<j<k≤p

ninjnk +
∑

1≤i<j≤p

ninj(ni + nj − 2). (3.21)

At the critical dimension d = dc = σ we see that the fixed point coincides with

the Gaussian point. The interaction becomes marginal in the renormalization group

sense. Equation (3.8) then yields the flow equations for the running coupling constant

xdḡij(x)/dx = Aḡ2
ij(x)/σ, (3.22)

with initial condition ḡij(1) = gRij. Solving this and substituting the result into

(3.15) we get S(t) = (ln t)−αl , where

αl =
∑

1≤i<j≤p

ninj. (3.23)
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Figure 3.3: α as a function of σ for d = 1. Symbols with error bars represent
simulation data corresponding from top to bottom to N = 2, 3, 4 VLF respectively.
Lines correspond to 1-loop approximation from formula (3.20) for 1 < σ < 2. For
σ < 1, σ ≥ 2 lines represent the mean field and Gaussian exponents respectively.
Inset: Same simulation data compared to 2-loop approximation from (3.20).

3.4 Comparison with numerical results and dis-

cussion

Now we describe the details of the numerical simulation that we used to

confirm our results in d = 1. At t = 0 we start with N =
∑p

i=1 ni particles belonging

to p distinct sets placed equidistantly on the lattice. At each time step we generate

N random variables, xj, drawn from the uniform distribution on the interval (0, 1).

Each particle jumps a distance lj = x
−1/σ
j with equal probability to the left or to

the right. This procedure generates an independent Lévy flight trajectory for each

particle. The process stops whenever particles from different sets land on the same
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Figure 3.4: α vs σ for predator and prey problem in d = 1. Symbols represent
simulation data for 4 predators and 1 prey (circles) and 3 predators and 2 prey
(squares). Lines are 2-loop approximation from formula (3.20).

site. We perform ∼ 105 iterations for each set of parameter values. The survival

probability S(t) is defined by the number of processes that survived beyond time t

divided by the total number of iterations. Figure 3.1 shows the plot of the survival

probability as a function of time for N = 2 for different values of σ. It is clear that at

late times ln S(t) is linear in ln t verifying our predicted power-law decay S(t) ∼ t−α.

The critical exponent α is evaluated from the slope of the best fit line of the late

time data.

We first consider systems with exactly one particle in each set. Figure 3.3

shows the value of exponent α for various values of σ with the total number of

particles N = 2, 3 and 4 in d = 1. Values of σ ≥ 2 will reproduce Gaussian vicious

walks and we therefore expect our exponents to approach the exact Fisher exponents

[14] as seen in Figure 3.3. For two VLF higher loop corrections are absent (see (3.20))

and the one-loop result is an exact result in agreement with the simulation. It is
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interesting to note that the survival probability for the N = 2 case is equivalent to

the first return probability of a single Lévy flight to the origin after time t which

scales as t−1+d/σ [64] and matches our results. For σ < 1, or d > dc, we expect mean

field behavior where survival probability at late times approaches a non-zero value

implying that there is a finite probability that Lévy flights with σ < 1 will never

find each other. The fact that the survival probability tends to a constant at late

times is reflected in the small values of α for σ = 0.9. For 1 < σ < 2, the mean field

behavior is incorrect and we expect the fluctuations to shift the decay exponent to

some non-trivial value. For σ close to one, the 1-loop result is in good agreement

with the simulation. For larger values of σ, the 2-loop corrections perform better

(see Figure 3.3 inset). It is to be noted that the discrepancy between theory and

simulation becomes large for higher values of N because the combinatorial factors

in (3.20) become large and we therefore need to keep higher order terms in ε for

the same degree of accuracy. It is interesting that the 1-loop approximation works

reasonably well over the entire range of 1 < σ ≤ 2 simply because the 1-loop term in

(3.20) happens to give the exact Fisher result if we set σ = 2. We notice that in all

cases the value of the survival probability exponent α increases with σ starting from

α ∼ 0 at σ < 1 and rising to the value of the Fisher exponents for the equivalent

Gaussian vicious walks. This is in contrast to diffusion-annihilation reactions with

long-range jumps where the density of reactants decays faster for smaller values of

σ [61].

We now consider a system that consists of 2 sets of identical VLF with

different numbers of independent particles in each set. We shall call one set predators

and the other set prey. Figure 3.4 compares the values of the 2-loop exponents to

the simulation results for various values of σ for two different cases: 4 predators -

1 prey and 3 predators - 2 prey. Similar to the previous case we have mean field
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and Gaussian behaviors for σ < 1 and σ ≥ 2 respectively. The Gaussian case is

also known as the lion-lamb problem and has been studied before [34]. Unlike the

lion-lamb problem, however, our results do not depend on the initial ordering of

predators and prey because ordering is not preserved for VLF. For a given σ and

total number of predators plus prey, the number of potentially lethal encounters is

maximized when the difference between the number of predators and prey is the

smallest implying that the survival probability will decay faster as seen in Figure

3.4.



Chapter 4

Conclusions

In this dissertation we studied the statistics of encounters of random walks.

In particular, we examined two interesting generalizations of the classic problem of

vicious walks introduced by Fisher [14] more than 25 years ago, which has since found

innumerable applications. Vicious walks are random walks that are prohibited from

being on the same site at the same time, but remain independent otherwise, or in

other words, the process is terminated upon the first encounter between independent

walkers, leading to the name “vicious walks”. An important quantity describing these

processes is the survival probability S(t), that the process survives upto time t. We

considered the general problem of distinct groups of walks, where members of each

group were only vicious to members of other groups, in two different contexts and

computed the survival probability in each case.

Our first problem looked at the case where vicious walkers also experienced a

long range inter-walker interaction of the form r−s−d . This generalization was moti-

vated by trying to understand the statistics of encounters in a wide range of systems

such as metastable supercooled liquids [27], melting in type-II high-temperature su-

perconductors [28], electron transport in quasi-one-dimensional conductors [29] and

carbon nanotubes [30], radiolysis in liquids [31], electronic energy transfer reactions

[32], interacting predator-prey models [34] and membrane inclusions with curvature-

54
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mediated interactions [16]. We showed that below the critical dimension (dc = 2),

the asymptotic form of the survival probability is S ∼ t−α. We calculated α for

all values of s and d to first order in ε = 2 − d expansion and to all orders in

δ = 2 − d − s expansion, which have hitherto been known only for d + s = 2. Our

results indicate that, depending on the exact values of d and s, the system can be

dominated by either short range (pure VW) or long range behaviors. In addition,

we calculated the leading logarithmic corrections for several dynamical observables

that are typically measured in simulations. Since our results are very general we are

confident that they can be applied to many situations of interest, such as the ones

mentioned above. We hope that our work stimulates further interest in long-range

vicious walks. It would be interesting to see further simulation results for the critical

exponents for d > 1 and for logarithmic corrections. Also, it would be interesting to

have analytical and numerical results for other universal quantities such as scaling

functions and amplitudes.

In the second problem we introduced a novel generalization of the vicious

walk problem - vicious Lévy flights (VLF) - independent groups of Levy flights

where the process is stopped upon the first encounter between members of different

groups. Our motivation was the following. Diffusive processes with long range jumps

such as Levy Flights play an important role in many physical, chemical and biologi-

cal phenomena. Examples include epidemic spreading, transcription factor proteins

binding to DNA, kinetic Ising models with long-range interactions, foraging animals

and light propagation in disordered optical materials. In many cases, the statistics of

encounters between entities performing Levy flights is of significant interest. These

encounters can, in fact, affect the outcome of these processes. These include not

only traditional condensed matter/physical systems such as chemical reactions in

turbulent environments or electron hole recombination in disordered materials but
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also biological/ecological processes including encounters between marine predators

and prey as well as foraging animals such as albatrosses and spider monkeys. We

used renormalization group analyses to compute the late time behavior of the sur-

vival probability of this system, which directly translates into understanding the

time before the first encounter. We showed that the probability that the process

survives up to time t decays as t−α at late times just as in the previous case. We

computed α up to the second order in ε-expansion, where ε = σ − d, σ is the Lévy

exponent and d is the spatial dimension. For d = σ, we found the exponent of the

logarithmic decay exactly. Theoretical values of the exponents were confirmed by

numerical simulations. There are several aspects of our work that make it exciting.

Firstly, it addresses an unanswered question regarding the statistics of encounters

between groups of Levy flights, an interesting statistical mechanical problem in its

own right. Secondly, it introduces a completely novel and unstudied process- VLF.

Thirdly, we computed upto two loop order, the critical exponents for this new class

of processes for the first time and furthermore we performed careful numerical simu-

lations to validate the values of these new exponents. Finally, the methods we have

developed should be helpful to study other field theoretic actions with fractional

derivatives. An interesting extension would be to solve the problem in the general

case of particles with different diffusion constants and Lévy exponents. The predic-

tive power of the ε-expansion for VLF, that we have demonstrated, should be useful

in many applications of practical importance. Examples include the optimization of

the predator-prey search [65] or trapping probabilities [66]. Generalization to the

case of intelligent predators, i.e. interacting with a prey by means of the long-range

potential, may lead to different critical behavior [67, 68, 69]. Simple diffusion pro-

cesses in power-law small world networks are effectively Lévy flights [70] with the

exponent σ controlling the distribution of long-range links. Our work could be used
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to understand what network structure, or what σ, would optimize the search and

how much more efficient several independent searchers will be.



Chapter 5

Appendix

5.1 Appendix A

Effective four-point function (one-particle irreducible, 1PI) that appeared in

(2.25) is composed of usual short-range and new momentum dependent vertices.

This gives rise to integrals (2.27). The first integral µ = 1 has been evaluated in [15]

by using alpha representation 1/(q2 + s) =
∫ +∞
0 dαei(q2+s)α and the result is

I1 = Kd(2s)
−ε/2Γ(ε/2). (5.1)

We notice that since there is no angular dependence one can perform d−1 integrations

and one will be left with one dimensional integral. To compute this integral we use

the formula [50]:

+∞
∫

0

dx
xν−1

P + Qx2
=

1

2P

(

P

Q

)ν/2

Γ
(

ν

2

)

Γ
(

1 − ν

2

)

(5.2)

We see that in our case P = s, Q = (Di+Dj) and ν = d+(µ−1)σ. This immediately

gives the result:

Iµ =
Kd

2

(

1

(Di + Dj)

)

d+(µ−1)σ
2

s
d+(µ−1)σ

2
−1×

58
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×Γ

(

d + (µ − 1)σ

2

)

Γ

(

1 − d + (µ − 1)σ

2

)

, (5.3)

where Kd = 2d−1π−d/2Γ−1(d/2) is the surface area of d-dimensional unit sphere.

It is convenient to define

ad =
Kd

2

(

2

(Di + Dj)

)d/2

(2s)−ε/2 (5.4)

bd =
Kd

2

(

2

(Di + Dj)

)(d+σ)/2

(2s)−δ/2 (5.5)

cd =
Kd

2

(

2

(Di + Dj)

)(d+2σ)/2

(2s)−(2δ−ε)/2 (5.6)

So integral Iµ in the limit of δ = O(ε) can be written as:

I1 =
ad

ε
, I2 =

bd

δ
, I3 =

cd

2δ − ε
. (5.7)

We used an expansion Γ(ε/2) ∼ 2/ε for small ε. An important property of coefficients

(5.4) - (5.6) is that

cdad = b2
d, (5.8)

which can be verified by direct substitution.

Now we compute mean field integrals:

Iµ =
∫

ddqdtqd+σ exp(−t(Di + Dj)q
2) ∼ t−(d+σ−2)/2, (5.9)

where we assumed that the large momentum cut-off is imposed and corresponding

coupling constants have been renormalized. The non-universal coefficient is not

important.
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5.2 Appendix B

Here we derive the 1-loop integral

I1 = I1(µ) = (2π)−d
∫

ddk(2µ + 2kσ)−1. (5.10)

We will use dimensional regularization. First we notice that there is no angle de-

pendence under the integral thus one can integrate out d− 1 angle variable and use

alpha representation:

X−λ = Γ(λ)−1
∫ +∞

0
dααλ−1 exp(−αX) (5.11)

to handle 1d momenta integral:

I1 =
Sd

2

+∞
∫

0

kd−1dk

µ + kσ
=

Sd

2

+∞
∫

0

+∞
∫

0

dαdkkd−1 exp(−αµ−αkσ) =
Sd

2σ
Γ(d/σ)

+∞
∫

0

dαα−d/σ exp(−αµ),

(5.12)

where Sd = 2πd/2/Γ(d/2) is the area of the d-dimensional unit sphere. After taking

the integral over α one has

I1 =
Sd

2σ
Γ(d/σ)Γ(ε/σ)µ−ε/σ = Aµ−ε/σε−1 + O(ε0), (5.13)

where A has been defined by the formula (3.6).

Now we show details of deriving renormalization group flow equations (3.8).

We start with equation (3.4) and express λij in terms of λRij. The result reads

λij =
λRij

1 − λRijI1

. (5.14)

Multiplying left and right hand side of the last equation on µ−ε/σ and redefining the

coupling constant gRij = µ−ε/σλRij we infer that

µ−ε/σλij = gRij/(1 − gRijAε−1). (5.15)
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Differentiating left and right hand side of (5.15) with µ ∂
∂µ

we obtain

(−ε/σ)µ−ε/σλij = −βijg
−2
Rij/(g

−1
Rij − Aε−1)2 (5.16)

Now we substitute (5.15) into (5.16) and find beta function up to second order in

small ε and gRij expansion:

βij = (−εgRij + Ag2
Rij)/σ + O(εg2) (5.17)

5.3 Appendix C

Here we derive the 2-loop integral

I2 = I2(µ) = (2π)−2d
∫

ddkddq[(2µ + 2kσ)(3µ + kσ + qσ + |k + q|σ)]−1. (5.18)

The term |k+q|σ leads to the appearance of angle integration. Nevertheless it is pos-

sible to avoid angle integration. The key idea is to use Mellin-Barnes representation

[63]:

1

(X + Y )λ
=

∫ +i∞

−i∞

dz

2πi

Y z

Xλ+z

Γ(λ + z)Γ(−z)

Γ(λ)
(5.19)

Applying MB formula twice we split the sum of two terms containing q integration

into the factor of these terms raised to some power:

I2 =
∫ ddkddq

2(2π)2d

+i∞
∫

−i∞

dz

2πi

Γ(1 + z1)Γ(−z1)

µ + kσ

(3µ + kσ + qσ)z1

|k + q|σ(1+z1)

=
∫ ddkddq

2(2π)2d

+i∞
∫

−i∞

dz1dz2

(2πi)2

Γ(1 + z1)Γ(−z1 + z2)Γ(−z2)

µ + kσ

(3µ + kσ)z2

|k + q|σ(1+z1)qσ(−z1+z2)
, (5.20)
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Now integral over q becomes standard:

Iq =
∫ ddq

(q2)a1((k + q)2)a2
= πd/2kd−2(a1+a2) Γ(a1 + a2 − d/2)Γ(d/2 − a1)Γ(d/2 − a2)

Γ(a1)Γ(a2)Γ(d − a1 − a2)
,

(5.21)

where a1 = σ(−z1 + z2)/2 and a2 = σ(1 + z1)/2. Thus we will be left with integral

over k of the form:

Ik =
∫ ddkk−ε−σz2(3µ + kσ)

2µ + 2kσ
(5.22)

The function under the integral does not depend on the angle and therefore Ik can

be cast into one dimensional integral over momenta:

Ik =
Sd

2σ

+∞
∫

0

dkk−2ε/σ−z2
(3µ + k)z2

µ + k
(5.23)

We will compute this integral using alpha representation.

Ik =
Sd

2σ

+∞
∫

0

dkdα1dα2
α−z2−1

1 k−2ε/σ−z2

Γ(−z2)
exp(−3µα1 − α1k − α2µ − α2k) (5.24)

After momenta integration we obtain

Ik =
SdΓ(1 − 2ε/σ − z2)

2σΓ(−z2)

+∞
∫

0

dα1dα2(α1 + α2)
2ε/σ+z2−1α−z2−1

1 exp(−3µα1 − α2µ)

(5.25)

First we will take care the integral over α2. We do substitution α̃2 = α1 + α2

Ik =
SdΓ(1 − 2ε/σ − z2)

2σΓ(−z2)

+∞
∫

0

dα1α
−z2−1
1 e−2µα1

+∞
∫

α1

dα̃2α̃
2ε/σ+z2−1
2 e−α̃2µ

=
SdΓ(1 − 2ε/σ − z2)µ

−z2−2ε/σ

2σΓ(−z2)

+∞
∫

0

dα1α
−z2−1
1 e−2µα1Γ(2ε/σ + z2, α1µ), (5.26)
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where Γ(λ, x) is incomplete gamma function. The value of the last integral can be

found in [50]. The final result or Ik reads

Ik =
Sd

2σ

Γ(1 − 2ε/σ − z2)

Γ(1 − z2)
Γ(2ε/z2)µ

−2ε/σ3−2ε/σ
2F1(1, 2ε/σ, 1 − z2, 2/3) (5.27)

Inserting (5.21) and (5.27) into (5.20) we infer

I2 =
Sdπ

d/2

2σ(2π)d

Γ(σ/2 − ε/2)

Γ(−ε/σ − 1)2
µ−2ε/σ3−2ε/σΓ(2ε/σ)

+i∞
∫

−i∞

dz1dz2

(2πi)2 2F1(1, 2ε/σ, 1 − z2, 2/3)

Γ(1 − 2ε/σ − z2)

−z2

Γ(1 + z1)

Γ(σ(1 + z1)/2)

Γ(−z1 + z2)

Γ(σ(−z1 + z2)/2)

Γ(ε/2 + σz2/2)

Γ(σ/2 − ε − σz2/2)

Γ(−ε/2 − σz1/2)Γ(−σ(−z1 + z2)/2 − ε/2 + σ/2). (5.28)

First we sum over all poles of Γ(−ε/2− σz1/2) and then over pole at z2 = 0.

The result reads

I2 =
Sdπ

d/2

2σ(2π)d
µ−2ε/σ3−2ε/σΓ(2ε/σ) 2F1(1, 2ε/σ, 1, 2/3)

Γ(1 − 2ε/σ)

Γ(σ/2 − ε)
Γ(ε/2)

+∞
∑

n=0

(−1)n

n!

Γ(1 − ε/σ + 2n/σ)

Γ(σ(1 − ε/σ + 2n/σ)/2)

Γ(ε/σ − 2n/σ)

Γ(σ(ε/σ − 2n/σ)/2)
Γ(−ε + nσ/2). (5.29)

We will look the final result in the form

I2 = µ−2ε/σe−Bε(c−2ε
−2 + c−1ε

−1) (5.30)

To obtain the divergent part of I2 it is convenient to use MATHEMATICA. The result

for coefficients c−2 and c−1 are given by the formula (3.18).
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5.4 Appendix D

Here we present the derivation of formula (3.20). Expanding scaling function

ln(Z) at two-loop order and [15] one can infer that

ln(Z) =
∑

1≤i<j≤p

λijninjI1 −
1

2





∑

1≤i<j≤p

λijninjI1





2

−
∑

1≤i<j≤p

λ2
ijninjI

2
1

−1

2

∑

1≤i<j≤p

λ2
ijn

2
i n

2
jI

2
1 + λijλjk + λikλjk)ninjnkI2

−
∑

1≤i<j<k<l≤p

(λijλkl + λikλjl + λilλjk)ninjnknlI
2
1 +

1

2

∑

1≤i<j≤p

λ2
ijninj(ni + nj − 2)I2

1

+
∑

1≤i<j<k≤p

(λijλik + λijλjk + λikλjk)ninjnkI
2
1 − 2

∑

1≤i<j<k≤p

(λijλik

−
∑

1≤i<j<k≤p

(λijλikn
2
i njnk + λijλjknin

2
jnk + λikλjkninjn

2
k)I

2
1

−
∑

1≤i<j≤p

λ2
ijninj(ni + nj − 2)I2 +

1

2

∑

1≤i<j≤p

λ2
ijninjI

2
1 . (5.31)

By the definition γ = µ∂ ln(Z)
∂µ

. After differentiation we use the formula λijµ
−ε/σ =

gRij + Ag2
Rij/ε, which one can infer from (5.15), and the integral expansions (3.18)

and

I2
1 =

2−2σπ−σ

ε2Γ(σ/2)2
+

2−2σπ−σ

εΓ(σ/2)2
[ln(4π) + ψ(0)(σ/2)] + O(ε0) (5.32)

to derive the following result

γ = − 1

σ

∑

1≤i<j≤p

ninjgRij−
1

εσ

∑

1≤i<j≤p

ninjg
2
Rij+

2

εσ

∑

1≤i<j≤p

ninjg
2
Rij−

1

εσ

∑

1≤i<j≤p

ninjg
2
Rij
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+
∑

1≤i<j<k≤p

ninjnk(gRijgRik + gRijgRjk + gRikgRjk)

(

2

σ2

2−2σπ−σ

Γ(σ/2)2
ln(3/4)

)

+
∑

1≤i<j≤p

g2
Rijninj(ni + nj − 2)

(

1

σ2

2−2σπ−σ

Γ(σ/2)2
ln(3/4)

)

. (5.33)

The critical exponent is the value of this expression evaluated at the fixed point

gRij = ε. It easy to see that the resut is equivalent to (3.20).
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[53] B. Bergersen and Z. Rácz, Phys. Rev. Lett. 67, 3047 (1991).

[54] R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).

[55] G. M. Viswanathan, V. Afanasyev, S. V. Buldyrev, E. J. Murphy, P. A. Prince

and H. E. Stanley Nature 381, 413 (1996).

[56] P. Barthelemy, J. Bertolotti and D. S. Wiersma, Nature 453, 495 (2008).

[57] E. Katzav, Phys. Rev. E 68, 031607 (2003); cond-mat/0303178.

[58] A. Ott, J. P. Bouchaud, D. Langevin, and W. Urbach, Phys. Rev. Lett. 65,

2201 (1990).

[59] M. F. Shlesinger, Nature 411, 641 (2001).

[60] H. K. Janssen and O. Stenull, Phys. Rev. E 78, 061117 (2008).

[61] H. Hinrichsen, J. Stat. Mech.: Theor. Exp. P07066 (2007).

[62] J. B. Bronzan and J. W. Dash, Phys. Rev. D 10, 4208 (1974).

[63] V. A. Smirnov, Evaluating Feynman Integrals, (Springer, 2004).

[64] R. Metzler and J. Klafter, J. Phys. A 37, R161 (2004).



70

[65] F. Bartumeus, J. Catalan, U. L. Fulco, M. L. Lyra, and G. M. Viswanathan,

Phys. Rev. Lett. 88, 097901 (2002).

[66] R. F. Kayser and J. B. Hubbard Phys. Rev. Lett. 51, 79 (1983)

[67] I. Goncharenko and A. Gopinathan, arXiv:1003.5970.

[68] G. Schehr, S. N. Majumdar, A. Comtet and J. Randon-Furling, Phys. Rev. Lett.

101, 150601 (2008).

[69] C. Nadal and S. N. Majumdar, Phys. Rev. E 79, 061117 (2009).

[70] B. Kozma, M. B. Hastings and G. Korniss, Phys. Rev. Lett. 95, 018701 (2005).




