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A Simple Gradient Sign Algorithm for Transmit
Antenna Weight Adaptation With Feedback

Brian C. BanisterMember, IEEEand James R. ZeidlgFellow, IEEE

Abstract—in this paper, a simple algorithm for adaptation of cannot be used directly as a reciprocal downlink channel state.

the complex baseband weights of a transmit antenna array using |n general, transmit antenna algorithms in this environment can
feedback from the receiver is proposed and analyzed. The system be classified as

utilizes stochastic gradient adaptation to maximize the power de- .
livered to the receiver for a constrained transmission power, which a) space time codes;
provides both fading diversity and beam steering gain. Dual per-  b) blind adaptive beam steering algorithms;

turbed transmission weight vectors are time multiplexed onto the c) adaptive steering algorithms incorporating feedback.
pilot signal, and the receiver generates feedback selecting the per- With multiple receive antennas, space time codes can provide

turbed weight vector which delivers greater power. This feedback . . . “ - L . -
is used to provide weight adaptation at the transmitter, and this diversity gain [6], [7] and “multiplexing” coding gain [8]-[10]

adaptation is shown to be an update by a coarse estimate of the through the application of codes across the multiple transmit an-
gradient of the delivered power. The performance of the algorithm tennas, but with a single receive antenna only diversity gain is
is analyzed in terms of convergence and tracking of an AR1 fading possible. These space time coding techniques are “blind,” where
channel, with simulations confirming the analysis. Bit error rate the downlink channel state is assumed unknown to the trans-

(BER) simulations in a dynamic fading channel show that the algo- itt d th . daptation to ch . h | di
rithm outperforms previously proposed vector selection feedback, mitter, an ere 1S no adaptation to changing channel condi-

and in slower fading, the algorithm substantially outperforms di- tions. These algorithms do not provide beamforming or “aper-
versity space time coding. ture” gain. The gains from these codes are diminished when the

Index Terms—Adaptive beamforming, antenna array, stochastic fading channels experienced by the antennas are correlated, with
gradient algorithms, transmit beamforming. no gain when the fades are fully correlated.

On the other hand, “blind” adaptive beam steering algorithms
also have no direct knowledge of the downlink channel but uti-
lize the measured uplink channel to infer characteristics of the

T is generally accepted that the downlink of next-generatigownlink channel. These are then used to adapt transmit antenna

cellular systems will require greater capacity than the uplinkieights. This may require accurate antenna calibration as, for
This is largely due to the asymmetry of data traffic patterns. Fekample, in estimating the angle of arrival and angular disper-
example, a mobile data terminal may download large web sitgion of the received signal to steer the transmit beam [11], or it
while uploading only control information such as IP addressg®ay assume that the long-term characteristics of the uplink and
The use of transmit adaptive antenna arrays at the base stadiownlink channels are strongly correlated [12]. However, these
is a promising area for downlink capacity improvement [1]-[3Rlgorithms do not provide fading diversity, and if the antennas
This paper describes a gradient algorithm utilizing mobile ®xperience independent fading then blind techniques will not
base feedback in order to achieve some of those possible gaieyk, as without correlation between antennas, no correlation

Optimal multiple antenna transmission algorithms can eom uplink to downlink channel can be extracted.
defined if the forward channel state is known [4], [5]. However, In order to benefit from both fading diversity and beam
in mobile wireless applications, the channel is time varying arsfieering, an algorithm incorporating detailed downlink channel
unknowna priori. In addition, many systems use frequencinformation must be used, which in FDD systems requires
division duplexing (FDD), such that the downlink and uplinkeedback from the receiving unit to the transmitting unit.
channels in a multipath environment are not in general the sanbis has led to several proposals for feedback, using training
Thus, the uplink channel state measured at the base stagefuences from each antenna [13], [14] or gradient extraction

of the forward complex channel vector [15]. Feedback of
the complete forward channel state as in [13] and [15] is
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with i) a simple interface requiring the receiver to be awammalization to the weight vector in (1) prior to transmission. In

only of a single dedicated pilot and ii) recursive adaptatiothis way, the constraint is correctly addressed in the adaptation

which allows fine adjustment over time. The dedicated pilot sharacterization and analysis but is not explicitly a constraint

generally required for beam steering with coherent demoden the adaptation. This unconstrained norm reflects the analysis

lation regardless of the specific adaptation mechanism, andaind not a realistic implementation. Because of the normaliza-

this scheme the receiver does not need to know details of tien of (1), it is always the “direction” of the vectar which is

transmit algorithm such as the number of antennas in the arrafinterest and never the magnitude. Divergence of the norm of
Gradient-based algorithms vary according to the reliability is inconsequential.

and precision of the gradient information, from numerical op- The transmitted signal is

timization which may assume accurate knowledge, sometimes w

including second derivatives for Newton step adjustment [16], t(n) =1/ Pt(f;%ﬁc—stmﬂqc (n) 1)

to signal processing applications which apply a stochastic esti- [Iwll

mate such as least mean squares (LMS) [17]. The gradient algo-that the received signal is

rithm of this study considers a more coarse stochastic approach L1

with only binary (signed) gradient information, which operates . \/T H W

upon the usable power delivered to the mobile as the metric to (m) = 3V Pinect [[w || Ptraffic (n=l)+nn) @

be maximized. Weight vector perturbations and feedback are =0

used to extract a coarse estimate of the gradient of this metW#ere s...mc(n) is the modulation sequence(n) is a com-

which is then used to adjust the transmit antenna weights. Thi€x zero mean Gaussian with variaree; representing the re-

paper will provide an analysis of the convergence and trackiggived noise and interferencBl . is the transmit poweny

performance of the algorithm. The analysis includes the effdégtthe N7 x 1 prenormalization transmit weight vector, ands

of the noise in the gradient estimate, allowing for an adaptidie Nz x 1 conjugated channel response vector of/thepath.

tion rate optimization that considers the tradeoff of the inducé®r the moment, this formulation includes no pilot signal and

noise versus the tracking rate. In addition, bit error rate (BERpsumes perfect channel estimation for demodulation at the re-

simulations show that for moderate fading rates this algorith@@iver.

outperforms previously proposed algorithms. Defining the mobile’s gain matrix as

This paper is organized as follows. Section Il introduces the 1
general multiple transmit single receive antenna system model, R = Z cicH ©)
eigenanalysis notation for the system, the capacity motivation 0

for selecting transmit weights to maximize the delivered power, . L
and a brief comparison of transmit weight adaptation to blirfd the total usable signal power at the receiver is given by
diversity space time coding. Section Il introduces the gradient wHRw

sign feedback algorithm. Section IV provides the signed feed- wHw (4)
back gradient statistics. Section V analyzes the convergence of
the system in a static channel. Section VI analyzes the tracki@g

performance in an AR1 frequency flat fading channel. Detailed ) o . o
derivations are located in the Appendices. In this application, the ultimate cost function is BER or ca-

pacity loss. The ratio of the received power to transmit power
is a valid surrogate for either metric, particularly in the case of
either DS-CDMA with large spreading gain, as is shown below,
A. System Model or a narrowband system with frequency flat fading. With the

The system is analyzed with Nyquist pulse shaping so thaygight normalization applied prior to transmission as in (1), the
discrete time representation of the waveforms is adequate. TRetric used by the algorithm, which is to be maximized, is given
system containdV; transmission antennas at the base statiopy the Raleigh quotient
and there are a maximum éfdelay paths. A wideband system PR WwHRw
might provide several such paths, while a narrow band system =P whw
would giveL = 1. In order to simplify the presentation, multi- wew
path terms in (2) have delays that are a multiple of the Nyquist The gradient of this metric with respectois given by
sample time. This leads to a clean eigenstructure by eliminating
ipterpolation jssues and provides a clearer picture of the algo- g(w) =V (J) =2 (
rithm properties.

The vector applied to weight the transmission of the multiple The subtractive term in (6) results from projection of the gra-

antennas will be constrained to have unit norm so that it do&s . . . .
. : : ient into the subspace orthogonattoSince adjustment in the
not impact the total transmitted power. The analysis addressgs

the weight vector norm constraint by allowing the norm of thewectlon ofw determines the transmission power [or would if

analyzed weight vector to be unconstrained and applying a nor2t is worth noting that in the case of multiple receive antennas, (2) applies to
each antenna, and (3) is defined by performing an additional summation over
IThis is counter to more the typical gradient algorithm formulation where @ach receive antenna. Hence, the structure of the problem and solution is the
cost function is minimized. same, but the rank is increased.

PR — p(T).

Performance Metric, Gradient, and Eigenanalysis

Il. PRELIMINARIES

()

Rw wHRw
wHw (WHW)Z ) . (6)
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not for the power normalization in (1)] and not the transmissiadd. Channel Capacity
“direction,” this projection provides for superior gradient adap- 14 derive the capacity of this system, the vector frequency

tation given the power constraint. response of the channel is given by
Eigenanalysis is used in the system evaluation. The gain ma-
trix is decomposed as follows, where the indices reflect magni- L-1 .
tude sorted eigenvalues, wity being the largest. C(z) = Z cz . (16)
k=0
Nr—1
R = QAQY = TZ Andna. ) The_n, the capaci?y (i_n bits per second per Hertz) of this dis-
=0 crete time channel is given by
Then the weight vector can be represented in terms of th% 1T oo (1 POwHC(e7)CH (eI )w J
eigenmodes as an eigenweight veator Toon | 082 + 202whw w
17
u=Q"w. (8)  InaDS-CDMA system with large spreading gain, the signal
i ) i density to noise density ratio at each frequency is small so that
The eigenweight representations of (5) and (6) are the capacity formula is approximated using a first-order Taylor
HA expansion as
J= ©) | |
u ol ™ POwHC(e7")CH (e )w
g(w) =iy QA —JI)u. (10) D 202 In(2)wHw
P(R)
The analysis will consider the second moments, so the vector =5 3 o (18)
. : . ; 2021n(2)
v, with elements),,, is defined to be comprised of the squared ’
magnitudes ofi. Then, with Hence, the capacity is maximized in this context by selecting
- w to maximize the received power. Similarly, we can show that
1=[1 1 ... 1] (11) in a DS-CDMA system this power maximization minimizes bit
V], =v. = [t |? (12) and frame error rates in additive white Gaussian noise. In the

rank 1 case (single time resolvable path), this conclusion is triv-
we define higher order values dfas./*) as in (13) and find jally extended to narrowband systems. Even in systems which
the following: may be more “bandwidth limited” than DS-CDMA and yet un-
dergoing nonflat fading, power maximization is clearly a rea-

JH E% (13) sonable adaptation objective, although it is no longer neces-
v T sarily optimal. Hence, maximizing the received power for a con-
J=JO = 1" Av (14) strained transmission power is an effective strategy for weight
17v selection. The received power is maximized by selectings
||g(w)||2 :%ﬂ (A — JI)2 v qo, the eigenvector corresponding to the largest eigenvalue of
(17v) R so that for arbitraryp
4 2 2
=37y (79 = 7). (19) Wopt_ _ v, (19)
[[Wopt|

In contrast to the MSE problem in receive systems [17], the o ] ) o
gradient does not consist of independent terms in each eigBRI L = 1, this is the matched filter weights [3], [15], providing
mode, as the-JI term of (10) introduces intermodal depenPoth fading diversity and beam steering gain.
dence. This coupling arises from the weight normalization (5), Wopt _ is Co
which constrains the gradient to be orthogonaito Wopell — ¢ lcoll”

The gradient (10) of the Raleigh quotient is zero only when
the weight vector lies in one of the eigenspaceRdf.g., the
nullspace or the principal eigenspace) [18]. Hence, when oRe
eigenmode dominates the weight vector the resulting gra-  Here, a brief comparison of optimal adaptive beam forming
dientis small. The only local maximum is the global maximunand diversity space time coding is provided. Optimal adaptive
occurring within the principal eigenspace. Within the span @eam forming will outperform blind diversity space time coding
other nonminimal valued eigenvectors, a saddle point gives risecause the former assumes that full channel state informa-
to the zero gradient, where the surface rises in the directiontmfh is available at the transmitter, e.g., from a feedback algo-
larger valued eigenvectors and falls in the direction of smallathm such as that introduced in Section IlIl. When the receiver
valued eigenvectors. If the principal eigenspace is not unigus only a single antenna, space time coding techniques (e.qg.,
then the solution to the power maximization problem is ng86], [7]) can provide diversity but cannot provide the multi-
unique and lies in any of those principal eigenspaces. The oplgxing coding gain seen in multiple-input multiple-output sys-
minimum is the global minimum, occurring as a bowl bottom items (e.g., [8]-[10]) so that a performance comparison based
the minimal eigenspace (the nullspace if it exists). only on received power can be considered adequate. In the case

(20)

Comparison to Diversity Space Time Coding
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of a diversity space time coding transmission, a general formas discussed above, and the norm constrained adaptation re-

lation of the transmission vector is sulting from its gradient are different from the quadratic MSE
cost function applied in SA receivers.
() Straffic,0 (1) The system can be considered to be a DS-CDMA system
tsre (n) = | —taffic | Ftraffic,1 (n) ) (21) with a code multiplexed pilot or a time division multiple access
Nr system with a time multiplexed training sequence. The multi-
Strafic, Nz —1 (1) plexing type of the system is not specified for the analysis as

For a good space time code design, this transmission veéfd? T‘OI rglevant to the bas.ic properties of th_e algorithm. Time
is uncorrelated since the diversity gain is obtained by deliveri ultiplexing would be obtained with appropriate zeroing of the

energy to as many of the spatial modes as possible (e.g., ic and pilot baseband signals. The base station transmits the

is true of the schemes of [6] and [7] with independent symbgﬁ_ta with a_weight veptow, whereas the pilot is tra_nsmitted
using two different weight vectorsy.,., andw,qq, which are

inputs).
bus) perturbed from the tracked transmission weight vestorAll
(T) of these weight vectors are constant during a measurement in-
®src = E (tsretdpc) = “N—aﬂicI. (22) terval. The transmitted waveform for the specific mobile is given
T by

w

This is in contrast to the adaptive weight scheme, wherein the o)
t(n) =V Ltraffic ||W|| Straffic (n)

transmission energy is concentrated in a single (optimal) spatial
mode and the autocorrelation is of rank 1.

T
+ Plgil(zt,  Spilot ()

H
®=E(tt") = Pfifﬁc ww 5 = Pfﬂﬁ&oqg]. (23) Ty if (|| ==even
||W|| . Wodd if | —— odd . (26)
Twoaall ! (LMJ ==0 )

The ratio of the power received in the adaptive weight scheme

versus the diversity space time coding scheme is Here,n is the Nyquist sampling time indeX/ is the duration

of each even/odd perturbation slet,.s.(n) is the information

PB4 (®R)  Nrh o bea.nng m((;c)iulgted symbolﬁ,ﬂot.(n) isthe p||0tseql.1er.1ce mod-

P " i (®groR) | Npo1 (24) ulation, P, ). is the mean traffic channel transmission power,
STC

> M andPrggt is the mean pilot channel transmission power. The se-
k=0 quUeNCeSiamc(n) andspio: (1) would typically be orthogonal
Nt P& <N (25) by code or time multiplexing.
min (L, Np) = p{R) —~ - The receiver generates feedback by determining whether

the even or the odd time slot provided the larger received pilot

Hence, we see that optimal adaptive weighting will alwaysower. The feedback bif is “+1” to select the even slot or
outperform the diversity space time coding scheme with“a-1” to select the odd slot. Note that in the case of resolvable
gain that increases as the ratio of the number of antennasaltipath [rankR) > 1], the receiver will be tracking several
the number of paths (i.e., rank &) is increased. The per- versions of the received pilot, making channel estimates for
formance in terms of this power delivery translates directly ®ach path and combining these channel estimate powers prior
instantaneous capacity or bit/frame error rate for flat fading @ doing the decision comparison, as is implied by (5). For the
DS-CDMA with large spreading gain, as has been discussedg@pose of this discussion, it is assumed that the base station
that this gives a precise performance comparison in these caseseives the feedback bit instantaneously after the completion
For the single path case, the gain of optimal beam formirg the measurement period. Given this feedback, the base
over diversity space time coding i$) - log,,(/Nr) dB at all station generates new transmit weights as follows.
time instants. Other cases would require detailed consideration

of equalization techniques and coding structure for a moygen feedback is received at beginning of

thorough performance comparison. new test interval
if ( feedback == +1, indicating the even
Ill. ALGORITHM DEFINITION channel was better)

The proposed algorithm uses binary sign feedback to pro-W < Weven
vide a gradient estimate to the transmitting unit. This has som@se
similarities to the “sign algorithm” (SA) applied in some re- W < Wodd
ceive systems attempting to minimize mean square error (MSI—?)nd if ]
[19]-[21]. The SA is an approximation to more precise gradienP < New test perturbation vector
techniques such as LMS, motivated by the desire to minimiz&even < W + [w[|3-p
the complexity of the weight update. The motivation for using @Vedd < W — [wl|3-p
gradient sign in this transmit system is very different: the mini-
mization of the amount of information required as feedback for The test perturbatiop is generated as a zero mean complex
weight adjustment. The Raleigh quotient metric in this systemandom Gaussian vector with an autocorrelation mafixrhe
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P»Rx modem

Spi[m
Rx antenna coherent channel estimate
(even, odd) slot —, sliding
window ¢
I traffic
ASS A SN
W even W , ’
Npxlo < Nyxl Tx array
s 3 accumulate
Ky t pilot and dump A

oding. traffic diff

data . codm&,', iff iff
interleaving ¢

-

w traffic
Nyx1

feedback (even, odd) slot /5 1\
weight ‘IW\ r A

adaptation

Fig. 1. Diagram of the system with example of efficient receiver channel estimation for coherent demodulation and antenna adaptation feedback.

parametep is the adaptation rate, with a largémiving faster New perturbed vectors (27) and (28) are then calculated for
but noisier tracking, as is seen in the following analysis. THame: + 1, and the process continues iteratively.
normalization of the even/odd weight vectors applied in (26) A block diagram for transmitter and receiver of this system
results in equal power transmission in both even and odd tiriseshown in Fig. 1, which in this case illustrates recovery of a
slots, and hence, the mobile selects the better weight vectorglirgle path. As shown, an efficient receiver for this mechanism
rection rather than a larger transmission power, according to ¢&n use a sliding window filter to generate an estimate of the
and (10). Note that the norm of the weightis allowed to grow composite complex scalar channel of the traffic transmission
for the analysis, but a practical implementation would maintath,.g., summing the received pilot channel estimates over an
normalized vectors at every step. Note also tkds the mean equal number of both even and odd time slots. This estimate
of the even and odd pilot weight vectors, so that obtainingcan be used directly for coherent data demodulation since the
channel estimate from the received pilot for the coherent dgata was transmitted with the mean of the even and odd pilot
modulation of the traffic is straightforward, as discussed beloweight vectors. At the same time, a difference channel estimate
To further illustrate the algorithm operation, let the time inde&s;« iS generated via an accumulate and dump unit since it is not
1 indicate the algorithm measurement/update interval, the dureeeded continually for demodulation. From these two estimates,
tion of which is an (unspecified) integer multiple ol2times the channel estimates for even and odd time €lgts andé,qq
the Nyquist sampling interval (indexed. At time 7, the weight are generated, which ultimately provide the feedback.
vectorw(z) is applied to the traffic, and the weight vectors for
the even/odd pilot time slots are IV. GRADIENT EXTRACTION
Weven(i) =w(i) + [|W(9)|| 3 - p(4) 27) In the followi_ng, the fgedbgck is assumgd to be generatgd by
) _ . ) the receiver without estimation error [as in (29)] and received
Wodd(1) =w(i) — [[w(@)[| 5 - p(2). (28) by the transmitting unit without error. The chaneelnd hence

Th ived pilot ch | . by i . Zﬁ, is nonrandom (or taken as given).Afis small, then the

d Zéef:e"f Tphl Odc anne E’Ot\_'ver 'TS given ty(ljnse[[rllng ( st statistic/’ can be considered to be generated as a weighted
Egivér is)g;ri]vfan).by tr?e gi(fiflzlrg?lcseablestt\Ing;r??hrgpgeeasu?/e q gvrgr'] gif(fjerential step. That is, the test statistic at tihigthe gradient
odd received pilot power, which in the case of perfect power e%?w(m (6) weighted by the perturbation vectp(7).
timation, gives

N 7G) =P (14 BIw(@)lIRe (g (w(i) p(i)) )
@) = Pyt ; P, (7 - 5wl Re (s (w(i)™ b)) )
(w(i)+Allw(@) - p(i)” R (w(i)+lw()] - p(i)) D gl - (o e (wli Wi o
X( W@ + 8wl 2O =Py BIw ()] (p() g (w(i)) + g (w(i))" p( ))-
. : W H . : (32)
_(w(i) = Blw@)l - p(i))” R (w(i) — Bllw(@)] - p)
lw(i) — Bllw(@@)] - p()| ' From (31) and (32), the update at the transmitter upon re-

(29) ceiving the feedback is then given by

The decision feedback(:) from the receiver and the subsew (i + 1) = w(i) + 8 ||w(i)]]
guent weight update at the transmitter are sign(Re(p(i)7g (w(i)))) p(i). (33)

d(1) =sign(7'(i)) (30)  Asis shown in Appendix A, withp comprised of i.i.d. Gaus-
w (i + 1) =w(i) + d(i) - B||lw()|| - p(i). (31) sians ang; given (or nonrandom), this update takes the form of
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a step of fixed magnitude in the direction of the gradigrfin  the channel gain matriR. plus a scaled identity. By the prin-
expectation) plus a zero mean error tefm ciple of matrix power iteratioh[18], iterating such a modifica-
tion tends to extract the eigenvector corresponding to the largest

eigenvalue of the premultiplying matrix. In this case, the largest
w(i+1)= —-p ||W i non-negative eigenvalue of the premultiplying matrix is associ-
( )) ated withqg, and hence, the iteration tends to extract the desired

” ( ol + B lw(i)| -e(i). (34) eigenvector-space and maximize the power delivered to the re-
ceiver. While there are degenerate conditions with large nega-

The algorithm by its basic formulation is a “descent methodive eigenvalues, it turns out that such conditions are transient
[16], and from (34), it is seen to be a stochastic gradient @&nd do not yield undesirable behavior. _ _
gorithm, performing steepest descent adaptation in expectatiod e behavior is best analyzed within the eigendomain. In-
with a cost function-.J, which is given by sign inversion of the serting (8) and (10) into (34), the eigenweights of the weight

maximization metric/. vector adapt as follows:
From (86), the variance of the error vector cast into each of B0 )
the eigenmodes is given by w (i t1) = u 14 \/5 2 —J(1
(i41) = unli): W@l Te W]
H H
E (Q¥ee!Q) = 21 - 2%. (35) +6 |[w(i)|| - atle. (38)
™
g

One can approximate this weight adjustment by assuming a
The variance of the update in th¢h eigenmode is given by noiseless update so that the new value,pfs given simply by
the expectation of the step (i.e.= 0). However, it is more in-
H H 2 (A —J) vy, formative to consider the expectation of the magnitude squared
[£(Qee Q)]nn -7 Em' (8 ofthe eigenweights (the vecter(12)), which allows the effects
of the coarse gradient estimation of the update to be included.
It has been shown that the weight update defined for the algdien, from (36) and (38)
rithm provides an estimate of the gradient of the delivered power
performance metric. This estimate provides the two-norm no# (vn (i + 1) [v(i)) =v. (i)
malized direction of the gradient in expectation. The normaliza- ) 28 (A — J(i)) 2
tion of the gradient estimate is to be expected since the binary < + \/7 W)l - e (w(z’))||)
feedback does not provide any information of the gradient am-
plitude but only of the relative magnitudes of the gradient com- + 4% ||w(i || q (eeH) - (39)
ponents. Note that a Gaussian estimation error at the receiver, in
(29), would simply modify the normalization of the gradient in With the error variance from (36) and some simplification
(34) since this would be an additional Gaussian componentuging (11)—(15), the algorithm adaptation update is parameter-
the summation of (78). In addition, a feedback bit error probézed only byA, 3, and the current state(:).
bility of p modifies the derived update expectation derived in by
a factor of ( — p). Both modifications also require appropriate Gty (V(i)) —I+\/§ 20
adjustment to the update variance. Incorporation of these effects ~* v(i) 2 L3
(A 17A 1Tv(7) I) 17v(7)

is beyond the scope of the current work.
. (A ITYNA0] I) + 242117
AAY

V. CONVERGENCE INSTATIC CHANNEL
A. Derivation of Learning Curve (40)

The convergence can be visualized by inserting the gradient E(v(i+DIv@)= Gag (v(i)-v(i).  (41)

(6) into the update (34), giving Extending the expectation of (41) ove(:) is nontrivial. We

make the approximation

w(i+1)
2. 4|lw@)|| E(v(i+1)E(v(i) = Gayg (E (v(2) - E(v(i). (42)
U H (WH&V@) (‘:,VVZ(( ))rv{vzg))z I) w(1) H Applying the approximation (42) iteratively gives
R wliRw) [\, -
8 <wH(')w(z‘) (WH(§)w(i))? )) Q E(v(i)|v(0) = kl;[OGalg (E (v (k)] v(0) v(0). (43)
+ Blw(i)] - e(:). (37)

3Matrix power iteration yieldslim- (A;"A"b) = (q{!b) - qo, whereX,

. . . andqo are the principal elgenvalue and eigenvector, respectively, of the Hermi-
Hence, itis seen that the expectation of the adaptation up symmetric matrixA, so that ifq/’b # 0, then the principal eigenvector

takes the form of a matrix premultiplication of the weights byesulits.
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For conciseness, the approximation implied by the iteratigesired adaptation toward the principal eigenvector. However,
computation of (43) will be denoted in degenerate situations, some of the diagonal elements can be
negative. This indicates a condition where the weight vector lies

i—1 so close to a single eigenspace that the adaptation, which recall

V(i) = H Gaig (V (k) - v (0) is perpendicular to the weight vector itself and constrained to
k=0 be unit norm, will pass through the nearby eigenspace causing

=F (v(i)|v(0)). (44) the weight projection into lesser eigenspaces (with smaller

associated eigenvalues) to change sign. One particular example
Finally, this result is plugged into (14) to provide an estimatean be visualized if the weight vector is near the principal
of the mean performance mettic eigenspace and the update naisis ignored. In this situation,
the adaptation is forced to be nearly orthogonal to the desired
1T A%(i) eigenspace (i._e., orthogonal to the weight vector itself) and
1T7‘7(L) (45) has a constrained norm. The adaptation would be toward the
desired eigenspace but pass through it and invert the other

It is worth making note of a degenerate adaptation condil9enweights, like passing over the north pole and effectively
tion. When the weight vector lies very nearly within a singl#verting the east-west position. Hence, these degenerate situa-
eigenspace, the gradient vector norm approaches zero. In {§s would only arise when the distance of the weight vector
condition, the normalization in (39) and (40) approaches zef§,an eigenspace is small relative to the step izg'r - 3.
and some of the diagonal components of the maBix, can ~ AS has been discussed, the Raleigh quotient performance
blow up and approach negative infinity. This would seem t&€tric contains no local maxima so that there are no inverted
violate the obvious requirement that the resultant eigenenefW!s into which the algorithm may become trapped. However,
vectorv must be all non-negative. However, the update (39) #adient algorithms can also stall when the gradient is near
clearly all non-negative, and the update in (34) is clearly well b&€r0. as at some local minimum or saddle point (i.e., within a
haved. Closer examination of the gradient norm given by (15)n9le eigenspace) [17]. For the Raleigh quotient metric with
and the update equation shows that the diagonal en@yagr- this algorithm, these conditions are degenerate, as previously
responding to a particular eigenweight can only approach negagntioned. Two factors mitigate against stall problems with
tive infinity as the eigenweight itself approaches zero so that tHéS algorithm. First, the normalization of the applied gradient

overall process remains well behaved. However, this degenerdidate (which causes the analytic degeneracy) helps to avoid
condition does present analytic difficulties. stalling. When the gradient approaches zero, the rate of adap-

tation of the algorithm will not be reduced since the norm of

the expected value of the adjustmentwnis unchanged. This

is somewhat similar to normalized-LMS [17], but here, the
The convergence can be visualized by the matrix power it§{zight update step size itself is fixed (in expectation). Note

ation formulation of (37), where the weight vector tends towaiiat this is the near-degeneracy (near zero gradient) working to

the principal eigenvector dR, as desired. The update variegenefit the algorithm. Second, the weightet” term in the

E(J(@)|v(0))

12

(i)

B. Discussion

from matrix power iteration in three ways: update generato6i,, represents the introduction of weight
i) error vectore; noise through the application of the random perturbation vector
i) premultiplying matrix that is projected orthogonal to theso that all eigenmodes are excited. This pushes the weight
currentw; vector state away from those degenerate potential stall inducing

iii) scaling of theR component of the pre-multiplying ma- locations where the primary eigenweight @f is near zero.
trix that is varying because of the update normalizatiofihis noisy modal excitation is somewhat analogous to the
by the norm of the gradient. stall mitigating properties of the leaky-LMS algorithm [17].
The noise introduced byis averaged out through multiple iter-Since this induced noise has a greater root-variance than the
ations, establishing the tradeoff between fast convergence vgfiadient update magnitude [compare (85) with (86)], it should
a larges and a smaller residual weight error with a small be expected that it is not possible for these degenerate states to
Since we are not interested in the magnitude of the vestor Persist or arise to any relevant extant.
we can note that the latter two issues modify the magnitude of
the directional change of but not the direction. Hence, these
do not indicate any problem with a general convergence. Whffle Numerical Examples and Simulation
the orthogonal and fixed norm nature of the update indicates the
convergence will never settle closer than one update step sizeThe above results have been verified by simulation. The first
in practice, this effect is overwhelmed by the update noise. Thnulation example shows the convergence of the métead
maximum gradient norm is derived in Appendix B, which givesigenweight energiesfor a rank 2 (two path) case withir = 4
some insight into minimum adaptation rate since this divides thatennas to illustrate the modal convergence and stall avoidance
adaptation components of (37) and (40). characteristics. Then, examples of the melrare presented for
In nondegenerate conditions, the diagonal term&gf, are arank 1 (one path) case for bayr = 2 and Ny = 4 with var-
non-negative, and the diagonal element corresponding to tbes values of3 to show the convergence times in a comparable
principal eigenvector is largest in magnitude. This causes tamvironment to the tracking simulations of Section VI.
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=+ single sim realization
-+ sim mean
—&— analysis, w noise
| =& analysis, noiseless approx. |3

— analysis

6 2 4 6 & . i i i i i ;
update samples update samples 0 5 10 15 20 25 30 35 40
update samples

Fig.2. Convergence of the eigenweight energiésr first example simulation
and analytic from (43)N, = 4, 5 = 0.1, Ay = 0.7256, A; = 0.2744, and

As = As = 0 (two paths). Fig. 3. Convergence of the metric First example, simulation, analytic from

(14) and (43), analytic with noiseless approximation of (38). = 4,3 = 0.1,
Ao = 0.7256,A; = 0.2744,andX, = A3 = 0 (two paths).

The first simulation example uses two paths with randomly
selected coefficients generated as real Gaussians normalizegd yss from the ideall,,;, = Ao. For comparison, curves are

the Frobenius norm over both vectors so théR) is unity. generated for a single realization of the simulated metrithe
04325 —0.2192 mean over the 500 simulations, the analysis of (14) and (43)
_ = with noisy update, and the noiseless approximation computing
. 0.0471 0.2150 . o o\ .

Example 1:[co ei]=| ) oea _(ss1g |- (46)  the update of (38) witke = 0. The initial conditions provide

04371 0.1983 a starting point with a-44.2 dB loss from the optimal weight
_ ' ' _ vector. The noiseless update curve shows a weak initial adapta-
The eigenvalues for the resultant matixare given by tion as the eigenmode excitation due to the noisy update does

. not occur, and the weights stay stalled near the zero-gradient
[Ao ... As]=1[0.7256 02744 0 0]. (47) at the nullspace. This noiseless curve eventually catches up and

The performance metric (9) is dependent on the magnitud(?as the best steady-state pe_rformange with the weights_bouncing
and independent of the phasewfand given the post-normal- back and fqrth across the pr.|nC|paI eigenspace. Analygs of §14)
ization of (14), the ratios of the entrieswfre relevant, whereas and (43) with noisy update is nearly identical to the simulation

their absolute magnitudes are not. Thus the initial conditions c&l¢an: and the weights settle to a loss of abdi dB from the

be captured as the ratios of the elements ofhe initial con- °Ptimal- _

ditions selected for the simulation represent a very poor state '€ sécond and third convergence examples are performed
where the energy of the desired mogdgis much smaller than with a _rank one channel (single path).. In this case, the c_hannel
the other modes. In order to demonstrate the performance ne$faior IS arbitrary, andy = 1, cxzo = 0 is selected. The weight

potential stall location, this initial state is near the zero-gradieYn‘j::‘_CtOr is again initiali'zed a}ccording t.o (48) (a pessimistic con-
location at the bottom of the null-space bowl.in The initial dition). The value ofj is varied to provide the convergence time
state is defined by versus adaptation rate, and the meffis shown for simulation

and analysis in Figs. 4 and 5. As one would expect, a lasger
vy (0) = 100 - vg_y (0). (48) provides a faster convergence with a noisier final result.

The simulation is performed with = 0.1. Fig. 2 shows the VI. TRACKING PERFORMANCE
convergence of the eigenweight energietoward dominance )
of the principal eigenmode, showing an average over 500 siftr- Réduced-Rank Analysis
ulations against the analytic result of (43). The simulated andA tracking analysis for a simplified system is presented, with
analytic results are nearly indistinguishable. The stall mitigatiansingle time resolvable patl (= 1) undergoing AR1 Raleigh
from the excitation of every eigenmode is visible in the first stefading, independent across all antennas. Since the time varying
at time index 1; bothy andw; jump (in expectation) from near gain matrix (3) is now of rank one, the weight vector can be de-
zero to approximatelg3? - 17v = 0.02-17v (=17 dB). From composed into two constituent eigenvectorsRoif the eigen-
there,vy grows to dominate the weight vecter by the eighth vectors are properly selected.
update sample and, finally, to abou0.6 dB of the weight en-  We now have some notes on notation. In Appendix C, a
ergy (17v) in steady state. The lesser eigenspace energy prime mark is used to distinguish the reduced-rank notation
converges toward-12.8 dB, whereas the two nullspace enerfrom the full-rank notation, but this is omitted in the following
giesvy andwvs both recede to about14.7 dB of the weight to avoid notational clutter. In this section, the vectarefers to
energy. The value off for these cases is shown in Fig. 3 ashe 2x 1 reduced-rank formulation defined below. In addition,
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Then, the weight vector can be represented in terms of these
eigenvectors as

u=Qf w (51)

2x1 2)(]\(7’1‘ ]\TT><1.

Again, the vectow is comprised of the squared magnitudes
of u.

e e coen

=[BT e

& B=0.01 .
b p=0.031623 The performance metric is
2] ¥ p=0.1 v
10 <1 p=0.31623 J = 0. ||c||2. (53)
© sim vo + V1
e — analysis vo gives the portion of the “energy” ok that lies in the de-

0 10 20 30 40 50 60 70 80 sired direction, which is received by the mobile, andis the
update samples portion of the “energy” ofw, which is in error and cannot be

Fig. 4. Convergence of the metritfor the second example, simulation andrecelved by the mobile.
analytic from (14) and (43)N+ = 2, Ao = 1, andA; = 0 (one path). .
B. Dynamic System Model

2
10 & 1 1 ; " ; ; ! The fading channel is defined as a first-order autoregressive
‘ ‘ : : : : ‘ (AR1) complex Gaussian process with a zero mean complex
Gaussian stimulus.

_ c(i+1) = ac(i) + x(4). (54)

m

A3 The channel is uncorrelated across the antennas so that the
<o1o” autocorrelation matrix ok is

o

7’5,]- _ B — 1 &, = E (xx) = 2021 (55)

0 Py =U.

4[] b p=0.031623
1078 < p=01
<l p=0.31623

The parametes is used in the analysis, which is defined by
the expectation of the inverted scaled chi-squared distribution

- sim given as follows:
— analysis : : : : :
1072 n N i i i i i 202 1— a2
0 10 20 30 40 50 60 70 80 s=FE T 5| = a4 ) (56)
update samples a? |lc(d)]| a?- (Np —1)

Fig. 5. Convergence of the metriE for the third example, simulation and . .

analytic from (14) and (43)N; = 4, ), = 1,and\; = A, = A3 = 0 (one C. Dynamic Performance Analysis
ath). . . . .
path) The tracking performance will be considered by deriving

the overbar distinguishing the update in expectatidrom the expressions for a Fransmon mat-nx applied to Fhe e|g§nmodal
vector representation of the weight vecter This transition

true eigenenergy vecteris omitted, and all analysis is subject

to the expectation approximations applied to obtain (44) ahgftrix Incorporates the effect Of.bOth the algorithm u pdate
(45). and the channel change for one time step. Each step is shown

The first eigenvector is the normalized channel vector. g? be a multiplicative transformation of the vectorwith the

other eigenvalues are zero and their eigenvectors are arbit acl’ljipwfng approximations:

within the nullspace (orthogonal to the channel vector). Hence, 1) independence of the channel vector norm from update to
a specific eigenvector set can be imposed wherein only the first_ uPdate; o .

two eigenweights of the weight vecter are nonzero, and the 2) second-order Taylor approximation of the fading channel
second eigenvector is given by the normalized projection of _ update orvo. .

w orthogonal toc. The first eigenvector represents the desired 1he first assumption will more closely apply for large num-

weight vector, and the second represents the error vector. 1i§&S of antennas as the channel norm approaches a constant in
relevant eigenvectors are expectation. The second is reasonable because the expectation

of odd order terms is zero, and the fourth-order term will be

do - (49) small for small values ofl(— a).
el The step update of (34), which assumed perfect receive
(I— ITCCII\{) w channel estimation and no feedback bit errors, is translated
Q= - (50) into a simplified notation for this rank one situation (only one
H (I - ﬁzuz) WH resolvable path). As shown in Appendix C, the reduced-rank
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update formula can be expressed with a simplifie¢ 2 Hence, in the steady state
generator matrix (the prime mark distinguishing reduced rank
notation in Appendix C is omitted) as follows:

_ HGoo—GiaE \/(Go,o —G11)’ + 4Gy .G
B 2G
~(i) = UO(Z_) (57) This gives rise to a fourth-order polynomial-n

4 2 3 2
Gag (v(4)) = <1 - 2\/g-ﬂ7(i)> I v ((s+26%) (Nr = 1)) + v (2\/;ﬁ - (sNp — 1))
+

72

. (63)

+77 (Np = 2) (282 + 5))

2 . 1 0
24/ —- 7 1
- B (@) +~71(i) [0 0} +’Y<2\/§[3'(3NT_1))
1 1 T
+2ﬂ2 |:NT—1 NT—1:|' (58) —2[)’2—8:0. (64)

As shown in Appendix D, defining from (56) as a function of ~ Two of the roots of this equation are givenfy= +;. These
the AR1 parameter, the second-order Taylor approximation ofoots are not of direct interest for this problem sinéeis pos-
the effect of an AR1 increment on the eigenenergiés given itive. The remaining two roots are given by (65), shown at the

by bottom of the page.
Of these two roots, one is negative and thus does not satisfy
G — (I s [1 — Ny 1 D ‘ (59) the original definition (57) [in (58) and (60)y is non-nega-
chan Npr—1 -1 tive]. Hence, the additive root is the only root consistent with the

problem formulation and gives the solution to the steady-state
The measurement that leads to the algorithm update is baggRie ofy. This gives the steady-state solution for the expected
on the channel iterated one step from its value of the last tirggrrelation values, by using
slot. Hence, the effect of one iteration is captured by considering )
the operation of first the algorithm updat,;, followed by the 2 7 |stcady state (66)
channel updatés ..., This is described by the matré in (60), 00 + V1 | tendy state T 14+ 72|Steady -
shown at the bottom of the page.

The effect of an iteration of both the algorithm and chann%_ Discussion and Numerical Results

change is then approximated as

Equation (65) provides a mechanism for evaluating the ef-

v (i+1)= G (i) v (i). (61) fecuveness.of an adaptation rafiéorafadmg rate of the AR1
2x1 2% 2 2x1 process. It is of interest to note that wjth= 0
If a steady-state solution for (61) exists, then the steady-state 72| — ; (67)
vectorv must be one of the eigenvectors®f The eigenvectors steady state,f=0  Np — 1
of this 2x 2 matrix are given by This is a confirmation of the common sense solution in this
_ case, wheré /N of the weight vector energy lies within span
+G0-0*Ghli\/(G‘J;*Gll)’HGOJGLO of the channel vector and the remainder is in its nullspace.
r= (62) To confirm the applicability of this analysis, simulations were
G0 performed forNr = 2 (Figs. 6-9) andVr = 4 (Figs. 10-13)
G (’7(5)) EGchan(;'alg (V(L))
14+2/2 - By1(0) (1= s (Np = 1)) + 26 — 5 (Ng — 1) 267 45— 2,/ 2 Bsy(i)
(s+ 25,/2 - By 1(0) + 26%) (N7 = 1) 142 (5= 1) /2 (i) + 28 (Nr — 1) — 8
(60)
ﬁﬂ. (1—-sNr)+ \/4(NT —1)B*+ (2sNg (sNp —2) + 2 + 4s(Ngp — 1)) 2+ (Np — 1) 52
'7|steady state — (s+28%) (Nr — 1) (65)
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0 . BER with B=0.22284, 2 antennas
10 ; ; : — : T
-0.5 : : ‘ ‘ I I : : ‘
_1 : 1071 .......................................
) 5
~ 1.5}
7 r : : :
2 -2 ;- w10 " F[. .« GSF, a=0.9968
:o . : —— GSF, a=0.968
: ; -4 VQ1BF, a=0.9968
-25 s —=— VQ1BF, a=0.968 :
. 103 & VQ2BF, a=0.9988 |[.. .. .... Lo
al : : -8 VQ2BF, a=0.968 g g
: : —— 2 ant. diversity STC : : :
: : —+ 1 antenna
-35W i i i —2— 2 ant. opt. weights : : :
1 0—3 1 0—2 1 O—‘ 100 1 0'4 N 1 1 N i i i i i
-4 -2 0 2 4 6 8 10 12 14 16

10

F~ Eb/No=-3dB

4 ~ Eb/No=3dB

» Eb/No=9dB, _

: —— a—0068
) : —— 2=0.9968
10' Laai Ll Lo T
10°® 107 107 10° 10
B 10

Fig. 7. BERsforNr = 2, a = [0.968,0.9968].

Tx Eb/No (dB)

Fig. 8. Simulated BER foNt = 2, 3 = 0.1419, anda = [0.968,0.9968],
compared with optimal weights, STC, and vector quantization.

BER sim B, ENo=3.01dB
BER sim ﬁo " Eb/No=8.03dB
BER sim ﬁopl, Eb/No=15.050dB
analysis

opt

107
1-a

10

Fig. 9. Optimal values off versus fading frequencyt (— a) from simulation

antennas with fading uncorrelated across the antennas as
(55) over a variety of values of the AR1 parameteand the
adaptation rate. In addition, BERs were simulated in order
to compare the BER performance with the performance of tl
vector “cross correlation energy” betweenand ¢ given by
(vo/(vo +v1)). The simulations implemented the receiver’s de
cision and the feedback channel with no errors. 2
The simulation results are compared to the analysis in Figsg
and 10 for two and four antennas, respectively. Both figure~
show that the simulated vector correlation ((vo + v1)) has 10‘3
a very good match with the analysis for all fading rates exce<
a = 0.9, for which we note that the AR process is approachin® -4
the limit of (109). Comparing these figures with Figs. 7 and 1:
we see that the analysis provides a good prediction of the b
value of 8 for minimizing BERs. The optimaP versus fading
frequency { — a) from both analysis and BER simulations is
shown in Fig. 9 forNr = 2 and Fig. 13 forNy = 4. For low
signal-to-noise ratios (SNRs), the analysis is a very good pi
dictor of the optimal3 for minimizing BER as power delivery

per

-1

-5

is important in this condition. For higher SNRs, it is apparenfig. 10.

and analysisV, = 2.

Mean correlationg,

'+ = 4, simulated and from (65) and (66).
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Fig. 11. BERs forNr = 4, a = [0.968,0.9968§].
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Fig. 12. Simulated BER forNy: = 4, 8 = 0.07979, anda =

1167

that minimizing BER requireg to be larger than is given by
maximizing the analytic result fa¥; in this condition, fading
diversity becomes more important than simple mean power de-
livery, and BER is best minimized by prioritizing moving the
weights away from the nullspace quickly over ensuring optimal
power delivery when the channel is not in a deep fade.

BERs from the simulation of the gradient sign feedback
(GSF) are shown for two of the fading rates in Figs. 8 and
12. For comparison, these figures also include the analytic
performance of diversity space time codes (STC) for a single
Rx antenna and simulated performance of vector quantization
code book selection feedback, wherein the receiver provides
feedback selecting which of several weight vectors is best [14].
The space time code performance is evaluated as a loss from
optimal weight adaptation for diversity codes with no coding
gain, as in [6] for two Tx antennas. For four Tx antennas, such
codes are a lower bounding BER abstraction as they do not
exist without bandwidth expansion [22], but approximations
do exist [7]. For two antennas, VQ1BF is vector quantiza-
tion with one bit feedback selecting which antenna should
transmit (second-order selection diversity), and VQ2BF is a
2-bit feedback selecting a phase rotation(@fr/2, 7, 37 /2)
for the second weight. For four antennas, VQ2BF is a 2-bit
feedback selecting which of the four antennas should transmit
(fourth-order selection diversity), and VQ3BF is a 3-bit feed-
back selecting a phase rotation @, =) for weightswy, ws,
andws. For 2- or 3-bit feedback, the feedback decision interval
is lengthened so that the feedback data rate is unchanged.

BERs are plotted versus Tk;,/N, normalized to the Rx
E, /N, for one Tx antenna so that the 3.01- and 6.02—-dB array
gain from two- or four-antenna systems can be seen. For slow
fading, the algorithm performs close to the theoretic limit and
outperforms the vector quantization feedback approaches. The
gradient adaptation provides a simple recursive update that
uses the history to provide better resolution in the weights
than is available from vector quantization, and the gain from
beam forming provides better performance than the diversity
space time codes. For faster fading, the gradient approach gives

[0.968,0.9968], compared with optimal welghts STC, and vector quantizatiorsimilar performance to vector quantization, but both feedback

107 f i
5 N R S B
L
| -t & BER sim Bnm’ Eb/No=-6.02dB
. =~ BER sim BD , Eb/No=0dB
e .=7- BER sim BO " Eb/Neo=6.02dB
... BER sim Bom, Eb/No=12.04dB
___ analysis Bopt
1072 -3 I-z =
10 10 10
1-a
Fig. 13. Optimal values of versus fading frequency ( a) from simulation

and analysisV; = 4.

approaches are outperformed by diversity space time coding,
which does not require the transmitter to adapt to the time
varying channel.

VIlI. CONCLUSION

A new gradient sign algorithm for transmit antenna array
adaptation has been defined, and the convergence and tracking
performance of the algorithm has been analyzed. The algorithm
makes use of gradient sign feedback from the receiver to
generate a coarse gradient estimate used by the transmitter
to recursively adjust the transmit weights. The mechanism
employed by the receiver to generate the feedback is simple
and can be employed with no knowledge of the specifics of the
transmitter antenna algorithm, i.e., the receiver need not know
how many antennas are employed or exactly how the update
is performed. The convergence and tracking behavior was
found to match the analysis through simulation verification,
and the algorithm is found through simulations of bit error
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rate to outperform previously proposed antenna weight vectorNoting thaty andpj, are statistically independent, the expec-
selection feedback and diversity space time coding algorithitagion of thekth element of the update vector is

for moderate fading speeds. 1 0o 0o ‘ L
E(z},) = 5o / / pe P /27127 qydp
MO Jp=—oo Jy=—sign(g,)p

APPENDIX A o)
1 e o) —s1gn(gk )-p . . -
SIGNED GRADIENT EXTRACTION __/ / pe_pz/2e_yz/2azdydp‘ (80)
This appendix derives the first and second moments of the 210 Jp=—o0 Jy=—o0
signed gradient algorithm update. With some manipulation, this is found to be

1) Theorem 1:For a nonrandorg and a zero mean complex _
Gaussian vectop with autocorrelatior2l, define the decision ., (a}) = sign(g},) [ (7 pe 20029 g (81)
vectorx and error vectoe as follows: k O p=0 Jy=—p ’

(68) Substitutingsz = y and folding the even function af into

— i H .
x =sign(Re(p™g)) - p the positive half plane

e =x — F(x). (69)

_2sign(gr) [ [P e 2
Then, the update is characterized by the following first and £ (#&) = T/ / pe”? Tem" dzdp. (82)
second moments: p=072=0
Substituting2t = p? and swapping the order of integration

D) .
E (x) :\/j. & (70) 9VesS
™ gl sign(el) [~ o [
H E(2) =222k -z “dzdt
E (eeH) =21 — z . ﬁg||2 . (71) (lk) ™ /z:O c /t:,TQZz/Q c i
T g ; oo
_ _2sign(gk) / = (147%) 12, (83)
Proof of Theorem 1:Consider the vectors generated as the ™ 2=0

serialized real vectors containing the real and imaginary COM-Considering that this is now an integral over a Gaussian PDF,
ponents ofp, x, andg, which will be denoted by a prime the result can be found simply as

/ _ | Re(p) 2 d
= 72 — Ik
P=im(p)] (72) E (”Jﬂfu(p):p) Vi v (84)
[Re(g) | \/ =
o = [Re(x) | (74) Extending the result of (84) to all elements xf the final
T lIim(x) ] complex vector solution is
2
Hence E(x)= \/j 8 (85)
) +p/ p,Tg, >0 ™ ||gl|
x = { —p’, p/Tg/ <0. (75) The error vectoe(69) clearly has zero mean, and its autocor-
relation is simply determined by
Let . ; .
2N—1 E (eef) =E x — £ 8 X — 8
PR (ee”) ( = ||g||> ( ~Tel
Y= - |gk| . (76) 9 ggH
| el o)
Recalling thap is complex Gaussian with autocorrelatitip &
p!, is real Gaussian of unit variance so that Q.E.D.
E(y) =0 (77) APPENDIX B
2N-1 MAXIMUM GRADIENT NORM

) n=0mk In order to bound the adaptation performance, it is useful to
0" =varly) = gz (78)  determine the maximum realizable norm of the gradient vector
F subject to the constraifiitw|| = 1. Equivalently, we can deter-
Then, thekth element of the update vector is given by mine the maximum of the norm squared. That is, we wish to

find the maximum

/
k
/

k

NIV

+p), sign(g:) -
x;c(p;“y):{ Py g(gk) p

T sign(eh) gt <=y 09 max ( llg ()| IIwll = 1) (87)
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From the decomposition of (10) using the constraint of (87) APPENDIX C
N1 N1 ) REDUCED-RANK REPRESENTATION OF THEGRADIENT
~ — ALGORITHM UPDATE
Igllwjer =4 D lual* A2 —4 (Z Jtn]” An) . (88) . .
=0 fors We wish to represent the update generator madiy, (40)
o ) ] ) ) . in terms of the reduced-rank eigendecomposition described in
To maximize this quantity with the weight norm constrainigetion vi-A for the rank one (single path) channel condition. In
the method of Lagrange multipliers is applied. Since the grgis condition, the first eigenvalue & is given by the channel
dient norm is a function only of the magnitude of the eigen;ocior norm.
weight valuesu,,, we consider the function parameterized by

the real quantitjfu,,|, and for simplicity, we denote this as, Xo = |le|?. (96)

(the eigenvectors can be rotated to accomplish this). Using a La- ) ,
grange multiplier ofy, we find the partial derivatives All other eigenvalues ofR are zero. Hence, with some
straightforward algebraic simplification, the algorithm update

N-1 N-1 matrix (40) reduces to

2 N—1
ai 42@&4(2@%) +4V<Zug_1> |
Ug — — — 2 T
= G (v(i)) = (h?ﬁ AT ) 1
™

T 1Ty

N-1
=8uy <Az — 2\ (EouiAn) +7) . (89) . \F , N
™ 117)"_0v (1 - 11;9v)
1 0

One way to zero all of the derivatives would be to zero each
of the eigenweights that correspond to nonzero eigenvalues, ex- X (N —1)
cept that this violates the unit norm requirement if there is no '
null space. Beyond this we have only 2 degrees of freedom avail-
able in selecting the values;,: the Lagrange multipliery and + 267117, 97)

. N—1 o . . . .
the summatlor(zn: u")‘") Hence, any inflection pqmts_ n Relating the reduced-rank variab}g57) tov (v has dimen-
the gradient norm are achieved when one of the following is s@fg, v« 1) for the rank 1 channel
isfied.
a) The weight vector falls in the null spacelf Yo _ v ) (98)
b) All but one of the eigenweights is zero. 1Tv 14192
¢) All buttwo of the eigenweights is zero, and the remaining |nserting (98) into (97) with some algebraic simplification
two eigenweights andk conform to the relations of (90) provides
and (91) below.

S . _ 5
In the case of a) or b), the gradient is zero, and a minimum ¢ g (V(8) = <1 _ 9 ;/3 ) W) I

0
(Np=1)x1  (Np—1)x(Ny—1)

the gradient norm is attained. In the case of ¢), a local maximum
of the gradient norm is attained. The requirement for a local

maximum from c) is +2 % B+ [(1) g} +2p6%117.
A2 —2ui)E — 2uZ M\, + 7 =0 (90) (99)
2 2 242 _
A7 = 2up Ak = 2ui A +y =0 (91)  Dpefine the reduced-rank:2 1 vector with a primey’. Then
The solution to these two equations is given by U
) v = S v (100)
u% =y, = 3 (92) n#0
5 1 and the update from (99) is (101), shown at the bottom of the
ui =i = 5. (93) next page, wher&,,(v) is of dimension 2, and
Hence, we see that the inflection points of the gradient norm 2
. . . R / - _ .
occur when the weight vector is comprised of equal contribu- Gag (V@) =1 =24/ —f-9() | -1
tions from only two eigenvectors. Plugging this into (88), the
. . ) Looe 5 . o
gradient norm at the inflection point is given by n 2\/; .8 (7(1) . 1(1))
2 2
o= =X). 94
elftos = (=20 @ [0 wr oo

The global maximum value of the gradient norm is attained
when the two nonzero eigenweights are the maximal and min-Note that the expression is simplified by parameterizitg,
imal modes so that by the single parameterrather than by’, although the latter

would be the equivalent to the portrayal of the full rank matrix
max ([|w]| - lg (W)[]) = Ao = An-1. (95) in (40).
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APPENDIX D
DERIVATION OF AR1 UPDATE SECOND-ORDER
TAYLOR APPROXIMATION

For the transition ofv due to the time varying channel,

second-order Taylor approximation of the incremental step d
to the new stimulus is applied. The nomenclature of this ap-

pendix is 2x 1 reduced-rank vector (52). The approximation

is given by the gradierit and HessiaH of vy with respect to

c so that

h(i)"x(i+1) +x (i + 1) h(i)
2a

x(i) TH(4)x(4)

2a2

() (L + 1) = ’Uo(i) +

+ (103)
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Note that the update of (108) satisfies intuitive expectations.
For small ( — a), the update represents a transfer of an equal
fraction of modal power from each eigenmode to all the other
elgenmodes Each null eigenmode receives one share from
%, but sincev; represents thes®&r — 1 eigenmodes of the
nullspace, it received’r — 1 shares fromy,. At the same time,
each of the null eigenmodes contributes one share of its power
to every other eigenmode. In the nullspace, this is a zero sum
game, but these contributions go from the nullspace energy to
vg. Sincew; represents the sum of all the powers of the null
eigenmodes, this is a transfer of only one share frero vg.
Clearly, this approximation can only be valid if the resultant
values ofvy remain positive so that the AR1 rate of change
must be slow enough to satisfy

Ignoring the time index for the moment and considering dif-

ferentiatingug in (52), the derivatives are l—a<1-— % (109)
2
wwllc cHwwlc
= 5 1 (104)
el el
H H REFERENCES
c'w wc
HZQTWWH 4 5C —4 2WCH o ) L
cc (cHe) (cHe) [1] L. Godara, “Applications of antenna arrays to mobile communications,
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(ch)S (ch)2 ’ [2] —, “Applications of antenna arrays to mobile communications, Part

Incorporating the eigenweight energy nomenclatumhere
convenient, the Hessian is

H
= H 4 ew — 4 ¥ Cwel (4l
2 4 4
el el el
48— cc —2-0 1 (106) [l
e el

Plugging (104) and (106) into (103) and taking the expecta-[6]

tion of (103) with respect ta using (55) gives
202

(i) + ———-— (1"

Vo (Z + 1) = Vo S ||c( )” (L) — NT’UQ(Z')) . (107)

This is used as an approximation to the update in the desired

eigenspace. Given this updateus the update in; is known,
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