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Preface

Current numerical simulation and data acquisition techniques have been refined to a point where
they are a source of highly accurate descriptions of natural or simulated phenomena and pro-
cesses. The amount of data collected even by a single satellite in Earth orbit is massive. Unfor-
tunately, a large part of such data can only be stored for further investigation, since data analysis
and visualization techniques capable of handling vast amounts of data are yet to be developed.

While the essential visualization techniques are still in the initial stages of development,
further steps in the data acquisition process are undertaken, widening the gap between the ca-
pacity to produce data and the ability to analyze and visualize them. The area of large scale data
visualization is likely to remain a challenge for a long time to go.

Past research in the field of large-scale data visualization mainly focused on scalar data.
In this case, for any given point in a volume a scalar value (like density, temperature, etc.) is
associated with this point. Large-scale scalar fields can be found in applications like medi-
cal imaging where modernComputerized Axial Tomography(CAT) andMagnetic Resonance
Imaging(MRI) scans can contain up to5123 scalar values on a rectilinear grid or even more
data. Data sets derived fromComputational Fluid Dynamics(CFD) even have sizes in the
gigabyte and terabyte range.

However, there are also many vector fields that are of interest,e.g., data from CFD simu-
lations, measured wind velocity above the Earth and wind tunnel data. It is desirable to use
classical vector field visualization techniques like stream lines, stream ribbons and stream sur-
faces on these large-scale data sets. Because of the sheer size of the data sets it is prohibitive to
apply these algorithms to the original data. This necessitates finding an alternate representation
for vector fields. The representation should be sufficiently compact to allow interactive visual-
ization of the underlying vector field, but retain enough accuracy to find interesting features of
the vector field and examine them in detail.

This Diplomarbeit develops an approach for the visualization of large-scale vector fields.
First, a hierarchical representation of the vector field is computed usingclustering, a classical
data analysis technique. This step yields a representation of the vector field, describing it at dif-
ferent levels of detail. Furthermore, the chosen representation allows almost seamless blending
between the various levels of detail. Utilizing this representation it is possible to interactively vi-
sualize the vector field. In order to interpolate values for a given point of the field, two methods
are developed. One method is a localized variant of Hardy’s multiquadric. To accommodate
visualization techniques relying on a grid, a procedural triangulation scheme, generating the
needed grid on the fly, is introduced. After the user has specified a region of interest, the ap-
propriate level of detail is accessed and a localized triangulation of that region is computed and
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Preface

used for subsequent visualization.
These techniques are used to interactively visualize vector fields on workstations and the

Responsive Workbench, a virtual reality (VR) device developed by the Gesellschaft f¨ur Math-
ematik und Datenverarbeitung (GMD), Bonn, Germany, and Stanford University, California,
USA, now mass-produced by Fakespace Inc., Mountain View, California, USA, and sold under
the product nameImmersive WorkBench.
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Chapter 1

Introduction

1.1 Vector fields

Vector fields play an important role in physics and engineering. Many physical properties are
not only characterized by a scalar quantity like temperature but also by a direction. Vector
quantities like velocity describe a magnitude and a direction.

In many cases, a physical property varies in a given spatial region. The temperature in
a room varies at different positions within that room. Ascalar field is a functionF (x) that
assigns a scalar value to each positionx within a given region. Likewise, avector fieldis a
function that assigns a vector value to each position in space.

A common example for a vector field in engineering is measured data from wind tunnel
experiments. At each point in the wind tunnel the air has a specific velocity. This velocity
consists of two parts. A magnitude giving the speed of the air and the direction in which the air
moves in that particular point.

Looking at the raw data as a list of positions and associated vectors does not provide insight
into the nature of the vector field.E.g., given a discrete vector field from a wind tunnel experi-
ment, the person looking at the data is interested in the path that a particle would follow if it is
injected into the field.Stream linesdescribe the path that this particle will follow. Other vector
field visualization techniques simulate experiments that where performed in wind tunnels prior
to the availability of computers.

In conjunction with simulation techniques from CFD, it is possible to simulate and evaluate
the behavior of the air flow in vicinity of a car or an airplane and detect critical points. It
is obvious that the availability of powerful visualization techniques is essential in engineering
applications. Using the information gathered by visualizing the air flow, the design can be
altered to achieve desired properties (e.g., minimizing drag or maximizing lift for an airplane
wing).

In physics vector fields arise in a greater variety.E.g., similar to mechanical engineering
one can be interested in the velocity of air or water in a given region. But there is also a great
variety of force fields. These fields describe forces that act on particles with given properties
(e.g., having a determined electrical charge).E.g., the propagation of electro-magnetic waves is
governed by the underlying vector fields.
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1 Introduction

However, there are applications outside of physics and engineering. Collected data describ-
ing wind speed over a given region of the Earth can be visualized to gain new insights into
environmental processes and weather changes.

1.2 Large-scale data sets

Large scale data sets arise in a multitude of applications. For example, advances in MRI and
CAT technology produce volumetric scalar data at ever increasing resolutions. Recently, tech-
niques to generate vector field data have improved considerably as well. Simulation techniques
can generate CFD data with sizes of several terabytes. Likewise, the methods of collecting
measured data have improved to a point where the resulting data sets are of similar size.

There are high-resolution data sets of measured wind data over California and the Pacific
Ocean that are several terabytes in size. In order to get an overview of an entire data set it
is impossible to use the raw data, since it will not fit into the RAM of current workstations.
Even loading these data sets takes several minutes or even hours. Accessing the data during the
visualization is too slow to be feasible. Additionally, the computational cost of the visualization
techniques increases with the data set size. In order to allow visualization at interactive rates
(frame rates of 30 frames per second), the amount of data to be processed must be reduced.

When reducing the amount of data of the original data set, it is desirable to find an ap-
proximation of the data that is sufficiently small to allow visualizing the data set with standard
techniques in a reasonable amount of time. However, the representation must be sufficiently
accurate to allow the user to navigate within the vector field and visualize details.

1.3 Requirements leading to a hierarchical approach

Lets assume a given vector field has been reduced for visualization on a workstation. The
approximation is sufficiently small to fit into the memory of the used workstation, and existing
visualization techniques are able to achieve interactive frame rates on this data set. Thus, the
user can get an overview of the properties of the vector field.

If the user finds a part of the vector field that attracts her/his attention she/he needs to be able
to examine this region more thoroughly. In order to do this she/he may zoom into that particular
region of space, focusing her/his complete attention onto it.

If only an approximation of the vector field over the whole region where it is defined has
been computed, this approximation might not be sufficiently accurate, when the user zooms into
a certain region of the vector field. Details that are small when looking at the complete vector
field and that could be be ignored in a display of the entire vector field may now be needed to
understand the vector field in this given region.

In order to do this, additional information is required that refines the representation of the
vector field in a particular region. If the user zooms further into the vector field, more informa-
tion is required to display the vector field in a way such that the difference between the original
data set and the approximation will be barely visible.
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Since the refinement takes place in a limited region of the vector field,i.e., the currently
visible region of the vector field, it is possible to use a more accurate representation without
exceeding the amount of data that can be stored in the memory of the workstation.

These requirements make it necessary that the vector field is not stored in a single fixed
approximation with a given error bound, but rather in a way enabling the software to refine
the data in any given region to a given error bound. In the optimal case, it would be possible
to refine the representation until the displayed region is sufficiently small enough to use the
original data set for computation. This objective can be achieved by storing the vector field in a
hierarchical representation. A hierarchical representation stores data at multiple levels of detail,
and the relation of these levels allows direct access to the desired level of detail for a given
region.

1.4 Hierarchy generation in a pre-processing step

There are several ways to construct hierarchical approximations.Wavelets(see [41, 42]) rep-
resent a data set by a coarse approximation and information adding increasing levels of detail
(high frequency information). In this work, a clustering technique is used to generate approxi-
mation levels of the vector field. Clustering is a technique widely used in statistics and collects
objects of similar properties in groups called “clusters”. This is used to group coherent regions
of vectors with similar direction and length into clusters. Each cluster has acluster representant
or cluster centerwhich is computed by averaging the positions and vectors in the cluster. These
representants are subsequently used to represent the data set.

The approximation is generated using a top-down strategy. Initially all samples (position
and vector value at that position) are assigned to one cluster. Using a distance measure defined
for the samples, in each following step the cluster with the largest deviation of samples from
the representant is chosen and divided into two new clusters. This split process is repeated until
an approximation of the desired accuracy is generated. By not only storing the representants of
the final cluster approximation, but also all intermediate cluster representants and their relation,
i.e., at what time a cluster is split and what clusters result from the split process, it is possible
to get a hierarchical representation of the vector field. This can be used to seamlessly generate
representations of a desired accuracy within given bounds.

Many current visualization techniques require a grid-based representation of a data set,e.g.,
a space decomposition into tetrahedral cells, which provide connectivity information between
the individual positions in a data set. Instead of pre-computing the grids for the complete vector
field, a different approach is taken in the course of this Diplomarbeit. If the number of data
is not too large, it is possible to generate a triangulation procedurally during the actual visu-
alization step. When the user chooses a region of interest, a representation of the vector field
consisting of a fixed number of vectors is generated using the hierarchy resulting from the clus-
tering process. The samples of this representation are used as input for a triangulation scheme
(currentlyDelaunay triangulation). Since a finer representation is only used when a user needs
to focus on a given region, this approach has the advantage of avoiding the need to compute the
triangulation for a complete data set for this level of detail. Only the actually needed part of this
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triangulation is generated saving computation time. Furthermore, this approach is very flexible,
because it allows all intermediate cluster representations to be used and not only a subset for
which a triangulation has been computed. This allows a seamless navigation in the hierarchy.

In some cases, where no connectivity information is needed, a localized version of theHardy
interpolation(see [12, 13]) proves to be an alternative to a grid-based interpolation scheme,
providing often superior results. Since Hardy interpolation is a grid-less interpolation technique
for scattered data and the computed interpolant only considers a fixed number of points in the
vicinity of the current query point, the computational cost of this method is small compared to
the procedural triangulation approach.

1.5 Visualization

The application of a hierarchical representation is to enable a user to visualize data at different
levels of accuracy and gain insight in its properties. Several visualization techniques mimic ex-
periments formerly performed in wind tunnels to analyze a flow,i.e., a vector field of velocities
of gas or fluid particles.Path lines(or trajectories) trace the path of a particle injected into a
flow at a given time and position.Stream linesremove the time dependency and trace the path
a particle would follow, if the vector field was frozen at a given moment in time. In the case of
time-independent vector fields path lines and stream lines coincide.

Stream lines can be used as building blocks for additional visualization techniques.Stream
ribbonsresult from tracing two adjacent stream lines and connecting the resulting paths with
edges, thus defining a polygonal mesh.Stream surfacesresult from tracing all stream lines that
start on a given curve segment. Since this means that an infinite number of stream lines must
be traced, stream surfaces are approximated by tracing a finite, sufficiently large number of
stream lines and connecting them with a polygonal mesh. Stream surfaces are a powerful tool
to visualize properties likedivergenceandvorticity of a vector field.

In the visualization part of this Diplomarbeit, the procedural triangulation algorithm, com-
bined with a mesh-based interpolation scheme, and alternatively Hardy Interpolation are used
to compute stream lines, stream surfaces, and stream ribbons. These are displayed on a work-
station monitor usingOpenInventor. Additionally, a prototype of a visualization system on the
Responsive Workbench is discussed, using the concept of virtual environments to provide an
intuitive visualization system allowing to gain an insight into the properties of a vector field that
cannot be attained using conventional two-dimensional images on a monitor. Furthermore, in-
teraction techniques with the virtual environment are presented. These enable a user to modify
a virtual environment.
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Chapter 2

Fundamentals and related work

2.1 Vector fields

Vector fields describe how a vector quantity varies in a given region of space, more formally
defined by

Definition 1 (vector field)
Given a regionR in space (in most applications an open subset ofR

n ) and a vector spaceV
(mostlyRm ) a vector field is a functionF : R ! V that maps a given locationx to a vector
valueF (x) = v.

In most practical applications,n equalsm, andn is usually two or three (although the combi-
nationn = 2, m = 3 can be found in some applications).

An example for a three-dimensional (3D) vector field is the Coulomb field. A particle with
an electrical chargeQ at positionp0 exerts an electrostatic force on other electrically charged
particles. The force acting on a particle with unit electric charge is given by the analytical
function

F (p) =
1

"0"r

Q

kp0 � pk2
p0 � p

kp0 � pk
(2.1)

with k � k being the Euclidean norm and thuskpo�pk being the distance betweenp0 andp. "0
is the dielectric constant and"r is a material specific constant.

In many cases, a vector field varies with time,i.e., the vector quantity does not only vary at
different locations but it is also dependent on time.

Definition 2 (vector field, time-dependent)
Given a regionR in space and a vector spaceV , a time-dependent vector field is a function
F : R� R ! V , that maps a given locationx and timet to a vector valueF (x; t) = v.

7
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2.2 Multidimensional search trees

Given a set of positionsP = fp1; : : : ;pNg, it is often necessary to organize these points in
a way that enables efficient queries for positions with a given property.E.g., given the setP
of positions and an additional positionp, it might be necessary to locate then points, that are
closest to this position.Multidimensional search trees, also known ask-dimensional trees(k-
D-trees) are a generalization ofbinary search trees1 and were introduced by Bentley [1] as an
efficient data structure for queries on data sets containing multiple search keys. This property
makes them suitable for geometric applications.E.g., positions contain coordinates for each
dimension. These coordinates can be viewed as search keys.

Like a binary search tree, ak-D-tree successively partitions a data set into subsets, which are,
in the best case, of approximately the same size. In ak-D-tree the data set is split alternatingly in
the different dimensions. This means in the 2D case that the first level of the tree splits according
to thex-coordinate, the second level according to they-coordinate, the third level according to
thex-coordinate, etc. This cycle continues, until a node only contains one single point. This is
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Figure 2.1: Subdivision of the plane by ak-D-tree.

illustrated in Figure 2.1. At the root, the point setP is split into two subsets of roughly the same
size. The splitting line (l1) is stored in the root node along with two pointers to the positions
left and right from this line. These subsets are each split along a horizontal line (l2 andl3). We
note that for each subset a different horizontal line is used. This is done, because the subsets are
now considered independent of each other, allowing recursive implementations. Furthermore
for each subset a different splitting line yields an even partition in approximately equal-sized
subsets. In each step either a horizontal or vertical line is used as splitting line. Because of
this, one coordinate (x- or y-coordinate, depending on whether a horizontal or vertical line is
used) is sufficient to describe this line. Choosing the median coordinate of the point set,i.e., the

1Refer to any textbook on data structures,e.g., [39] or [19]
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coordinate for which there is an equal number of points having a smaller value and points having
a larger value for this coordinate, is chosen. This yields the desired even partition of the set of
points. This concept can easily be generalized to higher dimensions. Instead of alternating

Algorithm 1 Build k-D-tree(P , depth)
Input: A set of pointsP and a current depthdepth
Output: The root of ak-D-tree storingP

if jP j = 1 then
return a leaf storing this point;

else
splitDimension depth mod k;
Compute median coordinatemedianCoord in dimensionsplitDimension;
P1  ;; P2  ;;
for all p 2 P do

if CoordinatesplitDimension of p < medianCoord then
P1  P1 [ fpg;

else
P2  P2 [ fpg;

end if
end for
�left  Build k-D-tree(P1, depth + 1);
�right  Build k-D-tree(P2, depth + 1);
Crate node� storingsplitDim andmedianCoord with �left and�right as left and right
child;
return �;

end if

between two dimensions it is possible to cycle through the dimensions. The corresponding
algorithm for constructing ak-D-tree is illustrated as Algorithm 1. Further improvements can
be achieved when, instead of simply cycling through the dimensions in each step, the optimal
dimension for splitting is chosen. This was done by Friedmanet al. [8].

When thek-D tree is constructed, it can be used to efficiently perform queries for these
points. E.g., for a given point then closest neighbor points can be located. An algorithm for
performing this kind of query is discussed in [8].

This Diplomarbeit uses a finished implementation ofk-D-trees (refer to Appendix A.3)
which is discussed in detail in [27]. It is an improvement of the methods discussed in [8].

2.3 Scattered data

Vector field data can be given in the form of analytical functions or as discretized fields.

Definition 3 (scattered data)
Given a set of positionsxi, i = 1; : : : ; N , called sites, a set of scattered data is a relation that

9
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maps each sitexi to a valuevi = F (xi). This can be expressed as a set ofN tuples(xi; vi)
containing the sites and the corresponding values.

For scattered data sets of vectors, thevi are vectors and will be written asvi. The vector field is
given as a set of tuples(xi;vi). In the context of this work, this tuple of position and associated
vector is calledsample.

Definition 4 (sample)
A single tuple(xi; vi) of a set of scattered data is called sample.

Scattered data interpolationdeals with the problem of estimating values for the vector field at
arbitrary locations.

A “classical” method to interpolate the data between sites isShepard’s method(see [7]). It
is an inverse distance weighted method, meaning that the influence a of samplei on the value
of the interpolant in a given positionp is inversely proportional to the distance between the
positionp and the sitexi of the sample. This interpolant is computed as follows:

F (p) =

PN

i=1
vi

kp�xik2PN

i=1
1

kp�xik2

: (2.2)

The evaluation of this interpolant does not involve the solution of an equation system. However,
in most cases the quality of the achieved results is unsatisfactory.

Better results can be attained by usingHardy’s multiquadricmethod (see [12, 13]). This
interpolant is computed by evaluating

F (p) =
NX
i=1

�i

p
kp� xik2 +R2 ; (2.3)

whereR2 > 0 is a user-specified positive constant. The�i can be computed by solving the
system of linear equations resulting from equatingF (pi) = vi. For scalar values, this results in
a system ofN �N equations. For vector fields with vectors inRm , the�i are vectors inRm as
well and the resulting system will consist ofNm�Nm linear equations. The results achieved
with Hardy interpolation are generally very good.

The method can be further improved by using a localized Hardy interpolation. This modifies
the general Hardy approach by using only a subset of the samples for computing the interpolant
at any given position. For any given positionp only thek nearest samples (using the Euclidean
distance of site positions) are used for computing the interpolant. Given a positionp and a set
of scattered data(xi; vi) the resulting algorithm for a localized Hardy interpolation works as
illustrated in Algorithm 2.

One problem using these scattered data methods is depicted in Figure 2.2. Since only sam-
ples and no connectivity information is given, it is not possible to derive the position of the wing
from the scattered data. Concerning the interpolation, the geometry of the wing is completely
disregarded. If, for example, a position within the wing is interpolated, the result is not that
there is no flow in that region, but rather an interpolated value taking samples of opposite sides

10
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Algorithm 2 Localized Hardy interpolation
Input: A set of samplesS and a positionp
Output: The vector valuev of the vector field inp

Use ak-D-Tree to find thek nearest sites top in the data set;
Use the corresponding samples to solve thekm � km system of linear equations for the�i

resulting from equation 2.3;
Use equation 2.3 to compute the vector value at this position;
return this value;

of the wing into account yielding an incorrect and meaningless value for this location. Even
worse is the fact that for interpolating values on one side of the side of the air wing, samples on
the opposite side can be used, distorting the result and causing incorrect values.
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Figure 2.2: Discrete flow field around an airplane wing.

There are extensions to scattered data interpolation that placebarrier pointsalong the wing.
These are points, that prevent the samples from one side to have influence on interpolation
results on the other side. However, this requires additional information that often is not given.

2.4 Triangular and tetrahedral meshes

Another method to avoid the problem depicted in the previous paragraph is using grid-based
methods for interpolation. Grids define the connectivity between points. This is done by con-
sidering the points as vertices of polyhedral lattices. This yields a tessellation of the region, in
which the vector field (or any other field) is defined, into sub-regions, calledcellsor elements.
Essentially, it is possible to distinguish between two fundamental grid types:

� Structured gridsthat are usually generated by a combination oftransfinite interpolation
(TFI) and solving elliptic or hyperbolic systems of partial differential equations (PDE).
These grids are generally associated with grids of cells that are topologically equivalent
to a square (2D space) or cube (3D space).

� Unstructured Gridsare typically generated using a triangulation/tessellation algorithm
(e.g., aVoronoi diagramor aDelaunay triangulationapproach).

11
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There are variations of these fundamental grid types including hybrid approaches. A more
thorough discussion of this topic, that constitutes an own area of research can be found in
Chapter 3 of [30].

The advantage of these grids is that in many cases they are supplied with the data, since,
e.g., in CFD these grids are necessary to generate the data set. If the data set originates from
measured data or the grid is not available, it is necessary to generate one. In that case the
same problems in determining the geometry arise, as with the barrier points in scattered data
interpolation.
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Figure 2.3: Triangular grid around an airplane wing.

If a grid is given, the value at a point can be estimated by locating the cell containing the
point for which to interpolate. If linear interpolation is used (this is the case for most of the
visualization techniques currently used) the value can be directly computed from the values at
the vertices of the cell. If some higher-order interpolation scheme is used, the values of the
adjacent cells have to be considered as well. Since the grid specifies which cells and vertices
are adjacent, the danger of using samples,e.g., from the opposite side of the airplane wing is
avoided. This is shown in Figure 2.3. This Figure shows the airplane wing from the previous
section with an unstructured grid consisting of triangles. As the Figure shows, only the region
around the wing is filled with triangles. It is easy to determine, whether a given point is in
the region in which the vector field is defined. Furthermore, the triangles connect only points
that are adjacent. So there are no connections within the wing. This prevents samples from
the opposite side of the wing being used, when the interpolated value for a position within the
vector field is computed.

This work deals only with unstructured grids, or, to be more specific, unstructured grids
composed of tetrahedral cells. Furthermore, the used data sets only consisted of data points. So
the generation of the grid necessary for the interpolation is discussed as well.
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2.5 Voronoi diagrams, Delaunay triangulations, and Gabriel
graphs

TheVoronoi diagram, theDelaunay triangulation, and theGabriel graphhave classically been
studied in the area ofcomputational geometry. More thorough and formal descriptions of these
terms can be found in [2] and [35]. An in-depth discussion of Voronoi diagrams and Delaunay
triangulations can be found in [33].

Definition 5 (convex)
A subset (or region of space)R � R

n is called convex, if and only if for any pair of points
p;q 2 R the line segmentpq connectingp andq is completely contained in that region.

Definition 6 (convex hull)
Given a set of pointspi, i = 1; : : : ; N , the convex hull of this set is the smallest convex region
in space, containing all the points.

Definition 7 (convex combination)
Given a set of pointspi, i = 1; : : : ; N , a convex combination of this set of points is a linear
combination of the points of the form

NX
i=1

�ipi; where 0 � �i � 1 and
NX
i=1

�i = 1 : (2.4)

Figure 2.4: Convex hull of a set of points (2D case).

The convex hull is equal to the set of all possible convex combinations. An example of a
convex hull is shown in Figure 2.4.

A Voronoi diagram (see Figure 2.5) defines a partition of space. Given a set of pointssi
(again calledsites) with i = 1; : : : ; N , a Voronoi diagram partitions space into regions called
Voronoi cellsCj, j = 1; : : : ; N , around the sites. Each Voronoi cell contains one site and all
points of space that are nearest to this site (i.e., the Euclidean distance to this site is smaller than
the Euclidean distance to any other site).

13
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Figure 2.5: Voronoi diagram for a given set of points in the plane.

Definition 8 (Voronoi diagram)
Given a set of sitessi, i = 1; : : : ; N , a Voronoi diagram is the partition ofRn into disjoint
convex Voronoi cellsCi satisfying the condition

p 2 Ci ) 8j=1;::: ;N ; j 6=i : kp� sik < kp� sjk (2.5)

The Voronoi diagram for any given set of sites is unique.
During the previous section grids were discussed. One method to generate a grid for a given

set of pointspi is to compute atriangulationof the points. This yields an unstructured grid, that
can be used for the CFD simulation or to interpolate values between the sites.

Definition 9 (triangulation)
Given a set of pointspi 2 R

n , a triangulation is a decomposition of the convex hull of these
points inton-dimensional simplices (triangles in two dimensions and tetrahedra in three dimen-
sions) whose defining points (vertices) coincide with thepi. The simplices may not intersect
one another and must only share boundary elements such as vertices, edges, or faces.

If two simplices share a boundary element, they share it completely and not only parts of it (e.g.,
two tetrahedra share either a complete face or no face at all. They do not share parts of faces).

It is easy to see that for a given set of points no unique triangulation exists. In order to
choose a triangulation from all possible triangulations it is necessary to find a way to distinguish
between quality of different possible triangulations. Figure 2.6 shows a set of points inR

2 and
two different triangulations for this set of points. The first triangulation partitions the convex
hull into triangles of about the same size, whereas the second triangulation contains several

14
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Figure 2.6: Two triangulations for the same set of points.

large but narrow triangles. For interpolation and computational purposes the used triangulation
should be as “uniform” as possible concerning triangle shape. In order to develop an algorithm
to generate an “uniform” triangulation, it is necessary to find criteria that ensure this desired
property. One possibility to ensure this is theminimum interior anglecriterion.

Definition 10 (minimum interior angle, triangle)
Let �(T )

j , j = 1; 2; 3, be the interior angles of a triangleT . Then�(T )
min = min(�

(T )
j jj = 1; 2; 3)

denotes the minimum interior angle of this triangle.

Definition 11 (minimum interior angle, triangulation)
Let T be a triangulation of the sitesxi 2 R

2 , i = 1; : : : ; N , consisting of the triangles

T1; : : : ; TK. The minimum interior angle of this triangulation is�Tmin = min(�
(Tl)
minjl = 1; : : : ; K)

Definition 12 (minimum interior angle criterion)
Let� be the set of all possible triangulations for the sitesxi 2 R2 , i = 1; : : : ; N . A triangulation
T 2 � is optimal in regard to the minimum interior angle criterion, if and only if it has the
largest possible minimum interior angle,i.e.,

8T 0 2 � : �T
0

min � �Tmin : (2.6)

In 2D space, a triangulation satisfying the minimum interior angle criterion is an optimal
triangulation. In order to construct a triangulation that achieves this optimum it is useful to
consider another criterion.

Definition 13 (circumsphere)
Given a simplex inRn the circumsphere is then-dimensional hypersphere containing then+ 1
defining points (vertices) of the simplex.

Definition 14 (Delaunay triangulation)
A triangulation of a set of sitesxi 2 R

n , i = 1; : : : ; N , is a Delaunay triangulation if the
circumsphere of each simplex contains no other site than the vertices of that simplex.
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Definition 15 (co-spherical)
A set of pointsxi 2 Rn , i = 1; : : : ; N , is co-spherical if there is an-dimensional hypersphere
containing all points of this set.

In 2D space, the Delaunay triangulation satisfies the minimum interior angle criterion and
thus is an optimal triangulation for that set of points. In higher dimensions, the Delaunay trian-
gulation is not necessarily optimal. However, it is commonly used for grid generation. Another
property of the Delaunay triangulation is that it is unique if the sites satisfy the condition that
no subset containingn + 2 of the original site is co-spherical. If a set of sites satisfies this
criterion the points are ingeneral position. This is illustrated in Figure 2.7. The point set shown

Figure 2.7: Point set in general position and point set not in general position.

on the left hand side is in general position. The point set on the right hand side is not in general
position, because six points lie on a circle.

Definition 16 (general position)
A set of positionsxi 2 Rn , i = 1; : : : ; N , is in general position if it contains no subset ofn+2
or more co-spherical points.

Figure 2.8: Points on a rectilinear grid are not in general position.

Unfortunately, point sets not in general position are rather common. Commonly data sets
are sampled on a rectilinear grid. In that case, adjacent points form quadrilaterals (in 2D space)
or cubes (in 3D space) and sets of 4 (2D space, refer to Figure 2.8) or 6 points (3D space) lying
on a circle or sphere exist. In these cases the Delaunay triangulation is not unique and many
algorithms for Delaunay triangulation fail. Since in these cases any triangulation of the points
satisfies the Delaunay criterion, an arbitrary triangulation can be chosen. This is illustrated in
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Figure 2.9. There are no reasons, why either triangulation should be chosen instead of the other
one. One way to accomplish a unique Delaunay triangulation, even when the points are on a
rectilinear grid, is tojitter the points,i.e., add a small random value to each coordinate. This
value has to be small enough to preserve the position of the points in relation to each other, but
sufficiently large to resolve the ambiguities in the triangulation.

Figure 2.9: Ambiguity when triangulating points on a rectilinear grid.

Delaunay triangulations and Voronoi diagrams are closely connected. This connection is
defined via theDelaunay graph.

Definition 17 (Delaunay graph)
Given a set of positionsxi 2 R

n , i = 1; : : : ; N , and the Voronoi diagram for these sites,
the Delaunay graph is the graph that results from connecting all sites whose Voronoi cells are
adjacent to each other.

If the positions are in general position, then the edges in the Delaunay graph correspond to the
edges in the Delaunay triangulation. If the set containsn + 2 or more co-spherical points the
Delaunay graph can be transformed into a Delaunay triangulation by adding edges so that the
resulting graph consists of edges of simplices.

Given the definition of the Delaunay graph via Voronoi diagrams it is easy to see that it
represents the intuitive neighborhood relation. If two points are connected by a Delaunay edge
then a human would also consider them to be adjacent or neighbors. Because of this property
the Delaunay graph is also said to represent a natural adjacency relation.

TheGabriel graphis a subset of the Delaunay graph that is easier to compute.

Definition 18 (Gabriel graph)
The Gabriel graph is the subgraph of the Delaunay graph consisting of all Delaunay edges, that
intersect the border between the Voronoi cells containing the points they connect.

It can be shown that the Gabriel graph can be constructed by connecting all pointsxi and
xj (i 6= j) with the property that the hypersphere with diameterxixj contains no other point in
its interior.
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Figure 2.10: Delaunay and Gabriel graphs of four points.

Figure 2.10 shows a set of points in 2D and the difference between the Delaunay and the
Gabriel graph. The points are shown as filled square. The corresponding Voronoi diagram is
denoted with dashed lines. The Delaunay graph consists of the bold solid lines and the solid
line. The Gabriel graph consists only of the bold lines; it is missing one of the edges of the
Delaunay graph.

2.6 Triangulation-based interpolation

Given a triangular grid consisting ofN samples and a triangulation of these points, it is pos-
sible to use this information to interpolate values at any location within the convex hull of the
locations. As mentioned before, in visualization the most commonly used type of interpolation
is linear interpolation. In this case, the value for a given pointp can be computed by using only
the samples at the vertices of the simplex containingp. Given this simplex, the interpolation
value can be computed usingbarycentric coordinatesof p.

Definition 19 (Barycentric coordinates)
Given a simplex inn-dimensional space with the verticesxi, i = 1; : : : ; n+ 1, each positionp
can be represented as a linear combination of the vertices,i.e.,

p =
n+1X
i=1

�ixi : (2.7)

This linear combination is called barycentric coordinates. Each position expressed as barycen-
tric coordinates is within the simplex if and only if the�i satisfy the condition

0 � �i � 1 : (2.8)
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Barycentric coordinates satisfy the equation

nX
i=1

�i = 1 (2.9)

In 2D space, the barycentric coordinate�i can be computed as the ratio of the area of the triangle
that results from replacingxi with p to the area of the original triangle.

�1 =
A4px2x3

A4x1x2x3

; �2 =
A4x1px3

A4x1x2x3

; �3 =
A4x1x2p

A4x1x2x3

(2.10)

It is important to use thedirected area. This is necessary in order to satisfy condition 2.9. In
the 3D case, the barycentric coordinates can similarly be computed as ratio of directed volumes
of the tetrahedra resulting from replacing a vertex withp to the directed volume of the original
tetrahedron. Computing the barycentric combination from the ration of areas in the 2D case is

3F
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3x

2x

F
1F

1x

Figure 2.11: Computing the barycentric coordinates as ratios of areas.

shown in Figure 2.11. The areasF1, F2, andF3 of the three triangles resulting from substituting
xi with p have to be divided by the area of the complete triangle in order to get the barycentric
coordinates�i.

If the values of the verticesxi arevi, i = 1; : : : ; n + 1, then the interpolated value at the
positionp can be computed as

n+1X
i=1

�ivi ; (2.11)

where the�i are the barycentric coordinates ofp.
The remaining problem is to locate the simplex containing the pointp. The simplest pos-

sibility is to search linearly in all simplices and find the simplex containingp. This can be
done by computing the barycentric combination ofp for each tetrahedron and check whether
condition 2.8 is satisfied. As soon as this simplex is found, the already computed barycentric
combination can be used to compute an estimated value. This can be done with time complexity
O(nTriangles).
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A more efficient approach is presented by E.P. M¨uckeet al.[28]. They describe an algorithm
(simple walk-through) to locate a position in a Delaunay triangulation. First, a start simplex is
chosen. Then a line segmentL from one of the vertices of this start simplex to the query pointp

is computed. The simplex containingp is located by “walking along” L, traversing all simplices
intersected byL. The paper proves that the cost to find the simplex has an expected value that

is proportional toO(n
1

d

Triangles) and presents a further improvement of the algorithm (improved
jump-and-walk).

In this work, a variation of the basic walk-through algorithm is used on a Delaunay triangu-
lation to locate the tetrahedron containing a point for which a value must be estimated. First,
like in the simple walk-through approach, a tetrahedron of the mesh is selected. A reasonable
choice would be the tetrahedron that contains the “last queried point”, however the algorithm
works even if an arbitrary tetrahedron is chosen. Now, instead of computing a line segment
between one of the vertices of the current tetrahedron and the queried position, the barycen-
tric combination for the queried point in regard to the current tetrahedron is computed. Ifp

is inside the tetrahedron this can be decided by means of the barycentric combination and the
interpolation value can be computed.

However, if condition 2.8 is not satisfied and the queried position is not within the current
tetrahedron, then the barycentric combination can be used to determine beyond which face of
the current tetrahedron the queried point is located.

If condition 2.8 is violated, there exits at least one negative barycentric coordinate (�i < 0).
This is a result from condition 2.9. If condition 2.8 is violated and there were no negative
barycentric coordinate, that would mean that all�i > 1, and thus

Pn+1
i=1 �i > 1 which violates

condition 2.9. A negative barycentric coordinate�i indicates that the corresponding vertexxi
and the queried pointp lie on opposite sides of the triangular face formed by the remaining
verticesxj j 6= i of the tetrahedron. Figure 2.12 illustrates this situation. The pointp lies

p

3x

2x

3F

1x

Figure 2.12: Opposite sign of the directed area for a point outside the triangle.

beyond the edge corresponding to the barycentric coordinate�1. This entails that the triangle
resulting from replacingx1 by p has the opposite orientation as the original triangle (in the
Figure the orientation is given by the arrows at the end of the triangle edges) and thus the
opposite sign for the directed area.
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If the queried pointp is not within the current tetrahedron, then the modified algorithm uses
this fact and chooses the first negative barycentric coordinate. It then chooses the tetrahedron
beyond the face opposite to the corresponding tetrahedron vertexxi as next step in the “walk”
toward the query point. Algorithm 3 illustrates this for the case of a tetrahedral mesh.

Algorithm 3 Modified simple walk-through for Delaunay triangulations in 3D space
Input: A triangulationT and a query pointp
Output: An interpolated valuev

Let currTet point to the tetrahedron that contained the last queried point or an arbitrary
tetrahedron;
Compute the barycentric combination ofp in currTet;
while 9i2f1;2;3;4g�i < 0 _ �i > 1 do

Find the tetrahedronnextTet beyond the face opposite to vertexpi;
if nextTet is undefinedthen

return Undefined;
end if
currTet nextTet;
Recompute the barycentric combination ofp in currTet;

end while
return the value computed according to equation 2.11;

In the implementation used for this work, the class “TetVertex ”, which is used to rep-
resent the tuple of position and vector information for all sample points also includes a list of
tetrahedra that contain that vertex. This makes it possible to quickly access the tetrahedra adja-
cent to the current tetrahedron. Finding the tetrahedron that lies beyond a face defined by three
vertices of the current tetrahedron is done by computing the intersection2 of the three lists of
tetrahedra containing the three vertices defining the face.

It would be possible to further differentiate between cases and only consider tetrahedra
that share only an edge (if there are two negative barycentric coordinates) or a vertex (if there
are three negative barycentric coordinates). However, it is doubtful that the reduced length of
the “walk” would outweigh the additionally imposed computational cost. The advantage of
the current implementation is that a minimum of information is calculated which is not used
for the actual interpolation. Apart from computing the barycentric coordinates that have to
be computed in any case, it is only necessary to maintain the list of vertex owners (tetrahedra
containing the given vertex) and compute the tetrahedron beyond a given face.

If the “queried point” is outside the tetrahedral mesh, the “walk” ends in a tetrahedron, that
does not contain the point and has no neighboring tetrahedra beyond the faces in direction of
the “queried point”. In that case the value for the “queried point” is undefined.

An example for this algorithm (in 2D space to improve clarity) is shown in Figure 2.13.
It shows a walk toward the query point in a Delaunay triangulation. In each step, the current
triangle is drawn in green. The query point is marked with “x”, and the edges for which the
barycentric combination criterion is satisfied are marked red.

2In the actual implementation, a hash-table is used to speed up the implementation.
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Figure 2.13: “Walking” toward the query point.

2.7 Clustering

Clustering is a classical data analysis technique, frequently used in statistics, that has been
thoroughly studied. It has been used in a wide variety of fields, including data mining. The main
idea is to generate clusters of objects of similar or equal properties enabling one to recognize
underlying structures. These structures can be used to generate an approximation of the data
keeping its main features. A more comprehensive description of clustering can be found in [11].

2.8 Clustering for surface reconstruction

Clustering was successfully used as an innovative technique for surface reconstruction by Heckel
et al., see [14, 15], to reconstruct a surface from a set of points. Initially, all points are assigned
to one cluster, and an error for this cluster is computed. In each following step, the cluster with
the largest error is chosen and split. In surface reconstruction a sensible choice for this error is
the deviation of the cluster points from a flat surface. The cluster selected using this measure
is split in the direction of maximum extension. All points in adjacent regions to the newly split
clusters arereclassified(i.e., their association to a cluster is re-evaluated) and assigned to the
nearest cluster with respect to Euclidean distance from the givencluster centers, also called
cluster representants. New errors for the affected clusters are computed, and the splitting pro-
cess is repeated until a given number of clusters has been created or until all the error of all
clusters is below a given limit.

In an efficient implementation of this approach, only points in clusters adjacent to the newly
created clusters should be considered during the reclassification step. This imposes the need
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to determine a neighborhood relationship between clusters to find all neighbor clusters of the
new cluster and subject their sample points to reclassification. The original implementation of
the clustering algorithm used the Gabriel graph to determine this relationship. Recent research
showed that using this graph does not yield completely satisfactory results, and modifications
were made taking additional clusters, besides those connected via an Gabriel edge, into account.
However, using the Delaunay instead of the Gabriel graph promises to yield even better results.

2.9 Using clustering to simplify vector fields

The main issue in utilizing a clustering algorithm for vector field simplification are choosing
the distance function and defining new cluster centers (or cluster representants) for the split
process. In trying to find an answer to the question what choice of distance functions yields the
best results and whether to use a single distance function for everything, or a combination of
different distance functions, three approaches have been studied.

To understand the different approaches it is necessary to examine first for what purposes the
distance function is used during clustering. These purposes are:

1. to determine which cluster should be split;

2. to determine the locations of the new cluster centers after the split process; and

3. to associate the samples with clusters,i.e., to find out which is the closest cluster for a
specific sample.

Given these objectives for a distance function, the following approaches have been exam-
ined:

1. Use the same distance function for all purposes. This distance function must depend on
both position part and vector part.

2. Distinguish between position and vector part and use two different distance functions,
one only dependent on the position part and one only dependent on the vector part of a
sample.

3. Use atwo-passapproach. In one pass, use a distance function depending only on the
position part, and in the other pass a distance function depending only on the vector part.

2.10 The definition of distance for vector fields

In order to apply clustering to vector fields and associate the vectors of a vector field with
different clusters it is necessary to define a distance function for samples in this vector field.
Looking at the vector field as a set of scattered data, each sample of the data set consists of two
distinct parts,

1. the position of the sample and
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2. the vector value at this sample’s position.

In this and the next chapter, it is assumed that the vector value is a vector in Euclidean space
(i.e., being described by a length and direction) and not just a collection of scalar values. If
vector fields of this kind can be approximated it should be rather straightforward to further
generalize this approach to arbitrary vectors by choosing a distance function which might be
application-specific. Furthermore, all examples in this chapter are vector fields in 2D space.
This is due to the fact that it is easier to study the effects of clustering on these vector fields.
The underlying mathematical and algorithmic principles work for vector fields in 3D space as
well. The obvious choice for the distance of the position part of two samples is the Euclidean
distance between the two positions of the samples.

To determine the distance between the vector part of two samples the simple Euclidean
distance could be used. However, it is desirable to have more control over the distance function.
A possible choice is a distance function taking two quantities into account, namely

1. the difference in magnitude between the vectors�L = jkv1k � kv2kj, and

2. the minimal angle between the vectors,\ (v1;v2).

The second quantity can be computed using the scalar product,

\ (v1;v2) = arccos

�
v1 � v2
kv1kkv1k

�
:

The null vector0 has no direction. If any one of the two vectors is the null vector, the angle is
assumed to be zero and only the length difference is taken into account.

These properties can be normalized to lie between0 and1 in order to be comparable. For
the length differencel, a function like1�e�l can be used, or it can be divided by the maximum
of the two vector lengths. The minimum angle can simply be divided by180�.

Given the fact that a distance function on a vector field is a combination of different quan-
tities, an important question arises: Is a single distance function sufficient or is it necessary to
define a set of distance functions and use these in conjunction to yield the desired results? This
will be examined in detail in course of the next chapter.

2.11 Vector field visualization

The aim of finding a compact representation of a vector field is to be able to use it for stan-
dard visualization techniques. In this section, basic vector field visualization techniques are
reviewed. A more detailed description of these techniques can be found in [37] and [9].

Before the advent of computers and scientific visualization, experiments in wind tunnels
were performed to examine the properties of vector field. A simple experiment was to inject
particles at certain positions in the flow and trace their path during a given period of time.

If one was interested in the behavior of the particle during a given period of time, one
possibility was to inject a particle and take a photograph with an exposure time equal to that
period of time of interest. The result were pictures ofpath lines, streak lines, andtime linesthat
showed paths of particles. Mathematically these are defined as follows:
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Definition 20 (path line)
Given a region of spaceR � R

n and a vector fieldF � R : R ! R
m with m = n, a path

line traces a the path of a particle that was injected at timet0 = 0 in the flow at the position
x(0) = x0. This curve is described by the first-order differential equation

dx

dt
= F (x; t) : (2.12)

If the vector field is varying over time, it is also of interest how it behaves at any given
moment in time. This is impossible to show in a wind tunnel, because time elapses while a
particle is traced and the vector field changes. It is impossible to freeze the vector field in an
experiment. On a computer this is no problem at all. In fact, removing the time dependency
eliminates the need to access data from different time steps and simplifies the visualization.
On a computer it is possible to trace the path that a particle would follow, if the vector field
remained constant over time and thus visualize the behavior of the vector field at any given
moment. These particle paths are calledstream linesor “instantaneous path lines”.

Definition 21 (stream line)
Given a region of spaceR � R

n , a vector fieldF : R � R ! R
m , with m = n and a timet0,

a stream line traces the path a particle would follow, if the vector field remained constant,i.e.,
8x2R t2RF (x; t) = F (x; t0). This curve is the solution of the first-order differential equation

dx

dt
= F (x; t0) : (2.13)

If the vector field is independent of time, path lines and stream lines are identical. Figure
2.14 shows several stream lines around a plate that was put into a flow. Despite the fact that
stream and path lines are one-dimensional objects (i.e., extending only in one dimension and
thus having no diameter), they are rendered as cylinders with a given thickness. This simplifies
evaluating a light model and allows the use of hardware-accelerated shading. Shading provides
the viewer with additional cues about the position of the stream lines in respect to each other
and enhances the quality of the visualization considerably.

A possibility to enhance the concept of stream lines is to derive a scalar value from the
vector field (e.g., velocity), define a mapping between this scalar value and color space and
color the stream lines accordingly. This allows the user to gain further insight in the properties
of the vector field.

Stream lines, even if colored according to an additional scalar value, convey only local infor-
mation about the vector field. They can show the rotation of the flow and its derivatives. They
do not visualize global information and structure of the field, likevorticity or flow divergence.

Stream ribbonsare a natural extension of stream lines by “widening” them to ribbons. A
stream ribbon is a surface that is supposed to be tangential to the flow and that because of being
a two dimensional object reveals additional information about the flow. Stream ribbons can
be rendered by computing two adjacent stream lines and connecting them with a mesh. This
works as long as the adjacent stream lines remain relatively close to each other. If they diverge
the resulting surface loses the property of being tangential to the flow. This happens because
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Figure 2.14: Stream lines around a plate. Data set courtesy of NASA Ames Research Center
(see Appendix B.3).

the ruled surface connecting two widely separated stream lines is only an approximation to the
desired concept.

Stream ribbons can be used to visualize several important flow properties. The vorticity
!(x; t) is a measure of the rotation of the vector field expressed as a vector with direction of
the axis of rotation and a magnitude denoting the amount of rotation.Stream-wise vorticityis
the projection of vorticity along the velocity vector at that position,i.e.,


(x; t) =
F(x; t) � !(x; t)

kF(x; t)kk!(x; t)k
: (2.14)

The amount of twisting of the stream ribbon approximates the stream-wise vorticity of the
vector field. The changing width of the stream ribbon shows theflow divergence, another
property of the vector field. A further generalization of stream ribbons yields the concept of
stream surfaces.

Definition 22 (stream surface)
A stream surface is a collection of an infinite number of stream lines passing through a base
curve. This base curve specifies the starting points for the stream lines.

Stream surfaces can be approximated choosing a certain finite number of seed points along the
base curve (orrake), computing the corresponding stream lines and connecting them with a
mesh. The points along the rake rake can be specified by the user. Alternatively, the user can
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specify a curve and a number and the seed points can be generated automatically. As with stream
ribbons, approximating a stream surface with a finite amount of stream lines fails in regions of
the vector field, where the divergence is high and stream lines separate. In these regions it is even
possible that the surface resulting from the approximation will be self-intersecting, which is
physically impossible for stream surfaces. Extensions to the approximation algorithm compute
the stream lines concurrently to generating the mesh. If the flow diverges, then additional stream
lines are inserted. It is even possible to separate the ribbons of which the surface is composed
in regions of extremely high divergence, creating a torn stream surface.

Figure 2.15: Stream surface around a plate. Data set courtesy of NASA Ames Research Center
(see Appendix B.3).

Figure 2.15 shows the surface resulting from tracing20 stream lines along a line between
two points and connecting them with a mesh of quadrilaterals. It is a good illustration of the
vorticity of the flow at the location of the ribbon.

2.12 Numerical methods

Stream lines are described by first-order differential equations. The solution of these equations
is a function describing a parameterized curve. In most cases, it is not possible to compute the
analytical solution of the function. Rather a finite number of points along the curve are calcu-
lated and connected by line segments. As shown in the last section, a stream line is described
by a first-order differential equation and a start value. This problem is referred to asfirst-order
initial value problem.
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Definition 23 (first-order initial value problem)
The solution to the first-order initial value problem is a functionf(t) that satisfies the given
conditions:

� For the argumentt0 the function assumes a given value (initial value)

f(t0) = x0 ; (2.15)

� and the first derivative of the function is

df

dt
= _f(t) : (2.16)

There are several numerical methods to approximate the solution of differential equations
of first order. Given the initial value and the first derivative, they compute tuples of function
argumentsti and function valuesf(ti). The simplest isEuler’s method. It starts with the
tuple (t0; x0). After that, each tuple(xi+i; yi+i) is computed from(ti; xi) using the following
equations:

ti+1 = ti + h and

xi+1 = xi + h _f(ti) ;

whereh is the step size along the function. This parameter has to be chosen carefully. Choosing
a small value forh increases the computational cost, while choosing a large value decreases the
accuracy of the result. In general, Euler’s method yields poor results.

A commonly used method that yields better results is thesecond-order Runge-Kutta method.
It also starts with the tuple(x0; y0). Subsequent tuples are computed according to the rules

ti+1 = ti + h ;

k1 = h _f(ti) ;

k2 = h _f(ti +
k1

2
) ; and

xi+1 = xi + k2 :

Again, the step sizeh must be chosen carefully. After computing thexi-values, they can be
connected by line segments to form stream lines. As mentioned in the last section, it is better
to render cylindrical segments instead of line segments in order to be able to facilitate the use
of the rendering hardware to generate fully shaded stream lines. A more detailed description of
these methods can be found in [17], [9], and [36].

2.13 Fundamentals of virtual reality

Virtual reality(VR) is a human-machine interaction paradigm. It is based on presenting avirtual
environment(VE) to a human. VR is the next natural step after the the transition from purely
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text-based tographical user interfaces(GUIs), which started in the mid 80s. Current GUIs
present the user with a 2D screen and a mouse and are based on a desktop metaphor, using
concepts known from an office environment (desktop, files, folders, etc.), creating a more or
less intuitive user interface.

Shutter glassesthat alternately cover the eyes of a user allow to present different images
to both eyes of the user. This makes it possible to present images that extend beyond the two
dimensions of the screen. This can be used to provide better cues for the relative position of
objects.

Figure 2.16: Head-mounted display.

Head-mounted displays(see Figure 2.16) take this concept one step further by providing
two screens, one for each eye. They allow the user to immerse herself/himself completely into a
VE. They also alleviate one of the problems that shutter glasses introduce. Since shutter glasses
use one display to present images to both eyes of an observer, they have to attain higher frame
refresh rates in order to create flickerless images.

Figure 2.17: Boom-based head tracking.

In order to completely immerse a viewer into a VE it is necessary to track the position of
her/his head and update the generated images accordingly. If the user turns her/his head in the
VE, she/he naturally expects that she/he will be offered a different view of the environment.
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This can be achieved by adding a device to the display that tracks the movements of the user’s
head. This can be done using electronic devices that track the position of a small sensor attached
to the head-mounted display, or by mechanical means, like the boom device shown in Figure
2.17.

Immersive displays alone are not sufficient to create the illusion of being immersed in a VE.
If the powerful concept of VR is to be used at its full strength, appropriate input devices are
necessary as well.

Figure 2.18: VR input devices.

Figure 2.18 shows two examples of VR input devices. Thestylusis the object shaped like a
pen in the lower left corner. It contains an electro-magnetic tracking sensor to query its position
and has a button allowing the user to select objects. Thepinch gloves(upper left and rightmost
object) also have sensors tracking their position (the grey rectangular object attached to it) and
can detect simple gestures. If the user performs apinch gesture (i.e., she/he brings two of
her/his fingers in physical contact), then this is indicated to the application and can be used to
trigger actions. More elaborate gloves, allowing to determine the exact location of each finger
of the hand, are available. Force-feedback gloves even allow to exert a force on the hand of the
user, providing her/him with a feedback of her/his actions and allows her/him to “feel” virtual
objects.

Thecave(shown in Figure 2.19) represents a device that allows a group of people to immerse
itself into a VE. It basically consists of a set of translucent projection screens as walls. For each
wall, a projector displays a computer-generated image onto that wall. The users wear shutter
glasses so that objects can appear to be in front or behind the actual projection screen. VR input
devices like those described in the previous paragraph can be used to manipulate the displayed
environment.

VR and VE add a whole set of new possibilities to the field of scientific visualization. In-
stead of generating 2D representations of the visualization, it is now possible to create 3D
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Figure 2.19: The cave.

objects that can be directly manipulated by the user. The possibility to examine the visualized
object from different locations by simply walking around allows the user to gain additional
insight into the visualized process.

A VE was used in [3] to simulate a wind tunnel. Using the boom-tracked head-mounted
display, a user is immersed in an environment simulating a wind tunnel. With this setup, the
user can walk through the flow without disturbing it. She/he can place different visualization
objects, like stream lines, stream surfaces etc., into the flow and analyze its behavior.

2.14 The Responsive Workbench

Immersive VR allows the user to closely interact with a VE, which is used to communicate
with the application. By principle, the user is completely immersed in the environment and
cannot perceive any parts of the real world. The disadvantage of this concept is that it hinders
collaboration of several users. If a group of engineers wants to discuss the properties of the
flow around a certain design, then it is necessary for them to see each other in order to be
able to interact with one another. If they are completely immersed in an VE, then it would be
necessary to create representations of the engineers in this environment as well. Approaches to
this end have already been taken, but lack the full set of possibilities of expression. With current
techniques it is just impossible to create a realistic representation of a human in real time.

TheResponsive Workbench, developed by GMD and Stanford University, takes a different
approach to this problem. It creates anon-immersive environment3. The basic setup is shown
in Figure 2.20. It consists of a table with a translucent projection screen. A projector generates
an image that is directed to the screen via a mirror. Shutter glasses worn by the users enable

3Although a variant is sold under the nameImmersive WorkBenchby Fakespace Inc., Mountain View, CA, this
term does not accurately describe the concept.

31



2 Fundamentals and related work

Figure 2.20: The Responsive Workbench.

them to see objects beyond the screen. Users interact with this scenario via VR input devices
like those shown in Figure 2.18. The Responsive Workbench is built for VEs that augment
the the real environment, which, in this case, comprises of the table. As the name suggests,
applications should extend the workbench concept, providing the user with tools she/he can use
to alter the scene on the table. In conjunction with the ability to see the other participants, this
enables discussions of the VE on the table and facilitates collaboration in this environment. For
this work the Immersive WorkBench, a commercial version of the Responsive Workbench, was
used. It is an improved version of the original design and has the advantage that the slope of the
tabletop,i.e., the projection area, is adjustable. It is similar to a sketch board used by engineers.
This can be used to increase the viewing volume by increasing the slope of the projection area.
If a horizontal table top is desired,e.g., if physical objects are to be placed on the workbench,
then this can be done as well.

2.15 Moving objects in VEs

If a user views an object (a model or a visualization) she/he may want to move it around. One
reason for doing this is the desire to look at it from different perspectives. Although in VE this
can can be accomplished by simply walking around the object, it still may be desirable to move
the objects instead of changing the position of the viewer.

An intuitive method to move objects in 3D space is themodel-on-a-sticktechnique, which
is depicted in Figure 2.21. If the user performs a pinch, the application acts like she/he grabs a
stick connected to the model she/he wants to move. Using this stick she/he can move the object
or rotate it about the position of her/his hand.

This is accomplished by using a coordinate system attached to the users hand. This coordi-
nate system can be given as a matrix4, AHTW, mapping coordinates from the hand coordinate
system to the world coordinate system. If the user initiates the movement by beginning the pinch

4Using VLIB from Fakespace Inc., Mountain View, CA, this matrix can be obtained using the function
GetTrackerMatrix() .
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Figure 2.21: The “model-on-a-stick” technique.

gesture, the coordinates are transformed from world coordinates to hand coordinates. Instead
of changing the coordinates, the transformationA�1

HTWAobjTrans (whereAobjTrans is the current
transformation used to transform the object in world coordinates) can be saved asAPinch. This
is shown in Figure 2.22.

If the user moves and turns her/his hand, the current hand-to-world transformation is used
to display the object described in the hand coordinate system. This is the same as displaying the
original object and replacing its corresponding transformationAobjTrans with the transformation
AHTWAPinch. At each moment, the object expressed in hand coordinates is displayed with the
current hand-to-world transformation as shown in Figure 2.23.

This has the desired effect of putting the object at the end of a stick, that reaches from the
position of the hand to the position of the object at the begin of the pinch and moving the object
with this stick when moving the hand while holding the pinch gesture.

It turns out that this technique provides an intuitive means of changing the position and
orientation of objects. Users quickly become used to this technique and can learn in almost no
time how to use it.

2.16 Related work

A number of techniques have been introduced to simplify scalar fields. Many of these operate on
grids,i.e., discrete data sets with a given connectivity. Most techniques use either a bottom-up or
top-down strategy. A bottom-up strategy starts with a high-resolution representation of the data
and examines it to identify regions where the grid can be simplified while introducing minimal
error. This process is repeated until a given error threshold is reached. Top-down strategies
start with a coarse mesh and insert points into the mesh in regions of maximum variation until
a desired error condition is met.

Cignoniet al. [4] designed several top-down algorithms. They use a Delaunay-based proce-
dure to generate a mesh that represents a set of points with associated scalar values. This mesh
is refined by finding a data point whose associated function value is poorly approximated by
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Figure 2.23: Model-on-a-stick — Dragging an object.
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the mesh and adding this point to the triangulation. After adding this point, the mesh is then
modified to preserve the Delaunay property. This algorithm has been generalized to include a
decimation strategy [5]. This is done by collapsing edges of the triangulation. The selection of
the edge to be collapsed is performed by analyzing the gradient at each vertex of the grid. It
is calculated as a weighted average of gradients of all the tetrahedra sharing that vertex. The
weight of a tetrahedron is given by the solid angle subtended by it at the vertex. The edges are
ascendingly sorted by the difference between the gradients at the endpoints of each edge and
then successively eliminated until a threshold is reached.

Kreyloset al. [24, 25] create a near-optimal linear approximation to scattered data in one or
two variables. In the case of scattered data in two variables, a Delaunay triangulation is used
to triangulate a set of points discretizing the function. The positions and connectivity of these
points are changed using a simulated annealing scheme to find the optimal placement for the
given amount of vertices, minimizing the error of approximation resulting from using linear
interpolation on the triangulation of these vertices. Several levels of details can be generated
by adding further vertices to a given approximation. Simulated annealing is used to find the
optimal positions for the newly added vertices, while the preserved vertices from the previous
approximation are restricted to remain at their positions.

The algorithms of the bottom-up category roughly fall into two classes: Algorithms simplify
a mesh by removing simplices or utilize a wavelet transform to simplify the data.

Algorithms removing simplices include the work of Schroederet al. [38]. They create
approximations to the original data set by removing vertices from the original mesh. These
vertices are selected by a distance-to-plane criterion. If the distance of a vertex to the average
plane of its surrounding vertices is below a specified threshold, then the vertex is removed. The
resulting hole in the mesh is then be re-triangulated.

Hoppeet al. [18] use edge-collapse operations to create a simplified version of an original
mesh. A continuous-resolution representation is created by storing a coarse mesh resulting from
performing edge collapse operations and a list of the edge collapse operations. Finer levels of
detail can be created by countermanding the previously performed collapse operations utilizing
the stored list of these operations.

Gienget al. [10] remove entire triangles from a triangular mesh. They create hierarchies of
meshes approximating a surface by removing individual triangles from the mesh. The triangles
are collapsed to points whose location is calculated using a criterion based on the curvature of
the surface. Trottset al. [43] generalize this approach to scalar fields defined over tetrahedral
meshes. They collapse tetrahedra by a series of edge collapse operations. Staadt and Gross [40]
have developed a similar algorithm.

Nielsonet al. [31, 32] use a wavelet approach to simplify vector fields defined over the
sphere or curvilinear grids. In [31], they define a class of Haar wavelets over triangular domains
and use those to simplify a vector field over a sphere. In [32], they apply a “lifted Haar wavelet”
to curvilinear grids.
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Chapter 3

Vector field simplification based on
clustering

3.1 Approach I: Clustering vector fields using a single dis-
tance function

The first approach is a modification of clustering as applied to surface reconstruction. Instead
of positions on a surface, the data points are now the samples of a vector field. Since the
original surface reconstruction algorithm uses a distance measure for the data points, this must
be replaced. The distance measure is the only source of information the algorithm uses about
the vector field. It must contain all relevant information concerning the samples,i.e., positional
and vector information. An obvious choice is to use a weighted combination of all magnitudes,
as mentioned in Section 2.10:

�1kp1 � p2k+ �2\ (v1;v2) + �3�L : (3.1)

p1 andp2 are the sample positions, andv1 andv2 are the vectors at these locations. The�i > 0,
i 2 f1; 2; 3g, are weights (that do not necessarily have to add up to1).

Several split strategies have been examined:

1. Split in direction of maximum extension.

2. Choose the position and value of the vector with maximum deviation from the current
cluster center, provided it does not have the same position as the current cluster center.

3. Split in the direction of maximum deviation, regardless if this is a positional dimension
or a part of the vector.

Strategy 1 computes the extension for each spatial dimension of the cluster. This is done by
computing the standard deviation of the cluster samples from the cluster center in each spatial
dimension (i.e., for each dimension of the position of the sample). The dimension with the
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maximum deviation is chosen and two new cluster centers are created by adding an offset to the
original cluster center in this dimension. Strategy 2 simply chooses the sample of the current
cluster, having the maximum distance (with respect to the used distance function) to the cluster
center and uses this sample as the representant of a new cluster. Strategy 3 works like strategy
1. However, it does not only take positional dimensions but also the vector information of the
sample into account. Thus it is possible that two cluster centers with identical position, but
different vector value are created.

The main advantage of this approach is its robustness. When a new center is not placed in
the middle of a region consisting of vectors of similar length and direction, it will move toward
the center of this region. The distance measure used for associating a vector with a cluster also
takes the vector part into account. Thus all vectors of similar length/direction in a region will be
associated with the new cluster. The new cluster center is recomputed as the weighted average
of all samples. This causes the representant to lie in the middle of the region.

Unfortunately, the choice of a single distance measure for all purposes leads to several prob-
lems. In many cases it will create disjoint clusters. The final result of the clustering is to be used
by either a triangulation step to create a triangular (or tetrahedral) mesh representing the vector
field or for scattered data interpolation. Thus it is desirable that the clusters are “connected re-
gions” in space. Both, position- and vector part are mixed in the distance measure that is used to
determine the cluster to which a sample belongs. Thus it is possible that two regions of vectors
with similar direction and length that are position-wise very close together are merged, even if
they are separated by a region of vectors of different direction or length. This is illustrated in
Figure 3.1. It happens mainly because combining the positional and vector information in one
distance function causes the clustering to treat the samples as(n + m)-dimensional1 entities,
and creates(n + m)-dimensional coherent clusters. Looking at the clusters in the positional
domain is the same as projecting them down inton-dimensional space. This projection of the
(n + m)-dimensional clusters is not necessarily coherent in the positional dimensions. One
possible solution is to choose a distance function that depends more strongly on the distance of
clusters, however this increases another problem.

Cluster 1

Cluster 1

Cluster 2

Figure 3.1: Approach I — “Disjoint clusters”.

1Regarding the meaning ofn andm see Definition 1
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If a cluster contains mostly vectors that have a similar direction and length, it should not
be split. Splitting a cluster should only happen, if the vectors within deviate from each other
by a certain amount. Taking the positional part into account causes a penalty for big clusters
that should not be present. This problem could be alleviated by weakening the influence of the
positional part in the distance measure. However, this is exactly the opposite of what should
be done to solve the previously discussed problem. The two problems in conjunction suggest
that it is necessary to use different distance measures. One distance function should be used for
deciding on what cluster to split next. A different distance function should be used to associate
the samples to clusters. Splitting the clusters should mostly depend on how much the vectors
deviate within a given cluster, and assigning a sample to a cluster should mainly be governed
by spatial proximity.

Further problems in using this approach arise from the need to determine adjacency of clus-
ters. An efficient implementation of the clustering algorithm needs to determine adjacency re-
lationships between clusters. Only samples in clusters adjacent to the split clusters are marked
for reclassification,i.e., potential assignment to a different cluster. If the Gabriel graph is used
to determine neighborhood information, then this requires finding a sample between two given
samples, both position- and vector-wise. Determining the vector in the “middle” between two
given vectors can prove to be a problem. Furthermore, it is desirable to replace the Gabriel
graph with the more natural Delaunay graph. For the vector part this is a tedious undertaking,
if a distance function different from the Euclidean norm is used2.

The later problem can be solved by using only the position part in determining adjacency
information. The end result of the clustering process should consist of coherent clusters. Thus
determining neighborhood only using the position part seems to make sense. However, if this is
done it is possible that sample are overlooked in the reclassification process. This is illustrated

Cluster 1Cluster 2Cluster 1

Figure 3.2: Problems arising from using only positional information to determine adjacency.

in Figure 3.2 (bold red arrows represent the cluster centers). Like Figure 3.1 it shows an example
for a disjoint cluster. If the clustering algorithm were to split cluster1 in this vector field and
place the new center in the region on the right side of cluster2, then the vectors in that region
would not be placed on the reclassification list. Cluster2 is between the new cluster and the
split cluster. Thus the newly created cluster is not adjacent to the cluster it was meant to refine.
This will most probably result in no vectors being assigned to this cluster. A possibility to avoid

2Refer to [33] for further information.
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this problem is forcing the cluster that was split to be on the reclassification list. However, parts
of other disjoint clusters could still be overlooked in the reclassification process.

A different approach to solving this problem is to check for each sample to be assigned to a
given cluster, if it is adjacent to that cluster. This can be done by taking all adjacent clusters for
this cluster into account and checking, if they are between the sample and the cluster it should
be assigned to. However, even if the computational cost using the Gabriel graph to determine
adjacency information might be acceptable in order to prevent disjoint clusters, using more
accurate ways to determine adjacency (like the Delaunay graph) might increase the additional
imposed computational cost to unacceptable levels.

Another problem seems to invalidate this approach. To determine if a sample is adjacent to
a cluster, the old cluster centers (before the samples are reclassified and the centers are recom-
puted) are used. Thus, the algorithm might consider a sample to be adjacent to a cluster even if
it is not. Checking whether a cluster is disjoint, removing the samples in disjoint regions of the
cluster, and assigning them to different clusters might solve this problem. However, this would
most likely require an iteration checking the clusters after change in sample assignment. The it-
eration needs to be performed until all clusters are coherent. This imposes further computational
cost and could slow down the clustering process to unbearable levels.

Furthermore, using approach 3 to determine the location of the new center after the split
process3 leads to the possibility of centers having the same position but different vector compo-
nents. This is illustrated in Figure 3.3. The two cluster centers are at the same position. This

Cluster 2Cluster 1

Cluster 2 Cluster 1

Figure 3.3: Two centers at the same position — a problem when computing the triangulation.

poses major problems, when the cluster centers are to be used as vertices in a triangulation of
the vector field. Each vertex in a triangulation must be associated with an unique value. How-
ever, the cluster partition shown in Figure 3.3 assigns two distinct values to the same position.
Even though this problem is intensified by splitting in vector dimensions, it even arises if the
split points are only determined by changing the position part of the vector center. It is desirable
that the clusters form convex regions to simplify the task of finding an actual triangulation for
the vector field. Changing only the position part of the cluster center during the splitting part
of the clustering process does not seem to be viable since the vector part of the new centers is
used in assigning the samples to the new clusters. On the one hand this part is used in assigning
vectors to the cluster. On the other hand, it is not chosen to fit the vector-direction and length in

3Compare new-center-placement strategy 3, described on page 36.
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the region that is to be approximated more closely.
Taking all this into account, this approach dose not yield satisfactory results. Especially its

tendency to split big clusters will result in a homogeneous tessellation of the vector field and
not in one that is finer in regions of detail and coarser in regions of almost constant behavior.

3.2 Approach II: Clustering vector fields using different dis-
tance functions

The second idea is to use two different distance functions to achieve the desired results. This
should pose an improvement over approach I because it takes the two contradicting require-
ments of the distance function into account:

1. Thesplit distancefunction is used to determine which cluster is split in the next splitting
operation. This function should mainly depend on the variation of the vector part.

2. Theassignment distancefunction determines which cluster a sample is assigned to. It
should mainly depend on the positional part. This is necessary because the desired result
is spatially coherent clusters. This is necessary to avoid situations like those depicted in
Figures 3.1, 3.2, and 3.3. They result in problems when using the cluster centers as input
for a triangulation scheme or a scattered data interpolation method.

This leads to an approach that uses a split distance function only dependent on the vector
part of samples:

�1\ (v1;v2) + �2�L :

v1 andv2 are the vectors of the samples. The�i > 0, i 2 f1; 2g, are weights (that do not
necessarily have to sum up to1). As assignment distance function the Euclidean distance is
chosen which is only dependent on the position of the sample. This yields clusters similar
in shape to the cells in a Voronoi tessellation that uses the cluster centers as positions of the
sites. The clusters do not exactly correspond to the Voronoi cells. As soon as the location of
the representants, or centers is chosen, all points are reclassified,i.e., assigned to the closest
cluster. The cluster representants are subsequently recomputed as the centers of those samples.
This will change their position and causes that clusters are not exactly shaped like Voronoi
cells. Furthermore, the cluster shape is governed by the positions of the samples. This will also
prevent the clusters from being shaped like Voronoi cells.

Based on a split distance function only dependent on the vector component of the samples
there are several ways to compute the error for a given cluster. In the following definitions, a
clusterC is considered to be a set containing all samples assigned to it as members.jCj denotes
the cardinality of the set,i.e., the number of samples in clusterC. A samplesi represents a
tuple of position and vector in that position,si = (pi;vi). The deviation of a samples from the
cluster center, given by the split distance function, is denoted by"s.
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1. Theerror sumis the sum of all individual deviations of the samples form the cluster
center, called

"C;sum =
X
s2C

"s : (3.2)

2. Themean erroris the error sum divided by the number of samples in the cluster, called

"C;mean =
1

jCj

X
s2C

"s : (3.3)

3. Themax erroris the maximum of all individual deviations of the samples from the cluster
center, called

"C;max = maxfs 2 Cj"sg : (3.4)

Method 1 places a penalty on large clusters and should be avoided. Using these definitions, it
is possible to define the sum, mean, and maximum error of a cluster representation of a vector
field analogously, as the sum, mean, or maximum of the individual cluster errors"C.

Split step

Cluster boundary

Figure 3.4: Increasing error with new center.

Unfortunately, this approach is not as tolerant when it comes to choosing an unsuitable
location for a new center. This is due to the fact that only the position is taken into account when
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assigning a sample to a cluster. Figure 3.4 (red, bold arrows denote the cluster centers) illustrates
this problem. The left-hand side shows two clusters representing a vector field. Moving each
representant into the center of the region consisting of vectors similar to it would improve the
quality of the approximation. If the vector part played a role in determining to which cluster a
sample should be assigned, this would happen automatically. The vectors similar to the cluster
representant vector would be assigned to each cluster, thus generating better cluster boundaries.
Recomputing the cluster representant as average of the positions of all samples belonging to
a cluster would move the centers toward better positions. However, if only the position parts
are taken into account this correction of poorly chosen centers does not take place. Instead, a
new representant might be inserted between the two existing representants. This representant
collects the nearest samples around it. The resulting cluster has a larger mean error than the
mean error of the cluster prior to the splitting process. If the next cluster centers are also poorly
chosen, the approach will try to refine this region. More clusters are created in the vicinity and
thus other regions are neglected. Moving poorly chosen representants to a better position could
avoid this situation.

This approach also restricts the clusters to have shapes similar to the cells in a Voronoi
tessellation. A positive aspect of this fact is that it ensures the clusters to form convex regions.
This helps later during the triangulation step. One problem with clusters shaped like Voronoi
cells is illustrated in Figure 3.5. In some cases (edges marked with an “G” in Figure 3.5)
the Voronoi cell boundary (dashed line) intersects the dual dual Delaunay edge (solid line)
exactly in the midpoint. If linear interpolation is used, this marks exactly the point, where the
contribution of one cluster center gets larger than the contribution of the other cluster center.
This happens exactly at the cluster boundary which is exactly the point, where it is supposed
to happen. The contribution of a cluster center should be larger within the cluster region than
the contribution of other cluster centers. Unfortunately, there are cases where the Delaunay
edge does not intersect its dual Voronoi edge. Instead it intersects other Voronoi edges. In this
case the edge is partially in a cluster whose center does not contribute to the interpolation value
at all. Thus the edge is in the wrong cluster and assigns values to points within the cluster
without taking the actual cluster center value into account. This may cause problems when
using a Delaunay triangulation of the cluster centers to represent the vector field and should
be taken into account, when the final triangulation step is devised. Note however, that this
is a problem of the Delaunay triangulation in general. Nonetheless, in general this approach
yields promising results. Finding solutions to its shortcomings should be easier than dealing
with the non-coherent clusters resulting from approach I. However, this approach should be
modified to increase its robustness in regard to choosing a poor position for the centers during
the split process. It may be possible to achieve this goal by creating a hybrid of this approach
and approach I.
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Figure 3.5: Problems using Delaunay triangulation

3.3 Approach III: Clustering vector fields using a two-pass
approach

During the examination of how well the clustering approach could be adapted to vector fields
the idea of using two distinct passes came up. One pass performs clustering only according
to the vector part of the samples, and a second pass only takes the position of the samples
into account. For the distance function between two positions, the Euclidean distance is an
obvious choice. For the vector part it is more difficult to find a distance function. It is necessary
to choose a sufficiently powerful,i.e., customizable, distance function, and to generalize the
Gabriel graph to this distance function. In order to compute the Gabriel graph for positions it
is necessary to compute the mid point between the positions,i.e., the point that lies on the line
segment connecting the two positions and that has the same distance to both positions. Doing
the same for vectors proves to be more complicated. For this reason, a first implementation
of the two-pass approach used the Euclidean distance for both, vector part and position of the
samples. This ensures that the mid-vector can be computed in the same way as the mid-position
is computed. A refinement of this implementation uses the same distance measure for the
vector part as approach II. Computing the mid-vector is only implemented partially because of
ambiguities. These ambiguities arise when the vectors point in opposite directions and have the
same magnitude,i.e., they sum up to the null vector0. Figure 3.6 illustrates this problem. In
this case it is not possible to determine the correct mid-vector. The two possible choices are
drawn as dashed arrows in Figure 3.6. It is not possible to choose one of these two vectors over
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the other. If the distance function is changed, then the computation for the mid-vector must

Figure 3.6: Ambiguity computing the mid-vector.

be changed accordingly. Even the generalization to the distance function used in approach II
was not done completely because of the mentioned problems. Other problems arise when the
Delaunay graph is used to determine adjacency information. Generalizing the Delaunay graph
for general distance functions is even more tedious (see [33]).

Besides this, clustering vector fields using this approach causes more problems. These result
from the fact that two passes are used in the clustering process. Since the first pass clusters only
according to the vector part of the samples, the positions of the resulting clusters representants
have no meaning. Spatial distance is of no importance in determining cluster affiliation of
samples during the first pass. Samples having a similar vector part are assigned to one cluster
regardless of whether they are separated by regions of samples with different vector parts. Since
the center is the mean of all positions of samples in a given cluster its position is meaningless.

This is the reason for performing a second, position-dependent pass after the first pass. In
this pass, clusters of samples with similar vector parts are split into clusters that are spatially
coherent. This poses a major problem. Since no adjacency information for the samples is
given, the resolution of the final clustering must be chosen by imposing a maximal positional
error. In order to detect that two regions belonging to one cluster are separated by a region
belonging to another cluster, the maximum size for the clusters in the position pass must be
chosen sufficiently small. This causes all clusters to be of approximately this size. Even if most
of the clusters could be approximated by larger regions, it is necessary to restrict the cluster
size. Otherwise, spatially disjoint clusters can emerge. Some kind of merging step, coalescing
adjacent small clusters that originated from one cluster of the first pass, would be necessary
to countermand this problem. However, the better the resolution and the smaller the clusters
resulting from the second pass the higher becomes the computational cost of this step. This
step is further complicated by the restriction that the resulting clusters should form “coherent
regions” in space.

It may be possible to use this approach in cases when connectivity information is given (see
Section 6.2) but due to the mentioned problems this approach seems to be unsuited for scattered
data without connectivity.
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3.4 Comparison of the three approaches for clustering vector
fields

Taking all this into account, approach II,i.e., using two different distance measures in one
pass, seems to be the best. However, it still needs refinement. It is desirable to incorporate
the robustness of the first approach in regard to choosing an unsuitable center in the splitting
process into this approach.

3.5 Refining the approach using different distance functions

One possibility to create a synthesis of approach I and II is the following:

1. Split a cluster,e.g., by choosing the new center at the position of the sample whose vector
part has the largest deviation from the center vector part.

2. Check all surrounding clusters for vectors similar to the new cluster center. Assign these
vectors to the new cluster. The adjacent clusters are given by the Gabriel or Delaunay
graph of the cluster representants.

original cluster
newly generated

cluster

Figure 3.7: A hybrid method: combining approach I and II.

While reassigning samples to clusters depending only on the vector part it is necessary to be
careful to avoid the problems of disjoint clusters mentioned during the discussion of approach
I. Since the position of the samples is completely disregarded, the danger arises that samples
from the “opposite” side of an adjacent cluster are assigned to the newly created cluster. The
“opposite” side refers to the side from the center of the neighboring cluster that is is not adjacent
to the newly generated cluster. This is illustrated in Figure 3.7 (the cluster centers are drawn as
bold red arrows). It shows a newly generated cluster and one of its neighbors. The two samples
drawn as green arrows should be assigned to the new cluster to move its center in the correct
direction. Two other samples, drawn as blue arrows, must not be assigned to this cluster, since
they are on the opposite side and would move the center of the newly created cluster too far
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into the direction of this cluster. This situation can be avoided when a scalar product based
criterion is used. When a sample of a cluster adjacent to the newly created cluster is to be
reassigned to the new cluster, a simple computation is performed. First, the vector pointing
from the representant of the cluster containing the sample to the sample position is computed.
After that, the vector pointing from the representant of the cluster containing the sample to the
newly created cluster is computed. Finally, the scalar product of these two vectors is computed.
If it is greater than or equal to zero, then the sample may be safely added to the new cluster.
However, using the scalar product this way allows vectors with directions in a range of180� to
be assigned to the new cluster for purposes of computing the center of the new cluster. This
causes new problem cases. One of these cases is illustrated in Figure 3.8. We assume that either
the upper or lower vector on the right side is chosen as vector with maximum deviation (both
can be chosen since they both have the same direction and length). Furthermore, we assume
that no vector in an adjacent cluster is added to the new cluster. In that case those two vectors
are sorted into the new cluster and the center is placed between them in a region with vectors of
different length/direction. This places the new center in a different region than the the sample
with the maximum vector part deviation from the cluster center.

Figure 3.8: Problems computing the center of the new cluster — Case 1.

The case depicted in Figure 3.9 is even worse. Regardless which of the four samples in the
middle region (drawn as green arrows) is chosen as maximum-deviation sample, two others are
added to the cluster as well. This results in placing the center of the new cluster center at the
same position as the old cluster center. This will result in either one cluster being empty (if all
samples are assigned to the first cluster of different clusters with equal spatial distance to the
sample) or in a non-deterministic splitting of the cluster (possibly resulting in disjoint clusters).
Both cases are unacceptable and should be avoided. Even if one would test if the scalar product
is greater than zero, the situation will arise in which the new cluster-center is located extremely
close to the old cluster center. Since the cluster boundaries roughly conform to the boundaries
of the Voronoi tessellation using the cluster centers, this will result in empty Voronoi cells and
thus in empty clusters.

Even if the optimal location for a cluster center is found, problems arise. Figure 3.10 shows
an example with two clusters. If one of these clusters is split,e.g., the lower one, and the center
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Figure 3.9: Problems computing the center of the new cluster — Case 2.

for the new cluster is computed using the four samples drawn in green, it is placed at the ideal
location. For the final association of samples to clusters the Euclidean distance is used. Thus,
even if the cluster consisting of the green samples is an ideal representant for the vector field
in that region, a cluster consisting of these samples is not possible. The representant of this
cluster would have a bigger Euclidean distance from the samples that are to be assigned to this
cluster than the two original cluster representants. This results in the samples being assigned
to their original clusters and the new cluster being empty. Thus it provides no improvement
for the representation of the vector field. Apart from adding a new empty cluster, this split
process has no effect. The same cluster will be chosen as split candidate again, yielding an
infinite loop. Using the Delaunay triangulation intensifies this problem, since now the complete
neighborhood is considered. The Gabriel graph only considered a subset of the neighboring
clusters (see Section 2.5). In fact this problem was reveled in its whole severity, when the
implementation was changed to use the Delaunay graph instead of the Gabriel graph.

This in mind, another attempt was undertaken to make approach II more adaptable in regard
of disadvantageous placement of a new cluster representant. The attempt was made to reach this
goal by modifying the assignment distance function. Instead of using only the position of the
samples for this distance function, the combination of all criteria discussed in Section 2.10 (as
shown in equation 3.1) is used. The weighting factors are chosen in a way, that the positional
weighting factor�1 is large, and the weighting factors for the vector-related distances�2 and�3
are small.

At first, the implementation exhibited the same problems as the approach using only one
general-purpose norm. Closer examination revealed that the use of the exponential function
1 � e�l to normalize the positional distance to lie in the interval between0 and1 causes these
problems. If the vector field is defined over a larger region and the distances between the posi-
tions of the samples become larger, then the normalized value becomes so small, that choosing
a large value�1 cannot counterbalance this effect. Despite of the goal to put an emphasis on
the position of the sample, the use of the exponential function puts an emphasis on the distance
between the vectors associated with the samples.
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Cluster 2

Cluster 1

Figure 3.10: Problem arising from using two distance functions

It is possible to prevent this by replacing the exponential function with a different means
for normalizing the distance between the positions of the samples. One way to accomplish this
is to compute the bounding box of the vector field and divide the components of the position
by the extent of the bounding box in that particular dimension. This yields better results. But
further experiments have shown that the results of this approach cause problems when used to
generate a triangulation. This is illustrated in Figure 3.11. Because the assignment distance
function takes the vector distance between samples into account (even with a small weight),
this permits a greater variety of possible cluster shapes,e.g., clusters like Cluster4 in Figure
3.11. This cluster extends widely into one dimension but is narrow in the other dimension.
This is due to the fact that the influence of the vector distance function causes it to resemble
the region of vectors that are similar to its representant. In that way, the clustering algorithm
produces exactly the same result, as a human might intuitively expect and generate when asked
to perform the same task. This illustrates that the intuitively expected result might not be the
ideal input for a triangulation or scattered data interpolation scheme. Using this approach, the
interpolation scheme has to be modified, as discussed in Section 6.2. From this point, Heckel
has extended the work on clustering. The results are discussed in [16].
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Cluster 3

Cluster 4

Cluster 7Cluster 6Cluster 5

Cluster 2Cluster 1

Figure 3.11: Problem arising from a wider variety of possible cluster shapes.
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Chapter 4

Visualization

4.1 Utilizing a scattered data vector field hierarchy for visu-
alization

The clustering process discussed in the previous section yields a hierarchical representation of
a vector field described without point/sample connectivity. This representation can be viewed
as a binary tree, in which each node has either no or two successors. Each node represents a
cluster that existed at any time during the generation of the hierarchy. Each node corresponds
to a region in the vector field. This region is the convex hull of the samples of the original
data set that were assigned to the cluster corresponding to this node. If a finer representation
is available, then the node has two descendants, which correspond to the two clusters resulting
from splitting the cluster corresponding to the current node. In the further course of this work,
this tree will be calledclustering tree.

Definition 24 (clustering tree)
The clustering tree is a binary tree corresponding to the evolution of the clustering process.
Each node in this tree corresponds to a cluster that existed at a given point of time during the
clustering process. Each node in the clustering tree has either no or two descendants. Each node
contains the following information:

1. the samplesnode = (xnode;vnode) which is the representant of the cluster corresponding
to this node

2. the error describing by how much the vector field deviates from the representant in the
region described by the node

3. a split number that indicates when the cluster corresponding to this node was split

Using the split number, the exact progression of the clustering process can be reproduced,
and any desired level of detail within the limits of the given cluster hierarchy can be attained.
If the vector field is to be represented by a given numberNSamples of samples, then this repre-
sentation can be constructed from the clustering tree by performing the firstNSamples � 1 split
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operations. Figure 4.1 shows the clustering tree for a simple example. The nodes contain the
representant (first row), the split number (second row), and the error for this node (last row). In
this representation, any level of detail that can be constructed from the hierarchy is represented
by a thread connecting the nodes belonging to that level of detail. The clustering tree depicted
in Figure 4.1 can be used to construct five different level of details. The simplest case is a thread
containing only the root and thus consisting of only one representant. The next three possible
level of detail threads are shown in green, red, and blue and consist of resp. two, three, and
four nodes. The finest possible representation is the thread connecting only the leafs of this
tree. Each thread can be constructed from the previous thread by replacing the node with the
lowest split number along the thread with its two descendants. By doing this, all split operations
performed during the clustering are sequentially considered.
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Figure 4.1: Clustering tree and thread representing a level of detail.

Because of the sequentiality of the splits, it is possible to speed up the process of finding the
next split candidate by keeping an array of pointers. For each possible split number the array
contains a pointer to the corresponding node in the clustering tree. This is shown in Figure 4.2.
By working sequentially through this array, it is possible to reconstruct the clustering process
and access every possible level of detail. This is shown in Figures 4.3 and 4.4. Figure 4.3
shows the clustering tree and the thread representing the level of detail resulting from using all
pre-computed split operations up tolastUsedSplit = 1. The next split operation to use
is split number two. The arrow corresponding to the node pointer in the split list is drawn in
red. The result from using the pre-computed split operation is shown in Figure 4.4. The thread
denoting the previous level of detail is still shown as dotted line. The thread corresponding to
the level of detail after using the next split operation results from replacing the node indicated
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Figure 4.2: Clustering tree and array mapping split numbers to nodes.

by the pointer in the split list by its two children. After that the variable “lastUsedSplit ”
is updated, and the hierarchy level can be obtained by traversing the nodes along this thread.

A method to utilize the resulting list of representants to find an interpolation vector value
for a given location within the vector field is using it as input for the localized Hardy interpo-
lation described in Section 2.3. This method has been implemented to compare the simplified
vector field to the original vector field. The implementation uses a slider to select a level of the
hierarchy. The thread corresponding to this level of detail is then computed according to the de-
scribed algorithm. This representation is used for the Hardy interpolation. The implementation
allows to view stream lines computed from the current hierarchy level and the original vector
field. Using toggle buttons, it is possible to select the resulting stream lines and difference sur-
face connecting them to visualize the differences. It is also possible to display stream surfaces.
The implementation usesOpenInventorto display the visualization objects. Re-positioning the
stream lines and stream surfaces is possible by using OpenInventor draggers.

4.2 Tetrahedral hierarchies

The original intent of this work was to compute hierarchies of tetrahedral meshes. The cluster-
ing was to be used to obtain different representations of the vector field. These results were to
be used to generate pre-computed tetrahedral meshes stored in a way enabling access to the dif-
ferent hierarchy levels by standard visualization algorithms. The resulting hierarchy would not
have contained all possible resolution levels, but rather a sensible selection of hierarchy levels
(e.g., each level having an error less than a given error bound with a given list of descending
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Figure 4.3: Refining a thread in the clustering tree — original thread.
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error limits). The initial implementation operated accordingly. However, it became obvious
that even for a relatively small number of scattered data positions (in the range between100000
and1000000 sample positions) the time to compute the Delaunay triangulation becomes pro-
hibitively high. The aim of this work is to devise methods for visualizing large-scale data sets.
These contain amounts of samples that exceed these numbers by several orders of magnitude. It
is likely that even a reduced and simplified version of these vector fields will contain more than
a million data items. Even if triangulation or grid generation algorithms with less computational
cost are used, it does not seem to be feasible to compute the tetrahedral meshes in advance.

The localized Hardy interpolation method presented in Section 2.3 circumvents this prob-
lem by not requiring any mesh. If no geometry or connectivity information has to be taken into
account this method yields excellent results. Furthermore, it avoids some problems that arise
when mesh-based interpolation schemes are used. Figure 4.5 shows a case where the interpola-
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Figure 4.5: Ambiguity in approximation value due to non-uniqueness of triangulation.

tion value is not uniquely defined. This case arises, even though Delaunay triangulation is used,
since the given points are co-spherical and thus no unique Delaunay triangulation exists. The
two triangulations shown in this figure yield two different values for the queried point (marked
with an “x”). If the used triangulation is not a Delaunay triangulation, then there are even more
possibilities. The most commonly used linear interpolation within the simplices produces ad-
ditional problems,e.g., in many cases the resulting flow is not mass-preserving, even in many
cases, like wind tunnel data, where this should be true. This problem is further discussed in
[22]1.

Hardy interpolation provides an efficient means for approximation avoiding some shortcom-
ings of grid-based approaches. However, using Hardy interpolation also causes some problems,
mainly the problem of the missing connectivity, discussed at the end of Section 2.3. Addition-
ally, there are visualization methods that require a grid,e.g., the alternative method for stream
line and stream surface generation presented in [22, 23]. In cases like these, it becomes neces-
sary to generate some kind of grid for the data.

1It remains to be verified whether the Hardy interpolation is mass-preserving.
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4.3 Procedural generation of tetrahedral meshes during vi-
sualization

An observation leading to a possible solution is the fact that in those cases when a finer represen-
tation is used only a limited region of a vector field is of interest to the user of the visualization
application. As mentioned in the introduction, the need for a hierarchy resulted from the need to
provide the user with a more accurate representation of the vector field, when she/he focuses on
a certain region of the vector field,e.g., when zooming into a region. This suggests that it is not
necessary to compute a complete tetrahedrazation for the finer levels of details. It is sufficient
to compute the tetrahedrazation for that part of the vector field, that currently is of interest to
the user.

If the number of points that are to be triangulated is sufficiently small, then it becomes
possible to generate the corresponding mesh on the fly. This allows the procedural or “on-
the-fly” generation of the grid while the visualization is in progress and adapt the mesh to the
current requirements. This work examines three approaches for the procedural generation of a
tetrahedral mesh:

1. Generate a separate mesh for each interpolated value.

2. Generate an initial mesh around the query point and generate a new mesh each time a
query lies in the margin of or outside the vector field.

3. Require the user to choose a region of interest (ROI) and generate a triangulation only for
this region.

Figure 4.6: Computing a triangulation per query — first query.

Method 1 generates a tetrahedral mesh whenever a value for a given point is queried. This
is accomplished by organizing the sample locations in ak-D-tree. This is the samek-D-tree
used for the localized Hardy interpolation. This method is illustrated in Figures 4.6 and 4.7.
The set of samples is stored without any connectivity (see left-hand side of Figure 4.6). If the
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Figure 4.7: Computing a triangulation per query — second query.

value for any location is queried, then thek nearest samples are selected. The numberk is a
parameter that has to be chosen by the programmer or user (in Figures 4.6 and 4.7k = 12).
For the selected positions a Delaunay triangulation is generated which is used to compute the
interpolation value for the given location. Whenever a new query is performed, the data set is
again considered as simply consisting of samples (see left-hand side of Figure 4.7) and a new
triangulation is computed.

It is inefficient to generate a triangulation for each query. First of all, consecutive queries are
probable to lie in neighboring tetrahedra (or even the same tetrahedron). This is,e.g., the case,
when a stream line is computed and the time step size is sufficiently small. Successive queries
to compute the Runge-Kutta solution for the differential equation will most probably be within
neighboring tetrahedra. Using a pre-computed tetrahedral mesh this can be utilized by starting
the search for the tetrahedron containing the queried point that is described in Section 2.6 in the
tetrahedron that contained the previously queried position. If each value query generates a new
grid, then it is not possible to use this simple speed up technique. Furthermore, methods using
the actual grid and not only queried values cause problems when using this approach.

Each query generates a local triangulation around the original query point. As mentioned
above, in many cases this grid is likely to contain the next queried point. However, using this
grid for computing the next interpolation value is not advisable in all cases. The triangulation
shown in Figures 4.6 and 4.7 behaves well in vicinity to the original query point. At the margin
of the triangulation one typically finds a set of long, skinny triangles. This is caused by ignoring
all other positions in the data set. If they were added, then the Delaunay criterion would no
longer be satisfied, since several of these points lie in the circumsphere of the outer triangles. If
a value for a point within those outer triangles is queried a new triangulation should be used.

Considering this fact leads one to refine the original algorithm (see 2). The first query for a
value generates a tetrahedral mesh like in the original approach. However, differing from this,
the mesh is stored for use in subsequent queries. To detect queries that lie in outer simplices of
the mesh, these simplices are marked (colored red in the Figure). A second query, lying within
the mesh in a not-marked simplex, can use the existing mesh to compute interpolation value.
This case is depicted in Figure 4.9. Queries outside the grid or within the marked simplices,

56



4 Visualization

Figure 4.8: Using a triangulation for subsequent queries — first query.

Figure 4.9: Using a triangulation for subsequent queries — second query.

like those in Figure 4.10, are considered to be invalid for the existing mesh and trigger the
computation of a new mesh.

One important design issue of this version of the procedural triangulation is the size of the
“buffer zone”,i.e., which simplices are marked to trigger a new computation of the mesh if they
contain a query point.

Definition 25 (border simplex)
A simplex in a simplical mesh is a border simplex if and only if one of its vertices lies on the
boundary of the convex hull of the mesh.

It is obvious that at least all border simplices should be marked. To avoid the explicit
computation of the convex hull, the following observation helps to find a criterion for marking
simplices that can be implemented more efficiently. This is described for tetrahedra, since the
implementation for this Diplomarbeit assumes tetrahedral grids.

A tetrahedron is certain to be a border tetrahedron, if at least one its faces lies on the con-
vex hull, i.e., there is no neighboring tetrahedron for that face. However, this criterion is not
sufficient to mark all tetrahedra which lie on the hull. There are tetrahedra which only have
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Figure 4.10: Using a triangulation for subsequent queries — invalid queries.

an edge or a vertex on the convex hull. In theses cases, they have either two (edge on convex
hull) or three (vertex on hull) neighboring tetrahedra, that lie on the boundary. An efficient
implementation can determine if a tetrahedron is a border tetrahedron by first checking if it
has a face that is on the convex hull. This can be done efficiently, since the implementation
of the “walking“-algorithm, that is used to locate the tetrahedron containing the queried point,
requires a list of the neighbors for the current tetrahedron. If one face is on the hull, then the
tetrahedron is marked as border tetrahedron. Otherwise, it is checked how many neighboring
tetrahedra have faces on the boundary of the convex hull. The tetrahedron is marked, if at least
two of its neighbors have faces on the convex hull.

The implementation for this work used only border tetrahedra to trigger the computation of
a new mesh. However, even with this refinement the algorithm has shortcomings. First of all,
there are applications, where the actual mesh is of interest and not its use for interpolation. If
such a case arises it is possible to generate a mesh by an initial query at a seed location and gen-
erate a new grid, whenever the application uses a marked tetrahedron. Another problem with
the approach is that in order for a mesh to be usable for a significant amount of queries, a suffi-
ciently high number of samples close to the query position has to be used in the triangulation.
This causes the re-computation of the the new mesh to take longer. It is hard to find the correct
balance between these two demands. Additionally, the combination of this approach with a hi-
erarchy is not straightforward. It is hard to determine, which level of detail the approach should
use at a given moment. A possibility is to have the user choose the hierarchy level and work on
this level, but this requires the user to be aware of the underlying hierarchy.

Because of these reasons a third approach (see 3) has been developed. This time, the user
has to explicitly choose the region of the vector field that is currently of interest to her/him
(drawn in green in Figure 4.11). The user does not have to be aware of the hierarchy to choose
this region2, so the approach is completely transparent in regard to the hierarchy. After the user
has chosen her/his region of interest (ROI), the samples within that region are triangulated. This
is shown in Figure 4.12.

Note that the triangulation does not completely “fill” the ROI. This could be solved by taking

2Even though it is possible to inform her/him about the currently attained accuracy.
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Figure 4.11: Choosing a region of interest (ROI).

Figure 4.12: Triangulation of points within ROI.

additional samples outside the ROI into account, but doing this is not trivial. It is not possible
to fill the ROI completely in all cases, even when samples outside this region are used. These
cases arises, if the ROI is not completely contained within the vector field. The second problem
is that it is computationally expensive to check whether the bounding box is completely within
the vector field. Each of its eight vertices must be tested for being contained in the triangulation.
If this test fails additional samples have to be added to the triangulation and the test for the eight
vertices has to be performed again. This must continue until all vertices are included in the the
triangulation. Furthermore, it also is expensive to check, whether it is possible to completely
fill the ROI with a triangulation. Doing this involves computing the convex hull of the original
data set and intersecting it with the bounding box. Alternatively, it is possible to use an artifice
to avoid these costly computations and special cases. By interpolating the values at the vertices
of the ROI,e.g., using Hardy interpolation, and adding these to the triangulation, as shown
in Figure 4.13, it is possible to generate a triangulation filling the complete ROI. Adding the
vertices to the triangulation causes the convex hull of the data set (now containing the added
vertices) and the ROI to coincide. Since the boundary of the triangulation is the convex hull
of the triangulated points, as mentioned in Section 2.5, the triangulated region and the ROI
coincide as well.

After the ROI is triangulated it is possible to use this triangulation to interpolate values
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Figure 4.13: Adding the vertices of the ROI to the triangulation completely fills the ROI with
triangles.

within that region, as shown in Figure 4.14. Furthermore, it is possible to use this triangulation
for other algorithms that need a tetrahedral mesh,e.g., the stream line generation algorithm
discussed in [23].

Figure 4.14: Estimating a value within the ROI.

So far the role of the hierarchy for the procedural generation of a simplical mesh has been
not addressed in this section. As mentioned before, the first two approaches for generating a
local mesh do not allow an easy straightforward incorporation of the hierarchy. Fortunately,
with the last approach this can be easily achieved. The basic idea is to represent the vector field
within the ROI with a fixed number of samples. This has the effect, that the effort necessary
for the visualization is independent of the size of the ROI. Furthermore, this has the effect, that
choosing a smaller ROI automatically increases the accuracy of the representation, since the
same number of samples is used to approximate a smaller region.

Keeping the amount of samples in the ROI constant is achieved by using the clustering tree
and the thread representing a hierarchy level explained in Section 4.1. In the beginning, the
complete vector field is chosen as ROI and approximated by a configurable number of samples
NusedSamp. This is done by reproducing the cluster splits until theNusedSamp are used to represent
the vector field. Since initially the complete vector field is chosen as ROI, this is accomplished
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by using all pre-computed splits up to split numberNusedSamp � 1. If the user chooses a ROI, a
different refinement routine is used. Since not all split operations yield samples in the ROI, it is
no longer possible to use the simples correspondence,NusedSamp = lastUsedSplit+1. Instead,
it is now necessary to separately keep track of the number of samples currently within the ROI.
If a pre-computed split is reproduced, the number of samples in the ROI changes depending
on whether the representant of the original cluster was within the ROI and on whether both,
only one or none of its descendants has a representant in the ROI. If the representant of node
describing the current split process is not within the ROI, the number of samples in the ROI
increased by the number of descendants (0, 1, or 2) that have a representant in the ROI. If the
representant of the node is in the ROI, the number of samples in the ROI is only increased by
one if both the representant of both descendants are in the ROI. In that case at least one of the
descendants should be in the ROI so that it is not necessary to decrease the number of samples
currently in the ROI. The split processes are reproduced until a number ofnusedSamp is in the
ROI, or all split operations were used, and the current hierarchy thread only consists of leaf
nodes in the clustering tree.

We note that this approach refines the complete vector field until the desired number of
samples is in the ROI, although only those samples are used afterwards. Section 6.3 describes a
way that avoids refining the rest of the vector field and only generates a fine representation for
the ROI. We further note that it is also possible to countermand the refinement of vector field,
by successively replacing the two sons of the last split node by their father and correspondingly
updating the number of samples in the ROI. Whenever the ROI is changed, the number of
samples still in the ROI are counted. After that, depending if there are too much or too less
samples in the region, the split steps are countermanded or further split steps are reproduced.
The result is a ROI, that contains, if possible, a constant number of samples, regardless of its
size or position.

4.4 Additional applications of the hierarchy generated by the
clustering process

An additional application of the hierarchy generated by the clustering methods is its use for
finding seed points for the placement of stream lines. Since the cluster representants are chosen
in a way, such that each new representant is placed in the region, that deviates the most from
the current vector field description, the resulting hierarchy can also be used to automatically
generate seed points for stream lines. If the hierarchy is used in this way, then it is refined to a
level containing the same number of samples as stream lines that should be placed in the vector
field. The representants in that hierarchy level are used as seed points of stream lines. These
stream lines can be computed using either the original vector field or a considerable higher level
of the hierarchy.
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4.5 Visualization on the Immersive WorkBench

The eventual goal of this work is to interactively and quickly visualize vector fields. This was
done using the Responsive Workbench to create a virtual environment allowing to examine the
vector field. The currently existing system is a prototype used to study how a visualization sys-
tem can utilize the Responsive Workbench. For the implementation, the Immersive WorkBench
from Fakespace, Mountain View, California, USA, a variant of the Responsive Workbench,
was used. The implementation is based on Silicon Graphics’sOpenGL, OpenInventor, and on
the VLIB supplied by Fakespace with the Immersive WorkBench. Currently, widget sets,e.g.,
Multigen SmartScene, are becoming available, allowing high-level user interface objects, and
simplifying the task of developing an interface for an Immersive WorkBench based application.

The used VLIB only provides low-level constructs to control the Immersive WorkBench.
It provides functions to open a graphics connection to the Immersive WorkBench, the tracker
driver and the pinch driver. After doing this, the program should call the functionBench -
Draw() . This function expects a pointer to a structure describing the current connection to
the Immersive WorkBench, a pointer to a display function, and a pointer to a swap function.
The display function is a user-defined function, which does the actual drawing. This function is
called with a pointer to the already mentioned structure describing the Immersive WorkBench,
and two integers. The first integer variable is the viewer number (currently either zero or one)
and the eye number for the viewer (either zero or one). This display function is called for each
eye of each viewer. Depending on the Immersive WorkBench configuration (stereo viewing, no
stereo viewing, one or two viewers) this function is called one two or four times for each frame.
The swap function is used to swap the frame buffers when double buffering3 is used. If “NULL”
is specified as a swap function, a standard function is used. Because it is unknown how often the
user-defined display function is called, it is advisable not to use this function for manipulating
data. Furthermore, this function is time critical, since it has to be called several times for each
frame, and if one call takes too much time, this creates visible effects, which might disturb the
user. For these reasons an approach using two threads was chosen. This is depicted in Figure
4.15. The two threads are shown as green boxes. The “tracker thread” reads the sensor data
provided by the tracker and pinch glove drivers, evaluates it and manipulates the current object
data base (blue circle) accordingly. The “display thread” uses the common data (or rather a part
of it, namely lists of currently visible objects) and renders this continuously to the frame buffer.
This is done in the main loop:

whi le ( Bench Draw ( brec , t h e D i s p l a y F u n c t i o n , NULL)!= 0 && ! q u i t ) ;

“quit ” is a flag, which is set by the “tracker thread” when the user chooses “Quit” in
the menu. The display thread is also responsible for terminating the application. This is done
because the Fakespace library detects keystrokes, andBench Draw() returns a value different
from zero when the user hits the “Escape” key. This terminates the main loop and the “display
thread” sends a termination signal to the “tracker thread” using the Unix system callkill() .

The Fakespace VLIB also provides only elementary functions for getting input data from the

3A description of technical terms related to computer graphics, likedouble buffering, can be found in [44] and
[6].
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Figure 4.15: Two threads for using the Responsive Workbench.

trackers and pinch gloves. The functionGetTrackerMatrix(int deviceID, int
whichReceiver, float tracker[4][4], void *data); is used to get the posi-
tion of the trackers. “deviceID ” is an identification number that is obtained when the Im-
mersive WorkBench and trackers are initialized. “whichReceiver ” denotes the number of
the tracker, whose position is to be queried. “tracker ” is a pointer to a4� 4 array, which is
filled with a matrix that converts from a local coordinate system that is “attached” to the tracker
to the world coordinate system. This matrix can be used to obtain the position and orientation
of the corresponding tracker. “data ” is pointer to a variable that can be used to get additional
information for this tracker. Currently this is only used for the stylus to report the status of its
button as an integer flag (1 corresponds to a pressed button).

Pinch glove gestures can be determined with the functionQueryTouch(int which-
Device,int *gesture); . “whichDevice ” is an identification number that is obtained
during the initialization of the Immersive WorkBench. “gesture ” is a pointer to an integer
variable that is used to return a gesture. This function returns an integer, that indicates whether
the pinch gesture changed since the last call of this function and whether “gesture ” contains
the value of a new gesture.

These functions are used in the “tracker thread” to query the current status and modify the
VE accordingly. This thread is described in Section 4.8. Since the “tracker thread” and the
“display thread” work in the same address space using common data structures, it is necessary
to synchronize their access to these data structures to avoid inconsistencies when the “tracker
thread” modifies them. This is accomplished by usingsemaphores, a standard synchronization
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method described,e.g., in [29].

4.6 The “watch” menu

The watch menu provides a simple user interface in a virtual environment. It is based on an
idea by Antonello Uva, a former Visiting Researcher at CIPIC and was implemented by Oliver
Kreylos, a CIPIC PhD student. This thesis uses its own, enhanced implementation of this
concept. The basic idea is to eliminate a static menu in the virtual environment and replace it
by a menu that only appears when the user needs it. An intuitive method for accomplishing this
goal is conjuring up the menu whenever the user looks on an imaginary watch. If the user wants
to make a selection he just looks at the back of his hand and a menu appears. Using the stylus
it is possible to make this selection.

Viewer

viewDir

handUp

Hand Coordinate
System

Figure 4.16: Determining whether the “watch” menu should be displayed.

Implementing this behavior is straightforward. The fundamentals are displayed in Figure
4.16. The vector “handUp”, defined in hand coordinates, points into the direction perpendic-
ular to the back of the hand. “viewDir ” is a vector that points from the origin of the hand
coordinate system4. Both vectors are normalized, so that the scalar product of them can be used
to compute the cosine of the angle between the vectors. If the scalar product is greater than0:9
(corresponding to an angle of25�), the “watch menu” is displayed.

The implementation used in this work provides a class “WatchMenu”, that allow the cre-
ation of a menu. As soon as a “WatchMenu” object is created, it is possible to add buttons
with the methodaddButton() . The buttons are arranged in rows with a user-specifiable
amount of columns. For each button, a text can specified, that is displayed within. This is ac-
complished by using an OpenInventor “SoText3 ” node that is decomposed in triangles using
the “SoCallbackAction ”. These triangles are stored in an array and rendered within the
button.

4The coordinate system defined by the tracker on the left hand.
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In many cases it is desirable to have context sensitive menus. This prevents cluttering the
main menu with options that only make sense if an object of a certain type is selected. In
the current implementation this is accomplished by having a pure abstract base class “Menu-
Provider ”. Each object, that allows context sensitive selections, is derived from this class.
So it is possible to use the C++ dynamic castdynamic cast<MenuProvider> to de-
termine if the currently selected object provides an own method. This class is defined in
MenuProvider.h and shown in Listing 4.1.

Listing 4.1 The Class MenuProvider

/ / A bs t rac t c l ass fo r an ob jec t , t ha t p rov ides a menu
c lass MenuProvider f

WatchMenu � objMenu ; / / Cache fo r menu
pub l ic :
MenuProvider ( ) : objMenu (NULL)fg
v i r t u a l ˜ MenuProvider ( ) f d e le te objMenu ; g
/ / Create a menu
v i r t u a l WatchMenu � createContextMenu (void )= 0 ;
v i r t u a l WatchMenu � getContextMenu (void ) ;
/ / Handle the s e l e c t i o n
v i r t u a l void hand leMenuSe lec t ion (i n t se l )= 0 ;

g ;

i n l i n e WatchMenu � MenuProvider : : getContextMenu ( )
f

i f ( objMenu )
return objMenu ;

e l se
return ( objMenu =createContextMenu ( ) ) ;

g

The pure virtual methodcreateContextMenu() has to be overwritten by the derived
object in order to create the menu corresponding to that object. If the user selects one of the
menu buttons, the methodhandleMenuSelection() is called. This method must be de-
fined in the derived class as well to achieve the desired behavior. The methodgetContext-
Menu() is used by the “tracker thread” to generate a menu for the current selection. The
default behavior is to create this menu at the first invocation ofgetContextMenu() and to
cache this menu in “objMenu ”. Further invocations ofgetContextMenu() simply return
the already created menu. If the menu should reflect the current state of the object, this method
has to be overwritten by the derived class.

In the current implementation, the global variable “currentMenu ” contains a pointer to
the menu belonging to the currently selected object or the root menu, whenever no object is
selected. “watchMenuVisible ” is a global flag that is set whenever the user looks at his
hand. These two variables are used by the “display thread” to display the menu when necessary.
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4.7 World space and vector field space

In order to simplify the display of vector field data, the current implementation uses three coor-
dinate systems:

1. world coordinates,

2. model coordinates, and

3. vector field coordinates.

“World coordinates” refer to the coordinate system used by VLIB and describe the Immersive
WorkBench table top and the space around it. One unit in this coordinate corresponds to one
inch (2:54 cm) in the real world,i.e., when displayed on the Immersive WorkBench. It is mainly
used to display the watch menu discussed in the previous section. “Model coordinates” are used
to implement the model-on-a-stick behavior described in Section 2.15. Its main use is to display
manipulators,i.e., handles used to manipulate the visualization objects in the vector field. “Vec-
tor field coordinates” simplify the computation of the visualization object, like stream lines. It
frees the implementation of the visualization objects from the need to convert all coordinates in
model-on-a-stick coordinates. This is also convenient, if a different region of the vector field is
displayed. These changes are transparent to the visualization objects, and the implementation
does not have to consider which current transformations are necessary to render in model co-
ordinates. The vector field coordinates are given with respect to the model coordinates, so that
modifying the orientation of the model also affects the display of the vector field. The manip-
ulators are rendered in model coordinates to ensure that the current vector field transformation
does not affect their size. The drawback is that the current transformation between vector field
and model coordinates has to be used, when a manipulator is used to change,e.g., the position
of a visualization object.

4.8 The “tracker thread”

The “tracker thread” is responsible for the interaction between user and VE. All sensor data
are continuously queried, and the scene is updated accordingly. The tracker thread is spawned
using the SGI IRIX system callsproc() , which is similar to the standard Unix callfork() ,
but allows both processes to share a single address space. This simplifies communication with
the “display thread” since common data structures in memory can be accessed. The “tracker
thread” consists of a main loop, that can be found in the functiontrackerThread() . This
function consists of a continuous loop, that queries the sensor data and acts accordingly. The
only way to abort this loop is the reception of a termination signal (“SIGTERM”) sent by the
display thread.

After querying the sensor data, the functiontrackerThread() checks, whether the
watch menu is visible. If this is the case, then it checks whether an item in this menu is se-
lected and highlights the corresponding menu button (by calling the corresponding methods of
the class “WatchMenu”). When the user just released the stylus button in a menu button, the
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functionhandleMenuSelection() is called, which ensures to relay this fact to the correct
function. This is eitherhandleEmptySelMenuSelection() , if no object is select, or the
methodhandleMenuSelection() of the currently selected object.

In the following step, the stylus data is translated into events. The following events are
possible:

Stylus move The stylus is moved while its button is not pressed.

Stylus button push The button of the stylus has just been pushed.

Stylus drag The stylus is moved while its button is pressed.

Stylus button release The stylus button has just been released.

These events are handled by calling the corresponding functions, defined inHandleEvents .
E.g., for a stylus drag event the functionhandleStylusDrag() is called. In this module
the actual modifications to the VE are performed. Each event handler function is called with the
current position of the stylus as an argument. If the user performed a menu selection, or if the
current stylus drag started in the menu (this is detected by setting a flag, when the stylus button
is pushed while being inside a menu button), these events are ignored and not forwarded to the
moduleHandleEvents.C .

The pinch glove events are handled directly by the functiontrackerThread() , since
currently they are only used to change the model-on-a-stick transformation. These transforma-
tions are performed as described in Section 2.15. Additionally, it is possible to scale the model.
If the user performs a pinch gesture with both thumbs and index fingers, the size of the model
is increased or decreased proportionally to the distance between her/his hands. This is achieved
by storing the distance between the user’s hands and the current transformation from model to
world coordinates at the beginning of the pinch gesture. When the user moves her/his hands,
while keeping the pinch gesture, the distance between her/his hands, and a corresponding scale
matrix are calculated and the current model transformation is replaced with the product of this
scale matrix and the model matrix stored at the beginning of the pinch gesture.

The moduleHandleEvents.C is responsible for the actual modifications to the virtual
environment. This environment consists of objects. Each object is derived from the class
“StylusObject ”, which is defined according to Listing 4.2

The implementation ofHandleEvents.C is based on the concept of a state machine. One
possible state is “idle ”. In this state all events are relayed to the currently existing objects.
Each “StylusObject ” has three different states of its own (“inactive ”, “ highlighted ”,
and “active ”). Normally all objects are “inactive ”. In this state, all stylus moves are ob-
served. If the stylus is within an object (tested with the methodwithin() ), it is highlighted
(by calling the methodhighlight() ) to inform the user that pressing the stylus button at
that location will activate the object. If the stylus leaves the object,i.e., within() no longer
yields true, the highlighting is deactivated by calling the methodunhighlight() . If the
user pushes the stylus button, then the object receives anactivate() message. Further-
more its methodbeginDrag() will be called. During the drag process, the current object’s
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Listing 4.2 The abstract base class “StylusObject ”

/ / A bs t rac t c l ass fo r an ob jec t t ha t can be manipu la ted by the
/ / s t y l u s
c lass S ty l usO b jec t f

pub l ic :
typedef enum f i n a c t i v e , h i g h l i g h t e d , a c t i v eg s t a t u s ;

protec ted :
s t a t u s o b j e c t S t a t u s ;

pub l ic :
S t y l usO b jec t ( ) : o b j e c t S t a t u s ( i n a c t i v e )fg
v i r t u a l ˜ S t y l usO b jec t ( )f g

/ / Check , i f p o s i t i o n is w i th in the ob jec t . Meaning , t ha t i f
/ / the bu t ton is p ressed , the ob jec t shou ld be s e l e c t e d
/ / and a c t i v a t e d
v i r t u a l bool wi th in ( const Vertex &p )= 0 ;

/ / Change ob jec t s t a t e
v i r t u a l void a c t i v a t e (const Vertex & ) f o b j e c t S t a t u s = a c t i v e ;g
v i r t u a l void d e a c t i v a t e (void ) f o b j e c t S t a t u s = i n a c t i v e ;g
v i r t u a l void h i g h l i g h t ( void ) f o b j e c t S t a t u s = h i g h l i g h t e d ;g
v i r t u a l void u n h i g h l i g h t (void ) f o b j e c t S t a t u s = i n a c t i v e ;g

/ / Handle dragging
v i r t u a l void beginDrag (const Vertex &) fg
v i r t u a l void handleDrag (const Vertex &) fg
v i r t u a l void endDrag (const Vertex &) fg

g ;

handleDrag() method is continuously called. When the button is released,endDrag() is
called.deactivate() is called, when the user presses the button outside the active object.

If HandleEvents.C is in the state “deleteObject ”, the highlighting continues as
mentioned in the previous paragraph. But if the stylus button is pressed within an object, that
object is deleted rather than activated.

New objects can be created whenHandleEvents.C is in the state “createObject ”.
To simplify the addition of new visualization objects, the events during the object creations
are delegated to a template for the new object. Object templates have to be derived from
the class “ObjectTemplate ” shown in Listing 4.3. Whenever a new object is to be cre-
ated, a corresponding template object is created, as well as a pointer to this template stored in
“currentTemplate ”, and the state set to “createObject ”. This causes all stylus events
to be passed to this template. At each release of the stylus button this template has the possibility
to end the object creation process by returning a pointer to a newly created “StylusObject ”.
This is added to the list of current objects, the template is deleted, and the state is set back to
“ idle ”.
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Listing 4.3 The abstract base class “ObjectTemplate ”

c lass Objec tTempla tef
pub l ic :

v i r t u a l void handleSty lusMove (const Vertex &p ) fg
v i r t u a l void hand leS ty l usB u t t onP ush (const Vertex &p ) fg
v i r t u a l void hand leS ty lusDrag (const Vertex &p ) fg
v i r t u a l S ty l usO b jec t � hand leS ty l u s B u t t o nR e l e a s e (const Vertex &p )= 0 ;
v i r t u a l ˜ Objec tTempla te ( )f g

g ;

Selecting a region,e.g., a ROI, is done in the state “selRegion ”. In this case the events are
handled byHandleEvents.C itself and not relayed to any object. In this state a transparent
box, denoting the current region, is drawn.

Implemented subclasses of “StylusObject ” are “moveManipulator ”, “ Stream-
Line ” and “StreamRibbon ”. “ moveManipulator ” is a simple object, displayed as a
box, that can be moved with the stylus. It is used as a building block in “StreamLine ” and
“StreamRibbon ” to allow easy manipulation of these visualization objects.

4.9 The “display thread”

The “display thread” is responsible for displaying the VE on the Immersive WorkBench. In
order to do this, it continuously displays the current objects. These objects are organized in two
lists, each corresponding to a coordinate system described in Section 4.7. In order to increase
the efficiency of the rendering process, the rendered objects are cached in OpenGL display
lists. The corresponding classes are shown in Listing 4.4. “RenderObject ” is the base class
for all objects that are displayed. It provides a simple caching scheme by using an OpenGL
display list and a flag denoting whether the current cache content is valid. Derived from this
class are the classes “VectorfieldRenderObject ” and “WorldRenderObject ”. This
distinction, along with the different names for the methods that perform the actual rendering
(glRenderInWorld() andglRenderInVectorField() ), allow visualization objects
to be derived from both classes and display different graphics primitives within those two coor-
dinate systems.

The caching mechanism is shown for the class “VectorFieldRenderObject ” in List-
ing 4.5. The implementation for “WorldRenderObject ” is analogous. When an object
is rendered for the first time it is simultaneously written to a OpenGL display list. For fur-
ther rendering of the object this render list is accessed instead of the object. If the object
changed,e.g., moved to another position, since it was written in the display list, the method
invalidateCache() must be called to avoid that an old representation of the object is
displayed.

The class “InventorObject ” allows displaying OpenInventor objects along with the
OpenGL primitives. This is used for displaying an Inventor object, that represents the geom-
etry belonging to the vector field,e.g., the object for which the flow field is visualized. This
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Listing 4.4 Base classes for rendered objects.

c lass RenderObjectf
protec ted :
mutable GLDisp layL is t renderCache ;
mutable bool cacheVal id ;

pub l ic :
RenderObject ( ) : renderCache ( ) , cacheVal id (f a l s e ) fg
void i n v a l i d a t e C a c h e ( ) const f cacheVal id =f a l s e ; g

g ;

/ / Objec t to be rendered in world coo rd i na tes
c lass WorldRenderObject : pub l ic RenderObjectf

pub l ic :
v i r t u a l void glRenderInWor ld (void ) const=0 ;
void renderGL (void ) const ;

g ;

/ / Objec t to be rendered invec to r f i e l d coo rd ina tes
c lass V ec to rF ie l dR ende rO b jec t :pub l ic RenderObjectf

pub l ic :
v i r t u a l void g l R e n d e r I n V e c t o r f i e l d ( ) const=0 ;
void renderGL (void ) const ;

g ;

OpenInventor geometry is consequently displayed in the vector field coordinate system.
If the flag “menuVisible ” is set by the “trackerThread”, the watch menu which is refer-

enced by the pointer “currentMenu ”, is displayed. The currently selected region (if there is
one) and the watch menu are transparent, so special care has to be taken when drawing them.
First all solid objects are drawn. Afterwards thedepth buffer5 is set to read-only mode. Sub-
sequent drawing operation still alter the frame buffer, provided the specifiedz-coordinate is
smaller than the corresponding depth buffer value. Since the depth buffer value is not changed,
one transparent object does not occlude another transparent object,i.e., prevents another ob-
ject to be drawn, because itsz-coordinate is bigger than thez-coordinate of the current object.
Thus the colors of all transparent objects that are not occluded by opaque objects are blended
together. To ensure satisfactory results, the primitives should be drawn from back to front, so
that the blending yields the correct result. In the current implementation this can be achieved by
first drawing the box denoting the ROI and afterwards the watch menu. Further details can be
found in the Section “Three-Dimensional Blending with the Depth-Buffer” (see pp. 222–226
in [44]).

In one instance, a second rendering context is created by the “tracker thread” and used
to render the current scene (without the ROI and the watch menu) to a buffer. This is used to

5See [44] and [6].
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Listing 4.5 Caching rendered objects.

i n l i n e void V ec to rF ie l dR ende rO b jec t : : renderGL (void ) const
f

i f ( cacheVal id )f
renderCache . c a l l ( ) ;

g
e l se f

renderCache . newList ( GLCOMPILE AND EXECUTE) ;
g l R e n d e r I n V e c t o r f i e l d ( ) ;
renderCache . end ( ) ;
cacheVal id =t rue ;

g
g

enable the user to save the current visualization results to a file. If he chooses “Save view” in the
watch menu, the current observer position is determined, a rendering context created, a camera
positioned according to the viewers position and the visualization objects rendered to a buffer.
This buffer is saved to a file. This enables the user to use the results from the visualization,e.g.,
for illustrations in a paper or book.
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Chapter 5

Results

5.1 Clustering results

The clustering algorithm was evaluated using several 2D vector fields. One of them was the
field defined by the analytical function

F (x; y) =
�
�x2 + xy + 0:5 � y + 0:25; x2 + xy � 0:5 � y � 0:25

�
: (5.1)

This vector field has three critical points,i.e., points withF (0; 0) = 0 in the region[�1; 1] �
[�1; 1]. It is displayed in Figure 5.1. The data set contains6000 samples resulting from
evaluating equation 5.1 at random locations. The positions of the samples are denoted by the
small filled circles. The direction and length of the vector at a given position is given by the line
segment originating in the filled circle.

Figure 5.3 is the result of computing the Delaunay triangulation of the positions and apply-
ing linear interpolation over each triangle. Figure 5.3(a) shows the color coded vector length
(blue indicating a length of zero and red denoting the maximum length vectors in the data set,
the mapping between color and vector length is illustrated in Figure 5.2(a)). Figure 5.3(b) shows
the same data, this time with the direction of the vectors coded as color (the corresponding map-
ping between colors and directions is shown in Figure 5.2(b),e.g., a vector pointing to the top
corresponds to red).

These discrete data sets are used as input for the clustering algorithm. First, the refinement
of the second approach alternating between the distance measures is examined. For the creation
of the examples, a split distance function weighting the angle with2 and the length difference
with 1 has been used, to prioritize the preservation of vector direction. Figure 5.4 shows the
clusters after four split operations. The positions of the samples are denoted by small spheres,
which are colored according to cluster assignment,i.e., samples of same color belong to the
same cluster. The shape of the clusters is similar to a Voronoi tessellation. A difference can be
seen in the lower part of Figure 5.4. The boundary between the two lower most clusters is not
a line as one would expect from a Voronoi tessellation. The reason for this is the fact that the
samples are assigned to the clusters first and after that the center is recomputed as average of
all positions in the cluster. The approximation resulting from using the representants from400
clusters is shown in Figure 5.5. It shows the color-coded length (Figure 5.5(a)) and direction
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Figure 5.1: Discrete representation of the example vector field with three critical points.
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(a) vector length — blue denotes a length of zero,
and red denotes the maximum vector length

(b) vector direction — coded
using “color wheel”

Figure 5.2: Color coding vector length and direction.

(a) color denotes vector length (b) color denotes vector direction

Figure 5.3: Triangulated and linearly interpolated representation of the example vector field.
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Figure 5.4: Clusters resulting from using approach II — refined by alternating use of distance
functions.

(Figure 5.5(b)) of the approximation of the vector field by computing a Delaunay triangulation
of the cluster centers and using linear interpolation. Although less than one tenth of the amount
of original samples is used, a reasonable approximation can be achieved.

Figure 5.6 shows the underlying triangulation. We note, that the triangulation is finer in the
vicinity of the critical points, where the variation of the vectors is higher. In regions of less
variation a coarser representation is used. This is exactly the desired result.

Figure 5.7 shows the results using the second variation of clustering approach II. Here the
assignment distance function was modified to be also dependent on the vector part. The figure
shows the case of a poor choice of the weights (position weight�1 = 2, angle weight�2 = 2,
length difference weight�3 = 1). In this case, the vector part dominates the distance function
despite the fact that according to the discussion the position should be the dominating part. It
nicely illustrates that this causes incoherent clusters. Vectors from different regions of the vector
field are assigned to one cluster. This remains the case even when more clusters are generated.
This is illustrated in Figure 5.8, which shows the approximation of the vector direction, again
using the representants of400 clusters. Near the critical points one can see several artifacts
(spots of different color) that are caused by clusters containing samples from different sides of
the critical points.

These problems disappear when the position clearly dominates the assignment distance
measure. This is illustrated in Figure 5.9. We note that all clusters are coherent now. This
is because the Euclidean distance between the positions of samples now clearly dominates the
distance measure. However, the clusters are still shaped in a way to resemble regions of vectors
of similar direction and length. The approximation resulting from using the representants of
400 clusters of this approach are illustrated in Figures 5.10(a) and 5.10(b). Again, a reason-
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(a) color denotes vector length (b) color denotes vector direction

Figure 5.5: Approximation of the vector field with400 clusters using the first variation of
approach II.

Figure 5.6: Triangulation of the approximation of vector direction using the first variation of
approach II.
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Figure 5.7: Clusters resulting from using II — refined by adding vector dependency to the
assignment distance with poorly chosen weights.

Figure 5.8: Artifacts in vector field approximation due to poorly chosen weights.
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Figure 5.9: Clusters resulting from using approach II — refined by adding vector dependency
to the assignment distance with improved weights.

(a) color denotes vector length (b) color denotes vector direction

Figure 5.10: Approximation of the vector field using the second variation of approach II.
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Figure 5.11: Triangulation of the approximation of vector direction using the second variation
of approach II.

able approximation is achieved. At close examination some minor artifacts are visible. This
is due to the fact that the interpolation was not modified to fit this approach as suggested in
Section 6.2. The underlying triangulation is shown in Figure 5.11. Regions of high variation
are approximated by relatively more triangles.

5.2 Visualization results

The results of the algorithms for utilizing the hierarchy for visualization purposes presented
in Chapter 4 are discussed in this section. For the purpose of demonstrating these algorithms,
data sets resulting from the improved clustering algorithm discussed by Heckelet al. [16] are
used. Figure 5.12 shows stream lines in the “blunt fin” data set1 using an increasing number of
representants. The original data set consists of40921 samples. The stream line computed using
the original data set is displayed in blue, the steam line computed using the approximation is
drawn in red. The difference surface between these stream lines is shown in blue. Even with
merely5001 samples a reasonable approximation is achieved. The complete hierarchy can be
accessed using a slider that seamlessly blends between the different hierarchy levels.

Figures 5.13 shows approximations of stream surfaces at increasing resolutions. Again, the
stream surface computed using the original data set is displayed in blue, the one computed using
an approximation is displayed in red.

The hierarchy generated in the clustering step can also be used to generate “seed points”
for stream lines,i.e., points at which the stream lines begin. This is illustrated in Figure 5.14.

1Compare Appendix B.3.

79



5 Results

(a) Approximation with62 clusters (b) Approximation with2087 clusters

(c) Approximation with5001 clusters

Figure 5.12: Stream lines for “blunt fin”-data set — blue stream lines are computed using the
original data set; red stream lines are computed using an approximation.
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(a) Approximation with93 clusters (b) Approximation with2087 clusters

(c) Approximation with5001 clusters

Figure 5.13: Stream surfaces for “blunt fin”-data set — blue stream surfaces are computed using
the original data set, red stream surfaces are computed using an approximation.
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Figure 5.14: Utilizing the hierarchy to find “seed points” for stream lines.

This Figure shows50 stream lines, computed using the original data sets. The start points of
the stream lines are the representants of the hierarchy. Despite of the relatively small number of
stream lines, interesting features of the flow,e.g., its reversed behavior near the plate (the two
rightmost stream lines in Figure 5.14), are detected.

Figure 5.15 shows the local triangulaiton produced by the first approach for the procedural
triangulation discussed in Section 4.3. Only a localized triangular mesh consisiting of the20
closest points to the query point is generated. This number is sufficiently small to move the
resulting mesh interactively on SGI Origin with an Infinity Reality 2 graphics board using one
of its four processors. However, since each point query results in the computation of a new
mesh, moving the stream line is too slow. One stream line, computed using the first procedural
mesh geneartion approach is drawn as a red line. We note that in this case line segments instead
of tubes are drawn. This illustrates that rendering stream lines with cylindrical primitives really
yields an improvement of display quality.

Figures 5.16 and 5.17 show triangulations using the ROI approach. The ROI in Figure 5.17
is considerably smaller than the ROI in Figure 5.16. It is clearly visible, that this results in a
finer triangulation within that region. Both triangulations contain100 samples. This allows a
quick recomputation of the triangulation and an interactive redefinition of the ROI.
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Figure 5.15: Local triangulation of the samples.

Figure 5.16: Triangulation within a relatively large ROI.

Figure 5.17: Triangulation within a relatively small ROI.
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Chapter 6

Future work

6.1 Outlook

As mentioned in the Preface and Introduction sections the field of large-scale data set visual-
ization is still in its infancy. The same is true for the field of visualizing large-scale vector field
data sets. This work presents some first approaches to solve the underlying problems of this
important new field. However, like in any pioneering field, there is plenty of work left.

6.2 Improving the clustering process

The clustering process was already improved by Heckelet al. [16] and the results have been
partially used in the visualization part of this Diplomarbeit. Nonetheless, there is still need for
improvements in the clustering process. Furthermore, the fundamental approaches discussed in
this Diplomarbeit can be enhanced, yielding alternatives to the algorithm described in [16].

If clustering is used in conjunction with grids, then it should be possible to take the con-
nectivity of the grid into account. A first approach could modify the neighborhood relation to
use the grid and prevent samples to be assigned to a cluster, when their grid cells are not con-
nected. This, however, has major implications and the top-down approach that initially assigns
all points to one cluster.

An even more fundamental point is the preservation of boundaries of a vector field. This
poses no problem when Hardy interpolation is used. Hardy’s method allows querying points at
arbitrary positions, particularly positions outside the convex hull of the sample points forming
the scattered data set. If a tetrahedral mesh is used this is not the case anymore. A tetrahedral
mesh only defines interpolation value within the convex hull of the positions used as its vertices.
This is due to the fact (mentioned in Section 2.5) that a triangulation is a decomposition of the
convex hull into simplices. Thus its boundary coincides with the convex hull of the data set. To
approximate a value at a specified position, the simplex containing it is located. Thus it is only
possible to approximate values within the boundary of the triangulation. The problem arising
from this fact is illustrated in Figure 6.1. It shows a simple vector field and its cluster represen-
tants. It is obvious that the convex hull of the cluster representants (colored red) is completely
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Cluster 1 Cluster 2

Cluster 4Cluster 3

Figure 6.1: Different convex hulls of original data set and cluster representants.

within the convex hull of the samples. Any cluster representation yields a convex hull that is
smaller than the original convex hull. This is due to the fact that the cluster representants are
placed at the centers of clusters. If a cluster at the border of the vector field,i.e., a cluster that
is adjacent to the convex hull of the vector field contains more than one vector (which is almost
always true), its center will lie within the original convex hull and thus the convex hull of all
cluster representants will lie completely within the convex hull of the vector field. The resulting
error in the boundaries of the simplified vector field is dependent on how much the vector field
varies near to its boundary. If the changes are minimal, then the resulting clusters have a greater
extent and their centers will be further from the original boundary.

In most cases, it is desirable to keep the boundary of the vector field or to have control over
the approximation of the convex hull. In order to preserve it, the convex hull must be known.
It is not feasible to compute the convex hull of the complete original data set, because its size
is too big for this to be done in a reasonable amount of time. One possibility is to use an
approximation algorithm for computing the convex hull, but this might still be too inefficient.
A more promising approach can be derived from the fact that the problem of preserving the
convex hull only arises in border clusters. So it is possible to determine the convex hulls of the
boundary clusters (or an approximation to it when the border structure of the vector field should
also be simplified). The points on the convex hull can be added to the triangulation in addition
to the cluster representants to get an approximation of the entire region in which the vector field
is defined.

In the case of a given grid, it might be possible to use a modification of the clustering
approach described in Section 3.3. If connectivity information is available, it becomes possible
to replace the second, position-based pass with a grid-based path. The first pass is performed as
described in Section 3.3 and clusters only based on the vectorial part. Instead of performing a
second, position based pass afterwards, it may be possible to use the connectivity information
to partition the clusters resulting from the first pass in spatially coherent clusters. This could
be done by starting with a seed sample and gradually adding all adjacent samples that are in
the same cluster. If no more samples can be added that way, and the original cluster is still
not empty, a different seed sample is chosen. The whole process is repeated until the original
cluster is empty. When this is done for all clusters the result is a set of spatially coherent clusters.
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However this merging step would probably needO(n2) operations.
In cases where no connectivity information is present, it may be possible to use an enhanced

version of the approach discussed in Section 3.7. At the end of this section, the problem arising
from clusters of certain shapes have been described. These problems arise when a cluster is wide
stretched in one dimension but rather small in another dimension. This is incompatible with
conventional interpolation schemes. It might be possible to modify the interpolation scheme
and gain satisfactory results.E.g., it might be possible, to use a different distance measure when
computing the interpolation value. A possibility is to use principal component analysis (PCA)
(see [20, 21, 26]) to find the inherent coordinate system of the clusters. Given a set of points,
here the positions of the samples of a given cluster, PCA yields a coordinate system, which has
axises in direction of maximum and minimum extent of the point set. This coordinate system
can be used to define a metric, that reflects the extent of the cluster,i.e., equidistant points
from the cluster representant are located on an ellipsoid instead of a sphere, and yields correct
interpolation results.

Furthermore, the clustering process can be integrated into the visualization system. If each
leaf node in the clustering tree contains a reference to the samples in the original data set that are
within the corresponding cluster, it is possible to refine the hierarchy beyond the pre-computed
levels. Whenever a user chooses a region that cannot be satisfactorily approximated by the given
hierarchy, it is possible to refine it. This can be done by splitting the clusters corresponding to
the leaf nodes within the ROI. If these clusters are sufficiently small, this can be done on the fly
during the visualization. Thus it becomes possible to represent the data set at arbitrary levels of
detail.

6.3 Improving procedural mesh generation process

The procedural generation of a local simplical mesh can be improved in several ways. First,
the Delaunay triangulation can be replaced with a different triangulation or mesh generation
method. Section 2.5 stated that in the 2D case the Delaunay triangulation is the optimal tri-
angulation for the vector field. This is not true in 3D space. The Delaunay triangulation stills
yield a high-quality triangulation and is widely used for mesh generation, but it is not the only
method. It might prove favorable to replace the Delaunay triangulation with a triangulation
scheme with less computational cost, even if the there is a slight decrease in quality of the
resulting triangulation.

Using a less expensive triangulation method could also make the first approaches discussed
in Section 4.3 feasible. Using triangulation routines which allow the dynamic insertion and re-
moval of points in the triangulation would also open new possibilities. It may become possible,
to extent the current triangulation toward the queried point instead of generating a completely
new triangulation, when a query for a position outside the current triangulation is performed.
This could be done by adding points in the region of the queried point to the triangulation while
removing positions from the “opposite side” of the triangulation.

A possible extension to the lastly discussed approach which utilizes the hierarchy is also
possible. Currently the complete definition region of the vector field is refined, until the desired
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amount of samples is within the region of interest. Time and memory is spent in recreating pre-
computed splits that do not have any impact on the region of interest. An improved approach
could check whether a node has descendants in the region of interest. If this is not the case, the
split described by this node could be ignored. This can be done by,e.g., computing a bounding
box of the samples of the original data set that are represented by a given node and intersecting
it with the ROI. This approach could also eliminate the need of inserting the vertices of the
region of interest in the triangulation. If in the first step an approximation for the entire vector
field is found and this is only refined in the region of interest this results in a triangulation of the
complete vector field. The number of positions is still sufficiently small, since only the region
of interest is represented in finer detail.

6.4 A fully functional visualization system for the Immersive
WorkBench

The current implementation of the visualization on the Immersive WorkBench is a prototype
that has bee was used to examine approaches in programming the workbench and using it to
visualize vector fields. The possibilities for improvements are multifarious.

The current menus,i.e., the watch menu should be replaced by a more powerful version
of it. Alternatively, it would be possible to use an existing Widget set for the workbench, like
Multigen SmartScene1.

Furthermore, the current mixture of OpenGL and OpenInventor should be avoided. Cur-
rently, the best choice choice for an API to program the Immersive WorkBench isIRIS Per-
former by Silicon Graphics. This library is recommended by Silicon Graphics for real-time
graphics applications like VR and VE. Like OpenInventor it offers a scene graph based API and
is even able to read OpenInventor geometry files. The use of IRIS Performer was considered in
the course of this work. Unfortunately, this approach had to be abandoned because the docu-
mentation for the part of Fakespace VLIB allowing to develop workbench applications based on
IRIS Performer described a different version of this library and provided insufficient informa-
tion for an actual implementation. Otherwise, a scene graph based API could have eliminated
the need of global display lists and transformation information. In the case of a scene graph
it would be sufficient to share a simple pointer to the root node between “tracker thread” and
“display thread.”

The current implementation provides an event-based handling of the stylus data. A logical
step is to implement this also for the pinch gloves. This would eliminate the need of modify-
ing the transformation of the model-on-a-stick coordinate system in the functiontracker-
Thread() . This function should only query the sensor data and translate it into events. The
rest should be done in other modules.

The currently implemented visualization objects are only the beginning in the implemen-
tation of a complete visualization system. It should be possible to map scalar values as color

1Unfortunately the version of Multigen SmartScene purchased by CIPIC was not available soon enough to be
used in this Diplomarbeit.
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codes on them. Furthermore additional visualization objects should be added.
One problem arising in this is the difficulty of entering numerical values. At the moment,

it is only possible to get a qualitative impression of the vector field. A complete visualization
should enable the user to get a fully quantitative view of the vector field. This demands a
powerful mechanism to enter numerical data in a VE, which is an interesting problem on its
own.
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Appendix A

Libraries and implementation

For the implementations within the scope of this Diplomarbeit the following libraries and im-
plementations were used.

A.1 General data structures and fundamentals

� Standard C/C++ libaries (I/O, basic data structures, etc.)

� Standard Unix libraries (Semaphores, I/O, etc.)

A.2 Graphical User Interface (GUI) and Graphics

� X11R6: XLib, X Intrinsics by the X Consortium

� Motif by the Open Software Foundation (OSF).

� OpenGL by Silicon Graphics, Mt. View, CA, USA.

� OpenInventor by Silicon Graphics, Mt. View, CA, USA.

� RViewer class by Ren´e Schätzl (OpenInventor “SoXtExaminerViewer ” and Motif
Widgets in one window)

� VLIB (for using the Immersive WorkBench) by Fakespace, Mt. View, CA, USA.

� OpenGL helper library by Oliver Kreylos (matrix operations, geometric primitives, etc.)

A.3 Computational geometry

� LEDA (2D Delaunay Graph) by MPI Saarbr¨ucken, Germany.
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A Libraries and implementation

� ANN (k-D-tree) written by David Mount, Dept. of Computer Science, University of
Maryland, College Park, MD 20742, USA.

� 3D Delaunay triangulation code from Dave Eberly, Dept. of Computer Science, Univer-
sity of North Carolina at Chapel Hill, USA.

� hull (3D delaunay triangulation via convex hull) by K. L. Clarkson, Bell Laboratories,
Murray Hill, NJ 07974-0636, USA.

A.4 Miscellaneous

� Basic Clustering sources by Bj¨orn Heckel, Dept. of Computer Science, University of
California at Davis, Davis, CA 95616, USA.

� Hardy Interpolation sources by Bj¨orn Heckel, Dept. of Computer Science, University of
California at Davis, Davis, CA 95616, USA.

� MESCHACH (C routines for performing calculations on matrices and vectors) written
by D.E. Stewart, and Z. Leyk, School of Mathematical Sciences, Australian National
University, Canberra ACT 0200, Australia
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Appendix B

Used resources

B.1 Software packages

� Typesetting was done using LATEXby Donald E. Knuth with the teTEXpackage by Thomas
Esser, Universit¨at Hannover, Germany.

� Most of the Figures were drawn using thexfig package written by Supoj Sutanthavibul
at the University of Texas at Austin and Brian V. Smith.

� Conversions of Plot 3D data sets were done using the FAST package by NASA Ames Re-
search Center (http://science.nas.nasa.gov/Software/FAST/RND-93-
010.walatka-clucas/htmldocs/titlepage.html ).

B.2 Figures

� Figure 2.1 is closely based on Figure 5.3 in [2].

� Figures 2.16 and 2.19 are taken from the web page “Virtual Reality: A Short Introduc-
tion” (http://www-vrl.umich.edu/intro.html ) by K.-P. Beier, Virtual Real-
ity Laboratory (VRL), College of Engineering, University of Michigan.

� Figure 2.18 is courtesy of Falko K¨uster, CIPIC, Dept. of Computer science, Univeristy of
Califrnia at Davis, CA 95616, USA.

� Figure 2.20 was taken from Stanford Computer Graphics Laboratory Research Projects
homepage (http://graphics.stanford.edu/projects/RWB/bench.jpg ).

� The plane used in Figures 2.21, 2.22, and 2.23 was rendered from the fileX29.iv sup-
plied by Silicon Graphics, Mt. View, CA, USA in conjunction with OpenInventor using
the supplied command line toolivview .
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B.3 Data sets

� The blunt fin dataset used to render Figures 2.14, 2.15, 5.12(a), 5.12(b), 5.12(c), 5.13(a),
5.13(b), 5.13(c), 5.14, 5.15, 5.16, and 5.17 is courtesy of NASA Ames and can be found
at http://chuck.nas.nasa.gov/DataSets/Hung.1/
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