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System Biology
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Abstract

Motivation: High-throughput sequencing technologies have greatly facilitated microbiome research and
have generated a large volume of microbiome data with the potential to answer key questions regarding
microbiome assembly, structure, and function. Cluster analysis aims to group features that behave similarly
across treatments, and such grouping helps highlight the functional relationships among features and may
provide biological insights into microbiome networks. However, clustering microbiome data is challenging
due to the sparsity and high-dimensionality.
Results:We propose a model-based clustering method based on Poisson hurdle models for sparse
microbiome count data. We describe an expectation-maximization algorithm and a modified version using
simulated annealing to conduct the cluster analysis. Moreover, we provide algorithms for initialization and
choosing the number of clusters. Simulation results demonstrate that our proposed methods provide better
clustering results than alternative methods under a variety of settings. We also apply the proposed method
to a sorghum rhizosphere microbiome dataset that results in interesting biological findings.
Availability: R package is freely available for download at https://cran.r-project.org/package=PHclust.
Contact: pliu@iastate.edu or zlqiao@iastate.edu
Supplementary information: Supplementary Materials are available at Bioinformatics online.

1 Introduction

Over the past two decades, the number of microbiome studies has grown
rapidly due to the advancement of next generation sequencing (NGS)
technologies. With lower cost and increasing computational power, we
are able to obtain tremendous amounts of data regarding the diversity and
function of the microbiome from a host or a habitat. One of the most popular
NGS approaches is the amplicon-based sequencing (Poretsky et al., 2014)
which generates data matrices of amplicon sequence variants (ASVs) or
operational taxonomic units (OTUs) where ASVs and OTUs are unique
taxonomic features. The ASV/OTU/taxa table is the starting point for most
statistical analysis. However, these datasets present some challenges: they
are high-dimensional and sparse (i.e., contain many zeroes), and there
is high variability in sequencing depth across different samples (Cullen
et al., 2020). These data characteristics make many classic and popular

data analysis approaches not directly applicable to microbiome data, and
call for development of new statistical methods.

Cluster analysis has been a popular method of multivariate data
analysis that help identify relationships among high-dimensional variables.
It has been widely applied to high-dimensional gene expression data
(Yeung et al., 2001). Applied to microbiome data, cluster analysis can
help identify potential microbiome sub-communities, which give insights
into how features (ASV/OTU/taxa) with similar abundance levels are
grouped together. With cluster analysis, researchers can more easily
identify potential species patterns from highly diverse datasets. For
example, clusters may represent taxa (or strains) that are functionally
related to each other (i.e., guilds) or that share sensitivity to certain
environmental conditions (i.e., niche selection), which can be further
probed by downstream metagenomic techniques. When applied to time
series data, clustering approaches could also help identify changes in
microbial community states, which could provide important insights into
microbiome assembly and manipulation.
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2 Qiao et al.

Despite the increasing demand for methods for microbiome data
analysis including cluster analysis, there are not many clustering
algorithms developed specifically for microbiome data. To cluster
microbial features, Gloor et al. (2016) applied the K-means clustering,
Badri et al. (2020) used spectral clustering, while Casero et al. (2017)
applied the model-based Poisson clustering developed by Si et al. (2014)
for RNA-sequencing data. To cluster samples or microbial communities,
Zhang et al. (2017) and Lonèar-Turukalo et al. (2019) applied spectral
clustering while the latter paper proposed an implementation of kernel
PCA for data reduction. None of the above-mentioned methods take into
account the excessive zeros (sparsity) in microbiome data, which is a
common issue especially after rarefaction (McMurdie and Holmes, 2014;
Gloor et al., 2017). Such sparsity has made more and more researchers
believe that the excessive zero counts in microbiome data need to be treated
differently (Xu et al., 2015).

In this manuscript, we propose a model-based algorithm for clustering
microbiome features based on Poisson hurdle models. The hurdle models,
introduced by Cragg (1971), separately model the zero part and the non-
zero part of a random variable and hence naturally allow zero inflation that
often occur in microbiome count data. Hurdle model also automatically
deals with the issue of dropout events. Based on mixtures of Poisson hurdle
models, we developed clustering methods to group microbial features
sharing similar patterns of change across different treatments/conditions.

Section 2 presents our method. We describe Poisson hurdle models for
microbiome count data in Section 2.1 and propose our clustering algorithm
based on mixture of Poisson hurdle models, including the expectation-
maximization (EM) algorithm in Section 2.2, a stochastic modified EM
algorithm in Section 2.3, an initialization method based on Kendall’s
τ correlation in Section 2.4, and a hierarchical merging algorithm for
determining number of clusters in Section 2.5. In Section 3, we compare
the performance of our algorithms and other methods under a variety
of simulation settings. In Section 4, we apply our proposed method
to a sorghum microbiome dataset. We conclude this paper with some
discussion in Section 5.

2 Poisson hurdle model-based clustering

Model-based clustering methods assume that data are generated by a
mixture of probability distributions where each component corresponds
to one cluster. Compared to traditional clustering methods such as K-
means or hierarchical clustering, model-based clustering automatically
offers quantitative measure of the uncertainty of the clustering results,
i.e., the probability of each feature belonging to each cluster. Extensive
research has been done in model-based clustering with multivariate normal
mixture distributions, see Fraley and Raftery (2002) for an excellent
review. However, the count data with excessive zeros cannot be modelled
directly using normal distributions. To handle the zero-inflated microbiome
data, we propose a model-based clustering algorithm based on Poisson
hurdle distribution.

2.1 Poisson hurdle distribution

Two types of statistical models have been commonly applied to modeling
count data with extra zeros: zero-inflated models and hurdle models (also
known as two part models) (Hilbe, 2011). In fact, zero-inflated models
are special cases of hurdle models: hurdle models can handle both zero-
inflation and zero-deflation. Although many features of microbiome have
a lot of zeros, there are also features that are not zero-inflated and should
not be modeled by zero-inflated distributions. In addition, estimates based
on hurdle models tend to be more computationally stable, especially for
data with small amounts of zeros (Xu et al., 2015). Hence, We propose to
use Poisson hurdle models for microbiome count data.

Suppose we have a microbiome dataset withG features and I treatment
groups. Let Ngij , g = 1, · · · , G, i = 1, · · · , I, j = 1, · · · , ni denote
the count data for feature g in replicate j of treatment i. The Poisson hurdle
distribution models data by two parts separately: the zero part and the
zero-truncated Poisson part. IfNgij follows a Poisson hurdle distribution
corresponding to a cluster k, then its probability mass function (pmf) is:

f(Ngij) =


1− qkij , Ngij = 0

qkij

1− exp(−λkgij)
λ
Ngij

kgij exp(−λkgij)
Ngij !

, Ngij > 0

(1)

log(λkgij) = sij + αgk + µki (2)

qkij =
1

1 + exp[−(γ0ki + γ1kisij)]
, γ1ki > 0 (3)

where qkij is the probability ofNgij in clusterk being positive (non-zero),
and λkgij is the mean of the Poisson distribution before zero-truncation.

In expression (2) of the Poisson mean, sij is a normalization factor that
adjusts for technical variations in sequencing depth across samples. In this
manuscript, we use the log upper-quartile estimator. This normalization
method, originally proposed for RNA-seq analysis (Bullard et al., 2010),
has been shown to work well in microbiome datasets (Weiss et al., 2017).
Once estimated, sij is treated as known. The parameterαgk represents the
geometric mean abundance level in the Poisson part across all treatments
for feature g in cluster k, and µki (with

∑I
i=1 µki = 0) represents the

i-th treatment effect in abundance level for features in cluster k.
In expression (3), we model qkij as a logistic function of the

normalization factor sij and allow different intercepts and slopes
γ0ki, γ1ki for different combinations of cluster and treatment (k, i). We
further constraintγ1ki ≥ 0 because samples with larger sequencing depths
tend to have larger non-zero proportions.

Note that in model (1), features in the same cluster have the same
treatment effects (µki) but we allow different geometric means (αgk)
across features in the same cluster. The reason is to cluster treatment effects,
i.e., changes in abundance levels across treatments. Alternatively, we can
also cluster features according to their abundance levels by assuming a
reduced model with both the same geometric mean αk and the same
treatment effects (µki) for all features in the same cluster. We present
more details about this reduced model in Section 1 of the Supplementary
Materials and also have functions to implement it in our R package. The
remaining part of the main text deals with the full model with αgk .

Assuming a total of K clusters, we model each cluster by Poisson
hurdle models with cluster-specific parameter vectors µ˜k and γ˜k ,

where µ˜k = (µk1, µk2, · · · , µkI), with
∑I
i=1 µki = 0, models

the pattern of changes in abundance level across treatments and
γ˜k = (γ0k1, γ1k1, · · · , γ0kI , γ1kI) is the vector modeling qkij the
probabilities of being positive counts for features in cluster k. Based on
a mixture of Poisson hurdle models, the likelihood given observations
of feature g can be expressed by Lg =

∑K
k=1 pkf(αgk, µ˜k, γ˜k|N˜ g),

where N˜ g represents the count vector for gth feature across all samples,
f is the probability mass function for Poisson hurdle model (1), and pk
is the mixing proportion corresponding to component k with pk ≥ 0 and∑K
k=1 pk = 1.
The high dimensionality of microbiome data and complex relationships

among microbial features makes it nearly impossible to model the
dependency among features. In this manuscript, we assume independence
among features but we evaluate the performance of our procedure
under more realistic compositional structures among features. With
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independence assumption, the total likelihood can be expressed by

L =
∏
g

Lg =
G∏
g=1

K∑
k=1

pkf(αgk, µ˜k, γ˜k|N˜ g).

2.2 Poisson hurdle clustering via the EM algorithm

We apply an Expectation-Maximization (EM) algorithm to obtain
parameter estimates and clustering result. The EM algorithm for model-
based clustering introduces a latent variable Zgk as the indicator that
feature g belongs to cluster k for each combination of g and k. These
indicators are treated as missing data, and the conditional expectation
E[Zgk|θ˜], where θ˜ = (pk, αgk, µ˜k, γ˜k), gives the conditional
probability that feature g belongs to cluster k. EM algorithm proceeds
by iteratively calculating conditional expectations (E-step) and updating
all unknown parameters by maximizing the likelihood function (M-step)
until convergence. Clustering results are obtained based on the final
conditional expectations. EM algorithm is a common approach in model-
based clustering (Fraley and Raftery, 2002). Si et al. (2014) and Rau et al.
(2011) implemented EM algorithm in Poisson model-based clustering.

Compared to Poisson models, Poisson hurdle models are much more
complicated due to the two-part structure. The total log-likelihood for
mixture of Poisson hurdle models involve an extremely high dimension
of parameters, and there are no closed-form solutions for the maximum
likelihood estimator (MLE) of µki and αgk in the M-step. This poses
extra challenges for the EM algorithm. In this manuscript, we propose to
utilize a numerical method based on coordinate descent in the M step.

Algorithm 1: EM algorithm for Poisson hurdle clustering.

1.Initialization (m = 1):
Set p(1)k = 1/K, k = 1, · · · ,K.

For each cluster k, obtain the initial values for parameters: γ˜(1)
k , µ˜(1)

k

with
∑I
i=1 µ

(1)
ki = 0, and α˜(1)

k , where α˜k = (α1k, · · · , αGk).
See Section 2.4 and Section 3 of the Supplementary Materials for our
proposed initialization method.

2.E-step:
In the mth iteration, calculate the conditional expectation
E[Zgk|θ˜(m)], denoted as Ẑ(m)

gk by:

Ẑ
(m)
gk =

p
(m)
k f(N˜ g |α(m)

gk , µ˜(m)
k , γ˜(m)

k )∑K
l=1 p

(m)
l f(N˜ g |α(m)

gl , µ˜(m)
l , γ˜(m)

l )
(4)

3.M-step:
Given Ẑ(m)

gk , the mixing proportion pk is updated by

p
(m+1)
k =

∑
g Ẑ

(m)
gk

G

Maximizing the likelihood function is equivalent to maximizing
the following log-likelihood for each cluster k, with the constraint∑I
i=1 µki = 0.

lk(µ˜k, γ˜k, α˜k)

=
∑
g

Ẑ
(m)
gk ∗ log f(N˜ g |µ˜k, γ˜k, αgk)

=
∑
g

Ẑ
(m)
gk ∗ {

∑
i,j∈Cg

log(1− qkij) +
∑

i,j /∈Cg

[log qkij+

Ngij log λgij − λgij − log(1− e−λgij )]}

where Cg = {i, j : Ngij = 0}, λgij = exp(sij + αgk + µki),
qkij = 1

1+exp[−(γ0ki+γ1kisij)]
.

We can maximize over the two set of parameters γ0ki, γ1ki and
αgk, µki separately. But still, there are no closed-form solutions for
maximum likelihood estimate (MLE) of those parameters. Hence,
we propose to use a one-step coordinate descent algorithm to obtain
numerical solutions for MLEs, which greatly reduce computation.
Please see Section 2 in the Supplementary Materials for more details.

4.Iterate the E-step and M-step until convergence, i.e. when the change
in total likelihood is relatively small.

5.Obtain Ẑgk from the last iteration, and assign feature g into cluster k
where k = argmax

l
Ẑgl.

2.3 Simulated annealing modification

As a strictly ascending algorithm, EM algorithm can be trapped in local
maximum. Various methods for adding randomness to help EM algorithm
escape from local maximum have been introduced, and simulated
annealing (SA) is one of them. The SA algorithm modifies the way to obtain
conditional expectation in (3) by introducing a “temperature” t(m) > 0

and a “cooling rate” c ∈ (0, 1) as follows:

Z̃
(m)
gk =

[p
(m)
k f(N˜ g |αgk, µ˜(m)

k , γ˜(m)
k )]1/t

(m)∑K
l=1[p

(m)
l f(N˜ g |αgl, µ˜(m)

l , γ˜(m)
l )]1/t

(m)
,

t(m+1) = c× t(m).

Given Z̃(m)
gk , the SA algorithm clusters each feature g into class k

with multinomial probability Z̃(m)
gk and generates an indicator matrix with

entries 0 or 1 that replaces the Ẑgk in the M step of the original EM
algorithm. This clustering step of SA introduces more randomness (Celeux
and Govaert, 1992) that is controlled by the temperature t, and larger t leads
to larger randomness. SA usually starts with a relatively high temperature
t(0) and slowly reduces it to 0 as the algorithm proceeds, and the cooling
rate c controls the speed of reduction. van Laarhoven and Aarts (1987)
recommended t(0) = 2 and c = 0.9 which is what we use. Simulation
results in Section 3.3 show that SA algorithm yields competitive result
compared with the original EM algorithm (Algorithm 1).

2.4 Initialization

EM algorithm is an iterative, strictly ascending algorithm whose
convergence rate and final results are significantly influenced by the
initialization (McLachlan et al., 2008; Melnykov and Melnykov, 2012;
Biernacki et al., 2003). Commonly used approaches to initialize the EM
algorithm start by picking K observations that are far from each other
regarding some distance measure, such as (1− Pearson’s correlation),
Euclidean distance (Arthur and Vassilvitskii, 2007), ranked Euclidean
distance (Melnykov and Melnykov, 2012), and likelihood ratios (Si et al.,
2014), etc. In this manuscript, we propose to use (1 − τ) as the distance
measure, where τ is the Kendall’s τ correlation.

We gave a detailed description about the Kendall’s τ correlation and
our proposed initialization algorithm in Section 3 of the Supplementary
Materials. The main idea is that, we first selectK observations that are well
separated measured by (1 − τ), and then we obtain MLEs of the model
parameters based on the K selected observations and use these MLEs as
the starting values for our EM algorithm.

In practice, we also recommend utilizing multiple sets of starting
values to further avoid being trapped in local maximum, i.e. run the entire
algorithm multiple times with different starting values and pick the result
with the largest likelihood. Increasing the number of starts tends to provide
a better performance at the cost of linearly increasing computation time. In
the simulation section, we will show how this affect the clustering results.
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4 Qiao et al.

2.5 Determining number of clusters

In real data analysis, the number of clusters K is typically not available
and needs to be selected. There are existing methods developed for this
purpose, but they don’t fit into the scenario we are dealing with. In this
manuscript we propose a hybrid clustering method with the application of
likelihood ratio tests to select the number of clusters K. The likelihood
ratio tests determine the optimal number of K by testing, at each step of
merging clusters, whether the merging will result in a reduced model that
no longer fits data well.

Please refer to Section 4 of the Supplementary Materials for the
discussion of existing methods, the reason why we don’t use them, and
our complete algorithm for choosing K.

3 Simulation studies

In this section, we present simulation studies to evaluate the performance of
our proposed clustering methods and several existing clustering methods,
including Poisson model-based clustering, negative binomial model-based
clustering (Si et al., 2014), and the K-means clustering that has been
applied to microbiome data (Gloor et al., 2016).

3.1 Simulation settings

We consider an experiment with I = 3 treatment groups, J = 5 replicates
in each treatment group, and a total of G = 1000 features that belong to
K = 7 true clusters. We assume equal mixing proportions of pk = 1/7.
A case of unequal mixing proportion is presented in Section 5 of the
Supplementary Materials.

Data is simulated by a zero-inflated Negative Binomial model which
introduces overdispersion, i.e., the variability is more than what is expected
by our Poisson model. Each observation, Ngij ∈ class k, is a product
of a Bernoulli(qkgij) random variable and a Negative Binomial random
variable with mean E(Ngij) = exp(sij + αg + µki) and variance
(1 + β exp(αg))E(Ngij)

For the negative binomial random variable:

1.Overdispersion rate isβ exp(αg), which depends on feature abundance
level αg .

2.The geometric mean abundance levels αg’s and sequencing depth
factors sij ’s are drawn from a Uniform(0.8, 1.2) distribution.

3.β controls the overdispersion and ranges from 0 to 0.5. This allows the
overdispersion rate to range from 0 to 0.5 ∗ e1.2 = 1.66, a reasonably
large value for overdispersion.

4.The cluster-specific profile across treatment groups, µki, is generated
byµki = ηµδki where ηµ determines the magnitude of changes across
treatments, and larger ηµ results in better separation of clusters. δ˜k =

(δk1, δk2, δk3) characterizes the treatment effects in cluster k and is
generated as follows:

Cluster k 1 2 3 4 5 6 7
δk1 0 0 1 -1 1 -1 0
δk2 1 -1 0 0 -1 1 0
δk3 -1 1 -1 1 0 0 0

Note that the first six clusters cover different abundance profiles across
treatments by including all 6 permutations of 3 different treatment
effects: positive effect (1), no effect (0), and negative effect (-1). The
last cluster corresponds to non-differential features whose abundance
levels don’t change across treatments. Such microbes are typically not
of interest, but exist in real data and affect the clustering performances.

For the Bernoulli(qkgij) random variable that controls zero-inflation,
we generate it as qgkij = 1

1+exp[−(γ0ki+γ1kisij+γ2kiαg)]
. For

each combination of cluster k and treatment i, we independently draw

γ1ki, γ2ki ∼ Uniform(0, 0.5) and set γ0ki such that the average zero-
inflation rate q̄ki in cluster k treatment i is a specific value in each of the
following two scenarios:

1.Set the matrix {q̄ki}7×3 =

0.9 0.9 0.3 0.6 0.3 0.6 0.5

0.6 0.3 0.9 0.9 0.6 0.3 0.5

0.3 0.6 0.6 0.3 0.9 0.9 0.5


T

.

2.Set q̄ki = φ ∈ (0, 1] for all k and i.

Note that in the first scenario, all six permutations of high, medium
and low zero-inflation are present along with a group with equal mean
zero-inflation rate (0.5, 0.5, 0.5) across treatment groups. This is a case
where zero-inflation structure varies significantly among clusters and is
more aligned with our model assumptions. In the second scenario, all
clusters share the same mean zero-inflation rate withφ = 1 corresponding
to no zero-inflation, and the difference among clusters are only reflected
through the Poisson mean structure. This is a less desirable circumstance
for our method because zero-inflation rate does not distinguish different
clusters. In the main text, we will present simulation results for the second
scenario that demonstrate our method performs better than others even in
this unfavorable situation. Results for the first scenario are presented in
the Supplementary Figure 2.

Finally, after a raw dataset is generated from the above procedure,
we do an additional multinomial resampling on each column, with total
counts C ∗ G = 1000C and probability vector proportional to each
column of this raw dataset. This is to mimic the sequencing procedure
and generate a compositional dataset with equal column sums. It brings in
extra randomness and deviation from our assumed models, thus can test
the robustness of clustering methods.

We set the default simulation setting withβ = 0.02, ηµ = 1, φ = 0.4,
and average sequencing depth (total count/G) C = 10. By varying each
parameter at a time, we generate data for a variety of different simulation
settings. For each simulation setting, 1000 datasets are simulated.

3.2 Simulation results

For each simulated dataset, we cluster the 1000 features into 7 clusters
using five different methods under comparison: (i) Poisson hurdle model-
based clustering with EM algorithm (PH-EM), (ii) Poisson hurdle model-
based clustering with simulated annealing (PH-SA), (iii) Poisson model-
based clustering (MB-Poisson), (iv) negative binomial model-based
clustering (MB-NB), and (v) K-means clustering with Euclidean distance
(other popular non-model-based methods such as spectral clustering
and hierarchical clustering produce similar or worse results and are not
presented). The first four model-based methods are applied to the count
data, while K-means is applied to the data after centered log ratio (clr)
transformation (Aitchison, 1982), as was done by Gloor et al. (2016).

The clustering results are evaluated by three criteria: purity, adjusted
Rand index (ARI), and normalized mutual information (NMI). All three
criteria measure the agreement between clustering results and true clusters
used to generate data, within the range of [0,1] with higher values indicating
better performance. Purity measures how "pure" the clusters are, i.e. to
what extent each resulting cluster contains a single true cluster. Adjusted
Rand index (Rand, 1971; Hubert and Arabie, 1985) measures similarity
between two partitions (clustering results and true clusters) based on
the proportion of pairs of features that are "correctly" assigned. Mutual
information (MI) measures the shared information between two partitions.
The normalized MI (Strehl and Ghosh, 2002) adjusts the values so that NMI
is in [0, 1]. See Section 6 in the Supplementary Materials for definitions
with mathematical expressions of all three criteria.

The results from all three criteria are consistent and show the same
relative ranking of methods. In the main text, we present results based on
NMI. Results on purity and ARI are presented in Supplementary Figure
1. We also evaluated the efficiency of the EM algorithm by checking the
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Poisson hurdle model-based method for clustering microbiome features. 5

Fig. 1: Simulation results for the second simulation scenario. For each setting, we plot the NMI score averaged across the 1000 simulated datasets with
the vertical bar representing standard error. The default setting is φ = 0.4, C = 5, ηµ = 1, β = 0.02. Each of (a)-(d) varies one parameter at a time.
The curves for PH − EM and PH − SA almost overlap with each other.

Fig. 2: Comparison of initialization methods. For each setting, we plot the NMI score averaged across the 1000 simulated datasets, with the vertical bar
representing standard deviation.

computational time and the number of iterations for convergence, which
is described in Section 7 of the Supplementary Materials.

3.2.1 Clustering results
Figure 1 presents results for a variety of settings of the second simulation
scenario when the zero-inflation rates are constant across treatment groups.
For all simulation settings, our proposed algorithms, PH-EM and PH-
SA are almost indistinguishable from each other and they are the best
performers among all methods under comparison. Figure 1(a) shows that
both PH-EM and PH-SA perform much better than the other methods when
zero-inflation rate is between 0.2 and 0.8, a range commonly encountered
in real data. When there is no zero-inflation at all (φ = 1), our algorithms
still performs similarly to the other two model-based clustering methods
that do not model zero-inflation and better than K-means. As sequencing
depth grows (Figure 1b), the magnitude of treatment differences increases
(Figure 1c), or the level of fluctuation decreases (Figure 1d), most methods
tend to perform better. When sequencing depth is low, our methods
are among the top-performing methods. For all other settings (Figures
1(b-d)), our methods are the the best with obvious advantage over the
other methods . These results show the consistency and robustness of the
Poisson hurdle clustering algorithms. Results from the first simulation
scenario (different zero-inflation structure among clusters) presented in
Supplementary Figure 2 give the same conclusion.

3.2.2 Evaluation of initialization
We also compare three initialization methods: (i) using true parameters, (ii)
using the MLEs based onK randomly selected observations, and (iii) using
the Kendall’s τ based initialization algorithm we propose in Section 2.4. As
shown by the NMI results in Figure 2, our proposed initialization method
uniformly outperforms random selection, and is close to the result using
true parameters which is the best we can get in simulation but not available
in real data analysis. Results of purity and ARI as performance measure
are in Supplementary Figure 3 and give the same conclusion.

In Supplementary Figure 4 we present the results of using different
number of starts when we utilize multiple starting strategy. When we use
5 starting values, we get significant improvement in performance, while
increasing to 10 starting values doesn’t seem to have additional notable
effect. Therefore we choose 5 starts in all simulation studies.

3.2.3 Determining the number of clusters

In Section 2.5 and Section 4 of the Supplementary Materials, we describe
a method for determining the number of clusters. Here, we evaluate
this method using 2000 datasets generated from the default simulation
setting where the true number of clusters is K = 7. Table 1 shows the
proportions of those datasets being identified with certain number clusters
using 4 different methods: our proposed Hybrid method; AIC; BIC; and
Gap statistic (Tibshirani et al., 2001). We can see that while those three
methods tend to greatly underestimate the number of clusters, results from
our hybrid method remain close to the true value K = 7.

# of clusters (%) 1 2 3 4 5 6 7 8

Hybrid 0 0 0 0 0.60 11.45 86.75 1.20
AIC 0 0 94.60 4.30 1.05 0.05 0 0
BIC 0 0.7 98.95 0.35 0 0 0 0
Gap 91.65 3.75 3.85 0.40 0.20 0.15 0 0

Table 1. The percentage of 2000 simulated datasets for each number of clusters
chosen by 4 different methods. The true number of clusters is 7.

4 Real data analysis

A microbiome study was carried out in Nebraska where sorghum plants
of the genotype Grassl were grown with two varying nitrogen levels
(Low/High). Rhizosphere microbiome samples were collected on four
different dates throughout the growing season between June and September
of 2017 and analyzed by 16S rRNA amplicon sequencing (Qi et al.,
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2021). Applying the persistence method (Shade and Handelsman, 2012)
to identify core ASVs among the eight treatments, we obtained a subset
of 449 ASVs with average read count of 44.21, and 38% of counts in
this subset are zero. Our proposed method for determining the number of
clusters chose K = 30.

We applied all four model-based clustering algorithms to the original
count data, and also applied the K-means clustering to the centered log-
ratio (clr)-transformed data to group the 449 ASVs into 30 clusters. Figure
3 plots the abundance profiles of all 30 clusters identified by our PH-EM
method (Figure 3a) and model-based NB clustering method (Figure 3b),
respectively. The Poisson model-based clustering produced worse results
than the NB model-based method and is not shown here. Results for the
PH-SA method and K-means are presented in Supplementary Figure 5 and
yield similar conclusions.

(a)

(b)

Fig. 3: Results from sorghum data analysis based on (a) PH-EM
algorithm and (b) model-based NB clustering. Each subplot corresponds
to one cluster, with x-axis corresponding to the 8 treatment groups (2
nitrogen levels with 4 chronically ordered dates, 1∼4 correspond to high
nitrogen, 5∼8 correspond to low nitrogen) and y-axis corresponding to
the abundance profile. Each grey line corresponds to the abundance profile
estimated by the method of moments for an ASV, and the black line plots
the geometric mean within each cluster. For each method, clusters will be
referred to as cluster No. 1-6 for the first row, 7-12 for the second row,
· · · , and 25-30 for the last row.

As shown in Figure 3(a), the PH-EM method resulted in better
separation of different clusters and more similar profiles within each
cluster. In contrast, in Figure 3(b) model-based NB clustering clusters
over 80% of ASVs into 2 huge clusters, and 28 small clusters of
which 15 are singletons . To parse finer-scale relationships between
taxa in those two huge clusters, further clustering would be needed,
complicating interpretation and placing additional bioinformatic burden
on the researcher. This is not the case with our method, making it more

useful for researchers looking to gain exploratory insight into the biological
or ecological structure of microbial communities.

Our method revealed several bacterial clusters whose abundance was
sensitive to plant developmental stage and nitrogen concentration. For
example, PH-EM clustering revealed several clusters consisting of plant-
growth promoting taxa (e.g., Pseudomonas, Sphingomonas, Rhizobium,
Arthrobacter, and Streptomyces) whose abundance remained relatively
stable under high nitrogen, but increased dramatically under low nitrogen
(Figure 3(a), clusters 2, 7, 9, 11, 14, and 27). These patterns suggest
that under low nitrogen a putative guild of nitrogen-fixing taxa is selected
for, at least partly driven by root exudation later in sorghum development.
These results were corroborated by our analysis of amplicon sequences
from 2016, as well as metagenomes assembled from both 2016 and
2017 samples that showed a significant increase in nitrogen-fixing genes
under low nitrogen (Supplementary Figure 6). Similar patterns have been
identified in other studies of the sorghum rhizosphere (Yu et al. 2011,
Hara et al. 2019, Lopes et al. 2021, Wu et al. 2021). Interestingly, this
nitrogen-fixing guild seems to be preceded by other putatively plant-
growth promoting taxa, such as Massilia and Bacillus (clusters 12 and 17),
whose abundances were also higher under low nitrogen. Importantly, these
patterns were masked in the model-based NB clusters 10 and 18 whose
average trends suggest the opposite: low abundance under low nitrogen and
high abundance under high nitrogen. Based on these findings, we believe
our clustering method could be particularly useful for parsing dynamic
ecological relationships from datasets consisting of times-series and/or
many treatments.

Fig. 4: Clustering results for the rhizosphere microbiome dataset.
Clustering results obtained by PH-EM, PH-SA, model-based negative
binomial clustering (MB-NB), and K-means are compared with genera
categories for each number of clustersK, ranging from 2 to 50. The NMI
values shown are averages from 100 clustering results at each K.

To provide a quantitative evaluation of the clustering results, we
measured the concordance between clustering results and taxonomic
categories at the genus level. With the number of clusters, K, ranging
from 2 to 50, we performed cluster analysis with different methods
and calculated NMI based on the concordance between each clustering
result and genera. Figure 4 shows that both PH-EM and PH-SA produced
higher NMI values than K-means and model-based NB clustering for K
larger than 7. When K is small (2 to 7), model-based NB method gave
slightly higher NMI values than our algorithms. Thus, our method out-
performed other clustering methods when it came to clustering microbes
based on microbial taxonomy, a proxy for ecological similarity. It is
important to acknowledge that we did not expect our model to find
perfect agreement between taxonomy and abundance (i.e., NMI values
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near 1). This is because microbiomes represent complex communities
that can display large variation across individuals which cannot be
explained by deterministic assembly mechanisms alone. Absence of
perfect agreement between taxonomy and abundance could represent
an alternative perspective: the combined influence of deterministic and
stochastic assembly factors characteristic of competitive lottery models
or priority effects (Sale, 1979). In situations where a particular niche
space can support only a single species, stochastic dispersal followed by
high competition among related species can result in only one “winning”
species—the identity of which can vary independently of any niche effect
(Peay et al. 2012, Lee et al. 2013, Verster and Borenstein 2018). This
could explain why ASVs of a particular genus group into more than one
cluster.

For example, we found that Pseudomonas sp. from the sorghum
rhizosphere grouped into 12 distinct clusters as compared to just 4 clusters
with the model-based NB method. Our amplicon datasets from 2015
suggested that the sorghum rhizosphere exhibits a significant reduction
in community diversity due to a “bloom” of a diverse collection of
Pseudomonas ASVs. Further analysis of isolate genomes and rhizosphere
metagenomes from these samples revealed that this community represents
several distinct Pseudomonas lineages that vary in their functional capacity
especially regarding their commensal or pathogenic relationship with the
host plant (Chiniquy et al., 2021). This diversity resulted in subtle, but
distinct abundance patterns between lineages. As mentioned above, our
PH-EM method captured these abundance patterns in our 2017 dataset,
while the model-based NB method failed to identify this heterogeneity,
instead clustering most of these Pseudomonas sp. into a single large cluster,
18. Further, the PH-EM method confirmed that the abundances of many
(although not all) of these Pseudomonas sp. are significantly higher under
low nitrogen as compared to high nitrogen (Figure 3(a), clusters 2, 7, 14,
23, and 28). These patterns are undiscernible from the model-based NB
results which clustered Pseudomonas ASVs with contrasting high and low
nitrogen abundance patterns into the same cluster (Figure 3(b), cluster 18).
Thus, in addition to identifying niche effects in microbial communities,
our clustering method may also help researchers hone in on more complex
ecological relationships that can be isolated, tested, and confirmed via
manipulative studies.

5 Discussion

Many features of microbiome data are zero-inflated while others do not
exhibit zero-inflation. Traditional clustering methods do not consider such
characteristic. In this manuscript, we model microbiome data with Poisson
hurdle distributions that can fit features with or without zero-inflation.
To cluster features, we fit a mixture Poisson hurdle model with an EM
algorithm (PH-EM) or another algorithm with a SA modification (PH-
SA). Both algorithms have superior performances over other algorithms
in both simulation studies and real data analysis. We also propose an
initialization method and a method for determining optimal number of
clusters, which are shown to be effective in our simulation studies.
Compared with non-model-based clustering algorithms such as K-means
method, our clustering algorithms also provide the uncertainties of the
clustering results.

We also considered further extending our algorithms to Negative
Binomial hurdle distributions to accommodate potential over-dispersion
that may exist in real dataset. We decided not to do so, due to
the inefficiency in estimating the overdispersion parameter. Detailed
explanations and simulation results are provided in Section 8 of the
Supplementary Materials.
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