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Computational approaches to cell type and interindividual variation in autoimmune disease 

 

Sasha Kiang Targ 

 

Abstract 

Computational approaches offer substantial ability to improve annotation and interpretation of a 

range of genomic datasets collected with the advent of next generation sequencing technologies, 

providing an avenue to further understand the impact of changes in genomic data which might 

contribute to disease. Decoding the genome using deep learning is a promising approach to 

identify the most important sequence motifs in predicting functional genomic outcomes. In the 

first part of this work, we develop a search algorithm for deep learning architectures that finds 

models which succeed at using only RNA expression data to predict gene regulatory structure, 

learn human-interpretable visualizations of key sequence motifs, and surpass state-of-the-art 

results on benchmark genomics challenges.  

 

We also develop a computational tool, demuxlet, for droplet-based single-cell RNA-sequencing 

(dscRNA-seq) that harnesses natural genetic variation to determine the sample identity of each 

cell and detect droplets containing two cells. These capabilities enable multiplexed dscRNA-seq 

experiments in which cells from unrelated individuals are pooled and captured at higher 

throughput than in standard workflows. Using simulated data, we show that 50 SNPs per cell are 

sufficient to assign 97% of singlets and identify 92% of doublets in pools of up to 64 individuals. 

Given genotyping data for each of 8 pooled samples, demuxlet correctly recovers the sample 

identity of >99% of singlets and identifies doublets at rates consistent with previous estimates. 
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We apply demuxlet to assess cell type-specific changes in gene expression in 8 pooled lupus 

patient samples treated with IFN- and perform eQTL analysis on 23 pooled samples. 
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Chapter 1: Introduction 

 

Computational approaches offer substantial ability to improve annotation and interpretation of a 

range of genomic datasets collected with the advent of next generation sequencing technologies, 

providing an avenue to further understand the impact of changes in genomic data which might 

contribute to disease. More than 90% of disease-associated genetic variants discovered by 

genome-wide association studies (GWAS) fall outside coding regions (introns and intergenic 

regions), making the assignment of their function challenging (Maurano et al. 2012). With a 

large number of whole genome sequences being collected for various clinical applications, 

including in autoimmune diseases, the number of rare (< 0.01 minor allele frequency (MAF)) or 

private non-coding variants for which impact is not clearly known is also increasing (Lek et al. 

2016; Mudge and Harrow 2016; Ashley 2016; Goodwin, McPherson, and McCombie 2016). 

Thus, there is a significant need for computational tools that use functional genomics data (e.g. 

RNA-seq measuring gene expression or ATAC/ChIP-seq measuring chromatin state) collected in 

large cohorts to predict the impact of non-coding sequence variants on gene regulation and 

disease (Y. I. Li et al. 2016).  

 

Unlike disease-associated variants that fall within coding sequences, where the genetic code and 

evolutionary conservation enable prediction of functional effects, the interpretation of disease-

associated variants in non-coding sequences is more difficult. Previously, these regions have 

been described as ‘junk DNA’ with unknown function; however, more recently, high-throughput, 

unbiased characterization of functional genomic markers such as histone modification and 

enhancer or promoter associated marks from the ENCODE Consortium shows 80% of the 
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genome demonstrates biochemical activity suggestive of a potential gene regulatory role 

(ENCODE Project Consortium, 2012). Enrichment of disease variants in candidate regulatory 

regions of the genome within particular cell types (for example, immune cell subsets) suggests 

interindividual variation impacting gene regulation programs in specific tissues could play a 

major role in mediating disease risk (Farh et al. 2015). Thus, annotating the function of non-

coding variants is a critical open problem that impacts our ability to understand and treat disease.  

 

One approach to annotate non-coding variants is by associating genetic differences with 

variability in functional genomic traits. When a variant is simultaneously associated with a 

molecular trait and disease, a causal relationship can be inferred. In lymphoblastoid cell lines 

(LCLs), it was found that more than 85% of QTLs were shared from one form of functional 

genomic data to another. (Y. I. Li et al., 2016). The overlap between GWAS hits and several 

types of quantitative trait loci, including expression (eQTLs), chromatin accessibility (ATAC-

QTLs), histone modification (hmQTLs), and transcription factor binding (bQTLs) suggests that 

that effects of genetic variation on disease can be mediated through these intermediate 

phenotypes (Schaub et al. 2012; Banovich et al. 2014; McVicker et al. 2013; Battle et al. 2015).  

 

Previous work that employs functional genomics data to annotate noncoding SNPs includes the 

Ensembl Variant Effect Predictor (VEP), RegulomeDB, and Functional Identification of SNPs 

(FunciSNP) (McLaren et al. 2010, Boyle et al. 2012, Coetzee et al. 2012). In RegulomeDB, an 

average of 56% of variants from whole genome sequences intersected regulatory annotations of 

eQTLs, dsQTLs, ChIP-exo, TF ChIP-seq, FAIRE, and DNase I hypersensitive site data, allowing 

insight into the potential function of these SNPs. Another method for annotation of non-coding 
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variants is the use of conservation data to prioritize SNPs that are most likely to be causative. 

Examples of work that uses this information to analyze noncoding variation include 

ANNOVAR, HaploReg, GWAS3D, and fitCons (Wang et al. 2010, Ward et al. 2012, Li et al. 

2013, Gulko et al.  2015). These methods have the strength that they make use of substitution 

rates across organisms to infer functional constraint; however, a limitation to conservation-based 

methods is that they do not account for more rapid adaptation that may be specific to humans. 

 

Machine learning algorithms that incorporate functional and conservation data for prioritization 

of functional variants include genome-wide annotation of variants (GWAVA), combined 

annotation-dependent depletion (CADD), FATHMM-MKL, and deltaSVM (Kircher et al. 2014, 

Ritchie et al. 2014, Shihab et al. 2015, Lee et al. 2015). Most models used in functional and 

population genetics to map genetic variants and predict phenotypic outcome have been linear 

models (Yang et al. 2011; Lee et al. 2015), which can capture marginal effect sizes for the 

variants that are used as features. These types of models have the advantage that they have 

closed form solutions, can be learned by convex optimization, and they are less likely to overfit 

(bias-variance tradeoff); but, they have the downside that the model capacity is limited to linear 

functions, so do not model any interactions between multiple input variables that could exist in 

the true function to be learned.  

 

Recently, more complex models based on deep learning methods have been developed by several 

groups for tasks including transcription factor binding site classification, chromatin accessibility 

and variant prediction (Alipanahi et al. 2015; Zhou and Troyanskaya 2015; Kelley, Snoek, and 

Rinn 2016; Deming et al. 2016; Angermueller et al. 2016). The DeepBind method uses a neural 
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network model to distinguish transcription factor binding sites in transcription factor ChIP-seq 

data from randomly shuffled control sequences, outperforming the previous state of the art 

FeatureREDUCE and BEEML-PBM (Alipanahi et al. 2015). DeepSEA uses a deep neural 

network trained on transcription factor binding, DNaseI hypersensitivity sites and histone-mark 

data to prioritize functional SNPs based on their effect on predict chromatin features (Zhou and 

Troyanskaya 2015). Bassett similarly uses a neural network trained on cell type specific DNaseI 

hypersensitivity sites to identify GWAS SNPs that are likely to be causal (Kelley, Snoek, and 

Rinn 2016). These models have the advantage that they can capture nonlinear behavior among 

the input features as could be expected for biological systems in which multiple components 

interact to lead to a given output (van Dijk et al. 2015; Samee, Bruneau, and Pollard 2017). 

While these models are nonconvex so a global optimum is not guaranteed, deep learning models 

trained using backpropagation and stochastic gradient descent optimization have been widely 

successful in reaching low generalization error across a range of domains (Goodfellow, Bengio, 

and Courville 2016; Schmidhuber 2015). Thus, deep learning models could be a powerful 

method to make predictions and inference about the effect of genetic variants on the variability 

in functional outputs between cell types or individuals. In this work, we develop attention-based 

models for deep learning in transcription factor binding and cell type specific gene expression 

within immune cells, providing a proof of concept for this approach to interpretation in the field 

of computational genomics. 

 
The resolution at which functional genomic data is collected offers another direction through 

which to improve understanding of noncoding variants identified through GWAS (Tanay and 

Regev, 2017). Droplet-based single cell RNA-sequencing (dscRNA-seq) allows parallel 

measurement of transcriptomes at the single cell level across thousands of individual cells, 
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yielding a comprehensive profile of heterogeneity across cells within a sampled population 

(Kolodziejczyk et al. 2015). Single cell transcriptional data enables unbiased characterization of 

frequency and identity of cellular subpopulations, providing a more scalable approach to 

investigating cell type specific contributions to disease than single cell sorting (Shalek et al. 

2014). Identification and tracking of shifts in cell states that occur within a population or in 

response to a stimulation constitutes another promising area of exploration facilitated by single 

cell RNA-sequencing techniques (Pollen et al. 2014). The basic framework of single cell RNA-

sequencing involves capture and lysis of the contents of a single cell, followed by reverse 

transcription to obtain barcoded cDNA from mRNA transcripts within the cell and amplification 

of the cDNA for sequencing library preparation (Kolodziejczyk et al. 2015).  

 

The ability to multiplex samples for analysis by single cell RNA-sequencing offers the additional 

capability to compare samples across individuals or different treatment conditions without batch 

effects due to separate processing (Gehring et al. 2018). Previous work on sample multiplexing 

such as combinatorial indexing by split pool synthesis or synthetically introduced barcodes 

allows for higher throughput and comparison across samples, but requires experimental 

manipulation of samples that could lead to artifacts in the resulting data (Cao et al. 2017, Dixit et 

al. 2016, Adamson et al. 2016, Jaitin et al. 2016, Datlinger et al. 2017). We therefore present a 

computational algorithm that improves on these methods and makes use of naturally occurring 

genetic variation to assign each cell in a mixed population to the most likely sample of origin 

based on the read overlapping SNPs within sequencing data and reference genotypes. We 

demonstrate the ability of this method to estimate cell type proportion, reveal transcriptional 

responses to stimulation and identify cell type specific eQTLs in autoimmune disease samples. 
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Chapter 2: Genetic Architect: Discovering Genomic Structure with Learned Neural 

Architectures 

Laura Deming*, Sasha Targ*, Nathaniel Sauder, Diogo Almeida, Chun Jimmie Ye 

 

1 Introduction 

Deep learning demonstrates excellent performance on tasks in computer vision, text and many 

other fields. Most deep learning architectures consist of matrix operations composed with non-

linearity activations. Critically, the problem domain governs how matrix weights are shared. In 

convolutional neural networks – dominant in image processing – translational equivariance 

(“edge/color detectors are useful everywhere”) is encoded through the use of the convolution 

operation; in recurrent networks – dominant in sequential data – temporal transitions are 

captured by shared hidden-to-hidden matrices. These architectures mirror human intuitions and 

priors on the structure of the underlying data. Genomics is an excellent domain to study how we 

might learn optimal architectures on poorly- understood data because while we have intuition 

that local patterns and long-range sequential dependencies affect genetic function, much 

structure remains to be discovered.  

 

The genome is a very challenging data type, because although we have tens of thousands of 

whole genome sequences, we understand only a small subset of base pairs within each sequence. 

While the genetic code allows us to annotate the 5% of the genome encoding proteins (∼20,000 

genes in the human genome), we do not have a “grammar” for decoding the rest of the non-

coding sequences (90-95% of the mouse and human genomes) important for gene regulation, 

evolution of species and susceptibility to diseases. The availability of a wealth of genomic assays 
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(PBM, CHIP-seq, Hi-C) allows us to directly measure the function of specific regions of the 

genome, creating an enormous opportunity to decode non-coding sequences. However, the 

overwhelming volume of new data makes our job as decoders of the genome quite complex. The 

design and application of new domain-specific architectures to these datasets is a promising 

approach for automating interpretation of genomic information into forms that humans can 

grasp.  

 

2 Related Work  

Inspired by human foveal attention where global glances drive sequential local focus, attention 

components have been added to neural networks yielding state-of-the-art results on tasks as 

diverse as caption generation, machine translation, protein sublocalization, and differentiable 

programming. There are two main architectural implementations: hard attention, where the 

network’s focus mechanism non-differentiably samples from the available input, and soft 

attention, where the component outputs an expected glimpse using a weighted average. Beyond 

biological inspiration, these components enable improved performance and excellent 

intepretability. Other techniques have been applied for interpreting neural networks without 

changing their architectures (Simonyan et al. [2013], Zeiler and Fergus [2014], Springenberg et 

al. [2014]), but these are simply heuristics for finding the relevant regions of an input and do not 

work with all existing modern neural network components.  

Previous groups have demonstrated excellent progress applying deep learning to genomics. Both 

Alipanahi et al. [2015] and Lanchantin et al. [2016] provide initial results on the task of learning 

which sequences a transcription factor (a biological entity which affects gene expression) can 

bind using convolutional architectures. This problem appears suited for convolution, as motifs 
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determining binding are expected to be modular (∼7-10 base pair units) and the setup of the task 

(preselected input sequences of fixed short length) does not allow for learning significant long-

term dependencies. In particular, Alipanahi et al. [2015] demonstrated that a single-layer 

convolutional neural network, DeepBind, outperformed 26 other tested machine learning 

approaches in predicting probe intensities on protein binding microarrays from the DREAM5 

PBM challenge, and then showed that the same architecture generalized to the related task of 

predicting transcription factor binding sites (TFBSs) from sequencing measurements of bound 

DNA. Subsequently, Lanchantin et al. [2016] showed that a deeper network with the addition of 

highway layers improved on DeepBind results in the majority of cases tested [Srivastava et al., 

2015]. In addition, Basset [Kelley et al., 2015], an architecture trained to predict motifs of 

accessible DNA from sequencing regions of open chromatin, was able to map half of the first 

layer convolutional filters to human TFBSs.  

 

3 Development of Genetic Architect  

Deep learning algorithm development is often dependent on the knowledge of human domain 

experts. Researchers in domains such as computer vision and natural language processing have 

spent much more time tuning architectures than in genomics. The challenge in genomics is that 

our insufficient understanding of biology limits our ability to inform architectural decisions 

based on data. Early genomic deep learning architectures have shown promising results but have 

undertaken only limited exploration of the architectural search space over possible components. 

In addition, not all components work well together, and there is evidence optimal component 

choice is highly dependent on the domain. Accordingly, we design a novel road-map for 
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applying deep learning to data on which we have limited prior understanding, by developing an 

iterative architecture search over standard and cutting-edge neural net building blocks.  

Prior approaches to architecture search focus on finding the best architecture in a single step, 

rather than sequentially learning more about the architecture space and iteratively improving 

models (Bergstra et al. [2011], Bergstra and Bengio [2012], Snoek et al. [2012]). Our framework 

understands the results allowing us to sequentially narrow the search space and learn about 

which combinations of components are most important. Since our algorithm limits the most 

important hyperparameters to their best ranges, they no longer dominate the search space and we 

discover additional hyperparameters that are most important and can help us create a highly 

tuned architecture. The sequential nature allows us to fork our architectural search into 

independent subspaces of coadapted components, thus enabling further search in each parallel 

branch to be exponentially more efficient than considering the union of all promising 

architectures.  

 

The heart of the framework is an interactive visualization tool (Figure 4). Given any 

hyperparameter optimization run, it produces common patterns for the best few datapoints and 

presents this information in highly-interpretable decision trees showing effective architectural 

subspace and plots of the interactions between the most significiant hyperparameters, informing 

general domain intuition and guiding future experiments. The framework is general enough to be 

applied to other domains, and is orthogonal to existing hyperparameter optimization algorithms. 

These algorithms can be applied in the inner loop of the sequential search of our tool, which then 

interprets the results and informs the user about the domain and how to manually prune the 

search space. 
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We employ Genetic Architect to discover an optimal architecture for a novel genome annotation 

task, regression to predict lineage-specific gene expression based on genomic sequence inputs, 

for which six stages of architecture search were required. Figure 1A shows the sequential process 

of architecture search, the most important findings at each stage of the process, and tool-guided 

division of the search into two separate promising architectures. By splitting effective 

architectures into separate branches for further optimization, our tool identifies high-performing 

but architecture-specific choices that may be difficult to notice when architectures are mixed 

together. 

 

The application of our tool demonstrates the power in refining architectural components that 

dominate results to uncover additional hyperparameter combinations that perform well together. 

Several examples we encounter during use of the tool for design of architectures for genomics 

follow: 1) removal of batch normalization demonstrated clear superiority of exponential linear 

units, 2) dimensionality reduction in the middle of the convolutional network module was 

beneficial to the recurrent-based architectures (perhaps since it decreased the distance of long-

range dependencies), and 3) in contrast, non-recurrent architectures required wider layers (likely 

to enable processing of long-range dependencies in final dense layers). In our search over 

architectures using soft attention, we found that fully-connected layers were preferred to 

convolutional layers as it made processing global information more important. Finally, only by 

proceeding through several steps of optimization did we find the unintuitive result that 

bidirectional LSTMs did not help with attentional models (perhaps because the preceding layer 

effectively attends to a single location, making it difficult to combine information from both 
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directions). 

 

The final models learned by Genetic Architect consist of several initial layers of convolutions, 

residual blocks, an LSTM layer in the case of the PromoterNet architecture, and an attention-

based dimensionality reducing step followed by fully-connected layers. Previous approaches to 

genome annotation use convolutional networks, which are ideal for detecting local features. 

However, more closely approximating the structure of genomic information would take into 

account that a real genome is a sequence, not a disjointed set, of local features – an input type on 

which recurrent architectures generally excel. In addition, with larger sequences to analyze 

(identifiable promoter sequences reach hundreds of base pairs in length), a neural network must 

learn to focus on the most important parts of the sequence and integrate new information derived 

from each part with the contextual information of the previously-seen sequence. As such, long 

genomic sequences seem an ideal fit for the recurrent attentional models learned. 

 

4 Experimental Results  

4.1 Tasks  

4.1.1 Transcription factor binding site (TFBS) classification  

The TFBS binary classification task was proposed by Alipanahi et al. [2015] and used as a 

benchmark by [Lanchantin et al., 2016]. The basic motivation is to learn a classifier that 

correctly predicts, from empirical binding data on a training sample of short DNA sequences, 

which sequences in a separate test set are TFBS (likely to be bound by biological entities, in this 

case, a given transcription factor protein).  
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The input and target data for the TFBS classification task consists of 108 datasets with an 

average of ∼31,000 sequences of 101 characters per dataset. Each sequence is a string of base 

pairs (A, C, G, or T) and is transformed into an array with one-hot encoding. Each sequence has 

an associated label (1 or 0) which indicates if this sequence is a TFBS. Each dataset represents a 

different chromatin immunoprecipitation sequencing (ChIP-seq) experiment with a specified 

transcription factor, and each sequence in the dataset a potential binding site. For each positive 

example, a negative example is generated. The data included in the TFBS classification task 

derive from ENCODE CHIP-seq experiments performed in K562 transformed human cell lines 

[Consortium, 2012]. 

 

4.1.2 ImmGen lineage-specific expression prediction (ILSEP) regression 

In addition to the TFBS classification problem, neural network architectures could be extended 

to treat a much broader and complex variety of problems to do with interpreting biological data. 

Here, we develop a novel genomic benchmark task, ILSEP, which requires regression to predict 

empirically-determined related target data, namely, prediction of the amount of various 

biological entities produced in different cellular contexts given an input genomic sequence. 

The input dataset for the ILSEP task is 14,116 one-hot encoded (4,2000) input promoter 

sequences and corresponding (243,) floating point gene expression outputs ranging between 2.60 

and 13.95 (see appendix for details). We split the dataset using 10-fold cross validation to obtain 

predictions for all promoter gene expression pairs. 

 

4.2 Results on TFBS 

4.2.1 Model performance 
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We benchmark the performance of AttentionNet models learned by hyperparameter optimization 

described above against published state-of-the-art neural network models on the TFBS task, 

DeepBind [Alipanahi et al., 2015] and DeepMotif [Lanchantin et al., 2016]. To compare the 

architectures, we train models for each of 108 datasets, as in Lanchantin et al. [2016]. In a head-

to-head comparison on each dataset, AttentionNet outperforms DeepMotif in 67.6% of cases and 

the mean AUC across datasets for AttentionNet is 0.933, improving over both DeepMotif (0.927) 

and DeepBind (0.904) (Table 1). 

 

4.2.2 Prediction and visualization of genomic information 

Interpretable information about sequence features is an important consideration for genomic 

learning tasks where fundamental understanding of biology is as important as prediction power. 

We hypothesize that a net which performed well on the TFBS classification task would be able 

to make biologically meaningful inferences about the sequence structure. We show that the mean 

attention weights across all positive sequences show a distinct “footprint” of transcription factor 

(TF) binding consistent with known nucleotide preferences within each sequence (Figure 2B). 

Further, visualizing the attention mask (with the addition of Gaussian blur) across input 

sequences for 10 representative TFs showed the net focusing its attention on parts of the 

sequence known to be regulatory (Figure 2C). 

 

To see if we could directly obtain motif sequences from the net, we took 10 nucleotides 

surrounding the position with highest attention for each of the top 100 sequences of a TF and 

averaged across the motifs. We took the maximum score for each nucleotide per position and 

queried the results against JASPAR, the “gold standard” TFBS database (with q < 0.5) 
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[Mathelier et al., 2015]. 30/57 motifs possible to check (i.e. in JASPAR) were correct, and 39/57 

corresponded to at least one transcription factor. By additionally searching the top 3 recurring 

sequences attended to for each TF, we recover a total of 42/57 correct motifs. 

 

4.3 Results on ILSEP 

4.3.1 Model performance 

The PromoterNet architecture demonstrates a marked gain in performance over DeepBind and 

Deep- Motif architectures adapted to the ILSEP regression task, achieving an average Pearson r 

correlation value of 0.587 between out-of-sample predictions and target expression values across 

lineages, com- pared to 0.506 and 0.441 for DeepBind [Alipanahi et al., 2015] and DeepMotif 

[Lanchantin et al., 2016] respectively (Figure 3A). We also train PromoterNet architectures on 

single task regression with a separate model for each of the 11 lineages and on cell type specific 

multi-task regression with one output unit for each of 243 cell types, which obtains similar 

improvements in average Pearson r correlation value of 0.592 over 0.502 for DeepBind and 

0.498 for DeepMotif. 

 

4.3.2 Promoter element recovery and visualization of proximal regulatory elements 

Visualization of attention mask weights from the PromoterNet model reveals attended locations 

over promoter sequences of 32 genes selected for highest mean expression across lineages are 

enriched directly adjacent to the TSS, suggesting that properties of the core promoter sequence 

constitute the most informative features for genes that do not show differences in expression 

across lineages (Figure 3B) (see appendix for list of genes). In contrast, attended locations over 

promoter sequences of 32 genes with maximal variance in expression across lineages span a 
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much greater range of positions. This indicates that in genes with the greatest degree of lineage-

specific expression, informative sequence features can occur throughout the promoter sequence. 

This observation merits follow up given previous reports that the performance of (non-deep) 

classifiers for cell type specific expression tasks trained only on TSS proximal promoter 

information is close to that of a random classifier [Natarajan et al., 2012]. Consistent with 

accepted understanding that TSS proximal regions contain genomic elements that control gene 

expression levels, we observe the maximum of average attention mask weights across all 

promoters occurs at the center of input sequences, which corresponds to core promoter elements 

required for recruitment of transcriptional machinery [Maston et al., 2006] (Figure 3C). 

PromoterNet models trained for multi-task regression result in a global attention mask output 

across all lineages. To investigate whether the PromoterNet architecture is capable of learning 

distinct features for each lineage, we also visualize attention weights for a given promoter 

sequence from separate models, each trained on expression data for a single lineage. We find that 

genes selected for maximal variance in expression demonstrate distinct patterns of learned 

attention across lineages, while a shared pattern of attention is learned for a control gene with 

high mean expression in all lineages even when each lineage was trained on a separate model 

(Figure 3D). 

 

5 Conclusions 

We tackle the problem of discovering architectures on datasets where human priors are not 

available. To do so we create a novel architecture search framework that is domain agnostic, is 

capable of sequential architectural subspace refinement and informing domain understanding, 

and is composable with existing hyperparameter optimization schemes. Using this search 
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algorithm, we create state- of-the art architectures on significant challenges in the domain of 

genomics utilizing a combination of standard and cutting-edge components. In particular, the 

learned architecture is capable of simultaneous discovery of local and non-local patterns, 

important subsequences, and sequential composition thereby capturing substantial genomic 

structure. 

 

6 Appendix 

6.1 ILSEP data processing 

For the input sequences in the ILSEP task, we use sequences spanning 1 kilobase upstream and 

downstream of transcriptional start sites (TSS), the region of the promoter at which production of 

the gene is initiated, for 17,565 genes from the Eukaryotic Promoter Database [epd]. For the 

corresponding labels, we obtain expression data (log2 normalized microarray intensities) for 

each of these genes in each of 243 immune cell types from the ImmGen Consortium April 2012 

release, which contains data for 21,755 genes x 243 immune cell types after quality control 

according to published methods [Ericson et al.]. Intersection of these two datasets by gene results 

in a dataset of 14,116 input promoter sequences and expression value target pairs. 

To create lineage-specific gene expression value targets, we combine cell types into 11 groups 

following the lineage tree outlined in previous work: B cells (B), dendritic cells (DC), gamma 

delta T cells (γδ), granulocytes (GN), macrophages (Mφ), monocytes (MO), natural killer cells 

(NK), stem and progenitor cells (SP), CD4+ T cells (T4), and CD8+ T cells (T8), and average 

expression values across samples within each group [Jojic et al., 2013]. 

 

6.2 Selected genes (Figure 3B) 
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Highest mean expression across lineages: Rac2, Rpl28, Pfn1, Rpl9, Ucp2, Tmsb4x, Tpt1, Rplp1, 

Hspa8, Srgn, Rpl27a, Rpl13a, Cd53, Eef2, Rps26, Cfl1, Ppia, Gm9104, Rps2, Rps27, Actg1, 

Laptm5, Rpl21, Eef1a1, Rplp0, Gm15427, Pabpc1, B2m, Gapdh, Actb, Rpl17, Rps6 

 

Highest variance in expression across lineages: Plbd1, Tlr13, Tyrobp, Ifitm2, Pld4, Pla2g7, Gda, 

Cd96, Gzma, Nkg7, Ctsh, Klrb1c, Ccl6, Prkcq, Itgam, Sfpi1, Itk, Ms4a4b, Alox5ap, Ly86, Cd2, 

Fcer1g, Gimap3, Il2rb, Gimap4, Ifitm6, Cybb, Ifitm3, Mpeg1, H2-Aa, Cd3g, Lyz2 

 

Random control: Krt84, Lrrc8b, 8030411F24Rik, Syngr2, Spint3, Slc17a4, Slc22a23, Thoc6, 

AF529169, Phf5a, Yif1b, 4930467E23Rik, Pgam1, Pcdhb1, Bak1, Neu3, Plcb2, Fabp4, Srgap1, 

Olfr1339, Sox12, Atg7, Gdf10, 1810008A18Rik, 1700011A15Rik, Anks4b, Magea2, Pygb, 

Spc25, Rras2, Slc28a3, 9130023H24Rik 
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Table 1: Mean and median AUC of models and percentage of datasets on which each model 
outperforms DeepBind or DeepMotif. 
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Figure 1: Schematic of hyperparameter optimization and final architecture designs. A) Overview 
of steps taken in hyperparameter optimization to generate AttentionNet and PromoterNet. B) 
AttentionNet architecture. C) PromoterNet architecture. 
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Figure 2: Results of AttentionNet on transcription factor binding site (TFBS) task. A) 
AttentionNet models outperform DeepMotif and DeepBind models trained on corresponding 
datasets. Each bar represents the difference in AUC for one of 108 different datasets. B) Mean of 
attention mask over all sequences in experiment. C) Recovery of transcription factor motifs by 
visualization of attention masks produced by AttentionNet over example sequences. 
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Figure 3: Results of PromoterNet on ImmGen lineage-specific expression prediction (ILSEP) 
task. A) Comparison of predicted versus observed gene expression for DeepBind, DeepMotif, 
and PromoterNet architectures. B) Visualization of attention mask over selected promoter 
sequences. C) Mean attention mask over all promoters. D) Visualization of attention masks 
learned by models trained on data from single lineages. 
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Table 2: Search space explored for AttentionNet and PromoterNet architectures, including 
techniques from Maas et al. [2013], Graham [2014], Shah et al. [2016], Ioffe and Szegedy 
[2015], He et al. [2015], Hochreiter and Schmidhuber [1997], Kingma and Ba [2014], Sutskever 
et al. [2013], Srivastava et al. [2014].  
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Table 3: AttentionNet architecture 
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Table 4: PromoterNet architecture 

 

  



	 34 

 

 

Figure 4: Example decision tree output from Genetic Architect visualization tool depicting 
significant hyperparameters for models with top 20% performance.  
  



	 35 

References 

1. Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional 

networks: Visualising image classification models and saliency maps. arXiv preprint 

arXiv:1312.6034, 2013. 

2. Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional 

networks. In Computer vision–ECCV 2014, pages 818–833. Springer, 2014. 

3. Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. 

Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014. 

4. Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey. Predicting 

the sequence specificities of dna-and rna-binding proteins by deep learning. Nature 

biotechnology, 2015. 

5. Jack Lanchantin, Ritambhara Singh, Zeming Lin, and Yanjun Qi. Deep motif: 

Visualizing genomic sequence classifications. arXiv preprint arXiv:1605.01133, 2016. 

6. Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very deep 

networks. In Advances in Neural Information Processing Systems, pages 2368–2376, 

2015. 

7. David R Kelley, Jasper Snoek, and John Rinn. Basset: Learning the regulatory code of 

the accessible genome with deep convolutional neural networks. bioRxiv, page 028399, 

2015. 

8. James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for 

hyper-parameter optimization. In Advances in Neural Information Processing Systems, 

pages 2546–2554, 2011. 



	 36 

9. James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. 

The Journal of Machine Learning Research, 13(1):281–305, 2012. 

10. Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of 

machine learning algorithms. In Advances in neural information processing systems, 

pages 2951–2959, 2012. 

11. ENCODE Project Consortium. An integrated encyclopedia of dna elements in the human 

genome. Nature, 489(7414):57–74, 2012. 

12. Anthony Mathelier, Oriol Fornes, David J Arenillas, Chih-yu Chen, Grégoire Denay, 

Jessica Lee, Wenqiang Shi, Casper Shyr, Ge Tan, Rebecca Worsley-Hunt, et al. Jaspar 

2016: a major expansion and update of the open-access database of transcription factor 

binding profiles. Nucleic acids research, page gkv1176, 2015. 

13. Anirudh Natarajan, Galip Gürkan Yardımcı, Nathan C. Sheffield, Gregory E. Crawford, 

and Uwe Ohler. Predicting cell-type–specific gene expression from regions of open 

chromatin. Genome Research, 22(9):1711–1722, 2012. doi: 10.1101/gr.135129.111. URL 

http://genome.cshlp. org/content/22/9/1711.abstract. 

14. Glenn A. Maston, Sarah K. Evans, and Michael R. Green. Transcriptional regulatory 

elements in the human genome. Annual Review of Genomics and Human Genetics, 

7(1):29–59, 2006. doi: 10.1146/annurev.genom.7.080505.115623. URL 

http://dx.doi.org/10.1146/annurev. genom.7.080505.115623. PMID: 16719718. 

15. Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve 

neural network acoustic models. In Proc. ICML, volume 30, page 1, 2013. 

16. Benjamin Graham. Spatially-sparse convolutional neural networks. arXiv preprint 

arXiv:1409.6070, 2014. 



	 37 

17. Anish Shah, Eashan Kadam, Hena Shah, and Sameer Shinde. Deep residual networks 

with exponential linear unit. arXiv preprint arXiv:1604.04112, 2016. 

18. Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network 

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015. 

19. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for 

image recognition. arXiv preprint arXiv:1512.03385, 2015. 

20. Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural 

computation, 9(8): 1735–1780, 1997. 

21. Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv 

preprint arXiv:1412.6980, 2014. 

22. Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of 

initialization and momentum in deep learning. In Proceedings of the 30th international 

conference on machine learning (ICML-13), pages 1139–1147, 2013. 

23. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan 

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. 

Journal of Machine Learning Research, 15:1929–1958, 2014. 

24. Eukaryotic promoter database. URL http://epd.vital-it.ch/mouse/mouse_database.php. 

25. Jeff Ericson, Scott Davis, Jon Lesh, Melissa Howard, Diane Mathis, and Christophe 

Benoist. Immgen microarray gene expression data: Data generation and quality control 

pipeline. URL www.immgen. org/Protocols/ImmGenQCDocumentation_ALL-

DataGeneration_0612.pdf. 

26. Vladimir Jojic, Tal Shay, Katelyn Sylvia, Or Zuk, Xin Sun, Joonsoo Kang, Aviv Regev, 

Daphne Koller, Immunological Genome Project Consortium, et al. Identification of 



	 38 

transcriptional regulators in the mouse immune system. Nature immunology, 14(6):633–

643, 2013. 

  



	 39 

Chapter 3: Multiplexed droplet single-cell RNA-sequencing using natural genetic variation 

 

Hyun Min Kang*$1, Meena Subramaniam$2-6, Sasha Targ$2-6,11, Michelle Nguyen7-9, Lenka 

Maliskova3,10, Elizabeth McCarthy11, Eunice Wan3, Simon Wong3, Lauren Byrnes12, Cristina 

Lanata13,14, Rachel Gate2-6, Sara Mostafavi15, Alexander Marson7-9,16,17, Noah Zaitlen3,13,18, 

Lindsey A Criswell3,13,14,19, Chun Jimmie Ye3-6* 

 

Introduction 

Droplet single cell RNA-sequencing (dscRNA-seq) has increased substantially the throughput of 

single cell capture and library preparation1, 10, enabling the simultaneous profiling of thousands 

of cells. Improvements in biochemistry11, 12 and microfluidics13, 14 continue to increase the 

number of cells and transcripts profiled per experiment. But for differential expression and 

population genetics studies, sequencing thousands of cells each from many individuals would 

better capture inter-individual variability than sequencing more cells from a few individuals. 

However, in standard workflows, dscRNA-seq of many samples in parallel remains challenging 

to implement. If the genetic identity of each cell could be determined, pooling cells from 

different individuals in one microfluidic run would result in lower per-sample library preparation 

cost and eliminate confounding effects. Furthermore, if droplets containing multiple cells from 

different individuals could be detected, pooled cells could be loaded at higher concentrations, 

enabling additional reduction in per-cell library preparation cost. 

 

Here we develop an experimental protocol for multiplexed dscRNA-seq and a computational 

algorithm, demuxlet32, that harnesses genetic variation to determine the genetic identity of each 
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cell (demultiplex) and identify droplets containing two cells from different individuals (Fig. 1a). 

While strategies to demultiplex cells from different species1, 10, 17 or host and graft samples17 

have been reported, simultaneously demultiplexing and detecting doublets from more than two 

individuals has not been possible. Inspired by models and algorithms developed for detecting 

contamination in DNA sequencing18, demuxlet is fast, accurate, scalable, and compatible with 

standard input formats17, 19, 20.  

 

Demuxlet implements a statistical model for evaluating the likelihood of observing RNA-seq 

reads overlapping a set of single nucleotide polymorphisms (SNPs) from a single cell. Given a 

set of best-guess genotypes or genotype probabilities obtained from genotyping, imputation or 

sequencing, demuxlet uses maximum likelihood to determine the most likely donor for each cell 

using a mixture model. A small number of reads overlapping common SNPs is sufficient to 

accurately identify each cell. For a pool of 8 individuals and a set of uncorrelated SNPs each 

with 50% minor allele frequency (MAF), 4 reads overlapping SNPs are sufficient to uniquely 

assign a cell to the donor of origin (Fig. 1b) and 20 reads overlapping SNPs can distinguish 

every sample with >98% probability in simulation (Supplementary Fig. 1). We note that by 

multiplexing even a small number of individuals, the probability that a doublet contains cells 

from different individuals is very high (1 – 1/N, e.g., 87.5% for N=8 samples) (Fig. 1C). For 

example, if a 1,000-cell run without multiplexing results in 990 singlets with a 1% undetected 

doublet rate, multiplexing 1,570 cells each from 63 samples can theoretically achieve the same 

rate of undetected doublets, producing up to a 37-fold more singlets (36,600) if the sample 

identity of every droplet can be perfectly demultiplexed (Supplementary Fig. 2, see Methods for 

details). To minimize the effects of sequencing doublets, profiling 22,000 cells multiplexed from 
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26 individuals generates 23-fold more singlets at the same effective doublet rate (Supplementary 

Fig. 3). 

 

Results 

We first assess the performance of multiplexed dscRNA-seq through simulation. The ability to 

demultiplex cells is a function of the number of individuals multiplexed, the depth of sequencing 

or number of read-overlapping SNPs, and relatedness of multiplexed individuals. We simulated 

6,145 cells (5,837 singlets and 308 doublets) from 2 – 64 individuals from the 1000 Genomes 

Project21. We show that 50 SNPs per cell allows demultiplexing of 97% of singlets and 

identification of 92% of doublets in pools of up to 64 individuals (Supplementary Figs. 4-5, see 

Methods for details). Simulating a range of sequencing depths, we determined that 50 SNPs can 

be obtained with as few as 1,000 unique molecular identifiers (UMIs) per cell (Supplementary 

Fig. 6), and recommended sequencing depths of standard dscRNA-seq workflows would capture 

hundreds of SNPs. To assess dependence on the relatedness of multiplexed individuals, we 

simulated 6,145 cells from a set of 8 related individuals from 1000 Genomes21. In this 

simulation, 50 SNPs per cell would allow demuxlet to correctly assign over 98% of cells 

(Supplementary Fig. 7). These results suggest optimal multiplexed designs where cells from tens 

of unrelated individuals should be pooled, loaded at concentrations 2-10x higher than standard 

workflows, and sequenced to at least 1,000 UMIs per cell. 

 

We evaluate the performance of demuxlet by analyzing a pool of peripheral blood mononuclear 

cells (PBMCs) from 8 lupus patients. By sequential pairwise pooling, three pools of equimolar 

concentrations of cells were generated (W1: patients S1-S4, W2: patients S5-S8 and W3: patients 
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S1-S8) and each loaded in a well on a 10X Chromium instrument (Fig. 2a). 3,645 (W1), 4,254 

(W2) and 6,205 (W3) cell-containing droplets were sequenced to an average depth of 51,000, 

39,000 and 28,000 reads per droplet. 

 

In wells W1, W2 and W3, demuxlet identified 91% (3332/3645), 91% (3864/4254), and 86% 

(5348/6205) of droplets as singlets (likelihood ratio test, L(singlet)/L(doublet) > 2), of which 

25% (+/- 2.6%), 25% (+/- 4.6%) and 12.5% (+/- 1.4%) mapped to each donor, consistent with 

equal mixing of individuals in each well. From wells W1 and W2, each containing cells from 

two disjoint sets of 4 individuals, we estimated a demultiplexing error rate (number of cells 

assigned to individuals not in the pool) of less than 1% of singlets (W1: 2/3332, W2: 0/3864) 

(Fig. 2b).  

 

We next assess the ability of demuxlet to detect doublets in both simulated and real data. 

466/3645 (13%) droplets from W1 were simulated as synthetic doublets by setting the cellular 

barcodes of 466 cells each from individuals S1 and S2 to be the same. Applied to simulated data, 

demuxlet identified 91% (426/466) of synthetic doublets as doublets or ambiguous, correctly 

recovering the sample identity of both cells in 403/426 (95%) doublets (Supplementary Fig. 8). 

Applied to real data from W1, W2 and W3, demuxlet identified 138/3645, 165/4254, and 

384/6205 doublets corresponding to doublet rates of 5.0%, 5.2% and 7.1%, consistent with the 

expected doublet rates estimated from mixed species experiments (Fig. 2c). 

 

Demultiplexing of pooled samples allows for the statistical and visual comparisons of individual-

specific dscRNA-seq profiles. Singlets identified by demuxlet in all three wells cluster into 
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known immune cell types (Fig. 2d) and are correlated with bulk RNA-sequencing of sorted cell 

populations (R=0.76-0.92) (Supplementary Fig. 9). For the same individuals from different 

wells, t-distributed stochastic neighbor embedding (t-SNE) of dscRNA-seq data are qualitatively 

consistent, and estimates of cell type proportions are highly correlated (R = 0.99) (Fig. 2e and 

Supplementary Fig. 10). Further, t-SNE projections of the pool and each individual are not 

confounded by well-to-well effects (Supplementary Fig. 11a). While 6 genes were differentially 

expressed between wells W1 and W2 (DESeq2 on pseudobulk counts, FDR < 0.05), only 2 

genes were differentially expressed between W1 and W2 individuals in well W3 (FDR < 0.05) 

(Supplementary Fig. 11b), suggesting multiplexing reduces technical effects due to separate 

sample processing22, 23.  

 

We used multiplexed dscRNA-seq to characterize the cell type specificity and inter-individual 

variability of response to IFN-β, a potent cytokine that induces genome-scale changes in the 

transcriptional profiles of immune cells24, 25. From each of 8 lupus patients, PBMCs were 

activated with recombinant IFN-β or left untreated for 6 hours, a time point we previously found 

to maximize the expression of interferon-sensitive genes (ISGs) in dendritic cells (DCs) and T 

cells26, 27. Two pools, IFN-β-treated and control, were prepared with the same number of cells 

from each individual and loaded onto the 10X Chromium instrument. 

 

We obtained 14,619 (control) and 14,446 (stimulated) cell-containing droplets, of which 

demuxlet identified 83% (12,138) and 84% (12,167) as singlets. The estimated doublet rate of 

10.9% in each condition is consistent with predicted rates (Fig. 2C) and the observed and 

expected frequencies of doublets for each pair of individuals are highly correlated (R=0.98) 
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(Supplementary Fig. 12). Detected doublets form distinct clusters near the periphery of other 

clusters defined by cell type (Supplementary Fig. 13). 

 

Demultiplexing individuals enables the use of the 8 individuals within each pool as biological 

replicates to quantitatively assess cell type-specific IFN-β responses in PBMCs. Consistent with 

previous reports from bulk RNA-sequencing data, IFN-β stimulation induces widespread 

transcriptomic changes observed as a shift in the t-SNE projections of singlets24  (Fig. 3A). As 

expected, IFN-β did not affect cell type proportions between control and stimulated cells 

(Supplementary Fig. 14), and these were consistent with flow cytometry measurements (R=0.88) 

(Supplementary Fig. 15). Estimates of abundances for ~2000 homologous genes in each cell type 

and condition correlated with similar data from mice (Supplementary Fig. 16). We identified 

3,055 differentially expressed genes (logFC > 2, FDR < 0.05) in at least one cell type 

(Supplementary Table 1). For 709 genes, estimates of fold change in response to IFN-β 

stimulation in myeloid and CD4+ cells are consistent with estimates in monocyte derived 

dendritic cells28 and CD4+ T cells27, respectively (Supplementary Fig. 17) and correlated with 

qPCR results of sorted CD4+ T cells (Supplementary Fig. 18). Differentially expressed genes 

cluster into modules of cell type-specific responses enriched for distinct gene regulatory 

programs (Fig. 3B, Supplementary Table 2). For example, genes upregulated in all leukocytes 

(Cluster III: 401 genes, logFC > 2, FDR < 0.05) or only in myeloid cells (Cluster I: 767 genes, 

logFC > 2, FDR < 0.05) are enriched for general antiviral response (e.g. KEGG Influenza A: 

Cluster III P < 1.6x10-5), chemokine signaling (Cluster I P < 7.6x10-3) and pathways active in 

systemic lupus erythematosus (Cluster I P < 4.4x10-3). The five clusters of downregulated genes 

are enriched for antibacterial response (KEGG Legionellosis: Cluster II monocyte down P < 
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5.5x10-3) and natural killer cell mediated toxicity (Cluster IV NK/Th cell down: P < 3.6x10-2). 

The analysis of multiplexed dscRNA-seq data recovers cell type-specific gene regulatory 

programs affected by interferon stimulation consistent with published IFN-β signatures in mouse 

and humans29.  

 

Over all PBMCs, the variance of mean expression across individuals is higher than the variance 

across synthetic replicates whose cells were randomly sampled (Lin’s concordance = 0.022, 

Pearson correlation= 0.69, Fig. 3C). The variance across synthetic replicates whose cells were 

sampled matching for cell type proportions is more concordant with the variance across 

individuals (Lin’s concordance = 0.54, Pearson correlation = 0.78, Fig. 3C-D), suggesting a 

contribution of cell type composition on expression variability. However, for each cell type, the 

variance across individuals22, 30 is also higher than the variance across synthetic replicates (Lin’s 

concordance = 0.007-0.20) suggesting additional inter-individual variability not due to cell type 

composition (Supplementary Fig. 19). In CD14+CD16- monocytes, the correlation of mean 

expression between pairs of synthetic replicates from the same individual (>99%) is greater than 

from different individuals (~97%), further indicating inter-individual variation beyond sampling 

(Fig. 3E). We found between 15 to 827 genes with statistically significant inter-individual 

variability in control cells and 7 to 613 in stimulated cells (Pearson correlation, FDR < 0.05), 

with most found in classical monocytes (cM) and CD4+ helper T (Th) cells. Inter-individual 

variable genes in stimulated cM and to a lesser extent in Th cells (P < 9.3x10-4 and 4.5x10-2, 

hypergeometric test, Fig. 3F) are enriched for differentially expressed genes, consistent with our 

previous discovery of more IFN-β response-eQTLs in monocyte-derived dendritic cells than 

CD4+ T cells26, 27. Comparing to 407 genes previously profiled in bulk monocyte-derived 
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dendritic cells, the proportion of variance explained by inter-individual variability is more 

correlated in myeloid cells after stimulation (R = 0.26 – 0.3) than before (R = 0.05 – 0.19).  

 

To map genetic variants associated with cell type proportions and cell type-specific expression 

using multiplexed dscRNA-seq, we sequenced an additional 15,250 (7 donors), 22,619 (8 

donors) and 25,918 cells (15 donors; 8 lupus patients, 5 rheumatoid arthritis patients, and 2 

healthy controls). Demuxlet identified 71% (10,766/15,250), 73% (16,618/22,619) and 60% 

(15,596/25,918) of droplets as singlets, correctly assigning 99% of singlets from the first two 

pools, W1 and W2 (10,740/10,766 and 16,616/16,618). The estimated doublet rates of 18%, 18% 

and 25% are consistent with the increased concentrations of loaded cells (Fig. 2C). Similar to the 

IFN-β stimulation experiment, we found that expression variability was determined by variability 

in cell type proportion (Fig. 4A) and reproducible between batches (Supplementary Fig. 20). 

Associating >150,000 genetic variants (MAF > 20%) with the proportion of 8 major immune cell 

populations, we identified a SNP (chr10:3791224) significantly associated (P = 1.03 x 10-5, FDR 

< 0.05) with the proportion of NK cells (Fig. 4B).  

 

Across 23 donors, we conducted an expression quantitative trait loci (eQTL) analysis to map 

genetic variants associated with expression variability in each major immune cell type. We found 

a total of 32 local eQTLs (+/- 100kb, FDR < 0.1), 22 of which were detected in only one cell 

type (Fig. 4C, Supplementary Table 3). Previously reported local eQTLs from bulk CD14+ 

monocytes, CD4+ T cells and lymphoblastoid cell lines are more significantly associated with 

gene expression in the most similar cell types (cM, Th and B cells, respectively) than other cell 

types (Fig. 4D). We used an inverse variance weighted meta-analysis to identify genes with pan-
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cell type eQTLs, including those in the major histocompatibility complex (MHC) class I antigen 

presentation pathway including ERAP2 (P < 3.57x10-32, meta-analysis), encoding an 

aminopeptidase known to cleave viral peptides34, and HLA-C (P < 1.74x10-29, meta-analysis), 

which encodes the MHC class I heavy chain (Fig. 4E). HLA-DQA1 has local eQTLs only in 

some cell types (P <2.11x10-15, Cochran’s Q) while HLA-DQA2 has local eQTLs in all antigen 

presentation cells (P < 1.02e10-43, Cochran’s Q). Among other cell type-specific local eQTLs are 

CD52, a gene ubiquitously expressed in leukocytes that only has eQTLs in monocyte 

populations, and DIP2A, a gene with an eQTL only in NK cells that is associated with immune 

response to vaccination in peripheral blood35. These results demonstrate the ability of 

multiplexed dscRNA-seq to characterize inter-individual variation in immune response and when 

integrated with genetic data, reveal cell type-specific genetic control of gene expression, which 

would be undetectable when bulk tissues are analyzed. 

 

Discussion 

The capability to demultiplex and identify doublets using natural genetic variation reduces the 

per-sample and per-cell library preparation cost of single-cell RNA-sequencing, does not require 

synthetic barcodes or split-pool strategies36-40, and captures biological variability among 

individual samples while limiting unwanted technical variability. We find the optimal number of 

samples to multiplex is approximately 20, based on sample processing time and empirical 

doublet rates of current microfluidic devices and anticipate that number to increase with 

automated sample handling and lower doublet rates. 
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Compared to sorting known cell types followed by bulk RNA-seq, multiplexed dscRNA-seq is a 

more efficient and unbiased method for obtaining cell type-specific immune traits41. Demuxlet 

enables reliable estimation of cell type proportion, recovers cell type-specific transcriptional 

response to stimulation, and could facilitate further genetic and longitudinal analyses in relevant 

cell types and conditions across a range of sampled individuals, including between healthy 

controls and disease patients42-44. While demuxlet could in principle be applied to sequencing 

solid tissue, standardizing sample processing and preservation remain major challenges. 

Although we developed demuxlet specifically for RNA-sequencing, we anticipate that the 

computational framework could be easily extended to other single cell assays where synthetic 

barcodes or natural genetic variation are measured by sequencing. 

 

Contributions: HMK and CJY conceived the project. MS, ST, LM, RG, LB, EW, SW, and MN 

performed all experiments. HMK, MS, ST, EM, SM, and CJY analyzed the data. CL and LAC 

provided the patient samples. NZ and AM provided helpful comments and discussion.  HMK, 

MS, ST, and CJY wrote the manuscript. 

 

Methods 

Identifying the sample identity of each single cell. 

We first describe the method to infer the sample identity of each cell in the absence of doublets. 

Consider RNA-sequence reads from C barcoded droplets multiplexed across S different samples, 

where their genotypes are available across V exonic variants. Let 𝑑"# be the number of unique 

reads overlapping with the v-th variant from the c-th droplet. Let 𝑏"#% ∈ 𝑅, 𝐴, 𝑂 , 𝑖 ∈

1,⋯ , 𝑑"#  be the variant-overlapping base call from the i-th read, representing reference (R), 
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alternate (A), and other (O) alleles respectively. Let  𝑒"#% ∈ 0,1  be a latent variable indicating 

whether the base call is correct (0) or not (1), then given 𝑒"#% = 0, 𝑏"#% ∈ 𝑅 = 0, 𝐴 = 1 	and 

	~	Binomial 2, ;
<

 when 𝑔 ∈ {0,1,2} is the true genotype of sample corresponding to c-th 

droplet at v-th variant. When 𝑒"#% = 1, we assume that Pr(𝑏"#%|𝑔, 𝑒"#%) follows Supplementary 

Table 4. 𝑒"#% is assumed to follow Bernoulli 10G
HIJK
LM  where 𝑞"#% is a phred-scale quality score 

of the observed base call. We use the standard 10X pipeline to process the raw reads which 

estimates the phred-scale quality score based on the alignment of each read to the reference 

human transcriptome using the STAR aligner49.  

 We allow uncertainty of observed genotypes at the v-th variant for the s-th sample using 

𝑃P#
(;) = Pr(𝑔|DataP#), the posterior probability of a possible genotype	𝑔 given external DNA 

data DataP#	(e.g. sequence reads, imputed genotypes, or array-based genotypes). If genotype 

likelihood Pr(DataP#|𝑔) is provided (e.g. unphased sequence reads) instead, it can be converted 

to a posterior probability scale using 𝑃P#
(;) = Pr	(DataP#|𝑔)Pr	(𝑔) where 

Pr 𝑔 ~Binomial 2, 𝑝#  and 𝑝# is the population allele frequency of the alternate allele. To 

allow errors 𝜀 in the posterior probability, we replace it with (1 − 𝜀)𝑃P#
(;) + 𝜀Pr	(𝑔). The overall 

likelihood that the c-th droplet originated from the s-th sample is 

 𝐿" 𝑠 = Pr(𝑏"#%|𝑔, 𝑒)Y
Z[\ 𝑃P#

(;)]IJ
%[Y

<
;[\

^
#[Y   (1) 

In the absence of doublets, we use the maximum likelihood to determine the best-matching 

sample as argmaxP 𝐿" 𝑠 . 

 

Screening for droplets containing multiple samples. 
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To identify doublets, we implement a mixture model to calculate the likelihood that the sequence 

reads originated from two individuals, and the likelihoods are compared to determine whether a 

droplet contains cells from one or two samples. If sequence reads from the c-th droplet originate 

from two different samples, 𝑠Y, 𝑠< with mixing proportions 1 − 𝛼 ∶ 	𝛼, then the likelihood in 

(1) can be represented as the following mixture distribution18,  

𝐿" 𝑠Y, 𝑠<, α = 1 − α Pr 𝑏"#% 𝑔Y, 𝑒 + 𝛼Pr 𝑏"#% 𝑔<, 𝑒Y
Z[\ 𝑃P#

(;L)𝑃P#
(;d)]IJ

%[Y;L,;d
^
#[Y   

 To reduce the computational cost, we consider discrete values of α ∈ {αY,⋯ , αe}, (e.g. 5 

- 50% by 5%). We determine that it is a doublet between samples 𝑠Y, 𝑠<  if and only if  

fghiL,id,j kI PL,Pd,l
fghikI P

≥ 𝑡 and the most likely mixing proportion is estimated to be 

argmaxo𝐿" 𝑠Y, 𝑠<, 𝛼 . We determine that the cell contains only a single individual s if 

fghiL,id,j kI PL,Pd,l
fghikI P

≤ Y
q
 , and less confident droplets are classified as ambiguous. While we 

consider only doublets for estimating doublet rates, we remove all doublets and ambiguous 

droplets to conservatively estimate singlets. Supplementary Fig. 8 illustrates the distribution of 

singlet, doublet likelihoods and the decision boundaries when t = 2 was used.  

 

Theoretical expectation of deconvoluting singlets. 

The theoretical distribution of expected singlets with multiplexing (presented in Supplementary 

Fig. 2) is as follows. Let 𝑑r (e.g. 0.01) be the proportion of true multiplets when 𝑥r (1,000) cells 

are loaded when multiplexing was not used. Then the expected multiplet rates when x cells are 

loaded can be modeled exponentially as 𝑑(𝑥) = 1 − (1 − 𝑑\)
t
tM. Let � be the fraction of true 

singlets incorrectly classified as non-singlets (i.e. doublet or ambiguous), and 𝛽 be the fraction of 

multiplets correctly classified as non-singlets. When multiplexing 𝑥 cells equally from 𝑛 
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samples, the expected multiplet rates are 𝑑(𝑥), and  Y
w
𝑑(𝑥) are expected to be undetectable 

doublets mixed between the cells from the same sample. Therefore, the overall effective 

multiplet rate is wG(wGY)x
w

𝑑(𝑥). Similarly, the expected number of correctly identified singlets 

becomes YGo YG](y) yM] y
Gz{|	(YG]M)

 . Given 𝛼, 𝛽 the expected number of singlets can be calculated by 

fixing the multiplet rate 𝑑 𝑥 = 𝑑\. We used 𝑑\ = 0.01, 𝑥\ = 1000 for the simulation in 

Supplementary Fig. 2. 

 

Dependence of demultiplexing performance on experimental design parameters. 

The demuxlet ‘plp’ option was used to generate a pileup format of 6,145 cells from one well of 

PBMC 10x data.  The reads in the pileup were then modified to reflect the genotypes of 

individuals sampled from the 1000 Genomes Phase 3 cohort. The pileup was downsampled to 

obtain different numbers of read-overlapping exonic SNPs (ranging from 5,000 to 100,000) for 

the whole cohort. To create simulated doublets, we randomly sampled and merged pairs of 

barcodes within a dataset, resulting in a 5% doublet rate in the original data. For simulations with 

related individuals, we simulated transcriptomes from 8 individuals in 1000 Genomes with 

varying degrees of relatedness, ranging from unrelated to parent-child (HG00146, HG00147, 

HG00500, HG00501, HG00502, HG00512, HG00514, and HG00524).  

 

Isolation and preparation of PBMC samples. 

Informed consent was obtained from all patients sequenced in this study. Peripheral blood 

mononuclear cells were isolated from patient donors, Ficoll separated, and cryopreserved by the 

UCSF Core Immunologic Laboratory (CIL). PBMCs were thawed in a 37°C water bath, and 

subsequently washed and resuspended in EasySep buffer (STEMCELL Technologies). Cells 
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were treated with DNAseI and incubated for 15 min at RT before filtering through a 40um 

column.  Finally, the cells were washed in EasySep and resuspended in 1x PBMS and 0.04% 

bovine serum albumin.  Cells from 8 donors were then re-concentrated to 1M cells per mL and 

then serially pooled. At each pooling stage, 1M cells per mL were combined to result in a final 

sample pool with cells from all donors.  

 

IFN-β stimulation and culture. 

Prior to pooling, samples from 8 individuals were separated into two aliquots each. One aliquot 

of PBMCs was activated by 100 U/mL of recombinant IFN-β (PBL Assay Science) for 6 hrs 

according to the published protocol26. The second aliquot was left untreated. After 6 hrs, the 8 

samples for each condition were pooled together in two final pools (stimulated cells and control 

cells) as described above.  

 

Fluorescence-activated cell sorting and analysis. 

1M PBMCs from each donor were stained using standard procedure (30 min, 4 C) with the 

following surface antibody panel (CD3-PerCP clone SK7 (BioLegend), CD4-APC clone OKT4 

(BioLegend), CD8-BV570 clone RPA-T8 (BioLegend), CD14-FITC clone 63D3 (BioLegend), 

CD19-BV510 clone SJ25C1 (BD), and Ghost dye A710 viability stain (Tonbo)) (Life Sciences 

Reporting Summary). Samples were then analyzed and sorted using a BD FACSAria Fusion 

instrument at the UCSF flow cytometry core. To calculate cell type proportions, the number of 

events in each of CD3+ CD4+ CD8- (CD4+ T cells), CD3+ CD4- CD8+ (CD8+ T cells), CD3- 

CD19+ (B cells), and CD3- CD14+ (monocytes) were divided by the sum of events in these gates 

(Supplementary Fig. 21).  
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Quantitative polymerase chain reaction analysis. 

RNA was isolated from sorted CD4+ T cells following the RNeasy micro kit protocol 

(QIAGEN), and cDNA was prepared using MultiScribe Reverse Transcriptase (Applied 

Biosystems cat #4368814). The qPCR primers were chosen from the PrimerBank reference when 

available 50. Each sample was run in triplicate with the Luminaris HiGreen qPCR kit (Thermo 

Scientific #K0992) according to standard protocol using a Roche Light Cycler 96 instrument and 

fold change was calculated from DDCT between control and stimulated samples with GAPDH as 

a reference gene. 

 

Droplet-based capture and sequencing. 

Cellular suspensions were loaded onto the 10x Chromium instrument (10x Genomics) and 

sequenced as described in Zheng et al17. The cDNA libraries were sequenced using a custom 

program on 10 lanes of Illumina HiSeq2500 Rapid Mode, yielding 1.8B total reads and 25K 

reads per cell. At these depths, we recovered >90% of captured transcripts in each sequencing 

experiment.  

 

Bulk isolation and sequencing. 

PBMCs from lupus patients were isolated and prepared as described above. Once resuspended in 

EasySep buffer, the EasyEights Magnet was used to sequentially isolate CD14+ (using the 

EasySep Human CD14 positive selection kit II, cat #17858), CD19+ (using the EasySep Human 

CD19 positive selection kit II, cat #17854), CD8+ (EasySep Human CD8 positive selection kitII, 

cat#17853), and CD4+ cells (EasySep Human CD4 T cell negative isolation kit (cat #17952) 
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according to the kit protocol. RNA was extracted using the RNeasy Mini kit (#74104), and 

reverse transcription and tagmentation were conducted according to Picelli et al. using the 

SmartSeq2 protocol51, 52. After cDNA synthesis and tagmentation, the library was amplified with 

the Nextera XT DNA Sample Preparation Kit (#FC-131-1096) according to protocol, starting 

with 0.2ng of cDNA.  Samples were then sequenced on one lane of the Illumina Hiseq4000 with 

paired end 100bp read length, yielding 350M total reads. 

 

Alignment and initial processing of single cell sequencing data. 

We used the CellRanger v1.1 and v1.2 software with the default settings to process the raw 

FASTQ files, align the sequencing reads to the hg19 transcriptome, and generate a filtered UMI 

expression profile for each cell17. The raw UMI counts from all cells and genes with nonzero 

counts across the population of cells were used to generate t-SNE profiles.  

 

Cell type classification and clustering. 

To identify known immune cell populations in PBMCs, we used the Seurat package to perform 

unbiased clustering on the 2.7k PBMCs from Zheng et al., following the publicly available 

Guided Clustering Tutorial17, 53. The FindAllMarkers function was then used to find the top 20 

markers for each of the 8 identified cell types. Cluster averages were calculated by taking the 

average raw count across all cells of each cell type. For each cell, we calculated the Spearman 

correlation of the raw counts of the marker genes and the cluster averages, and assigned each cell 

to the cell type to which it had maximum correlation. 
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Differential expression analysis. 

Demultiplexed individuals were used as replicates for differential expression analysis.  For each 

gene, raw counts were summed for each individual. We used the DESeq2 package to detect 

differentially expressed genes between control and stimulated conditions54. Genes with 

baseMean > 1 were filtered out from the DESeq2 output, and the qvalue package was used to 

calculate FDR < 0.05 55. 

 

Estimation of inter-individual variability in PBMCs. 

For each individual, we found the mean expression of each gene with nonzero counts. The mean 

was calculated from the log2 single cell UMI counts normalized to the median count for each 

cell. To measure inter-individual variability, we then calculated the variance of the mean 

expression across all individuals. Lin’s concordance correlation coefficient was used to compare 

the agreement of observed data and synthetic replicates. Synthetic replicates were generated by 

sampling without replacement either from all cells or cells matched for cell type proportion. Cell 

type-specific variability estimated as the correlation between synthetic replicates was compared 

to variability estimates from 23 biological replicates of bulk IFN-stimulated monocyte-derived 

dendritic cells. Protein coding genes (407/414) originally measured using Nanostring (a 

hybridization based PCR-free quantification method) were assessed, and variability in the bulk 

dataset was estimated as repeatability using a linear mixed model56,26. 

 

Estimation of inter-individual variability within cell types. 

For each cell type, we generated two bulk equivalent replicates for each individual by summing 

raw counts of cells sampled without replacement.  We used DESeq2 to generate variance-
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stabilized counts across all replicates. To filter for expressed genes, we performed all subsequent 

analyses on genes with 5% of samples with > 0 counts.  The correlation of replicates was 

performed on the log2 normalized counts. Pearson correlation of the two replicates from each of 

the 8 individuals was used to find genes with significant inter-individual variability.  

 

Quantitative trait mapping in major immune cell types. 

Genotypes were imputed with EAGLE57 and filtered for MAF > 0.2, resulting in a total of 

189,322 SNPs. Cell type proportions were calculated as number of cells for each cell type 

divided by the number of total cells for each person.  Linear regression was used to test 

associations between each genetic variant and cell-type proportion with the Matrix eQTL 

software58. Cis-eQTL mapping was conducted in each cell type separately. All genes with at 

least 50 UMI counts in 20% of the individuals in all PBMCs were tested for each cell type, 

resulting in a total of 4,555 genes.  Variance-stabilized and log-normalized gene expression was 

calculated using the ‘rlog’ function of the DESeq2 package54. All variants within a window of 

100kbp of each gene were tested with linear regression using Matrix eQTL58. Batch information 

for each sample as well as the first 3 principal components of the expression matrix were used as 

covariates.  

 

Single cell and bulk RNA-sequencing data has been deposited in the Gene Expression Omnibus 

under the accession number GSE96583. Demuxlet software is freely available at 

https://github.com/statgen/demuxlet 
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Figure 1 – Demuxlet: demultiplexing and doublet identification from single cell data.  
a) Pipeline for experimental multiplexing of unrelated individuals, loading onto droplet-based 
single-cell RNA-sequencing instrument, and computational demultiplexing (demux) and doublet 
removal using demuxlet. Assuming equal mixing of 8 individuals, b) 4 genetic variants can 
recover the sample identity of a cell, and c) 87.5% of doublets will contain cells from two 
different samples.  
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Figure 2 – Performance of demuxlet. a) Experimental design for equimolar pooling of cells 
from 8 unrelated samples (S1-S8) into three wells (W1-W3). W1 and W2 contain cells from two 
disjoint sets of 4 individuals. W3 contains cells from all 8 individuals. b) Demultiplexing single 
cells in each well recovers the expected individuals. c) Estimates of doublet rates versus previous 
estimates from mixed species experiments. d) Cell type identity determined by prediction to 
previously annotated PBMC data. e) t-SNE plot of two individuals (S1 and S5) from different 
wells are qualitatively concordant.  
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Figure 3 – Inter-individual variability in IFN-β response. a) t-SNE plot of unstimulated (blue) 
and IFN-β-stimulated (red) PBMCs and the estimated cell types. b) Cell type-specific expression 
in stimulated (left) and unstimulated (right) cells. Differentially expressed genes shown (FDR < 
0.05, |log(FC)| > 1). Each column represents cell type-specific expression for each individual 
from demuxlet. c) Observed variance (y-axis) in mean expression over all PBMCs from each of 
the 8 individuals versus expected variance (x-axis) over synthetic replicates sampled across all 
cells (light blue, pink) or replicates matched for cell type proportion (blue, red). d) Cell type 
proportions for each individual in unstimulated and stimulated cells. e) Correlation between 
sample replicates in control and stimulated cells. f) Number of significantly variable genes in 
each cell type and condition.   
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Figure 4 – Genetic control over cell type proportion and gene expression (N=23). a) 
Observed variance (y-axis) in mean expression over all PBMCs from each individual versus 
expected variance (x-axis) over synthetic replicates sampled across batch 1 (left, N=8) and batch 
3 (right, N=15). b) Association of chr10:3791224 with NK cell type proportions.  c) Genome-
wide and chromosome 6 Manhattan plots across all major cell types. Horizontal lines correspond 
to FDR < 0.1 (blue) and FDR < 0.05 (red). d) Q-Q plots across all genes and subsets of 
previously published eQTLs in relevant cell types are shown for B, cM, and Th populations. e) 
Notable cis-eQTLs across all major immune cell types are marked with *(FDR < 0.25), ** (FDR 
< 0.1), and *** (FDR < 0.05).  Lack of association is marked with NS (not significant).      



	 61 

References 

1. Macosko, E.Z. et al. in Cell, Vol. 161 1202-1214 (2015). 

2. Klein, A.M. et al. Droplet Barcoding for Single-Cell Transcriptomics Applied to 

Embryonic Stem Cells. Cell 161, 1187-1201 (2015). 

3. Stegle, O., Teichmann, S.A. & Marioni, J.C. Computational and analytical challenges in 

single-cell transcriptomics. Nat Rev Genet 16, 133-145 (2015). 

4. Gawad, C., Koh, W. & Quake, S.R. Single-cell genome sequencing: current state of the 

science. Nat Rev Genet 17, 175-188 (2016). 

5. Streets, A.M. et al. Microfluidic single-cell whole-transcriptome sequencing. 

Proceedings of the National Academy of Sciences of the United States of America 111, 

7048-7053 (2014). 

6. Zilionis, R. et al. Single-cell barcoding and sequencing using droplet microfluidics. Nat. 

Protocols 12, 44-73 (2017). 

7. Zheng, G.X.Y. et al. in Nature Communications | doi:10.1038/ncomms9687, Vol. 8 

14049 (Nature Publishing Group, 2017). 

8. Jun, G. et al. in The American Journal of Human Genetics, Vol. 91 839-848 (2012). 

9. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156-2158 

(2011). 

10. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 

2078-2079 (2009). 

11. The Genomes Project, C. A global reference for human genetic variation. Nature 526, 68-

74 (2015). 



	 62 

12. Aguirre-Gamboa, R. et al. Differential Effects of Environmental and Genetic Factors on 

T and B Cell Immune Traits. Cell Reports 17, 2474-2487. 

13. Li, Y. et al. A Functional Genomics Approach to Understand Variation in Cytokine 

Production in Humans. Cell 167, 1099-1110.e1014 (2016). 

14. Mostafavi, S. et al. Parsing the Interferon Transcriptional Network and Its Disease 

Associations. Cell 164, 564-578. 

15. Stark, G.R., Kerr, I.M., Williams, B.R.G., Silverman, R.H. & Schreiber, R.D. in 

http://dx.doi.org/10.1146/annurev.biochem.67.1.227, Vol. 67 227-264 ( Annual Reviews 

4139 El Camino Way, P.O. Box 10139, Palo Alto, CA 94303-0139, USA, 2003). 

16. Lee, M.N. et al. in Science, Vol. 343 1246980-1246980 (2014). 

17. Ye, C.J. et al. in Science, Vol. 345 1254665-1254665 (2014). 

18. Andrés, A.M. et al. Balancing Selection Maintains a Form of ERAP2 that Undergoes 

Nonsense-Mediated Decay and Affects Antigen Presentation. PLOS Genetics 6, 

e1001157 (2010). 

19. Mostafavi, S. et al. Parsing the Interferon Transcriptional Network and Its Disease 

Associations. Cell 164, 564-578 (2016). 

20. Palmer, C., Diehn, M., Alizadeh, A.A. & Brown, P.O. Cell-type specific gene expression 

profiles of leukocytes in human peripheral blood. BMC Genomics 7, 115 (2006). 

21. Saveanu, L. et al. Concerted peptide trimming by human ERAP1 and ERAP2 

aminopeptidase complexes in the endoplasmic reticulum. Nat Immunol 6, 689-697 

(2005). 

22. Franco, L.M. et al. Integrative genomic analysis of the human immune response to 

influenza vaccination. eLife 2, e00299 (2013). 



	 63 

23. Cao, J. et al. Comprehensive single cell transcriptional profiling of a multicellular 

organism by combinatorial indexing. bioRxiv (2017). 

24. Dixit, A. et al. Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell 

RNA Profiling of Pooled Genetic Screens. Cell 167, 1853-1866.e1817 (2016). 

25. Adamson, B. et al. A Multiplexed Single-Cell CRISPR Screening Platform Enables 

Systematic Dissection of the Unfolded Protein Response. Cell 167, 1867-1882.e1821 

(2016). 

26. Jaitin, D.A. et al. Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with 

Single-Cell RNA-Seq. Cell 167, 1883-1896.e1815 (2016). 

27. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat 

Meth 14, 297-301 (2017). 

28. Farh, K.K.-H. et al. Genetic and epigenetic fine mapping of causal autoimmune disease 

variants. Nature 518, 337-343 (2015). 

29. Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell 

RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotech 33, 155-160 

(2015). 

30. Tung, P.-Y. et al. Batch effects and the effective design of single-cell gene expression 

studies. Scientific Reports 7, 39921 (2017). 

31. Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to mechanism. 

Nature 541, 331-338 (2017). 

32. Supplementary Code. 

32. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21 

(2013). 



	 64 

33. Wang, X., Spandidos, A., Wang, H. & Seed, B. PrimerBank: a PCR primer database for 

quantitative gene expression analysis, 2012 update. Nucleic Acids Research 40, D1144-

D1149 (2012). 

34. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. 

Nat Meth 10, 1096-1098 (2013). 

35. Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protocols 

9, 171-181 (2014). 

36. Satija, R., Farrell, J.A., Gennert, D., Schier, A.F. & Regev, A. Spatial reconstruction of 

single-cell gene expression data. Nat Biotech 33, 495-502 (2015). 

37. Anders, S. & Huber, W. Differential expression analysis for sequence count data. 

Genome Biology 11, R106 (2010). 

38. Dabney, A., Storey, J.D. & Warnes, G.R. qvalue: Q-value estimation for false discovery 

rate control. R package version 1 (2010). 

39. Falconer, D.S., Mackay, T.F. & Frankham, R. Introduction to quantitative genetics (4th 

edn). Trends in Genetics 12, 280 (1996). 

40. Loh, P.R., Palamara, P.F. & Price, A.L. Fast and accurate long-range phasing in a UK 

Biobank cohort. Nat Genet 48, 811-816 (2016). 

41. Shabalin, A.A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. 

Bioinformatics 28, 1353-1358 (2012). 

  



	 65 

Publishing Agreement 

It is the policy of the University to encourage the distribution of all theses, dissertations, and 
manuscripts. Copies of all UCSF theses, dissertations, and manuscripts will be routed to the 
library via the Graduate Division. The library will make all theses, dissertations, and manuscripts 
accessible to the public and will preserve these to the best of their abilities, in perpetuity. 

I hereby grant permission to the Graduate Division of the University of California, San Francisco 
to release copies of my thesis, dissertation, or manuscript to the Campus Library to provide 
access and preservation, in whole or in part, in perpetuity. 

Author Signature ______________________________ Date 2018/06/15  

 

 

 

 

 


	Thesis preliminary-3
	Thesis-3



